

LTE band 5@CA 5A-66A

OBW: 1RB-LOW_offset

Spectrum								(H
Ref Level 4	0.00 dBm	Offset	18.12 dB 🥃	RBW 5 kH	z			
Att	40 dB	SWT	758.5µs 🖷	VBW 20 kH	z Mode	Auto FFT		
∋1Pk View								
						M1[1]		16.98 dBr
20 40								824.59910 MH
30 UBIII						Occ Bw		243.125904486 kH
20 dBm						M1		
20 UBIII						*		
10 dBm						٢H		
10 dbiii						111		
						7 7		
-10 dBm						$\langle \rangle$		
-10 0.011					1 1			
-20 dBm							<u> </u>	
					1		\sim	
-30 dBm			_	_	<u>/</u>			
				1			1	
-40 dBm				- where			_	Mulay
mon the man	moun	mununa	merrow	that ware				manunt
-50 dBm								
CE 924 0 ML	17			601	nte			Spap 6.0 MUz
GF 824.0 MF	12			09.	i pis			аран 0.0 мнг
Tupo	Tro	Ptinoul		Posnonso	E.	unction	Euro	ction Recult
M1	1	824.5	991 MHz	16.98 d	Bm	m		ction result
T1	1	824.47	757 MHz	-3.10 d	Bm	Occ Bw		243.125904486 kHz
T2	1	824.72	069 MHz	-3.41 d	Bm			
	1						distance in the local	MMA 11.10.2024
								NAME .

Date: 11.0CT.2024 09:47:25

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 09:48:14

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 09:50:01

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 09:50:51

LOW BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:41:42

HIGH BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:43:49

LTE band 66@CA 5A-66A

OBW: 1RB-LOW_offset

Spectrum						
Ref Level 4	0.00 dBm	Offset 19.02 dB =	RBW 5 kHz			
Att	35 dB	SWT 758.5 μs 🧉	VBW 20 kHz	Mode Auto FFT		
1Pk View		,				
00.45-					11.76 dBn 1.71105070 GH	
30 dBm				Occ Bw		243.125904486 kH
20 dBm						
10 dBm				X		
0 dBm						
				T1	T2 7	
-10 dBm						
-20 dBm					+	
-30 dBm						
-40 dBm			and the second second	r	_	
-50 dBm	manutur	maren all all and a second	monut		_	
CF 1.71 GHz			691 pts	5		Span 6.0 MHz
Marker	Trol	Otherulus	Desnense	Function	Fund	tion Docult
N1 N1	1	1 7110507 CH3	11.76 dpm	Function	Fund	cion Result
T1	1	1.7109725 GHz	-6.51 dBm	Occ Bw		243.125904486 kHz
T2	1	1.71121563 GHz	-8.51 dBm	000 04		2.0.220501100 KHz
)[Measuring		LXA 11.10.2024
				-		

Date: 11.0CT.2024 09:48:29

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 09:49:18

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 09:51:06

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 09:51:55

LOW BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:42:31

HIGH BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:44:38

LTE band 5@CA 5A-30A

OBW: 1RB-LOW_offset

Spectrum						
Ref Level 4	0.00 dBm	Offset 18.12 dB 🖷	RBW 5 kHz			,
Att	40 dB	SWT 758.5 μs 🧉	VBW 20 kHz	Mode Auto FFT		
⊜1Pk View						
				M1[1]		11.51 dBn
20 dBm						824.59910 MH
JU UDINI				Occ Bw		243.125904486 kHz
20 dBm						
				M1		
10 dBm				<u> </u>		
10 0.0				r"h		
0 dBm						
				T1 T2		
-10 dBm			_	7 7	_	
				$- I \lambda -$		
-20 dBm						
-30 dBm					<u> </u>	
-40 dBm					- ~~	
		Lug all sole and the other	manant			mul an which which as
-50 dBm			·			
CF 824.0 MH	łz		691 pt	s		Span 6.0 MHz
Marker						
Type Ref	Trc	Stimulus	Response	Function	Fun	ction Result
M1	1 824.5991 MHz		11.51 dBm			
T1	1	824.47757 MHz	-8.57 dBm	Occ Bw		243.125904486 kHz
T2	1	824.72069 MHz	-8.83 dBm			
				Measuring		11.10.2024
						14:10:04

Date: 11.0CT.2024 14:16:05

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 14:16:54

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 14:21:05

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:21:55

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:12:35

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:16:07

LTE band 30@CA 5A-30A

OBW: 1RB-LOW_offset

Spectr	um									
Ref Lev	vel 4	0.00 dBr	n Offset 1	9.73 dB 🧉	RBW 5 kHz					
Att		35 di	3 SWT 7	58.5 µs 🧉	VBW 20 kHz	Mode A	uto FFT			
⊖1Pk Vie	ew.									
						M	1[1]			8.73 dBm
30 dBm-			_						2.305	60780 GHz
						0	CC BW	1	234.4428	336469 KHZ
20 dBm-	-				_					
						N				
10 dBm-	-					1	-			
						ľ	n			
0 dBm—	+		-			т				
						4	12			
-10 dBm	+						ľ			
						1	1			
-20 aBm						8	1			
20 dBm						1		m l		
-30 ubiii						م م				
-40 dBm	_							when we		
					and a				themas .	
-50 dBm	and the	mbrow	neuman	emper	wheneve				Mund	mann
CE 2 30	15 CH	17			601	nts			Sna	n 6 0 MHz
Marker		12			091	pts			590	11 0.0 14112
Type	Ref	Trc	Stimulu	s	Response	Func	tion	Fun	ction Result	:
M1		1	2.30560	78 GHz	8.73 dB	m				
T1		1	2.305486	25 GHz	-7.20 dB	m O	cc Bw		234.4428	36469 kHz
T2		1	2.305720	69 GHz	-10.54 dB	m				
						Mea	suring		4,40	11.10.2024
,										

Date: 11.0CT.2024 14:17:09

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 14:18:01

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 14:18:52

Channel power

Spectrun	n											
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Off: SW TDF	set 4 T	.20 dB 100 ms	● RB ● VB	W 10 kHz W 30 kHz	Mode A	uto Sweep				
1Rm AvgL	og											
10 dBm					_							
0 dBm						Т	1			-		
-10 dBm												
-20 dBm					-					-		
-30 dBm										\rightarrow		
-40 dBm					_					+		
-50 dBm										-		
-60 dBm			~~~~	~~~~	t-n			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-70 dBm												
CF 2.2882	88 GHz					500	pts				Spa	n 2.0 MHz
Channel Po	wer						10.05					
Band	width 1.0	U MH	z			Power	-42.25 dB	ßm	Ť×	Tota	1 -42.25	dBm
								Ready			1/0	11.10.2024

Date: 11.0CT.2024 14:19:47

Channel power

Date: 11.0CT.2024 14:20:42

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 14:22:10

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Spectrun	n							
Ref Level	20.00 dBm	Offset	4.20 dB 😑 🖡	BW 3 kHz				
Att	35 dB	SWT	100 ms 👄 🛚	' BW 20 kHz	Mode Auto FF	т		
SGL Count	100/100	TDF						
●1Rm AvgL	og							
					M1[1]		2.315	44.94 dBm 00100 GHz
10 dBm								
0 dBm							_	
-10 dBm								
limit1_for_tr	ace1							
-20 dBm								
-30 dBm								
-40 dBm								
Same.								
-50°08m∀∀	www	Anna.						
-60 dBm			h					
-70 dBm								
Start 2.31	5 GHz	1	1	501	pts		Stop 2	2.316 GHz
][]				Ready		4/0	1.10.2024

Date: 11.0CT.2024 14:23:02

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:23:55

Channel power

Spectrun	ı										
Ref Level	20.00 dBm	Offse	t 4.20 dB	RBW	10 kHz						
Att	30 dB	⊜ SWT	100 ms (● VBW	30 kHz	Mode A	uto Sweep				
SGL Count	100/100	TDF									
1Rm AvgLi	og										
10 dBm				_					_		
0 dBm					D	1					
-10 dBm											
-20 dBm											
-30 dBm											
-40 dBm											
-50 dBm	~~~										
-60 dBm	- man	m	·	••••••	ohn		~~~~~~		~~~~		·····
-70 dBm											
CF 2.316 C	Hz				500	pts				Spa	in 2.0 MHz
Channel Po	wer]
Band	width 1.0	0 MHz		Po	wer -	41.02 dE	ßm	т	(Tot	al -41.02	dBm
							teady			4/4	11.10.2024

Date: 11.0CT.2024 14:24:49

Channel power

Spectrum	ı								
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Offset SWT TDF	4.20 dB 👄 🛿 100 ms 👄 V	RBW 10 kHz /BW 30 kHz	Mode A	uto Sweep			
●1Rm AvgLo	og								
10 dBm									
0 dBm				T	1				
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm							_		
-60 dBm				~~~~~~	·				
-70 dBm									
CF 2.3333	46 GHz			500	pts			Spa	n 2.0 MHz
Channel Po Bandy	wer width 1.0	0 MHz		Power -	42.39 dB	m	Тх То	tal -42.39	dBm
)[eady .		4/4	1.10.2024

Date: 11.0CT.2024 14:25:44

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Ref Level 20.00 dBm Offset 4.20 dB RBW 100 kHz	
Att OF AD O OWT 100 ms O VOW 500 kills Made tota Owners	
ALL 35 UB SWI 100 MS VBW SUU KHZ MODE AUTO Sweep	
SGL Count 100/100 TDF	
IRm AvgLog	
M1[1] -39).12 dBm
2.30499	900 GHz
10 dBm	
0 dBm	
-10 dBm	
limit1_for_trace1	
-20 dBm	
20 dBm	
-30 UBIN	
	M
-10 dBm	
-50 dBm	
-60 dBm	
-70 dBm	
Start 2.304 GHz 501 pts Stop 2.3	305 GHz
Ready AVA 11.1	0.2024

Date: 11.0CT.2024 11:13:25

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:14:16

Channel power

Spectrun	n								
Ref Level	20.00 dBm	Offse	t 4.20 dB 📢	RBW 10) kHz				<u> </u>
Att	30 dB	SWT	100 ms (• VBW 30	kHz Mode	a Auto Sweep)		
SGL Count	100/100	TDF							
⊖1Rm AvgL	og								
10 dBm				_					
0 dBm				_	T):1	_			
-10 dBm			_	_					
-20 dBm			_						
-30 dBm			_	_					
-40 dBm			_	_	_				
-50 dBm							_		
-60 dBm				~_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
-70 dBm—							_		
CF 2.2917	44 GHz				500 pts			Span 2.0	MHz
Channel Po Band	wer width 1.0	0 MHz		Pow	ver -42.25	dBm	Tx To	otal -42.25 dBm	ı
][]					Ready		11.10.20	24

Date: 11.0CT.2024 11:15:11

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Spectrun	n							
Ref Level Att SGL Count	20.00 dBm 35 dB 100/100	Offset SWT TDF	4.20 dB 👄 I 100 ms 👄 V	RBW 100 kHz VBW 500 kHz	Mode A	uto Sweep		
⊖1Rm AvgLi	og							
					M	L[1]	2.315	39.58 dBm 00100 GHz
10 dBm								
0 dBm								
-10 dBm								
limit1_for_tra	ace1							
-20 dBm		-		<u> </u>				
-30 dBm								
-40 dBm		+		++			 	
-50 dBm								
-60 dBm								
-70 dBm								
Start 2.31	5 GHz			501 p	ts		Stop	2.316 GHz
][]				R	endy	4/4	1.10.2024

Date: 11.0CT.2024 11:16:57

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:17:49

Channel power

Spectrun	n												
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Off SW TDF	set 4 /T	4.20 dB 100 ms	● R ● V	BW BW	10 kHz 30 kHz	Mode	Auto Sweep				
1Rm AvgL	og												
10 dBm					_								
0 dBm								4		-			
-10 dBm													
-20 dBm													
-30 dBm					_								
-40 dBm		<u> </u>											
-50 dBm													
-60 dBm						~~~		~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
-70 dBm													
CF 2.3285	44 GHz						500	pts				Spa	in 2.0 MHz
Channel Po	wer												
Band	width 1.0	O MH	z			Po	wer -	42.23 d	Bm	T	x Tot	al -42.23	8 dBm
									Ready			4,44	11.10.2024

Date: 11.0CT.2024 11:18:44

LTE band 12@CA 12A-66A

LOW BAND EDGE BLOCK-1RB-LOW_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 09:55:40

LOW BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:45:59

HIGH BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:48:06

LTE band 66@CA 12A-66A

OBW: 1RB-LOW_offset

Spectrur	n								
Ref Level	40.00 d	Bm Offset	19.02 dB 🧉	RBW 5 kHz					
Att	35	dB SWT	758.5 µs 🧉	• VBW 20 kHz	Mode A	uto FFT			
⊖1Pk View									
					M	1[1]			10.66 dBm
30 dBm		_	_					1.711	14620 GHz
					0	CC BW	1	260.4920	40521 KHZ
20 dBm		_	_						
							MI		
10 dBm			-			r	- 		
0 dBm						ΤI	-		
10 10						1 7	2		
-10 dBm-							1		
20 dam									
-20 ubiii						and a second	- North		
-30 dBm					- All and a second				
					and the second s			- man	u.
-40 dBm									and a second
he and a			يلمع بالمراجع	and a mart					
-50 dBm—									
CF 1.71 G	l Hz			691 g	ots			Spa	n 6.0 MHz
Marker								· · ·	
Type Re	f Trc	Stim	ulus	Response	Func	tion	Fund	tion Result	
M1	1	1.711	1462 GHz	10.66 dBn	n				
T1	1	1.710	19725 GHz	-6.52 dBn	n 0	cc Bw		260.4920	40521 kHz
T2	1	1.71	1233 GHz	-9.85 dBn	n				
					Mela	suring		4,00	1.10.2024

Date: 11.0CT.2024 09:53:32

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 09:54:21

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 09:55:55

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 09:56:44

LOW BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:46:48

HIGH BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:48:55

LTE band 12@CA 12A-30A

LOW BAND EDGE BLOCK-1RB-LOW_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:31:30

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:19:43

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:23:15

LTE band 30@CA 12A-30A

OBW: 1RB-LOW_offset

Spect	rum									
Ref Le	vel 4	0.00 dBr	n Offset 1	9.73 dB 🧉	RBW 5 kHz					
Att		35 di	3 SWT 7	58.5 µs 🧉	VBW 20 kHz	Mode A	uto FFT			
●1Pk Vi	ew			_						
						M	1[1]			9.85 dBm
30 dBm-							_		2.30	554700 GHz
						0	CC BW	1	243.125	904486 KHz
20 dBm	\rightarrow									
						M				
10 dBm							art.	_		
						ſ	11			
0 dBm—										+
						'∳	12			
-10 dBm	·+-		+				H (+
-20 aBm						1	1			
-20 dBm						1		M		
-30 ubii	' T					م م		- North		
-40 dBm					كالمعمل					
10 001	·		1	Luna, Julia	wwww				marian	
-50 dBh	manual	Million	nowwww	and the second s					" Why	markeline
CE 2 3	15 CH	17			691	nte			Sn	an 6 0 MHz
Marker	55 GI	12			091	pts			эр	JI 0.0 MI12
Type	Ref	Trc	Stimulu	is I	Response	Fund	tion	Fun	ction Resul	t l
M1		1	2,3055	47 GHz	9.85 dB	m				
T1		1	2.305477	57 GHz	-7.76 dB	m O	CC BW		243.125	904486 kHz
T2		1	2.305720	69 GHz	-9.78 dB	m				
						Mez	suring		14/0	11.10.2024

Date: 11.0CT.2024 14:27:00

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 14:27:52

LOW BAND EDGE BLOCK-1RB-LOW_offset

Spectrur	n						
Ref Level	20.00 dB	m Offset	4.20 dB 👄	RBW 1 MHz	Made Auto St		
SGL Count	: 100/100	TDF	100 113	4 D W 5 Mill2	HOULE AULO SI	(eep	
●1Rm AvgL	.og						
					M1[1]		-33.62 dBn
10 40							2.2888960 GH
10 asm					M2[1]		-10.09 dBn 2 3040000 GH
					1	1	
0 dBm							
-10 dBm							
-20 dBm—							
-30 d6th-							
limit1 for tr							
-++0 ubiii			-				+ + + + + + + + + + + + + + + + + + + +
-50 dBm							
-60 dBm		-	-				
-70 dBm		-	-				
Start 2.28	B GHz			501	nts		Stop 2.304 GHz
	1				Poadu		11.10.2024
Ĺ							1420-43

Date: 11.0CT.2024 14:28:43

Channel power

Spectrun	n												
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Offs SW TDF	set 4 T 1	.20 dB 100 ms	● R ● V	BW BW	10 kHz 30 kHz	Mode	Auto Sweep				
1Rm AvgL	og												
10 dBm													
0 dBm								4		-			
-10 dBm										-			
-20 dBm													
-30 dBm													
-40 dBm											_		
-50 dBm													
-60 dBm							······						
-70 dBm—													
CF 2.2888	96 GHz						500	pts				l Spa	in 2.0 MHz
Channel Po	wer												
Band	width 1.0	0 MHz	z			Po	wer ·	42.26 d	Bm	Т	x Tot	al -42.26	5 dBm
][Ready			4,74	11.10.2024 11:29:37

Date: 11.0CT.2024 14:29:38

Channel power

Date: 11.0CT.2024 14:30:32

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 14:31:45

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:32:37

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:33:30

Channel power

Date: 11.0CT.2024 14:34:25

Channel power

Spectrun	ı								
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Offse SWT TDF	t 4.20 dB 👄 I 100 ms 👄 V	RBW 10 kHz VBW 30 kHz	Mode Au	ito Sweep			
1Rm AvgL	og								
10 dBm									
0 dBm				TX:	1				
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm			_						
-50 dBm									
-60 dBm	bu	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-70 dBm									
CF 2.3287	4 GHz			500 p	ots			Spa	n 2.0 MHz
Channel Po Bandi	wer width 1.0	0 MHz		Power -	42.39 dB	m	Тх То	tal -42.39	dBm
][]				R	e a dy		4,40	1.10.2024

Date: 11.0CT.2024 14:35:19

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Spectrun	n								
Ref Level	20.00 dBm	Offset	4.20 dB 👄	RBW	100 kHz				
Att	35 dB	SWT	100 ms 👄	VBW	500 kHz	Mode	Auto Sweep		
SGL Count	100/100	TDF							
1Rm AvgL	og								
						P	41[1]	- 2.304	40.20 dBm 99900 GHz
10 dBm				-			+		
0 dBm				_					
-10 dBm				_					
limit1_for_tra	ace1			-					
-20 dBm				_					
-30 dBm				_					
-40 dBm				_					M
-50 dBm									
-60 dBm									
-70 dBm									
-70 0011									
Start 2.30	4 GHz				501 p	ots		Stop 2	2.305 GHz
							Ready	44	1.10.2024

Date: 11.0CT.2024 11:20:33

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:21:24

Channel power

Spectrun	n										
Ref Level	20.00 dBm	Offs	et 4.20 dB	RBW	10 kHz						<u> </u>
Att	30 dB	SWT	100 ms	👄 VBW	30 kHz	Mode A	uto Sweep				
SGL Count	100/100	TDF									
1Rm AvgL	og										
10 dBm			_	_							
0 dBm					TX	1					
-10 dBm											
-20 dBm			_								
-30 dBm			_								
-40 dBm											
-50 dBm								-			
-60 dBm				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
-70 dBm								-			
CF 2.2901	76 GHz				500	ots				Span 2.0 M	1Hz
Channel Po Bandy	wer width 1.0	0 MHz		P	ower -	42.26 dE	3m	Тх	Total -4	42.26 dBm	
)[]						Ready		4/4	11.10.202	

Date: 11.0CT.2024 11:22:19

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Spectrum	ר			
Ref Level 20.0 Att SGL Count 100/	0 dBm Offset 35 dB = SWT 100 TDF	4.20 dB ⊜ RBW 100 k 100 ms ⊜ VBW 500 k	Hz Hz Mode Auto Sweep	, , , , , , , , , , , , , , , , , , ,
●1Rm AvgLog			M1[1]	-39.93 dBm 2.31500100 GHz
10 dBm				
0 dBm				
-10 dBm				
limit1_for_trace1				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
Start 2.315 GH		50	1 pts	Stop 2.316 GHz
			Ready	11.10.2024

Date: 11.0CT.2024 11:24:05

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:24:58

Channel power

Spectrun	n											
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Offs SW1 TDF	et 4.20	dB 👄 I ms 👄 V	RBW VBW	10 kHz 30 kHz	Mode A	uto Sweep				
1Rm AvgL	og											
10 dBm												
0 dBm					-	T)	1			_		
-10 dBm			_		-					_		
-20 dBm					-					_		
-30 dBm					-					_		
-40 dBm					-							
-50 dBm												
-60 dBm				~~~~							~	
-70 dBm												
CF 2.3280	54 GHz					500	pts				Spa	n 2.0 MHz
Channel Po	wer											
Band	width 1.0	0 MHz			Po	wer -	42.05 dE	ßm	Т	Tota	al -42.05	dBm
][Ready			4/4	11.10.2024

Date: 11.0CT.2024 11:25:53

LTE band 14@CA 14A-66A

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 09:58:01

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 10:00:19

LOW BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:50:11

HIGH BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:52:15

LTE band 66@CA 14A-66A

OBW: 1RB-LOW_offset

Spectr	um									
Ref Lev	el 40).00 dB	m Offset 1	19.02 dB 🦷	RBW 5 kHz					
Att		35 d	B SWT 7	758.5µs ∈	• VBW 20 kHz	Mode /	\uto FFT			
●1Pk Vie	W									
						N	11[1]		1.71	5.83 dBn
30 dBm-	+		+	-		c	cc Bw		260.492	040521 kH
20 dBm-	+								_	
10 dBm-	_				_			м	_	
0 dBm—								~		
-10 dBm							т			
20 d0m								Ť,		
-20 aBm							1			
-30 dBm	+					مم محمد				
-40 dBm	+		-		- Mark	Windowski				- and a second
-50-dBm		- most		- awy	Arrent market				-	
CF 1.71	GHz				691 p	ots			Sp	an 6.0 MHz
Marker										
Туре	Ref	Trc	Stimulu	is	Response	Fund	ction	Fu	nction Resu	lt
M1		1	1.7111	462 GHz	5.83 dBn	n				
T1 T2		1	1.7109	725 GHz 233 GHz	-11.41 dBn -14.70 dBn	n (n	DCC BW		260.492	040521 kHz
	_	-						and the second second	ID 43/4	11.10.2024
									a second	

Date: 11.0CT.2024 09:58:16

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 09:59:05

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 10:00:34

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 10:01:23

LOW BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:51:01

HIGH BAND EDGE BLOCK-10MHz+20MHz-100%RB

Date: 11.0CT.2024 10:53:04

LTE band 14@CA 14A-30A

LOW BAND EDGE BLOCK-1RB-LOW_offset

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:40:54

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:26:47

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:30:15

LTE band 30@CA 14A-30A

OBW: 1RB-LOW_offset

Spect	rum									[₩
Ref Le	vel 4	0.00 dB	m Offset 1	9.73 dB 🧉	RBW 5 kHz					\
Att		35 d	B SWT 7	'58.5 µs 🧉	VBW 20 kHz	Mode A	uto FFT			
⊖1Pk Vi	ew									
						M	1[1]			9.87 dBm
30 dBm-									2.30	560780 GHz
						0	CC BW	1	234.442	836469 KHZ
20 dBm·	_							_		
						N	1			
10 dBm							4.	_		
						ľ	1)			
0 dBm—			_		-	т	H			
						4	12			
-10 dBm	<u>ו</u> וי				+ +		1 (
							<u>}</u>			
-20 dBm	די					1				
20 dBm						1		\sim		
-30 UBII	-					P. C.		-		
-40 dBm					- And			- man		
-40 001	'				AL STATE				manuelle.	
-so ash	mar	maria	handrown	munhour	handhar				What	man
05.0.00		-				- + -			0	
CF 2.3	Ja Gr	12			091	JUS			spe	IN 0.0 MHZ
Tupo	Pof	Tro	etimulu	. I	Posnonso	Euro	tion	Eup	ction Pocul	•
M1	Ker	1	2,30560	78 GHz	9.87 dBi	n Func	cion	Fui	ction Resul	
T1		1	2.305486	25 GHz	-6.09 dBr	n 0	cc Bw		234.442	336469 kHz
T2		1	2.305720)69 GHz	-9.58 dBr	n				
		1				l Mea	suring	Concession of the local division of the loca	1436	11.10.2024

Date: 11.0CT.2024 14:36:30

LOW BAND EDGE BLOCK-1RB-LOW_offset

Date: 11.0CT.2024 14:37:22

LOW BAND EDGE BLOCK-1RB-LOW_offset

Spectrun	n						
Ref Level	20.00 dB	m Offset	4.20 dB 👄	RBW 1 MHz	Mada Auto Gu		
SGL Count	35 (100/100	TDF	100 ms 🖷	VBW 5 MHZ	MODE AUTO SW	/eep	
●1Rm AvgL	.og						
					M1[1]		-33.61 dBm
10 dBm					100111		2.2882880 GHz
10 aBm					M2[1]		-10.02 dBm 2.3040000 GHz
0 10						1	
U dBm-							
10 d0m							M
-10 UBIII							
20 dBm							
-20 ubiii							
NOO dDm							
limit1_for_tr	ace1						
-40 0511							
-50 dBm							
-50 0511							
-60 dBm							
00 0011							
-70 dBm							
, o abiii							
Start 2.28	8 GHz			501	pts		Stop 2.304 GHz
					Ready		

Date: 11.0CT.2024 14:38:13

Channel power

Spectrum	ı								
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Offs SW1 TDF	et 4.20 dB (100 ms (RBW 10 ki VBW 30 ki 	Hz Hz Mode A	uto Sweep			
1Rm AvgLo	og								
10 dBm									
0 dBm					T.1				
-10 dBm				_					
-20 dBm									
-30 dBm									
-40 dBm				_					
-50 dBm									
-60 dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.	·····				
-70 dBm									
CF 2.2882	88 GHz			50	0 pts			Spa	n 2.0 MHz
Channel Po Bandy	wer width 1.0	0 MHz	:	Power	-42.27 df	3m	Тх То	tal -42.27	dBm
][]					Ready		4,40	1.10.2024

Date: 11.0CT.2024 14:39:08

Channel power

Date: 11.0CT.2024 14:40:03

OBW: 1RB-HIGH_offset

Date: 11.0CT.2024 14:41:09

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:42:02

HIGH BAND EDGE BLOCK-1RB-HIGH_offset

Date: 11.0CT.2024 14:42:54

Channel power

Date: 11.0CT.2024 14:43:49

Channel power

Spectrun	ı								
Ref Level Att SGL Count	20.00 dBm 30 dB 100/100	Offs SWT TDF	et 4.20 dB 👄 I 100 ms 👄 '	RBW 10 kHz VBW 30 kHz	Mode Au	ito Sweep			
●1Rm AvgL	og								
10 dBm			_						
0 dBm				TS	1				
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm				+ +					
-50 dBm									
-60 dBm						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	~~~
-70 dBm									
CF 2.3332	48 GHz			500 p	ots			Spa	n 2.0 MHz
Channel Po Bandi	wer width 1.0	0 MHz		Power -	42.40 dB	m	Тх То	tal -42.40	dBm
][]				n R	e a dy		4,40	11.10.2024

Date: 11.0CT.2024 14:44:44

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Spectrun	n								
Ref Level	20.00 dBm	Offset	4.20 dB 🖷	RBW	100 kH:	2			
Att	35 dB	SWT	100 ms 🥃	VBW	500 kH:	: Mode	Auto Sweep		
SGL Count	100/100	TDF					-		
1Rm AvgLi	og								
						P	41[1]	-	40.53 dBm
10.10								2.304	98900 GHz
10 dBm									
0 dBm							-		
-10 dBm				_					
limit1_for_tra	ace1								
-20 dBm				_					
20 dBm									
-30 ubiii									
10.10									M1
-40 dBm-								 	
-50 dBm				+					
-60 dBm			+	+					
-70 dBm				_					
01-1-0-00									
start 2.30	4 GHZ				501	pts		Stop	2.305 GHZ
								1,0	1000000

Date: 11.0CT.2024 11:27:38

LOW BAND EDGE BLOCK-10MHz+10MHz-100%RB

Spectrum									
Ref Level 20 Att SGL Count 10).00 dBm 35 dB)0/100	Offset SWT TDF	4.20 dB 👄 I 100 ms 👄 V	RBW 1 MHz VBW 5 MHz	Mode Au	ito Sweep			
●1Rm AvgLog					м	1[1]		2.29	-33.61 dBm 916800 GHa
10 dBm									<u> </u>
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm		M1							<u> </u>
imit1_for_trace	1	_							
-50 dBm									
-60 dBm									
-70 dBm									
Start 2.288 G	Hz	I		501	pts	I	I	Stop	1 2.304 GHz
						te a d y		4,70	11.10.2024

Date: 11.0CT.2024 11:28:29

Channel power

Spectrun	n								
Ref Level	20.00 dBm	Offset	: 4.20 dB 😑	RBW 10 k	Hz				
Att	30 dB	👄 SWT	100 ms 👄	VBW 30 k	Hz Mode	Auto Sweep			
SGL Count	100/100	TDF							
1Rm AvgLi	og								
10 dBm									
0 dBm			-		TX1				
-10 dBm									
-20 dBm			_						
-30 dBm									
-40 dBm									
-50 dBm							-		
-60 dBm			mana		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-70 dBm									
CF 2.2916	8 GHz			51	00 pts			Span 2	.0 MHz
Channel Po Bandy	Channel Power								
	Bandwidth 1.00 MHz Power -42.25 dBm 1x Total -42.25 dBm								

Date: 11.0CT.2024 11:29:24

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Spectrum								
Ref Level 2 Att SGL Count 1	0.00 dBm 35 dB 00/100	Offset SWT TDF	4.20 dB 👄 🛿 100 ms 👄 🎙	RBW 100 kHz VBW 500 kHz	Mode A	uto Sweep		
●1Rm AvgLog)				MI	[1]	 	-39.89 dBm
10 dBm							2.318	
0 dBm								
-10 dBm								
limit1_for_trac	e1							
-20 dBm								
-30 dBm								
1 40.dBm	~~~~~						 	
-50 dBm								
-60 dBm								
-70 dBm								
Start 2.315	GHz			501 p	ts		Stop	2.316 GHz
)[]				R	eady	4,40	11.10.2024

Date: 11.0CT.2024 11:31:05

HIGH BAND EDGE BLOCK-10MHz+10MHz-100%RB

Date: 11.0CT.2024 11:31:57

Channel power

Date: 11.0CT.2024 11:32:52

Note: Expanded measurement uncertainty is U = 0.622 dB, k = 2.

A.7 Conducted Spurious Emission

A.7.1 Measurement Method

The following steps outline the procedure used to measure the conducted emissions from the EUT.

1. In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given below:

(a) If the equipment operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(b) If the equipment operates at or above 10 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

- 2. Determine EUT transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.
- 3. The number of sweep points of spectrum analyzer is greater than $2 \times \text{span/RBW}$.

A. 7.2 Measurement Limit

Part 22.917, Part 24.238 and Part 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

Part 27.53(m) specifies for mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

Part 27.53(c) states for operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

Part 27.53(f) states for operations in the 746–758 MHz,775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to -70dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals.

Part 27.53(g) states for operations in the 600 MHz band and the 698–746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the ©Copyright. All rights reserved by CTTL. Page 311 of 323

transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Part 27.53(a) states for mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands: By a factor of not less than: $43 +10 \log (P) dB$ on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337MHz; By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz; By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz.

Part 90.543 states that for operations in the 758–768 MHz and the 788–798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following: (1) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations. (2) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations. (3) On any frequency between 775–788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB. (4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment. (5) Compliance with the provisions of paragraph (e)(3) of this section is based on the use of measurement instrumentation bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of 30 kHz may be employed.

Part 90.691 states that out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116Log₁₀(f/6.1) decibels or 50 + 10 Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz. For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log₁₀(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

A. 7.3 Measurement result

Only the worst case result is given below

LTE band 7: 30MHz – 25.7GHz

NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 14:34:31

LTE band 12: 30MHz – 7.16GHz NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 10:23:09

LTE band 13: 30MHz – 7.87GHz NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 10:24:02

LTE band 13: 1559MHz – 1610MHz

Date: 18.NOV.2024 10:24:38

LTE band 14: 30MHz – 7.98GHz NOTE: peak above the limit line is the carrier frequency.

LTE band 14: 769MHz~775MHz

Date: 18.NOV.2024 10:26:08

Date: 18.NOV.2024 10:25:33

LTE band 14: 799MHz~806MHz

Date: 18.NOV.2024 10:26:44

Date: 18.NOV.2024 10:27:19

LTE band 25: 30MHz – 19.15GHz NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 15:21:39

LTE band 26(814MHz~824MHz): 30MHz – 8.24GHz NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 10:29:07

LTE band 26(824MHz~849MHz): 30MHz - 8.49GHz NOTE: peak above the limit line is the carrier frequency.

LTE band 30: 30MHz – 23.15GHz NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 09:25:19

Date: 18.NOV.2024 10:28:16

LTE band 41: 30MHz – 26.5GHz NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 12:26:34

LTE band 66: 30MHz – 17.8GHz NOTE: peak above the limit line is the carrier frequency.

Date: 18.NOV.2024 15:22:32

LTE band 71: 30MHz – 6.98GHz NOTE: peak above the limit line is the carrier frequency. *RBW 1 MHz *VBW 3 MHz SWT 125 ms × 26.85 dBm 0000000 MHz dBm * At t 20 dB Off dB Ο. л 1 RM VIEW 695 MHz/ Stop 6.98 GHz 30 MHz Start

Date: 18.NOV.2024 10:19:47

Note: Expanded measurement uncertainty is U = 0.622 dB, k = 2.