FCC ID: SEJ-ZCONNECT Page: 1/90 Rev.: 01 # **FCC TEST REPORT** For ## ZONAR CONNECT Model: ZONARCONNECT Issued to **Zonar Systems Inc** 18200 Cascade Ave South Suite 200 **Seattle Washington United States** Issued by **Compliance Certification Services Inc.** No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: 2018/10/05 Note: This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, A2LA, NIST or any government agencies. The test results in the report only apply to the tested sample. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. Unless otherwise stated the results snown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留'05天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan / 新北市五股區五工六路 11 號 Report No.: T180821W01-SF ## Page 2/90 Rev. 01 # **Revision History** | Rev. | Issue Date | Revisions | Effect Page | Revised By | |------|------------|--|-------------|--------------| | 00 | 2018/10/05 | Initial Issue | ALL | Stella Chang | | 01 | 2018/10/31 | Added KDB standard
Revise Simulating Liquids Parameter date | 5,73 | Stella Chang | Report No.: T180821W01-SF Page 3/90 Rev. 01 # **Table of Contents** | 1 | Cert | ificate of Compliance (SAR Evaluation) | 5 | |----|-------|---|----| | 2 | Desc | ription of Equipment Under Test | 6 | | | 2.1 | Summary of Highest SAR Values | 7 | | 3 | Requ | uirements for Compliance Testing Defined | 8 | | | 3.1 | Requirements for Compliance Testing Defined by the FCC | 8 | | 4 | Dosi | metric Assessment System | 9 | | | 4.1 | Measurement System Diagram | 10 | | | 4.2 | System Components | 11 | | 5 | Eval | uation Procedures | 14 | | 6 | SAR | Measurement Procedures | 16 | | | 6.1 | Normal SAR Test Procedure | 16 | | 7 | Devi | ce Under Test | 18 | | | 7.1 | Wireless Technologies | | | | 7.2 | Maximum Tune-up Power | | | | 7.3 | Simultaneous Transmission | | | 8 | Gen | eral LTE SAR Test and Reporting Considerations | 21 | | 9 | | utput Power Measurement | | | | 9.1 | WCDMA | | | | 9.2 | LTE | | | | 9.2.1 | | | | | 9.2.2 | LTE Band 4 | | | | 9.2.3 | LTE Band 5 | 51 | | | 9.2.4 | LTE Band 17 | 59 | | | 9.3 | Wi-Fi (2.4GHz Band) | 65 | | | 9.4 | Bluetooth | 65 | | 10 | Sum | mary of SAR Test Exclusion Configurations | 66 | | | 10.1 | Standalone SAR Test Exclusion Calculations | 66 | | | 10.1. | 1 SAR Exclusion Calculations for WWAN & WLAN Antenna < 50mm from the User | 67 | | | 10.1. | 2 SAR Exclusion Calculations for WWAN & WLAN Antenna > 50mm from the User | 68 | | | 10.1. | 3 SAR Required Test Configuration | 69 | | 11 | Ехро | osure Limit | 70 | | 12 | Tissu | ue Dielectric Properties | 71 | | | 12.1 | Test Liquid Confirmation | 71 | | | | | Page | 4/90 | |----|--------|---|------|------| | Re | port N | lo.: T180821W01-SF | Rev. | | | | 12.2 | Typical Composition of Ingredients for Liquid Tissue Phantoms | | 72 | | | 12.3 | Simulating Liquids Parameter Check Results | | 73 | | 13 | Mea | surement Uncertainty | | 74 | | 14 | Syste | em Performance Check | | 75 | | | 14.1 | System Performance Check Results | | 76 | | 15 | SAR | Measurements Results | | 77 | | 16 | Simu | Iltaneous Transmission SAR Analysis | | 83 | | | 16.1 | Sum of the SAR for WCDMA II, Wi-Fi & BT | | 84 | | | 16.2 | Sum of the SAR for WCDMA IV, Wi-Fi & BT | | 84 | | | 16.3 | Sum of the SAR for WCDMA V, Wi-Fi & BT | | 85 | | | 16.4 | Sum of the SAR for LTE Band 2, Wi-Fi & BT | | 85 | | | 16.5 | Sum of the SAR for LTE Band 4, Wi-Fi & BT | | 86 | | | 16.6 | Sum of the SAR for LTE Band 5, Wi-Fi & BT | | 86 | | | 16.7 | Sum of the SAR for LTE Band 17, Wi-Fi & BT | | 87 | | 17 | Equi | pment List & Calibration Status | | 88 | | 18 | Facil | ities | | 89 | | 19 | Refe | rence | | 89 | | 20 | Δtta | rhments | | - 90 | Page 5/90 Report No.: T180821W01-SF Rev. 01 #### **Certificate of Compliance (SAR Evaluation)** 1 **Applicant** Zonar Systems Inc. > 18200 Cascade Ave South Suite 200 Seattle Washington United States. **Equipment Under Test: ZONAR CONNECT** **Trade Name: ZONAR** **Model Number: ZONARCONNECT** Date of Test: Sep 13~Oct 1, 2018 **Device Category: PORTABLE DEVICES** **Exposure Category:** GENERAL POPULATION/UNCONTROLLED EXPOSURE | | Applicable Standards | | | |-------------|---|--|--| | FCC | IEEE 1528 2013 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 447498 D01 General RF Exposure Guidance v06 KDB 616217 D04 SAR for laptop and tablets v01r02 KDB 248227 D01 SAR Meas for 802.11 v02r02 KDB 941225 D05 SAR for LTE Device v02r05 KDB 941225 D01 3G SAR procedure v03r01 | | | | Limit | | | | | 1.6 W/kg | | | | | Test Result | | | | | | Pass | | | The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. Approved by: Tested by: Scott Hsu Section Manager Compliance Certification Services Inc. of HML Stella Chang **SAR Engineer** Compliance Certification Services Inc. tella Chanf Page 6/90 Report No.: T180821W01-SF Rev. 01 # 2 Description of Equipment Under Test | Product | ZONAR CONNECT | | | | | |---|--------------------------------|--------------------------|-------------|--------------------|--| | Trade Name | ZONAR | | | | | | Model Number | ZONARCONNECT | | | | | | WWAN Module | U-BLOX | | Model: | TOBY-L200 | | | Transmitter | UMTS & LTE | | | | | | | Operatind Mode | | TX Freq Ran | TX Freq Range(MHz) | | | | WCDMA Band II | | 1850 ~ 1910 |) | | | Modulation | WCDMA Band IV | | 1710 ~ 1755 | 5 | | | | WCDMA Band V | | 824 ~ 849 | | | | Technique | LTE Band 2 | | 1850 ~ 1910 |) | | |
 LTE Band 4 | | 1710 ~ 1755 | 5 | | | | LTE Band 5 | | 824 ~ 849 | | | | | LTE Band 17 | | 705 ~ 714 | | | | | Brand name | SAN JOSE TECHNOLOGY,INC. | | | | | WWAN Antenna | Parts Number Main:21-9315 | | | | | | Specification | dits Number | Aux: 21-93148-01 | | | | | | Туре | Dipole | | | | | WLAN Module | AMPAK | | Model: | AP6212 | | | Transmitters | Wi-Fi & Bluetooth | | | | | | | | | | ps;8DPSK for 3Mbps | | | Modulation | 802.11b: Direct Seq | | | | | | Technique | 802.11g: Orthogona | | | | | | | 802.11n: Orthogona | · · · · · · | • | <u> </u> | | | WLAN Antenna | Brand name | SAN JOSE TEC | HNOLOGY,IN | C. | | | Specification | Parts Number | Main:21-93151-01 | | | | | Specification | Туре | rpe Dipole | | | | | Rechargeable | Brand:BAK ENERGY CO.,LTD.(TWN) | | | | | | Li-polymer | Model:TZS3944102 | Р | | | | | Battery–alternate | Rating:3.7V / 4720n | nAh | | | | | Table 1 and | | | | | | Page 7/90 Report No.: T180821W01-SF Rev. 01 ### Remark: 1. The sample selected for test was prototype that representative to production product and was provided by manufacturer ## 2.1 Summary of Highest SAR Values Results for highest reported SAR values for each frequency band and mode. | Technology/Band | Test configuration | Mode | Highest
Reported 1g-SAR
(W/kg) | |-----------------|--------------------|-------------|--------------------------------------| | WCDMA Band II | Edge 1 | 12.2Kbps | 1.383 | | WCDMA Band IV | Edge 1 | 12.2Kbps | 1.010 | | WCDMA band V | Edge 1 | 12.2Kbps | 0.626 | | LTE band 2 | Edge 1 | QPSK BW 20M | 1.236 | | LTE band 4 | Edge 1 | QPSK BW 20M | 0.977 | | LTE band 5 | Rear | QPSK BW 10M | 0.685 | | LTE band 17 | Rear | QPSK BW 10M | 0.359 | | WiFi 2.4 GHz | Rear | 802.11b | 1.393 | | Bluetooth | Rear | DH5 | 0.001 | Page 8/90 Report No.: T180821W01-SF Rev. 01 #### **Requirements for Compliance Testing Defined** 3 # **Requirements for Compliance Testing Defined by the FCC** The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 W/kg for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the FCC 47 CFR §2.1093 and IEEE Std 1528-2013. Page 9/90 Report No.: T180821W01-SF Rev. 01 #### 4 **Dosimetric Assessment System** These measurements were performed with the automated near-field scanning system DASY4/DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m) which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe EX3DV4-SN: 3665 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure and found to be better than ±0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE 1528 2013. Report No.: T180821W01-SF Page 10 / 90 Rev. 01 ## **Measurement System Diagram** #### The DASY4/5 system for performing compliance tests consists of the following items: - A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the (absolute) accuracy of the probe positioning. - A computer operating Windows 7 or Windows XP. - DASY4 software version: 4.7, Build 80. DASY5 software version: 52.8.8.1258. - Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - The SAM twin phantom enabling testing left-hand and right-hand usage. - The device holder for handheld mobile phones. - Tissue simulating liquid mixed according to the given recipes. - Validation dipole kits allowing validating the proper functioning of the system. This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 Report No.: T180821W01-SF Page 11/90 Rev. 01 # 4.2 System Components ### **DASY4/DASY5 Measurement Server** The DASY4/DASY5 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4/DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required. ### **Data Acquisition Electronics (DAE)** The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Page 12/90 Rev. 01 # Report No.: T180821W01-SF ## **EX3DV4 Isotropic E-Field Probe for Dosimetric Measurements** Construction: Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., Calibration: Basic Broad Band Calibration in air: 10-3000 MHz. > Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon Frequency: 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz) Directivity: ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in HSL (rotation normal to probe axis) Dynamic Range: 10 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB (noise: typically $< 1 \mu W/g$) Overall length: 330 mm (Tip: 20 mm) **Dimensions:** Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1 mm High precision dosimetric measurements in any exposure Application: scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%. ### SAM Phantom (V4.0) Construction: The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 2013, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot. **Shell Thickness:** 2 ±0.2 mm Filling Volume: Approx. 25 liters **Dimensions:** Height: 810mm; Length: 1000mm; Width: 500mm ### SAM Phantom (ELI4) Construction: Phantom for compliance testing of handheld and bodymounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by
software version DASY4/DASY5 and higher and is compatible with all SPEAG dosimetric probes and dipoles **Shell Thickness:** 2.0 ± 0.2 mm (sagging: <1%) Filling Volume: Approx. 25 liters **Dimensions:** Major ellipse axis: 600 mm Minor axis: 400 mm 500mm This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 程智科技股份有限公司 Page 13 / 90 Rev. 01 Report No.: T180821W01-SF ### **Device Holder for SAM Twin Phantom** #### Construction: In combination with the Twin SAM Phantom V4.0 or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom). ### System Validation Kits for SAM Phantom (V4.0) #### **Construction:** Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor. 750, 835, 1750, 1900, 2450 MHz Frequency: **Return loss:** > 20 dB at specified validation position Power capability: > 100 W (f < 1GHz); > 40 W (f > 1GHz) **Dimensions:** D750V3: dipole length: 178 mm; overall height: 330 mm D835V2: dipole length: 161 mm; overall height: 340 mm D1750V2: dipole length: 75.2 mm; overall height: 302 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm ### **System Validation Kits for ELI4 phantom** Construction: Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor. Frequency: 750, 835, 1750, 1900, 2450 MHz **Return loss:** > 20 dB at specified validation position Power capability: > 100 W (f < 1GHz); > 40 W (f > 1GHz) **Dimensions:** D750V3: dipole length: 178 mm; overall height: 330 mm D835V2: dipole length: 161 mm; overall height: 340 mm D1750V2: dipole length: 75.2 mm; overall height: 302 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 14 / 90 Page Report No.: T180821W01-SF Rev. 01 #### **Evaluation Procedures** 5 #### **Data Evaluation** Device parameters: Media parameters: The DASY4/DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Normi, aio, ai1, ai2 > - Conversion factor ConvFi - Diode compression point dcpi f - Frequency - Crest factor cf - Conductivity σ > - Density ρ These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with = Compensated signal of channel i V_i (i = x, y, z) = Input signal of channel i Ui (i = x, y, z) = Crest factor of exciting field cf (DASY parameter) *dcpi* = Diode compression point (DASY parameter) From the compensated input signals the primary field data for each channel can be evaluated: E-field probes: $$E_{i} = \sqrt{\frac{V_{i}}{Norm_{i} \cdot ConvF}}$$ H-field probes: $$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$$ with = Compensated signal of channel i (i = x, y, z) > *Norm*_i = Sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)^2$ for E0field Probes *ConvF* = Sensitivity enhancement in solution = Sensor sensitivity factors for H-field probes aij f = Carrier frequency (GHz) Εi = Electric field strength of channel i in V/m = Magnetic field strength of channel i in A/m Hi This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 Page 15/90 Rev. 01 Report No.: T180821W01-SF The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ SAR with = local specific absorption rate in W/kg > = total field strength in V/m E_{tot} = conductivity in [mho/m] or [Siemens/m] = equivalent tissue density in g/cm³ Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field as a free space field. $$P_{pwe} = \frac{E_{tot}^2}{377}$$ or $P_{pwe} = H_{tot}^2 \cdot 37.7$ with P_{pwe} = Equivalent power density of a plane wave in mW/cm² > = total electric field strength in V/m E_{tot} H_{tot} = total magnetic field strength in A/m Page 16 / 90 Report No.: T180821W01-SF Rev. 01 #### 6 **SAR Measurement Procedures** #### **Normal SAR Test Procedure** #### **Power Reference Measurement** The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. #### **Area Scan** The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4/DASY5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, the grid resolution has to less than 15 mm by 15 mm at frequency ≤2GHz; the grid resolution has to less than 12mm by 12 mm at frequency between 2GHz to 4GHz; grid resolution has to less than 10 mm by 10 mm at frequency between 4GHz to 6GHz. According to KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 | | ≤ 3 GHz | > 3 GHz | |--|---|---| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | ½·δ·ln(2) ± 0.5 mm | | Maximum probe abgle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | Maximum area scan spatial resolution: Δxzoom, Δyzoom | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | | When the x or y dimension of measurement plane orientati above, the measurement reso corresponding x or y dimension least one measurement point | on, is smaller than the
olution must be ≤ the
on of the test device with at | Page 17 / 90 Report No.: T180821W01-SF Rev. 01 #### **Zoom Scan** Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures points in accordance with the frequency can be divided into three parts. (1)The zoom scan volume was set to 5x5x7 points at frequency ≤ 2GHz. (2) The zoom scan volume was set to 7x7x7 points at frequency between 2GHz to 4GHz (3) The zoom scan volume was set to 7x7x12 points at frequency between 4GHz to 6GHz. The measures points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly. According to KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 | | | | ≤ 3 GHz | > 3 GHz | |---|--|--|--|---| | Maximum zoom scan spatial resolution: Δxzoom, Δyzoom | | ≤ 2 GHz: ≤ 8 mm
2 – 3 GHz: ≤ 5 mm | 3 – 4 GHz: ≤ 5 mm
4 – 6 GHz: ≤ 4 mm | | | | Unifor | rm grid: Δzzoom(n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom scan spatial resolution, normal to phantom surface | al resolution, normal | Δzzoom(1):between 1st two points losest to phantom surface | ≤ 4 mm |
3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | Δzzoom(n>1): between subsequent points | ≤ 1.5·Δzz₀om(n-1) | | | Maximum zoom scan
volume | 3 – 4 GHz: ≥ 28 mm
x, y, z ≥ 30 mm 4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | z: ≥ 25 mm | | #### **Power Drift Measurement** The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY4/DASY5 software stop the measurements if this limit is exceeded. #### **Z-Scan** The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid. This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 Page 18/90 Report No.: T180821W01-SF Rev. 01 #### **Device Under Test** 7 # 7.1 Wireless Technologies | Wireless
technologies | Tx Frequency Bands | Operating mode | Duty Cycle used for testing | |--------------------------|---------------------------------------|---|-----------------------------| | WCDMA (UMTS) | Band II
Band IV
Band V | UMTS Rel. 99
HSDPA
HSUPA | 100% | | LTE | Band 2
Band 4
Band 5
Band 17 | QPSK
16QAM
(Rel. 9, LTE Category 4) | 100% | | WI-FI | 2.4GHz Band | 802.11b
802.11g
802.11n(HT20) | 100% | | Bluetooth | 2.4GHz | V2.1
V3.0
V4.0 | 100% | Report No.: T180821W01-SF Page 19/90 Rev. 01 ## 7.2 Maximum Tune-up Power | ····ax····a···· · ap · o · · o | | | | |--------------------------------|-----------------------|--------------------|--| | Band | RF Output Power (dBm) | | | | Ballu | Target | Max. tune-up power | | | WCDMA | 23.0 | 24.0 | | | Band II | 23.0 | 24.0 | | | Dana II | 23.0 | 24.0 | | | MCDMA | 23.0 | 24.0 | | | WCDMA
Band IV | 23.0 | 24.0 | | | Dana IV | 23.0 | 24.0 | | | 14/60144 | 23.0 | 24.0 | | | WCDMA
Band V | 23.0 | 24.0 | | | Bana v | 23.0 | 24.0 | | | LTE Band 2 | 22.0 | 23.0 | | | LTE Band 4 | 22.0 | 23.0 | | | LTE Band 5 | 22.0 | 23.0 | | | LTE Band 17 | 22.0 | 23.0 | | | Tolerance (dB): ± 1.5 | | RF Output Power (dBm) | | |-----------------------|---------|-----------------------|--------------------| | Band Mode | | Target | Max. tune-up power | | | 802.11b | 14.5 | 16.0 | | 2.4GHz | 802.11g | 13.5 | 15.0 | | | 802.11n | 12.5 | 14.0 | | Mode | | Max. tune-up power | | | Bluetooth | | 8.0 | | Report No.: T180821W01-SF Page 20 / 90 Rev. 01 ### 7.3 Simultaneous Transmission | RF Exposure Condition | Transmit Configurations | |-----------------------|--| | WWAN + Wi-Fi | WCDMA + Wi-Fi / BT WCDMA Band II/IV/V + BT (Chain 0) WCDMA Band II/IV/V + 2.4GHz (Chain 0) LTE + Wi-Fi / BT LTE Band 2/4/5/17 + BT (Chain 0) LTE Band 2/4/5/17 + 2.4GHz (Chain 0) | 1. For WWAN mode only Chain 0 can be used as transmitting and Chain 1 only be used as receiving. Page 21 / 90 Report No.: T180821W01-SF Rev. 01 # **General LTE SAR Test and Reporting Considerations** KDP 041225 DOE SAP for LTE Davisos VO2 | NDB 941 | 225 D05 SAR for LTE Devices V02 | | | | | | | | | |---------|---------------------------------|-------------|-------------------|------------------|------------------|----------------|------------------|----------------|--| | Item | Description | Information | | | | | | | | | 1 | Frequency range, | Donal 2 | Channel Bandwidth | | | | | | | | 1 | Channel Bandwidth, | Band 2 | 1.4 MHz | 3MHz | 5MHz | 10MHz | 15MHz | 20MHz | | | | Numbers and Frequencies | Low | 18607/ | 18615/ | 18625/ | 18650/ | 18675/ | 18700/ | | | | | | 1850.7 | 1851.5 | 1852.5 | 1855 | 1857.5 | 1860 | | | | | Mid | 18900/
1880 | 18900/
1880 | 18900/
1880 | 18900/
1880 | 18900/
1880 | 18900/
1880 | | | | | | 19192/ | 19184/ | 19175/ | 19150/ | 19125/ | 19100/ | | | | | High | 19192/ | 19184/ | 19175/ | 19130/ | 19125/ | 19100/ | | | | | D 14 | | L | Channel Ba | andwidth | L | | | | | | Band 4 | 1.4MHz | 3MHz | 5MHz | 10MHz | 15MHz | 20MHz | | | | | Low | 19957/ | 19965/ | 19975/ | 20000/ | 20025/ | 20050/ | | | | | LOW | 1710.7 | 1711.5 | 1712.5 | 1715 | 1717.5 | 1720 | | | | | Mid | 20175/ | 20175/ | 20175/ | 20175/ | 20175/ | 20175/ | | | | | | 1732.5 | 1732.5 | 1732.5 | 1732.5 | 1732.5 | 1732.5 | | | | | High | 20392/
1754.2 | 20384/
1753.4 | 20375/
1752.5 | 20350/
1750 | 20325/
1747.5 | 20300/
1745 | | | | | | Channel Bandwidth | | | | | | | | | | Band 5 | 1.4MHz | 3MHz | 5MHz | 10MHz | 15MHz | 20MHz | | | | | Low | 20407/ | 20415/ | 20425/ | 20450/ | | | | | | | Low | 824.7 | 825.5 | 826.5 | 829 | | | | | | | Mid | 20525/ | 20525/ | 20525/ | 20525/ | | | | | | | | 836.5 | 836.5 | 836.5 | 836.5 | | | | | | | High | 20642/
848.2 | 20643/
847.4 | 20625/
846.5 | 20600/
844 | | | | | | | | 040.2 | | Channel Ba | | | | | | | | Band 17 | 1.4MHz | 3MHz | 5MHz | 10MHz | 15MHz | 20MHz | | | | | | 1.7171112 | JIVIIIZ | 23755/ | 23780/ | 13141112 | 20171112 | | | | | Low | | | 706.5 | 709 | | | | | | | Mid | | | 23790/ | 23790/ | | | | | | | iviiu | | | 710 | 710 | | | | | | | High | | | 23825/ | 23800/ | | | | | | | | | | 713.5 | 711 | | | | Page 22 / 90 Report No.: T180821W01-SF Rev. 01 | Item | Description | Information | Information | | | | | | | |------|---|--|-------------|------------|-------------|-----------|-----------|--------------------|----------| | 2 | Descriptions of the LTE transmitter and antenna implementation; | A single antenna is used for LTE and other wireless modes (UMTS) for both Transmit and Receive. A Secondary antenna is used for LTE and other wireless modes (UMTS) for Receive Only. | | | | | | | | | 3 | Maximum power reduction (MPR) | As per 3GPP 36.101 v9.11.0 (2012-03), Release 9 Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3 | | | | | | | | | | | Modulation | Cha | nnel bandv | vidth / Tra | nsmission | bandwidth | (N _{RB}) | MPR (dB) | | | | | 1.4
MHz | 3.0
MHz | 5
MHz | 10
MHz | 15
MHz | 20
MHz | | | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | | | 16 QAM | ≤ 5 | ≤ 4 | ≤8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤1 | | | | 16 QAM >5 >4 >8 >12 >16 >18 ≤2 MPR is permanently built-in by design A-MPR was disabled | | | | | | | | | 4 | Power Reduction | No. | | | | | | | | | 5 | Spectrum plots for RB configurations | Refer to Sect | tion 9.2 | | | | | | | Page 23 / 90 Report No.: T180821W01-SF Rev. 01 #### 9 **RF Output Power Measurement** #### 9.1 **WCDMA** ### Release 99 The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 V8.5.0 specification. The EUT supports power Class 3, which has a nominal maximum output power of 23 dBm (+1.0/-1.0) 12.2kps RMC is used for this testing. Power control set to all bits up. A summary of these settings are illustrated below: | Mode | Subtest | Rel99 | |------------------|-------------------------|--------------| | | Loopback Mode | Test Mode 1 | | WCDMA
General | Rel99 RMC | 12.2kbps RMC | | | Power Control Algorithm | Algorithm2 | | | βc/βd | 8/15 | **Output power table** | Band | Mode | UL/DL
Channel No. | Frequency(MHz) | Average
power(dBm) | |------------------|--------|----------------------|----------------|-----------------------| | MCDMA | | 9262/9662 | 1852.4 | 22.6 | | WCDMA
Band II | Rel 99 | 9400/9800 | 1880.0 | 23.1 | | | | 9538/9983 | 1907.6 | 23.2 | | MCDMA | Rel 99 | 1312/1537 | 1712.4 | 22.7 | | WCDMA
Band IV | | 1413/1638 | 1732.6 | 23.0 | | Dana IV | | 1513/1738 | 1752.6 | 22.5 | | MCDMA | | 4132/4157 | 826.4 | 22.1 | | WCDMA
Band V | Rel 99 | 4183/4407 | 836.4 | 22.8 | | Baria V | | 4233/4458 | 846.6 | 22.4 | summary of these settings are illustrated Page 24/90 Report No.: T180821W01-SF Rev. 01 **HSDPA** The following 4 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A | | Mode | HSDPA | HSDPA | HSDPA | HSDPA | | | |------------------------------|--------------------------------------|------------------|-------|-------|-------|--|--| | | Subtest | 1 | 2 | 3 | 4 | | | | | Loopback Mode | Test Mode 1 | | | | | | | | Rel99 RMC | 12.2kbps RM | iC | | | | | | | HSDPA FRC | H-Set1 | | | | | | | | Power Control Algorithm | Algorithm 2 | | | | | | | WCDMA
General
Settings | βς | 2/15 | 12/15 | 15/15 | 15/15 | | | | | βd | 15/15 15/15 8/15 | | 4/15 | | | | | Ü | Bd (SF) | 64 | | | | | | | | βc/βd | 2/15 | 12/15 | 8/15 | 4/15 | | | | | βhs | 4/15 24/15 | | 30/15 | 30/15 | | | | | CM (dB) | 0 | 1 | 1.5 | 1.5 | | | | | D _{ACK} | 8 | - | - | - | | | | | D_{NAK} | 8 | | | | | | | | DCQI | 8 | | | | | | | HSDPA | Ack-Nack repetition factor | 3 | | | | | | | Specific
Settings | CQI Feedback (Table 5.2B.4) | 4ms | | | | | | | | CQI Repetition Factor (Table 5.2B.4) | 2 | | | | | | | | Ahs =βhs/βc | 30/15 | | | | | | Page 25 / 90 Rev. 01 Report No.: T180821W01-SF **Output power table** | Output pow | er table | | | | |------------|----------|----------------------|----------------|--------------------| | Band | Sub-test | UL/DL
Channel No. | Frequency(MHz) |
Average power(dBm) | | | | 9262/9662 | 1852.4 | 22.5 | | | 1 | 9400/9800 | 1880.0 | 22.9 | | | | 9538/9983 | 1907.6 | 22.8 | | | | 9262/9662 | 1852.4 | 22.5 | | | 2 | 9400/9800 | 1880.0 | 22.3 | | 1160004 11 | | 9538/9983 | 1907.6 | 22.7 | | HSDPA II | | 9262/9662 | 1852.4 | 22.1 | | | 3 | 9400/9800 | 1880.0 | 22.5 | | | | 9538/9983 | 1907.6 | 22.3 | | | | 9262/9662 | 1852.4 | 22.1 | | | 4 | 9400/9800 | 1880.0 | 22.5 | | | | 9538/9983 | 1907.6 | 22.1 | | | | 1312/1537 | 1712.4 | 22.8 | | | 1 | 1413/1638 | 1732.6 | 22.5 | | | | 1513/1738 | 1752.6 | 22.3 | | | | 1312/1537 | 1712.4 | 22.1 | | | 2 | 1413/1638 | 1732.6 | 22.4 | | | | 1513/1738 | 1752.6 | 22.6 | | HSDPA IV | 3 | 1312/1537 | 1712.4 | 22.4 | | | | 1413/1638 | 1732.6 | 22.0 | | | | 1513/1738 | 1752.6 | 22.4 | | | | 1312/1537 | 1712.4 | 22.4 | | | 4 | 1413/1638 | 1732.6 | 22.0 | | | | 1513/1738 | 1752.6 | 22.3 | | | | 4132/4157 | 826.4 | 22.3 | | | 1 | 4182/4407 | 836.4 | 22.6 | | | | 4233/4458 | 846.6 | 22.6 | | | | 4132/4157 | 826.4 | 22.1 | | | 2 | 4182/4407 | 836.4 | 22.5 | | HCDD4 V | | 4233/4458 | 846.6 | 22.3 | | HSDPA V | | 4132/4157 | 826.4 | 22.1 | | | 3 | 4182/4407 | 836.4 | 22.2 | | | | 4233/4458 | 846.6 | 22.1 | | | | 4132/4157 | 826.4 | 22.1 | | | 4 | 4182/4407 | 836.4 | 22.2 | | | | 4233/4458 | 846.6 | 22.1 | Page 26 / 90 Rev. 01 Report No.: T180821W01-SF HSPA (HSDPA & HSUPA) The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below: | | Mode | HSPA | HSPA | HSPA | HSPA | HSPA | | | |----------|------------------------------|--------------------------|-------|-------------|------------------------|--------|--|--| | | Subtest | 1 | 2 | 3 | 4 | 5 | | | | | Loopback Mode | Test Mode : | 1 | - | | | | | | | Rel99 RMC | 12.2kbps RN | ИC | | | | | | | | HSDPA FRC | H-Set1 | | | | | | | | | HSUPA Test | HSUPA Loopback | | | | | | | | | Power Control Algorithm | Algorithm2 | | | | | | | | WCDMA | βς | 11/15 | 6/15 | 15/15 | 2/15 | 15/15 | | | | General | βd | 15/15 | 15/15 | 9/15 | 15/15 | 15/15 | | | | Settings | βес | 209/225 | 12/15 | 30/15 | 2/15 | 24/15 | | | | | βc/βd | 11/15 | 6/15 | 9/15 | 2/15 | 15/15 | | | | | βhs | 22/15 | 12/15 | 30/15 | 4/15 | 30/15 | | | | | βed | 1309/225 | 94/75 | 47/15 | 56/75 | 134/15 | | | | | CM (dB) | 1 | 3 | 2 | 3 | 1 | | | | | MPR (dB) | 0 | 2 | 1 | 2 | 0 | | | | | DACK | 8 | • | • | • | | | | | | DNAK | 8 | | | | | | | | | DCQI | 8 | | | | | | | | HSDPA | Ack-Nack repetition factor | 3 | | | | | | | | Specific | CQI Feedback | 4.00.0 | 4ms | | | | | | | Settings | (Table 5.2B.4) | 41113 | | | | | | | | | CQI Repetition Factor (Table | 2 | | | | | | | | | 5.2B.4) | 2 | | | | | | | | | Ahs = βhs/βc | 30/15 | | | | | | | | | D E-DPCCH | 6 | 8 | 8 | 5 | 7 | | | | | DHARQ | 0 | 0 | 0 | 0 | 0 | | | | | AG Index | 20 | 12 | 15 | 17 | 21 | | | | | ETFCI (from 34.121 Table | | 67 | 0.2 | | 0.4 | | | | | C.11.1.3) | 75 | 67 | 92 | 71 | 81 | | | | | Associated Max UL Data Rate | | | | l | | | | | | kbps | 242.1 | 174.9 | 482.8 | 205.8 | 308.9 | | | | HSUPA | · | E-TFCI 11 | • | E-TFCI 11 | E-TFCI 11 | | | | | Specific | | E-TFCI PO 4 | | E-TFCI PO 4 | E-TFCI PO | 4 | | | | Settings | | E-TFCI 67 | | E-TFCI 92 | E-TFCI 67 | | | | | | | E-TFCI PO 1 | 8 | L-TFCFF0 | E-TFCI PO | | | | | | | E-TFCI 71 | | 10 | E-TFCI 71 | - | | | | | Reference E_TFCIs | E-TFCI PO 2 | 3 | | E-TFCI PO | 23 | | | | | | E-TFCI 75 | - | | E-TFCI 75 | | | | | | | | | | 1 5. , 5 | | | | | | | E-TFCI PO 2 | 6 | | E-TECL PO | 26 | | | | | | E-TFCI PO 2
E-TFCI 81 | 6 | | E-TFCI PO
E-TFCI 81 | 26 | | | Page 27 / 90 Rev. 01 Report No.: T180821W01-SF **Output power table** | Output power table | | | | | | | | | |--------------------|----------|----------------------|----------------|--------------------|--|--|--|--| | Band | Sub-test | UL/DL
Channel No. | Frequency(MHz) | Average power(dBm) | | | | | | | | 9262/9662 | 1852.4 | 22.6 | | | | | | | 1 | 9400/9800 | 1880.0 | 22.9 | | | | | | | | 9538/9983 | 1907.6 | 22.9 | | | | | | | | 9262/9662 | 1852.4 | 21.2 | | | | | | | 2 | 9400/9800 | 1880.0 | 21.5 | | | | | | | | 9538/9983 | 1907.6 | 21.4 | | | | | | | | 9262/9662 | 1852.4 | 22.1 | | | | | | HSUPA II | 3 | 9400/9800 | 1880.0 | 22.5 | | | | | | | | 9538/9983 | 1907.6 | 22.3 | | | | | | | | 9262/9662 | 1852.4 | 21.3 | | | | | | | 4 | 4 9400/9800 1880.0 | | 21.5 | | | | | | | | 9538/9983 | 1907.6 | 21.4 | | | | | | | | 9262/9662 | 1852.4 | 22.6 | | | | | | | 5 | 9400/9800 | 1880.0 | 23.1 | | | | | | | | 9538/9983 | 1907.6 | 23.0 | | | | | | | 1 | 1312/1537 | 1712.4 | 22.9 | | | | | | | | 1413/1638 | 1732.6 | 22.6 | | | | | | | | 1513/1738 | 1752.6 | 22.8 | | | | | | | | 1312/1537 | 1712.4 | 21.5 | | | | | | | 2 | 1413/1638 | 1732.6 | 21.1 | | | | | | | | 1513/1738 | 1752.6 | 21.4 | | | | | | | | 1312/1537 | 1712.4 | 22.4 | | | | | | HSUPA IV | 3 | 1413/1638 | 1732.6 | 22.0 | | | | | | | | 1513/1738 | 1752.6 | 22.3 | | | | | | | | 1312/1537 | 1712.4 | 21.4 | | | | | | | 4 | 1413/1638 | 1732.6 | 21.1 | | | | | | | | 1513/1738 | 1752.6 | 21.4 | | | | | | | | 1312/1537 | 1712.4 | 23.0 | | | | | | | 5 | 1413/1638 | 1732.6 | 22.6 | | | | | | | | 1513/1738 | 1752.6 | 23.0 | | | | | **Report No.:** T180821W01-SF Page 28 / 90 Rev. 01 | Band | Sub-test | UL/DL
Channel No. | Frequency(MHz) | Average power(dBm) | |---------|----------|----------------------|----------------|--------------------| | | | 4132/4157 | 826.4 | 22.6 | | | 1 | 4182/4407 | 836.4 | 22.5 | | | | 4233/4458 | 846.6 | 22.3 | | | | 4132/4157 | 826.4 | 21.1 | | | 2 | 4182/4407 | 836.4 | 21.1 | | | | 4233/4458 | 846.6 | 21.1 | | | 3 | 4132/4157 | 826.4 | 22.1 | | HSUPA V | | 4182/4407 | 836.4 | 22.2 | | | | 4233/4458 | 846.6 | 22.1 | | | | 4132/4157 | 826.4 | 21.1 | | | 4 | 4182/4407 | 836.4 | 21.1 | | | | 4233/4458 | 846.6 | 21.1 | | | 5 | 4132/4157 | 826.4 | 22.6 | | | | 4182/4407 | 836.4 | 22.8 | | | | 4233/4458 | 846.6 | 22.7 | Page 29 / 90 Report No.: T180821W01-SF Rev. 01 #### 9.2 LTE The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification. The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification. UE Power Class: 3 (22 +/- 1dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101. Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3 | Modulation | Cha | Channel bandwidth / Transmission bandwidth (RB) | | | | | | | | |------------|------------|---|-----|------|------|------|-----|--|--| | | 1.4
MHz | | | | | | | | | | QPSK | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | | | 16 QAM | ≤ 5 | ≤ 4 | ≤ 8 | ≤ 12 | ≤ 16 | ≤ 18 | ≤ 1 | | | | 16 QAM | > 5 | > 4 | >8 | > 12 | > 16 | > 18 | ≤ 2 | | | The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01". Page 30 / 90 Rev. 01 **Report No.:** T180821W01-SF # Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR) | Network
Signalling
value | Requirements
(sub-clause) | E-UTRA Band | Channel
bandwidth
(MHz) | Resources Blocks ($N_{ m RB}$) | A-MPR (dB) | |--------------------------------|------------------------------|----------------------------|-------------------------------|----------------------------------|----------------| | NS_01 | 6.6.2.1.1 | Table 5.5-1 | 1.4, 3, 5, 10,
15, 20 | Table 5.6-1 | NA | | | | | 3 | >5 | ≤ 1 | | | | 0 4 40 00 05 | 5 | >6 | ≤ 1 | | NS_03 | 6.6.2.2.1 | 2, 4,10, 23, 25,
35, 36 | 10 | >6 | ≤ 1 | | | | | 15 | >8 | ≤ 1 | | | | | 20 | >10 | ≤ 1 | | NS_04 | 6.6.2.2.2 | 41 | 5 | >6 | ≤ 1 | | 140_04 | 0.0.2.2.2 | 71 | 10, 15, 20 | See Table 6.2.4-4 | | | NS_05 | 6.6.3.3.1 | 1 | 10,15,20 | ≥ 50 | ≤ 1 | | NS_06 | 6.6.2.2.3 | 12, 13, 14, 17 | 1.4, 3, 5, 10 | Table 5.6-1 | n/a | | NS_07 | 6.6.2.2.3
6.6.3.3.2 | 13 | 10 | Table 6.2.4-2 | Table 6.2.4-2 | | NS_08 | 6.6.3.3.3 | 19 | 10, 15 | > 44 | ≤ 3 | | NS_09 | 6.6.3.3.4 | 21 | 10, 15 | > 40
> 55 | ≤ 1
≤ 2 | | NS 10 | | 20 | 15, 20 | Table 6.2.4-3 | Table 6.2.4-3 | | NS_11 | 6.6.2.2.1 | 231 | 1.4, 3, 5, 10 | Table 6.2.4-5 | Table 6.2.4-5 | | | | | | | | | NS_32 | - | - | - | - | - | | Note 1: A | pplies to the lower | block of Band 23, i.e | a carrier place | d in the 2000-201 | 10 MHz region. | Page 31/90 Report No.: T180821W01-SF Rev. 01 ### 9.2.1 LTE Band 2 Output power table | Output | power | <u>tabie</u> | | | | | | | | | |--------|-------------|--------------|--------------------|---------------|---------------------|-----------------|------|-----------------------|---|------| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | | | 1 | 0 | 0 | 22.8 | | | | | | | | | 1 | 49 | 0 | 22.6 | | | | | | | | | 1 | 99 | 0 | 22.7 | | | | | | | | QPSK | 50 | 0 | 1 | 22.0 | | | | | | | | | 50 | 24 | 1 | 21.8 | | | | | | | | | 50 | 49 | 1 | 21.8 | | | | | | 40700 | 10000 | | 100 | 0 | 1 | 21.8 | | | | | | 18700 | 1860.0 | | 1 | 0 | 1 | 22.0 | | | | | | | | | 1 | 49 | 1 | 21.7 | | | | | | | | | 1 | 99 | 1 | 21.8 | | | | | | | | 16QAM | 50 | 0 | 2 | 21.0 | | | | | | | | | 50 | 24 | 2 | 20.7 | | | | | | | | | 50 | 49 | 2 | 20.7 | | | | | | | | | 100 | 0 | 2 | 20.8 | | | | | | | | | | | 1 | 0 | 0 | 22.8 | | | | | | QPSK
16QAM | 1 | 49 | 0 | 22.8 | | | | | | | | | 1 | 99 | 0 | 22.6 | | | | | | | | | 50 | 0 | 1 | 22.0 | | | | | 20 40000 | | | | 50 | 24 | 1 | 21.8 | | | | | | | | | 50 | 49 | 1 | 21.6 | | | | 2 | | 10000 | 0 1880.0 | | 100 | 0 | 1 | 21.6 | | | | 2 | 20 | 18900 | 1880.0 | | 1 | 0 | 1 | 22.0 | | | | | | | | | 1 | 49 |
1 | 22.0 | | | | | | | | | 1 | 99 | 1 | 21.6 | | | | | | | | | 50 | 0 | 2 | 21.0 | | | | | | | | | 50 | 24 | 2 | 21.0 | | | | | | | | | 50 | 49 | 2 | 20.7 | | | | | | | | | 100 | 0 | 2 | 20.7 | | | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | | | 1 | 49 | 0 | 22.5 | | | | | | | | | 1 | 99 | 0 | 22.6 | | | | | | | | QPSK | 50 | 0 | 1 | 21.7 | | | | | | | | | 50 | 24 | 1 | 21.6 | | | | | | | | | 50 | 49 | 1 | 21.6 | | | | | | 10100 | 1900.0 | | 100 | 0 | 1 | 21.7 | | | | | 19100 | 19100 | 1300.0 | | 1 | 0 | 1 | 21.8 | | | | | | | | | 1 | 49 | 1 | 21.7 | | | | | | | | 1 | 99 | 1 | 21.6 | | | | | | | | | 16QAM | 50 | 0 | 2 | 20.8 | | | | | | | | | 50 | 24 | 2 | 20.7 | | | | | | | | | 50 | 49 | 2 | 20.8 | | | | | | | | | 100 | 0 | 2 | 20.7 | | | This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 16QAM 21.6 20.8 20.7 20.8 20.7 Page 32 / 90 Rev. Page 33 / 90 Rev. 01 Report No.: T180821W01-SF | Report No.: 1180821W01-SF | | | | | | | | | |---------------------------|-------------|---------|--------------------|-------|---------------------|-----------------|-----|-----------------------| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | 1 | 24 | 0 | 22.5 | | | | | 1855.0 | | 1 | 49 | 0 | 22.6 | | | | | | QPSK | 25 | 0 | 1 | 21.9 | | | | | | ζ. σ | 25 | 12 | 1 | 21.7 | | | | | | | 25 | 24 | 1 | 21.7 | | | | | | | 50 | 0 | 1 | 21.7 | | | | 18650 | | | 1 | 0 | 1 | 21.9 | | | | | | 16QAM | 1 | 24 | 1 | 21.6 | | | | | | | 1 | 49 | 1 | 21.7 | | | | | | | 25 | 0 | 2 | 20.9 | | | | | | | 25 | 12 | 2 | 20.6 | | | | | | | 25 | 24 | 2 | 20.6 | | | | | | | 50 | 0 | 2 | 20.7 | | | | | | | 1 | 0 | 0 | 22.7 | | | | 18900 | | | 1 | 24 | 0 | 22.7 | | | | | 1880.0 | | | 49 | 0 | 22.5 | | | | | | OPSK | QPSK 25 | 0 | 1 | 21.9 | | | 10 | | | Q. S. | 25 | 12 | 1 | 21.7 | | | | | | | 25 | 24 | 1 | 21.5 | | | | | | | 50 | 0 | 1 | 21.5 | | 2 | | | | | 1 | 0 | 1 | 21.9 | | | | | | | 1 | 24 | 1 | 21.9 | | | | | | 16QAM | 1 | 49 | 1 | 21.5 | | | | | | | 25 | 0 | 2 | 20.9 | | | | | | | 25 | 12 | 2 | 20.9 | | | | | | | 25 | 24 | 2 | 20.6 | | | | | | | 50 | 0 | 2 | 20.6 | | | | 19150 | | | 1 | 0 | 0 | 22.5 | | | | | | | 1 | 24 | 0 | 22.4 | | | | | | | 1 | 49 | 0 | 22.5 | | | | | | QPSK | 25 | 0 | 1 | 21.6 | | | | | | | 25 | 12 | 1 | 21.5 | | | | | | | 25 | 24 | 1 | 21.5 | | | | | | | 50 | 0 | 1 | 21.6 | | | | | 1905.0 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 24 | 1 | 21.6 | | | | | | | 1 | 49 | 1 | 21.5 | | | | | | 16QAM | 25 | 0 | 2 | 20.7 | | | | | | | 25 | 12 | 2 | 20.6 | | | | | | | 25 | 24 | 2 | 20.7 | | | | | | | 50 | 0 | 2 | 20.6 | | l | ļ. | | | | | · | | _0.0 | Page 34/90 Report No.: T180821W01-SF Rev. 01 | Band BW (MHz) Channel Frequency (MHz) Mode UL RB Allocation offset | I MIDR | Average power(dBm) | |--|---|--------------------| | | | power(ubili) | | 1 0 | 0 | 22.7 | | 1 12 | 0 | 22.5 | | 1 24 | 0 | 22.6 | | QPSK 12 0 | 1 | 21.9 | | 12 6 | 1 | 21.7 | | 12 11 | 1 | 21.7 | | 19635 25 0 | 1 | 21.7 | | 18625 1852.5 1 0 | 1 | 21.9 | | 1 12 | 1 | 21.6 | | 1 24 | 1 | 21.7 | | 16QAM 12 0 | 2 | 20.9 | | 12 6 | 2 | 20.6 | | 12 11 | 2 | 20.6 | | 25 0 | 2 | 20.7 | | 1 0 | 0 | 22.7 | | 1 12 | 0 | 22.7 | | 1 24 | 0 | 22.5 | | QPSK 12 0 | 1 | 21.9 | | 12 6 | 1 | 21.7 | | 12 11 | QPSK 12 0 1 12 6 1 12 11 1 25 0 1 | 21.5 | | 25 0 | 1 | 21.5 | | 2 5 18900 1880.0 23 0 | 1 | 21.9 | | 1 12 | 1 | 21.9 | | 1 24 | 1 | 21.5 | | 16QAM 12 0 | 2 | 20.9 | | 12 6 | 2 | 20.9 | | 12 11 | 2 | 20.6 | | 25 0 | 2 | 20.6 | | 1 0 | 0 | 22.5 | | 1 12 | 0 | 22.4 | | 1 24 | 0 | 22.5 | | QPSK 12 0 | 1 | 21.6 | | 12 6 | 1 | 21.5 | | 12 11 | 1 | 21.5 | | 10175 1007 5 25 0 | 1 | 21.6 | | 19175 1907.5 23 0 | 1 | 21.7 | | 1 12 | 1 | 21.6 | | 1 24 | 1 | 21.5 | | 16QAM 12 0 | 2 | 20.7 | | 12 6 | 2 | 20.6 | | 12 11 | 2 | 20.7 | | 25 0 | 2 | 20.6 | Page 35 / 90 Report No.: T180821W01-SF Rev. 01 | | port N | U 1100 | 021VVU1-SF | | | | | | |------|-------------|---------------|--------------------|-------|---------------------|-----------------|-----|-----------------------| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | 1 | 7 | 0 | 22.4 | | | | | 1851.5 | | 1 | 14 | 0 | 22.5 | | | | | | QPSK | 8 | 0 | 1 | 21.8 | | | | | | · | 8 | 4 | 1 | 21.6 | | | | | | | 8 | 7 | 1 | 21.6 | | | | | | | 15 | 0 | 1 | 21.6 | | | | 18615 | | | 1 | 0 | 1 | 21.8 | | | | | | 16QAM | 1 | 7 | 1 | 21.5 | | | | | | | 1 | 14 | 1 | 21.6 | | | | | | | 8 | 0 | 2 | 20.8 | | | | | | | 8 | 4 | 2 | 20.5 | | | | | | | 8 | 7 | 2 | 20.5 | | | | | | | 15 | 0 | 2 | 20.6 | | | | | | | 1 | 0 | 0 | 22.6 | | | | 18900 | | | 1 | 7 | | 22.6 | | | | | 1880.0 | QPSK | 1 | 14 | 0 | 22.4 | | | 3 | | | | 8 | 0 | 1 | 21.8 | | | | | | Q. J. | 8 | 4 | 1 | 21.6 | | | | | | | 8 | 7 | 1 | 21.4 | | | | | | | 15 | 0 | 1 | 21.4 | | 2 | | | | | 1 | 0 | 1 | 21.8 | | | | | | | 1 | 7 | 1 | 21.8 | | | | | | 16QAM | 1 | 14 | 1 | 21.4 | | | | | | | 8 | 0 | 2 | 20.8 | | | | | | | 8 | 4 | 2 | 20.8 | | | | | | | 8 | 7 | 2 | 20.5 | | | | | | | 15 | 0 | 2 | 20.5 | | | | 19184 | | | 1 | 0 | 0 | 22.4 | | | | | | | 1 | 7 | 0 | 22.3 | | | | | | | 1 | 14 | 0 | 22.4 | | | | | | QPSK | 8 | 0 | 1 | 21.5 | | | | | | QI 3K | 8 | 4 | 1 | 21.4 | | | | | | | 8 | 7 | 1 | 21.4 | | | | | | | 15 | 0 | 1 | 21.5 | | | | | 1908.4 | | 1 | 0 | 1 | 21.6 | | | | | | | 1 | 7 | 1 | 21.5 | | | | | | 16QAM | 1 | 14 | 1 | 21.4 | | | | | | | 8 | 0 | 2 | 20.6 | | | | | | | 8 | 4 | 2 | 20.5 | | | | | | | 8 | 7 | 2 | 20.6 | | | | | | | 15 | 0 | 2 | 20.6 | | | | | | | 10 | J | | 20.0 | Page 36 / 90 Rev. 01 **Report No.:** T180821W01-SF | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |------|-------------|---------|--------------------|-------|---------------------|-----------------|--------|-----------------------| | | | | | 1 0 | 0 | 0 | 22.6 | | | | | | | | 1 | 2 | 0 | 22.4 | | | | | 1850.7 | | 1 | 5 | 0 | 22.5 | | | | | | QPSK | 3 | 0 | 0 | 22.6 | | | | | | | 3 | 1 | 0 | 22.4 | | | | | | | 3 | 2 | 0 | 22.5 | | | | 18607 | | | 6 | 0 | 1 | 21.6 | | | | 10007 | | | 1 | 0 | 1 | 21.8 | | | | | | | 1 | 2 | 1 | 21.5 | | | | | | 16QAM | 1 | 5 | 1 | 21.6 | | | | | | | 3 | 0 | 1 | 21.8 | | | | | | | 3 | 1 | 1 | 21.5 | | | | | | | 3 | 2 | 1 | 21.6 | | | | | | | 6 | 0 | 2 | 20.6 | | | | 18900 | | | 1 | 0 | 0 22.6 | 22.6 | | | | | | | 1 | 2 | 0 | 22.6 | | | | | | | 1 | 5 | 0 | 22.4 | | | 1.4 | | | QPSK | 3 | 0 | 0 | 22.6 | | | | | | | | 3 | 1 | 0 | | | | | 1880.0 | | 3 | 2 | 0 | 22.4 | | 2 | | | | | 6 | 0 | 1 | 21.4 | | | | | | | 1 | 0 | 1 | 21.8 | | | | | | | 1 | 2 | 1 | 21.8 | | | | | | 16QAM | 1 | 5 | 1 | 21.4 | | | | | | | 3 | 0 | 1 | 21.8 | | | | | | | 3 | 1 | 1 | 21.8 | | | | | | | 3 | 2 | 1 | 21.4 | | | | | | | 6 | 0 | 2 | 20.5 | | | | 19192 | | | 1 | 0 | 0 22.4 | 22.4 | | | | | | | 1 | 2 | 0 | 22.3 | | | | | | | 1 | 5 | 0 | 22.4 | | | | | | QPSK | 3 | 0 | 0 | 22.4 | | | | | | | 3 | 1 | 0 | 22.3 | | | | | | | 3 | 2 | 0 | 22.4 | | | | | 1909.2 | | 6 | 0 | 1 | 21.5 | | | | | 1909.2 | | 1 | 0 | 1 | 21.6 | | | | | | 16QAM | 1 | 2 | 1 | 21.5 | | | | | | | 1 | 5 | 1 | 21.4 | | | | | | | 3 | 0 | 1 | 21.6 | | | | | | | 3 | 1 | 1 | 21.5 | | | | | | | 3 | 2 | 1 | 21.4 | | | | | | | 6 | 0 | 2 | 20.6 | Report No.: T180821W01-SF **Spectrum Plots for the Test RB allocations** Page 37 / 90 Rev. 01 20MHz Band Width: Ch 18900, RB Size=1; RB Offset = 0 20MHz Band Width: Ch 18900, RB Size=1; RB Offset = 49 Page 38 / 90 Rev. 01 20MHz Band Width: Ch 18900, RB Size=1; RB Offset = 99 20MHz Band Width: Ch 18900, RB Size=50; RB Offset = 0 Page 39 / 90 Rev. 01 20MHz Band Width: Ch 18900, RB Size=50; RB Offset = 24 20MHz Band Width: Ch 18900, RB Size=50; RB Offset = 49 Page 40/90 Rev. 01 20MHz Band Width: Ch 18900, RB Size=100; RB Offset = 0 Page 41 / 90 Rev. 01 Report No.: T180821W01-SF 9.2.2 LTE Band 4 Output power table | Output power table | | | | | | | | | | |--------------------|-------------|---------|--------------------|-------|---------------------|-----------------|-----|-----------------------|--| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | | 1 | 0 | 0 | 22.9 | | | | | | | | 1 | 49 | 0 | 22.6 | | | | | | | | 1 | 99 | 0 | 22.5 | | | | | | | QPSK | 50 | 0 | 1 | 22.0 | | | | | | | | 50 | 24 | 1 | 21.8 | | | | | | | | 50 | 49 | 1 | 21.8 | | | | | 20050 | 1720.0 | | 100 | 0 | 1 | 21.7 | | | | | 20050 | 1720.0 | | 1 | 0 | 1 | 22.0 | | | | | | | | 1 | 49 | 1 | 21.8 | | | | | | | | 1 | 99 | 1 | 21.7 | | | | | | | 16QAM | 50 | 0 | 2 | 21.0 | | | | | | | | 50 | 24 | 2 | 20.8 | | | | | | | | 50 | 49 | 2 | 20.8 | | | | | | | | 100 | 0 | 2 | 20.7 | | | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | | 1 | 49 | 0 | 22.5 | | | | | | | | 1 | 99 | 0 | 22.5 | | | | | | | QPSK | 50 | 0 | 1 | 21.9 | | | | | | | | 50 | 24 | 1 | 21.7 | | | | | | | | 50 | 49 | 1 | 21.7 | | | 4 | 20 | 20175 | 1732.5 | | 100 | 0 | 1 | 21.6 | | | - | 20 | 20173 | 1/32.3 | | 1 | 0 | 1 | 21.7 | | | | | | | | 1 | 49 | 1 | 21.7 | | | | | | | | 1 | 99 | 1 | 21.6 | | | | | | | 16QAM | 50 | 0 | 2 | 20.8 | | | | | | | | 50 | 24 | 2 | 20.6 | | | | | | | | 50 | 49 | 2 | 20.7 | | | | | | | | 100 | 0 | 2 | 20.6 | | | | | | | | 1 | 0 | 0 | 22.8 | | | | | | | | 1 | 49 | 0 | 22.6 | | | | | | | | 1 | 99 | 0 | 22.6 | | | | | | | QPSK | 50 | 0 | 1 | 21.9 | | | | | | | | 50 | 24 | 1 | 21.8 | | | | | | | | 50 | 49 | 1 | 21.8 | | | | | 20300 | 1745.0 | | 100 | 0 | 1 | 21.7 | | | | | | | | 1 | 0 | 1 | 21.8 | | | | | | | | 1 | 49 | 1 | 21.7 | | | | | | | | 1 | 99 | 1 | 21.7 | | | | | | | 16QAM | 50 | 0 | 2 | 20.9 | | | | | | | |
50 | 24 | 2 | 20.8 | | | | | | | | 50 | 49 | 2 | 20.8 | | | | | | | | 100 | 0 | 2 | 20.7 | | Page 42/90 Rev. 01 | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |------|-------------|--------------|--------------------|-------|---------------------|-----------------|------|-----------------------| | | | | | | 1 | 0 | 0 | 22.9 | | | | | | | 1 | 37 | 0 | 22.6 | | | | | | | 1 | 74 | 0 | 22.5 | | | | | | QPSK | 36 | 0 | 1 | 22.0 | | | | | | | 36 | 18 | 1 | 21.8 | | | | | | | 36 | 35 | 1 | 21.8 | | | | 20025 | 1717.5 | | 75 | 0 | 1 | 21.7 | | | | 20023 | 1/1/.5 | | 1 | 0 | 1 | 22.0 | | | | | | | 1 | 37 | 1 | 21.8 | | | | | | | 1 | 74 | 1 | 21.7 | | | | | | 16QAM | 36 | 0 | 2 | 21.0 | | | | | | | 36 | 18 | 2 | 20.8 | | | | | | | 36 | 35 | 2 | 20.8 | | | | | | | 75 | 0 | 2 | 20.7 | | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | 1 | 37 | 0 | 22.5 | | | | | | | 1 | 74 | 0 | 22.5 | | | | | | QPSK | 36 | 0 | 1 | 21.9 | | | | | | | 36 | 18 | 1 | 21.7 | | | | | | | 36 | 35 | 1 | 21.7 | | 4 | 15 | 20175 | 1732.5 | | 75 | 0 | 1 | 21.6 | | 4 | 13 | 20173 | 1/32.3 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 37 | 1 | 21.7 | | | | | | | 1 | 74 | 1 | 21.6 | | | | | | 16QAM | 36 | 0 | 2 | 20.8 | | | | | | | 36 | 18 | 2 | 20.6 | | | | | | | 36 | 35 | 2 | 20.7 | | | | | | | 75 | 0 | 2 | 20.6 | | | | | | | 1 | 0 | 0 | 22.8 | | | | | | | 1 | 37 | 0 | 22.6 | | | | | | | 1 | 74 | 0 | 22.6 | | | | | | QPSK | 36 | 0 | 1 | 21.9 | | | | | | | 36 | 18 | 1 | 21.8 | | | | | | | 36 | 35 | 1 | 21.8 | | | | 20325 1747.5 | | 75 | 0 | 1 | 21.7 | | | | | 20323 | 1/4/.3 | | 1 | 0 | 1 | 21.8 | | | | | | | 1 | 37 | 1 | 21.7 | | | | | | | 1 | 74 | 1 | 21.7 | | | | | | 16QAM | 36 | 0 | 2 | 20.9 | | | | | | | 36 | 18 | 2 | 20.8 | | | | | | | 36 | 35 | 2 | 20.8 | | | | | | | 75 | 0 | 2 | 20.7 | Page 43/90 Rev. 01 **Report No.:** T180821W01-SF | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |------|-------------|---------|--------------------|---------|---------------------|-----------------|-----|--| | | | | | | 1 | 0 | 0 | 22.8 | | | | | | | 1 | 24 | 0 | 22.5 | | | | | | | 1 | 49 | 0 | 22.4 | | | | | | QPSK | 25 | 0 | 1 | 21.9 | | | | | | | 25 | 12 | 1 | 21.7 | | | | | | | 25 | 24 | 1 | 21.7 | | | | 20000 | 1715.0 | | 50 | 0 | 1 | 21.6 | | | | 20000 | 1715.0 | | 1 | 0 | 1 | 21.9 | | | | | | | 1 | 24 | 1 | 21.7 | | | | | | | 1 | 49 | 1 | 21.6 | | | | | | 16QAM | 25 | 0 | 2 | 20.9 | | | | | | | 25 | 12 | 2 | 20.7 | | | | | | | 25 | 24 | 2 | 20.7 | | | | | | | 50 | 0 | 2 | 20.6 | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | 1 | 24 | 0 | 22.4 | | | | | | | 1 | 49 | 0 | 22.4 | | | | | | QPSK | 25 | 0 | 1 | 21.8 | | | | | | | 25 | 12 | 1 | 21.6 | | | | | | | 25 | 24 | 1 | 21.6 | | 4 | 10 | 20175 | 1732.5 | | 50 | 0 | 1 | 21.5 | | - | 10 | 20173 | 1732.3 | | 1 | 0 | 1 | 21.6 | | | | | | | 1 | 24 | 1 | 21.6 | | | | | | | 1 | 49 | 1 | 21.5 | | | | | | 16QAM | 25 | 0 | 2 | 20.7 | | | | | | | 25 | 12 | 2 | 20.5 | | | | | | | 25 | 24 | 2 | 20.6 | | | | | | | 50 | 0 | 2 | 20.5 | | | | | | | 1 | 0 | 0 | | | | | | | | 1 | 24 | 0 | 22.5 | | | | | | | 1 | 49 | 0 | 22.5 | | | | | | QPSK | 25 | 0 | 1 | 21.8 | | | | | | | 25 | 12 | 1 | | | | | | | | 25 | 24 | 1 | 21.6
21.6
21.5
21.6
21.6
21.5
20.7
20.5
20.6
20.5
22.7
22.5
22.5
21.8
21.7
21.7
21.6 | | | | 20350 1 | 1750.0 | | 50 | 0 | 1 | | | | | 20000 | 1,50.0 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 24 | 1 | 21.6 | | | | | | | 1 | 49 | 1 | 21.6 | | | | | | 16QAM | 25 | 0 | 2 | 22.4
21.8
21.6
21.6
21.5
21.6
21.5
20.7
20.5
20.6
20.5
22.7
22.5
22.5
21.8
21.7
21.7
21.6
21.7 | | | | | | IOQAIVI | 25 | 12 | 2 | | | | | | | | 25 | 24 | 2 | 20.7 | | | | | | | 50 | 0 | 2 | 20.6 | Page 44 / 90 Rev. 01 | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |----------|-------------|---------|--------------------|-------|---------------------|-----------------|------|-----------------------| | | | | | | 1 | 0 | 0 | 22.8 | | | | | | | 1 | 12 | 0 | 22.5 | | | | | | | 1 | 24 | 0 | 22.4 | | | | | | QPSK | 12 | 0 | 1 | 21.9 | | | | | | | 12 | 6 | 1 | 21.7 | | | | | | | 12 | 11 | 1 | 21.7 | | | | 19975 | 1712.5 | | 25 | 0 | 1 | 21.6 | | | | 13373 | 1712.5 | | 1 | 0 | 1 | 21.9 | | | | | | | 1 | 12 | 1 | 21.7 | | | | | | | 1 | 24 | 1 | 21.6 | | | | | | 16QAM | 12 | 0 | 2 | 20.9 | | | | | | | 12 | 6 | 2 | 20.7 | | | | | | | 12 | 11 | 2 | 20.7 | | | | | | | 25 | 0 | 2 | 20.6 | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | 1 | 12 | 0 | 22.4 | | | | | | | 1 | 24 | 0 | 22.4 | | | | | | QPSK | 12 | 0 | 1 | 21.8 | | | | | | | 12 | 6 | 1 | 21.6 | | | | | | | 12 | 11 | 1 | 21.6 | | 4 | 5 | 20175 | 1732.5 | | 25 | 0 | 1 | 21.5 | | – | | 20173 | 1732.3 | | 1 | 0 | 1 | 21.6 | | | | | | | 1 | 12 | 1 | 21.6 | | | | | | | 1 | 24 | 1 | 21.5 | | | | | | 16QAM | 12 | 0 | 2 | 20.7 | | | | | | | 12 | 6 | 2 | 20.5 | | | | | | | 12 | 11 | 2 | 20.6 | | | | | | | 25 | 0 | 2 | 20.5 | | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | 1 | 12 | 0 | 22.5 | | | | | | | 1 | 24 | 0 | 22.5 | | | | | | QPSK | 12 | 0 | 1 | 21.8 | | | | | | | 12 | 6 | 1 | 21.7 | | | | | | | 12 | 11 | 1 | 21.7 | | | | 20375 | 1752.5 | | 25 | 0 | 1 | 21.6 | | | | | | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 12 | 1 | 21.6 | | | | | | | 1 | 24 | 1 | 21.6 | | | | | 16QAM | 12 | 0 | 2 | 20.8 | | | | | | | | 12 | 6 | 2 | 20.7 | | | | | | | 12 | 11 | 2 | 20.7 | | | | | | | 25 | 0 | 2 | 20.6 | Page 45/90 Rev. 01 | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |------|-------------|---------|--------------------|--------|---------------------|-----------------|-----|-----------------------| | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | 1 | 7 | 0 | 22.4 | | | | | | | 1 | 14 | 0 | 22.3 | | | | | | QPSK | 8 | 0 | 1 | 21.8 | | | | | | | 8 | 4 | 1 | 21.6 | | | | | | | 8 | 7 | 1 | 21.6 | | | | 19965 | 1711.5 | | 15 | 0 | 1 | 21.5 | | | | 13303 | 1711.5 | | 1 | 0 | 1 | 21.8 | | | | | | | 1 | 7 | 1 | 21.6 | | | | | | | 1 | 14 | 1 | 21.5 | | | | | | 16QAM | 8 | 0 | 2 | 20.8 | | | | | | | 8 | 4 | 2 | 20.6 | | | | | | | 8 | 7 | 2 | 20.6 | | | | | | | 15 | 0 | 2 | 20.5 | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | 1 | 7 | 0 | 22.3 | | | | | | | 1 | 14 | 0 | 22.3 | | | | | | QPSK | 8 | 0 | 1 | 21.7 | | | | | | | 8 | 4 | 1 | 21.5 | | | | | | | 8 | 7 | 1 | 21.5 | | 4 | 3 | 20175 | 1732.5 | | 15 | 0 | 1 | 21.4 | | | | | 2.02.0 | | 1 | 0 | 1 | 21.5 | | | | | | | 1 | 7 | 1 | 21.5 | | | | | | | 1 | 14 | 1 | 21.4 | | | | | | 16QAM | 8 | 0 | 2 | 20.6 | | | | | | | 8 | 4 | 2 | 20.4 | | | | | | | 8 | 7 | 2 | 20.5 | | | | | | | 15 | 0 | 2 | 20.4 | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | 1 | 7 | 0 | 22.4 | | | | | | 0.004 | 1 | 14 | 0 | 22.4 | | | | | | QPSK | 8 | 0 | 1 | 21.7 | | | | | | | 8 | 4 | 1 | 21.6 | | | | | | | 8 | 7 | 1 | 21.6 | | | | 20384 | 1753.4 | | 15 | 0 | 1 | 21.5 | | | | | 0384 1753.4 | | 1 | 0 | 1 | 21.6 | | | | | | | 1 | 7 | 1 | 21.5 | | | | | | 160444 | 1 | 14 | 1 | 21.5 | | | | | | 16QAM | 8 | 0 | 2 | 20.7 | | | | | | | 8 | 4 | 2 | 20.6 | | | | | | | 8 | 7 | 2 | 20.6 | | | | | | | 15 | 0 | 2 | 20.5 | Page 46 / 90 Report No.: T180821W01-SF Rev. 01 | | | | 000210001- | <u> </u> | | | | | |------|-------------|---------|--------------------|----------|---------------------|-----------------|-----|---| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | 1 | 2 | 0 | | | | | | | | 1 | 5 | 0 | | | | | | | QPSK | 3 | 0 | 0 | | | | | | | | 3 | 1 | 0 | 22.4 | | | | | | | 3 | 2 | 0 | 22.3 | | | | 10057 | 4740.7 | | 6 | 0 | 1 | 21.5 | | | | 19957 | 1710.7 | | 1 | 0 | 1 | 21.8 | | | | | | | 1 | 2 | 1 | 21.6 | | | | | | | 1 | 5 | 1 | 21.5 | | | | | | 16QAM | 3 | 0 | 1 | 21.8 | | | | | | | 3 | 1 | 1 | 21.6 | | | | | | | 3 | 2 | 1 | 21.5 | | | | | | | 6 | 0 | 2 | 20.5 | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | 1 | 2 | 0 | 22.3 | | | | | | | 1 | 5 | 0 | 22.3 | | | | | | QPSK | 3 | 0 | 0 | 22.5 | | | | | | | 3 | 1 | 0 | 22.3 | | | | | | | 3 | 2 | 0 | 22.3 | | | 4.4 | 20475 | 4722.5 | | 6 | 0 | 1 | 21.4 | | 4 | 1.4 | 20175 | 1732.5 | | 1 | 0 | 1 | 21.5 | | | | | | | 1 | 2 | 1 | 21.5 | | | | | | | 1 | 5 | 1 | 21.4 | | | | | | 16QAM | 3 | 0 | 1 | 21.5 | | | | | | | 3 | 1 | 1 | 21.5 | | | | | | | 3 | 2 | 1 | 21.4 | | | | | | | 6 | 0 | 2 | 22.4 22.3 22.7 22.4 22.3 21.5 21.8 21.6 21.5 21.8 21.6 21.5 22.5 22.3 22.3 22.3 22.3 22.3 22.3 21.4 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | 1 | 2 | 0 | 0 22.7 0 22.3 1 21.5 1 21.6 1 21.5 1 21.6 1 21.5 2 20.5 0 22.5 0 22.3 0 22.3 0 22.3 0 22.3 1 21.4 1 21.5 1 21.5 1 21.5 1 21.4 2 20.5 0 22.4 0 22.4 0 22.4 0 22.4 0 22.4 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 1 21.5 <td< td=""></td<> | | | | | | | 1 |
5 | 0 | 22.4 | | | | | | QPSK | 3 | 0 | 0 | 22.6 | | | | | | | 3 | 1 | 0 | 22.4 | | | | | | | 3 | 2 | 0 | 22.5 22.3 22.3 22.5 22.3 22.5 22.3 21.4 21.5 21.5 21.4 21.5 21.5 21.4 20.5 22.6 22.4 22.4 22.4 22.4 | | | | 20392 | 1754.2 | | 6 | 0 | 1 | 21.5 | | | | 20392 | 1/34.2 | | 1 | 0 | 1 | 21.6 | | | | | | | 1 | 2 | 1 | 21.5 | | | | | | | 1 | 5 | 1 | 21.5 | | | | | | 16QAM | 3 | 0 | 1 | 21.6 | | | | | | 16QAM | 3 | 1 | 1 | 21.5 | | | | | | | 3 | 2 | 1 | 21.5 | | | | | | | 6 | 0 | 2 | 20.6 | Report No.: T180821W01-SF **Spectrum Plots for the Test RB allocations** Page 47 / 90 Rev. 01 20MHz Band Width: Ch 20050, RB Size=1; RB Offset = 0 20MHz Band Width: Ch 20050, RB Size=1; RB Offset = 49 Page 48 / 90 Rev. 01 20MHz Band Width: Ch 20050, RB Size=1; RB Offset = 99 20MHz Band Width: Ch 20050, RB Size=50; RB Offset = 0 Page 49 / 90 Rev. 01 20MHz Band Width: Ch 20050, RB Size=50; RB Offset = 24 20MHz Band Width: Ch 20050, RB Size=50; RB Offset = 49 Page 50 / 90 Rev. 01 20MHz Band Width: Ch 20050, RB Size=100; RB Offset = 0 Page 51/90 Rev. 01 Report No.: T180821W01-SF 9.2.3 LTE Band 5 | Output power table | | | | | | | | | | | |--------------------|-------------|---------|--------------------|-------|---------------------|-----------------|-----|-----------------------|--|--| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | | | 1 | 24 | 0 | 22.0 | | | | | | | | | 1 | 49 | 0 | 22.0 | | | | | | | | QPSK | 25 | 0 | 1 | 21.8 | | | | | | | | | 25 | 12 | 1 | 21.3 | | | | | | | | | 25 | 24 | 1 | 21.3 | | | | | | 20450 | 829.0 | | 50 | 0 | 1 | 21.2 | | | | | | 20450 | 029.0 | | 1 | 0 | 1 | 21.8 | | | | | | | | | 1 | 24 | 1 | 21.4 | | | | | | | | | 1 | 49 | 1 | 21.4 | | | | | | | | 16QAM | 25 | 0 | 2 | 20.8 | | | | | | | | | 25 | 12 | 2 | 20.4 | | | | | | | | | 25 | 24 | 2 | 20.4 | | | | | | | | | 50 | 0 | 2 | 20.3 | | | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | | | 1 | 24 | 0 | 22.2 | | | | | | | | | 1 | 49 | 0 | 22.0 | | | | | | | | QPSK | 25 | 0 | 1 | 21.8 | | | | | | | | | 25 | 12 | 1 | 21.5 | | | | | | | | | 25 | 24 | 1 | 21.4 | | | | 5 | 10 | 20525 | 836.5 | | 50 | 0 | 1 | 21.3 | | | | , | 10 | 20323 | 030.3 | | 1 | 0 | 1 | 21.7 | | | | | | | | | 1 | 24 | 1 | 21.3 | | | | | | | | | 1 | 49 | 1 | 21.3 | | | | | | | | 16QAM | 25 | 0 | 2 | 20.8 | | | | | | | | | 25 | 12 | 2 | 20.5 | | | | | | | | | 25 | 24 | 2 | 20.4 | | | | | | | | | 50 | 0 | 2 | 20.3 | | | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | | | 1 | 24 | 0 | 22.3 | | | | | | | | | 1 | 49 | 0 | 22.0 | | | | | | | | QPSK | 25 | 0 | 1 | 21.8 | | | | | | | | | 25 | 12 | 1 | 21.6 | | | | | | | | | 25 | 24 | 1 | 21.3 | | | | | | 20600 | 844.0 | | 50 | 0 | 1 | 21.2 | | | | | | | 20600 844.0 | | 1 | 0 | 1 | 21.8 | | | | | | | | | 1 | 24 | 1 | 21.6 | | | | | | | | | 1 | 49 | 1 | 21.4 | | | | | | | | 16QAM | 25 | 0 | 2 | 21.0 | | | | | | | | | 25 | 12 | 2 | 20.6 | | | | | | | | | 25 | 24 | 2 | 20.4 | | | | | | | | | 50 | 0 | 2 | 20.3 | | | Page 52/90 Rev. 01 | Re | Report No.: T180821W01-SF | | | | | | | | | | | |------|---------------------------|---------|--------------------|--------|---------------------|-----------------|-----|-----------------------|--|--|--| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | | | | 1 | 12 | 0 | 22.0 | | | | | | | | | | 1 | 24 | 0 | 22.0 | | | | | | | | | QPSK | 12 | 0 | 1 | 21.8 | | | | | | | | | | 12 | 6 | 1 | 21.3 | | | | | | | | | | 12 | 11 | 1 | 21.3 | | | | | | | 20425 | 826.5 | | 25 | 0 | 1 | 21.2 | | | | | | | 20123 | 020.5 | | 1 | 0 | 1 | 21.8 | | | | | | | | | | 1 | 12 | 1 | 21.4 | | | | | | | | | | 1 | 24 | 1 | 21.4 | | | | | | | | | 16QAM | 12 | 0 | 2 | 20.8 | | | | | | | | | | 12 | 6 | 2 | 20.4 | | | | | | | | | | 12 | 11 | 2 | 20.4 | | | | | | | | | | 25 | 0 | 2 | 20.3 | | | | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | | | | 1 | 12 | 0 | 22.2 | | | | | | | | | | 1 | 24 | 0 | 22.0 | | | | | | | | | QPSK | 12 | 0 | 1 | 21.8 | | | | | | | | | | 12 | 6 | 1 | 21.5 | | | | | | | | | | 12 | 11 | 1 | 21.4 | | | | | 5 | 5 | 20525 | 836.5 | | 25 | 0 | 1 | 21.3 | | | | | | | | | | 1 | 0 | 1 | 21.7 | | | | | | | | | | 1 | 12 | 1 | 21.3 | | | | | | | | | | 1 | 24 | 1 | 21.3 | | | | | | | | | 16QAM | 12 | 0 | 2 | 20.8 | | | | | | | | | | 12 | 6 | 2 | 20.5 | | | | | | | | | | 12 | 11 | 2 | 20.4 | | | | | | | | | | 25 | 0 | 2 | 20.3 | | | | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | | | | 1 | 12 | 0 | 22.3 | | | | | | | | | | 1 | 24 | 0 | 22.0 | | | | | | | | | QPSK | 12 | 0 | 1 | 21.8 | | | | | | | | | | 12 | 6 | 1 | 21.6 | | | | | | | | | | 12 | 11 | 1 | 21.3 | | | | | | | 20625 | 846.5 | | 25 | 0 | 1 | 21.2 | | | | | | | | | | 1 | 0 | 1 | 21.8 | | | | | | | | | | 1 | 12 | 1 | 21.6 | | | | | | | | | 4604:: | 1 | 24 | 1 | 21.4 | | | | | | | | | 16QAM | 12 | 0 | 2 | 21.0 | | | | | | | | | | 12 | 6 | 2 | 20.6 | | | | | | | | | | 12 | 11 | 2 | 20.4 | | | | |] | | | | | 25 | 0 | 2 | 20.3 | | | | Page 53/90 Rev. 01 **Report No.:** T180821W01-SF | Band | BW (MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |------|----------|---------|-----------------------|---------|---|-----------------|------|-----------------------| | | | | | | 1 | 0 | 0 | 22.4 | | | | | | | 1 | 7 | 0 | 21.9 | | | | | | | 1 | 14 | 0 | 21.9 | | | | | | QPSK | 8 | 0 | 1 | 21.7 | | | | | | Qi Sit | 8 | 4 | 1 | 21.2 | | | | | | | 8 | 7 | 1 | 21.2 | | | | | | | 15 | 0 | 1 | 21.1 | | | | 20415 | 825.5 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 7 | 1 | 21.3 | | | | | | | 1 | 14 | 1 | 21.3 | | | | | | 16QAM | 8 | 0 | 2 | 20.7 | | | | | | | 8 | 4 | 2 | 20.3 | | | | | | | 8 | 7 | 2 | 20.3 | | | | | | | 15 | 0 | 2 | 20.2 | | | | | | | 1 | 0 | 0 | 22.4 | | | | | | | 1 | 7 | 0 | 22.1 | | | | | | | 1 | 14 | 0 | 21.9 | | | | | | QPSK | 8 | 0 | 1 | 21.7 | | | | | | | 8 | 4 | 1 | 21.4 | | | | | | | 8 | 7 | 1 | 21.3 | | _ | _ | 20525 | 026 5 | | 15 | 0 | 1 | 21.2 | | 5 | 3 | 20525 | 836.5 | | 1 | 0 | 1 | 21.6 | | | | | | | 1 | 7 | 1 | 21.2 | | | | | | | 1 | 14 | 1 | 21.2 | | | | | | 16QAM | 8 | 0 | 2 | 20.7 | | | | | | | 8 | 4 | 2 | 20.4 | | | | | | | 8 | 7 | 2 | 20.3 | | | | | | | 15 | 0 | 2 | 20.2 | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | 8 7 1 15 0 1 1 0 1 1 7 1 1 14 1 8 0 2 8 4 2 8 7 2 15 0 2 1 0 0 1 7 0 1 14 0 | 22.2 | | | | | | | | | 1 | 14 | 0 | 21.9 | | | | | | QPSK | 8 | 0 | 1 | 21.7 | | | | | | | 8 | 4 | 1 | 21.5 | | | | | | | 8 | 7 | 1 | 21.2 | | | | 20634 | 8 <u>4</u> 7 <i>1</i> | | 15 | 0 | 1 | 21.1 | | | | 20034 | 20634 847.4 | | 1 | 0 | 1 | 21.7 | | | | | | 1 | 7 | 1 | 21.5 | | | | | | | | 1 | 14 | 1 | 21.3 | | | | | | 16QAM | 8 | 0 | 2 | 20.9 | | | | | | Ισάλινι | 8 | 4 | 2 | 20.5 | | | | | | | 8 | 7 | 2 | 20.3 | | | | | | | 15 | 0 | 2 | 20.2 | Page 54/90 Rev. 01 | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |------|-------------|---------|--------------------|-------|---------------------|-----------------|------|-----------------------| | | | | | | 1 | 0 | 0 | 22.4 | | | | | | | 1 | 2 | 0 | 21.9 | | | | | | | 1 | 5 | 0 | 21.9 | | | | | | QPSK | 3 | 0 | 0 | 22.4 | | | | | | | 3 | 1 | 0 | 21.9 | | | | | | | 3 | 2 | 0 | 21.9 | | | | 20407 | 824.7 | | 6 | 0 | 1 | 21.1 | | | | 20407 | 024.7 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 2 | 1 | 21.3 | | | | | | | 1 | 5 | 1 | 21.3 | | | | | | 16QAM | 3 | 0 | 1 | 21.7 | | | | | | | 3 | 1 | 1 | 21.3 | | | | | | | 3 | 2 | 1 | 21.3 | | | | | | | 6 | 0 | 2 | 20.2 | | | | | | | 1 | 0 | 0 | 22.4 | | | | | | | 1 | 2 | 0 | 22.1 | | | | | | | 1 | 5 | 0 | 21.9 | | | | | | QPSK | 3 | 0 | 0 | 22.4 | | | | | | | 3 | 1 | 0 | 22.1 | | | | | | | 3 | 2 | 0 | 21.9 | | 5 | 1.4 | 20525 | 836.5 | | 6 | 0 | 1 | 21.2 | | | 1.4 | 20323 | 830.3 | | 1 | 0 | 1 | 21.6 | | | | | | | 1 | 2 | 1 | 21.2 | | | | | | | 1 | 5 | 1 | 21.2 | | | | | | 16QAM | 3 | 0 | 1 | 21.6 | | | | | | | 3 | 1 | 1 | 21.2 | | | | | | | 3 | 2 | 1 | 21.2 | | | | | | | 6 | 0 | 2 | 20.5 | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | 1 | 2 | 0 | 22.2 | | | | | | | 1 | 5 | 0 | 21.9 | | | | | | QPSK | 3 | 0 | 0 | 22.5 | | | | | | | 3 | 1 | 0 | 22.2 | | | | | | | 3 | 2 | 0 | 21.9 | | | | 20642 | 8/18/2 | | 6 | 0 | 1 | 21.1 | | | | 20042 | 20642 848.2 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 2 | 1 | 21.5 | | | | | | | 1 | 5 | 1 | 21.3 | | | | | | 16QAM | 3 | 0 | 1 | 21.7 | | | | | | 3 | 1 | 1 | 21.5 | | | | | | | | 3 | 2 | 1 | 21.3 | | | | | | | 6 | 0 | 2 | 20.6 | Report No.: T180821W01-SF **Spectrum Plots for the Test RB allocations** Page 55 / 90 Rev. 01 10MHz Band Width: Ch 20600, RB Size=1; RB Offset = 0 10MHz Band Width: Ch 20600, RB Size=1; RB Offset = 24 Page 56 / 90 Rev. 01 10MHz Band Width: Ch 20600, RB Size=1; RB Offset = 49 10MHz Band Width: Ch 20600, RB Size=25; RB Offset = 0 Page 57 / 90 Rev. 01 10MHz Band Width: Ch 20600, RB Size=25; RB Offset = 12 10MHz Band Width: Ch 20600, RB Size=25; RB Offset = 24 Page 58 / 90 Rev. 01 10MHz Band Width: Ch 20600, RB Size=50; RB Offset = 0 Page 59 / 90 Rev. 01 Report No.: T180821W01-SF 9.2.4 LTE Band 17 Outnut nower table | Output power table | | | | | | | | | | |--------------------|-------------|---------|--------------------|-------|---------------------|-----------------|--|-----------------------|--| | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | | | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | | 1 | 12 | 0 | 22.0 | | | |
 | | | 1 | 24 | 0 | 22.0 | | | | | | | QPSK | 12 | 0 | 1 | 21.8 | | | | | | | | 12 | 6 | 1 | 21.4 | | | | | | | | 12 | 11 | 1 | 21.3 | | | | | 22755 | 706 5 | | 25 | 0 | 1 | 21.3 | | | | | 23755 | 706.5 | | 1 | 0 | 1 | 21.7 | | | | | | | | 1 | 12 | 1 | 21.4 | | | | | | | | 1 | 24 | 1 | 21.3 | | | | | | | 16QAM | 12 | 0 | 2 | 20.8 | | | | | | | | 12 | 6 | 2 | 20.3 | | | | | | | | 12 | 11 | 2 | 20.4 | | | | | | | | 25 | 0 | 2 | 20.3 | | | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | | 1 | 12 | 0 | 22.2 | | | | | | | | 1 | 24 | 0 | 22.5 | | | | | | | QPSK | 12 | 0 | 1 | 21.9 | | | | | | | | 12 | 6 | 1 | 21.4 | | | | | | | | 12 | 11 | 1 | 21.6 | | | 4- | _ | 20700 | 7400 | | 25 | 0 | 1 | 21.8 | | | 17 | 5 | 23790 | 710.0 | | 1 | 0 | 1 | 22.0 | | | | | | | | 1 | 12 | 1 | 21.5 | | | | | | | | 1 | 24 | 1 | 21.7 | | | | | | | 16QAM | 12 | 0 | 2 | 20.8 | | | | | | | | 12 | 6 | 2 | | | | | | | | | 12 | 11 | 2 | 20.7 | | | | | | | | 25 | 0 | 2 | 20.7 | | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | | 1 | 12 | 0 | 22.0 | | | | | | | | 1 | 24 | 0 | 22.0 | | | | | | | QPSK | 12 | 0 | 1 | 21.8 | | | | | | | | 12 | 6 | 1 | 21.4 | | | | | | | | 12 | 11 | 1 | 21.3 | | | | | 22025 | 712 F | | 25 | 0 | 1 | 21.3 | | | | | 23825 | 713.5 | | 1 | 0 | 2 20.5
2 20.7
2 20.7
0 22.6
0 22.0
1 21.8
1 21.4
1 21.3
1 21.3
1 21.7
1 21.3
1 21.7 | | | | | | | | | 1 | 12 | 1 | 21.3 | | | | | | | | 1 | 24 | | | | | | | | | 16QAM | 12 | 0 | 2 | 20.8 | | | | | | | | 12 | 6 | 2 | 20.4 | | | | | | | | 12 | 11 | 2 | 20.3 | | | | | | | | 25 | 0 | 2 | 20.3 | | Page 60 / 90 Rev. 01 | Band | BW
(MHz) | Channel | Frequency
(MHz) | Mode | UL RB
Allocation | UL RB
offset | MPR | Average
power(dBm) | |------|-------------|---------|--------------------|-------|---------------------|-----------------|-----|-----------------------| | | | | | | 1 | 0 | 0 | 22.5 | | | | | | | 1 | 24 | 0 | 22.0 | | | | | | QPSK | 1 | 49 | 0 | 22.0 | | | | | | | 25 | 0 | 1 | 21.8 | | | | | | | 25 | 12 | 1 | 21.4 | | | | | | | 25 | 24 | 1 | 21.3 | | | | 23780 | 709.0 | | 50 | 0 | 1 | 21.3 | | | | 23760 | 703.0 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 24 | 1 | 21.4 | | | | | | | 1 | 49 | 1 | 21.3 | | | | | | 16QAM | 25 | 0 | 2 | 20.8 | | | | | | | 25 | 12 | 2 | 20.3 | | | | | | | 25 | 24 | 2 | 20.4 | | | | | | | 50 | 0 | 2 | 20.3 | | | | | | | 1 | 0 | 0 | 22.7 | | | | | | | 1 | 24 | 0 | 22.2 | | | | | | | 1 | 49 | 0 | 22.5 | | | | | | QPSK | 25 | 0 | 1 | 21.9 | | | | | | | 25 | 12 | 1 | 21.4 | | | | | | | 25 | 24 | 1 | 21.6 | | 17 | 10 | 22700 | 710.0 | | 50 | 0 | 1 | 21.8 | | 1/ | 10 | 23790 | 710.0 | | 1 | 0 | 1 | 22.0 | | | | | | | 1 | 24 | 1 | 21.5 | | | | | | | 1 | 49 | 1 | 21.7 | | | | | | 16QAM | 25 | 0 | 2 | 20.8 | | | | | | | 25 | 12 | 2 | 20.5 | | | | | | | 25 | 24 | 2 | 20.7 | | | | | | | 50 | 0 | 2 | 20.7 | | | | | | | 1 | 0 | 0 | 22.6 | | | | | | | 1 | 24 | 0 | 22.0 | | | | | | | 1 | 49 | 0 | 22.0 | | | | | | QPSK | 25 | 0 | 1 | 21.8 | | | | | | | 25 | 12 | 1 | 21.4 | | | | | | | 25 | 24 | 1 | 21.3 | | | | 22900 | 711.0 | | 50 | 0 | 1 | 21.3 | | | | 23800 | /11.0 | | 1 | 0 | 1 | 21.7 | | | | | | | 1 | 24 | 1 | 21.3 | | | | | | | 1 | 49 | 1 | 21.4 | | | | | | 16QAM | 25 | 0 | 2 | 20.8 | | | | | | | 25 | 12 | 2 | 20.4 | | | | | | | 25 | 24 | 2 | 20.3 | | | | | | | 50 | 0 | 2 | 20.3 | Report No.: T180821W01-SF **Spectrum Plots for the Test RB allocations** Page 61 / 90 Rev. 01 10MHz Band Width: Ch 23790, RB Size=1; RB Offset = 0 10MHz Band Width: Ch 23790, RB Size=1; RB Offset = 24 Page 62 / 90 Rev. 01 10MHz Band Width: Ch 23790, RB Size=1; RB Offset = 49 10MHz Band Width: Ch 23790, RB Size=25; RB Offset = 0 Page 63 / 90 Rev. 01 10MHz Band Width: Ch 23790, RB Size=25; RB Offset = 12 10MHz Band Width: Ch 23790, RB Size=25; RB Offset = 24 64 / 90 Page Rev. 01 10MHz Band Width: Ch 23790, RB Size=50; RB Offset = 0 Page 65 / 90 Rev. 01 Report No.: T180821W01-SF 9.3 Wi-Fi (2.4GHz Band) | | Band
(GHz) | Mode | Data rate
(Mbps) | Ch# | Freq.
(MHz) | Avg. Pwr
(dBm) | Maximum
Tune-up
Pwr
(dRm) | SAR Test
(Yes/No) | Note | |---|---------------|-----------------|---------------------|------|----------------|-------------------|------------------------------------|----------------------|------| | ĺ | | | | 1 | 2412 | 14.8 | 16.0 | | | | ı | | 802.11b | 1 | 6 | 2437 | 15.4 | 16.0 | Yes | | | ı | | | | 11 | 2462 | 15.6 | 16.0 | | | | | 2.4 | 802.11g | 6 | 1-11 | 2412-2462 | No Required | 15.0 | No | | | | | 802.11n
HT20 | MCS0 | 1-11 | 2412-2462 | No Required | 14.0 | No | | ## 9.4 Bluetooth | Band
(GHz) | Mode | Freq.
(MHz) | Maximum
Avg. Pwr (dBm) | Maximum
Tune-up
Pwr (dBm) | |---------------|------|----------------|---------------------------|---------------------------------| | | | 2402 | 7.3 | 8.0 | | | DH5 | 2441 | 7.7 | 8.0 | | 2.4 | | 2480 | 7.7 | 8.0 | | 2.4 | 3DH5 | 2402-2480 | No
Required | 5.5 | | | LE | 2402-2480 | No
Required | 6.5 | Report No.: T180821W01-SF Page 66 / 90 Rev. 01 # 10 Summary of SAR Test Exclusion Configurations #### 10.1 Standalone SAR Test Exclusion Calculations Since the Dedicated Host Approach is applied, the standalone SAR test exclusion procedure in KDB 447498 section 4.3.1 is applied in conjunction with KDB 616217 section 4.3 to determine the minimum test separation distance: - 1. According to KDB 447498 Section 4.1 5) if the antenna is at close proximity to user then the outer surface of the DUT should be treated as the radiating surface. The test separation distance is then determined by the smallest distance between the outer surface of the device and the user. For the purposes of this report close proximity has been defined as closer than 50 mm. For antennas <50 mm from the rear or edge the separation distance used for the estimated SAR calculations is 0 mm. - 2. When the minimum test separation distance is < 5mm, a distance of 5mm is applied to determine SAR test exclusion. - 3. When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion. - 4. If the antenna to DUT adjacent edge or bottom separation distance >50mm the actual antenna to user separation distance is used to determine SAR exclusion and estimated SAR value. Refer to Appendix for the specific details on the antenna-to-antenna and antenna-to-edge distances used for test exclusion calculations. Page 67 / 90 **Report No.:** T180821W01-SF Rev. 01 ## 10.1.1 SAR Exclusion Calculations for WWAN & WLAN Antenna < 50mm from the User According to KDB 447498 v06 in section 4.3.1, if the calculated threshold value is > 3 then SAR testing is required. #### For WWAN | Antenna | Band | Frequency | Output | Power | | Separati | on Distan | ces(mm) | | | Calculate | d Thresh | old Value | | |---------|------------------|-----------|--------|-------|------|----------|-----------|---------|-------|------|-----------|----------|-----------|-------| | Antenna | Dallu | (MHz) | dBm | mW | Rear | Edge1 | Edge2 | Edge3 | Edge4 | Rear | Edge1 | Edge2 | Edge3 | Edge4 | | WWAN | WCDMA
Band II | 1852.4 | 24.0 | 251 | 8.8 | 11.8 | 24.6 | 140 | 140 | 38.8 | 29.0 | 13.9 | >50mm | >50mm | | WWAN | WCDMA
Band IV | 1852.4 | 24.0 | 251 | 8.8 | 11.8 | 24.6 | 140 | 140 | 38.8 | 29.0 | 13.9 | >50mm | >50mm | | WWAN | WCDMA
Band V | 826.4 | 24.0 | 251 | 8.8 | 11.8 | 24.6 | 140 | 140 | 25.9 | 19.3 | 9.3 | >50mm | >50mm | | WWAN | LTE Band 2 | 1880 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | 31.2 | 23.2 | 11.1 | >50mm | >50mm | | WWAN | LTE Band 4 | 1732.5 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | 29.9 | 22.3 | 10.7 | >50mm | >50mm | | WWAN | LTE Band 5 | 824.7 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | 20.6 | 15.4 | 7.4 | >50mm | >50mm | | WWAN | LTE Band 17 | 710 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | 19.2 | 14.3 | 6.9 | >50mm | >50mm | ## For WLAN & BLUETOOTH | Antenna | Band | Frequency | Output | Power | | Separation Distances(mm) | | | | | Calculate | d Thresh | old Value | | |------------|-----------|-----------|--------|-------|------|--------------------------|-------|-------|-------|------|-----------|----------|-----------|-------| | Antenna | Dallu | (MHz) | dBm | mW | Rear | Edge1 | Edge2 | Edge3 | Edge4 | Rear | Edge1 | Edge2 | Edge3 | Edge4 | | Wi-Fi Main | 2.4GHz | 2437 | 16.0 | 40 | 6.7 | 137 | 182 | 9.0 | 24.5 | 9.4 | >50mm | >50mm | 6.9 | 2.5 | | Wi-Fi Main | Bluetooth | 2402 | 8.0 | 6 | 6.7 | 137 | 182 | 9.0 | 24.5 | 1.4 | >50mm | >50mm | 1.0 | 0.4 | Page 68 / 90 Report No.: T180821W01-SF Rev. 01 ## 10.1.2 SAR Exclusion Calculations for WWAN & WLAN Antenna > 50mm from the User According to KDB 447498 v06, if the calculated Power threshold is less than the output power then SAR testing is required. #### For WWAN | 101 1111 | , | | | | | | | | | | | | | | |----------|------------------|-----------|--------|-------|------|--------------------------|-------|-------|-------|-------|----------|------------|-----------|---------| | Antenna | Band | Frequency | Output | Power | | Separation Distances(mm) | | | | | Calculat | ed Thresho | old Value | | | Antenna | Banu | (MHz) | dBm | mW | Rear | Edge1 | Edge2 | Edge3 | Edge4 | Rear | Edge1 | Edge2 | Edge3 | Edge4 | | WWAN | WCDMA
Band II | 1852.4 | 24.0 | 251 | 8.8 | 11.8 | 24.6 | 140 | 140 | <50mm | <50mm | <50mm | 1010.21 | 1010.21 | | WWAN | WCDMA
Band IV | 1852.4 | 24.0 | 251 | 8.8 | 11.8 | 24.6 | 140 | 140 | <50mm | <50mm | <50mm | 1010.21 | 1010.21 | | WWAN | WCDMA
Band V | 826.4 | 24.0 | 251 | 8.8 | 11.8 | 24.6 | 140 | 140 | <50mm | <50mm | <50mm | 660.84 | 660.84 | | WWAN | LTE Band 2 | 782 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | <50mm | <50mm | <50mm | 1069.62 | 1069.62 | | WWAN | LTE Band 4 | 1732.5 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | <50mm | <50mm | <50mm | 1013.96 | 1013.96 | | WWAN | LTE Band 5 | 824.7 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | <50mm | <50mm | <50mm | 659.99 | 659.99 | | WWAN | LTE
Band 17 | 710 | 23.0 | 200 | 8.8 | 11.8 | 24.6 | 140 | 140 | <50mm | <50mm | <50mm | 604.02 | 604.02 | ### For WLAN & BLUETOOTH | Antonna | Antenna Band Frequency Output Power | | | | | Separatio | on Distan | ces(mm |) | Calculated Threshold Value | | | | | |------------|-------------------------------------|-------|------|----|------|-----------|-----------|--------|-------|----------------------------|--------|---------|-------|-------| | Antenna | ballu | (MHz) | dBm | mW | Rear | Edge1 | Edge2 | Edge3 | Edge4 | Rear | Edge1 | Edge2 | Edge3 | Edge4 | | Wi-Fi Main | 2.4GHz | 2437 | 16.0 | 40 | 6.66 | 137 | 182.0 | 9 | 24.5 | <50mm | 966.09 | 1416.09 | <50mm | <50mm | | Wi-Fi Main | Bluetooth | 2402 | 8.0 | 6 | 6.66 | 137 | 182.0 | 9 | 24.5 | <50mm | 966.78 | 1416.78 | <50mm | <50mm | Page 69 / 90 Report No.: T180821W01-SF Rev. 01 ## 10.1.3 SAR Required Test Configuration Per KDB 616217D04 v01, front side will need to be tested when overall diagonal is less than 200mm. The overall diagonal length of this device is 258 mm; therefore, test with front side is not required. #### For WWAN | Test Configurations | Rear | Edge1 | Edge2 | Edge3 | Edge4 | Front | |---------------------|------|-------|-------|-------|-------|-------| | WCDMA Band II | Yes | Yes | Yes | No | No | No | | WCDMA Band IV | Yes | Yes | Yes | No | No | No | | WCDMA Band V | Yes | Yes | Yes | No | No | No | | LTE Band 2 | Yes | Yes | Yes | No | No | No | | LTE Band 4 | Yes | Yes | Yes | No | No | No | | LTE Band 5 | Yes | Yes | Yes | No | No | No | | LTE Band 17 | Yes | Yes | Yes | No | No | No | - Yes = SAR is required. 1. - 2. No = SAR is not required. #### For WLAN & BLUETOOTH | Test Configurations | Rear | Edge1 | Edge2 | Edge3 | Edge4 | Front | |---------------------|------|-------|-------|-------|-------|-------| | Wi-Fi Main 2.4GHz | YES | No | No | YES | No | No | | Bluetooth | No | No | No | No | No | No | #### Note(s): - Yes = SAR is required. 1 - 2 No = SAR is not required. - For Bluetooth is not required to performed SAR test, but we have to assess the simultaneous transmission, so we selected the worst configurations to performed the SAR test. Page 70 / 90 Report No.: T180821W01-SF Rev. 01 # 11 Exposure Limit (A). Limits for Occupational/Controlled Exposure (W/kg) Partial-Body Hands, Wrists, Feet and Ankles Whole-Body 0.4 8.0 2.0 (B). Limits for General Population/Uncontrolled Exposure (W/kg) Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.08 NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. #### **Population/Uncontrolled Environments:** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. #### **Occupational/Controlled Environments:** are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). ## NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 程智科技股份有限公司 Page 71/90 Report No.: T180821W01-SF Rev. 01 # 12 Tissue Dielectric Properties ## 12.1 Test Liquid Confirmation #### **Simulating Liquids Parameter Check** The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below 5% may not be easily achieved at certain frequencies. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE 1528 2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 2013 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE 1528 2013 | Target Frequency | He | ad | Вс | ody | |------------------|----------------|--------|----------------|--------| | (MHz) | ε _r | σ(S/m) | ε _r | σ(S/m) | | 150 | 52.3 | 0.76 | 61.9 | 0.80 | | 300 | 45.3 | 0.87 | 58.2 | 0.92 | | 450 | 43.5 | 0.87 | 56.7 | 0.94 | | 835 | 41.5 | 0.90 | 55.2 | 0.97 | | 900 | 41.5 | 0.97 | 55.0 | 1.05 | | 915 | 41.5 | 0.98 | 55.0 | 1.06 | | 1450 | 40.5 | 1.20 | 54.0 | 1.30 | | 1610 | 40.3 | 1.29 | 53.8 | 1.40 | | 1800 – 2000 | 40.0 | 1.40 | 53.3 | 1.52 | | 2450 | 39.2 | 1.80 | 52.7 | 1.95 | | 3000 | 38.5 | 2.40 | 52.0 | 2.73 | | 5000 | 36.2 | 4.45 | 49.3 | 5.07 | | 5100 | 36.1 | 4.55 | 49.1 | 5.18 | | 5200 | 36.0 | 4.66 | 49.0 | 5.30 | | 5300 | 35.9 | 4.76 | 48.9 | 5.42 | | 5400 | 35.8 | 4.86 | 48.7 | 5.53 | | 5500 | 35.6 | 4.96 | 48.6 | 5.65 | | 5600 | 35.5 | 5.07 | 48.5 | 5.77 | | 5700 | 35.4 | 5.17 | 48.3 | 5.88 | | 5800 | 35.3 | 5.27 | 48.2 | 6.00 | This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 Page 72/90 Report No.: T180821W01-SF Rev. 01 ## 12.2 Typical Composition of Ingredients for Liquid Tissue Phantoms The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. | Ingredients | | | | | Frequency (MHz) | | | | | | | | |---------------------|-------|-------|-------|-------|-----------------|-------|-------|------|------|------|--|--| | (% by weight) | 4! | 50 | | 35 91 | | 15 | 19 | 00 | 24 | 50 | | | | Tissue Type | Head | Body | | | | Water | 38.56 | 51.16 | 41.45 | 52.4 | 41.05 | 56.0 | 54.9 | 40.4 | 62.7 | 73.2 | | | | Salt (NaCl) | 3.95 | 1.49 | 1.45 | 1.4 | 1.35 | 0.76 | 0.18 | 0.5 | 0.5 | 0.04 | | | | Sugar | 56.32 | 46.78 | 56.0 | 45.0 | 56.5 | 41.76 | 0.0 | 58.0 | 0.0 | 0.0 | | | | HEC | 0.98 | 0.52 | 1.0 | 1.0 | 1.0 | 1.21 | 0.0 | 1.0 | 0.0 | 0.0 | | | | Bactericide | 0.19 | 0.05 | 0.1 | 0.1 | 0.1 | 0.27 | 0.0 | 0.1 | 0.0 | 0.0 | | | | Triton X-100 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 36.8 | 0.0 | | | | DGBE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 44.92 | 0.0 | 0.0 | 26.7 | | | | Dielectric Constant | 43.42 | 58.0 | 42.54 | 56.1 | 42.0 | 56.8 | 39.9 | 54.0 | 39.8 | 52.5 | | | | Conductivity (S/m) | 0.85 | 0.83 | 0.91 | 0.95 | 1.0 | 1.07 | 1.42 | 1.45 | 1.88 | 1.78 | | | alt: 99+% Pure Sodium Chloride Sugar: 98+% Pure Sucrose Water: De-ionized, 16 M Ω^+ resistivity HEC: Hydroxy thyl Cellulose DGBE: 99*% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol] Triton X-100 (ultra-pure): Polyethylene glycol mono [4-(1, 1, 3, 3-tetramethylbutyl)phenyl]ether ## Simulating Liquids for 5 GHz, Manufactured by SPEAG | Ingredients | (% by weight) | |--------------------|---------------| | Water | 78 | | Mineral oil | 11 | | Emulsifiers | 9 | | Additives and Salt | 2 | Page 73/90 Report No.: T180821W01-SF Rev. 01 ## 12.3 Simulating Liquids Parameter Check Results | Date | Band | Eroa/N/Ha) | | Measure | d | Stan | dard | L | 7 | Limit (%) | |-----------|-----------|------------|---------|---------|------|---------|------|---------|--------|-----------| | Date | вапа | Freq(MHz) | e' (εr) | e'' | σ | e' (εr) | σ | e' (εr) | σ | ±5 | | | | 1712.4 | 53.05 | 15.57 | 1.48 | 53.53 | 1.46 | -0.90% | 1.15% | ±5 | | 2018/9/13 | Body 1800 | 1732.4 | 52.87 | 15.64 | 1.51 | 53.48 | 1.48 | -1.13% | 1.91% | ±5 | | | | 1752.6 | 52.80 | 15.74 | 1.53 | 53.43 | 1.49 | -1.17% | 2.89% | ±5 | | | | 1715 | 53.03 | 15.57 | 1.48 | 53.52 | 1.47 | -0.91% | 1.18% | ±5 | | 2018/9/13 | Body 1800 | 1732.5 | 52.94 | 15.60 | 1.50 | 53.48 | 1.48 | -1.01% | 1.67% | ±5 | | | | 1750 | 52.86 | 15.65 | 1.52 | 53.43 | 1.49 | -1.07% | 2.21% | ±5 | | | | 1852.4 | 51.12 | 14.04 | 1.45 | 53.30 | 1.52 | -4.10% | -4.93% | ±5 | | 2018/9/13 | Body 1900 | 1880 | 51.02 | 13.98 | 1.46 | 53.30 | 1.52 | -4.27% | -3.91% | ±5 | | | | 1907.6 | 50.87 | 14.16 | 1.50 | 53.30 | 1.52 | -4.55% | -1.30% | ±5 | | | | 1855 | 51.12 | 14.02 | 1.44 | 53.30 | 1.52 | -4.10% | -4.94% | ±5 | | 2018/9/13 | Body 1900 | 1880 | 51.02 | 13.98 | 1.46 | 53.30 | 1.52 | -4.27% | -3.91% | ±5 | | | | 1905 | 50.89 | 14.13 | 1.50 | 53.30 | 1.52 | -4.52% | -1.63% | ±5 | | | | 709 | 53.59 | 23.33 | 0.92 | 55.69 | 0.96 | -3.77% | -4.29% | ±5 | | 2018/9/14 | Body 750 | 710 | 53.59 | 23.33 | 0.92 | 55.69 | 0.96 | -3.76% | -4.16% | ±5 | | | Body 750 | 711 | 53.59 | 23.33 | 0.92 | 55.68 | 0.96 | -3.75% | -4.04% | ±5 | | | | 826.4 | 55.18 | 21.24 | 0.97 | 55.24 | 0.97 | -0.10% | 0.58% | ±5 | | 2018/9/14 | Body 900 | 836.6 | 55.08 | 21.20 | 0.99 | 55.20 | 0.97 | -0.22% | 1.47% | ±5 | | | | 846.6 | 54.99 | 21.16 | 1.00 | 55.17 | 0.98 | -0.32% | 1.19% | ±5 | | | | 829 | 55.14 | 21.23 | 0.98 | 55.22 | 0.97 | -0.14% | 0.83% | ±5 | | 2018/9/14 | Body 900 | 836.5 | 55.08 | 21.20 | 0.99 | 55.20 | 0.97 | -0.22% | 1.46% | ±5 | | | | 844 | 54.99 | 21.16 | 0.99 | 55.17 | 0.98 | -0.33% | 1.13% | ±5 | | | | 2412 | 51.02 | 14.93 | 2.00 | 52.75 | 1.91 | -3.28% | 4.55% | ±5 | | | | 2437 | 50.95 | 15.01 | 2.03 | 52.72 | 1.94 | -3.35% | 4.90% | ±5 | | 2018/10/1 | Body 2450 | 2442 | 50.94 | 15.02 | 2.04 | 52.71 | 1.94 | -3.36% | 4.94% | ±5 | | | | 2462 | 50.87 | 15.09 | 2.06 | 52.68 | 1.97 | -3.45% | 4.91% | ±5 | | | | 2472 | 50.82 | 15.12 | 2.08 | 52.67 | 1.98 | -3.51% | 4.80% | ±5 | Report No.: T180821W01-SF Page 74 / 90 Rev. 01 # 13 Measurement Uncertainty According to KDB 865664 D01 SAR Measurement 100 MHz
to 6 GHz section 2.8.2, SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. Page 75 / 90 Report No.: T180821W01-SF Rev. 01 # 14 System Performance Check The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files. #### **System Performance Check Measurement Conditions** - The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters. - The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm - The DASY4/DASY5 system with an E-field probe EX3DV4 SN: 3665 was used for the measurements. - The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface. - The coarse grid with a grid spacing of 10mm was aligned with the dipole. - Special 7x7x7 fine cube was chosen for cube integration (dx=dy= 5 mm, dz= 5 mm). - Distance between probe sensors and phantom surface was set to 3.0 mm. - The dipole input power (forward power) was 100 mW±3%. - The results are normalized to 1 W input power. #### **Reference SAR Values for System Performance Check** The reference SAR values can be obtained from the calibration certificate of system validation dipoles | System | Serial No. | Cal. Date | Freg. (MHz) | Target | SAR Values | (W/kg) | |---------|------------|------------|---------------|--------|------------|--------| | Dipole | Serial No. | Cal. Date | rieq. (ivinz) | 1g/10g | Head | Body | | D750V2 | 1020 | 2018/01/18 | 750 | 1g | 8.36 | 8.66 | | D/30V2 | 1020 | 2016/01/16 | 750 | 10g | 5.50 | 5.75 | | D835V2 | 4d015 | 2018/03/19 | 835 | 1g | 9.46 | 9.55 | | D833V2 | 40013 | 2018/03/19 | 833 | 10g | 6.11 | 6.27 | | D1750V2 | 1158 | 2018/03/23 | 1800 | 1g | 37.30 | 36.20 | | D1730V2 | 1138 | 2018/03/23 | 1800 | 10g | 19.50 | 19.20 | | D1900V2 | 5d056 | 2018/02/22 | 1900 | 1g | 40.20 | 39.60 | | D1900V2 | 30030 | 2018/02/22 | 1900 | 10g | 21.00 | 20.90 | | D2450V2 | 725 | 2017/12/15 | 2450 | 1g | 51.40 | 50.60 | | D2450V2 | 735 | 2017/12/13 | 2430 | 10g | 23.90 | 23.90 | Page 76 / 90 Report No.: T180821W01-SF Rev. 01 ## 14.1 System Performance Check Results | Date | Ş | System Dipol | е | Parameters | Target[W/kg] | Measured [W/kg] | Doviation[%] | Limited[%] | |-----------|---------|--------------|--------|------------|---------------|--------------------|--------------|--------------| | Date | Туре | Serial No. | Liquid | Parameters | raiget[vv/kg] | ivieasureu [vv/kg] | Deviation[%] | Lilliteu[/6] | | 2018/9/13 | D1750V2 | 1158 | Body | 1g SAR: | 37.30 | 38.50 | 3.22 | ± 5 | | 2018/9/13 | D1730V2 | 1136 | войу | 10g SAR: | 19.50 | 20.10 | 3.08 | ± 5 | | 2018/9/13 | D1900V2 | 5d056 | Body | 1g SAR: | 39.60 | 40.20 | 1.52 | ± 5 | | 2018/9/13 | D1900V2 | 30030 | войу | 10g SAR: | 20.90 | 21.70 | 3.83 | ± 5 | | 2018/9/14 | D750V2 | 1020 | Body | 1g SAR: | 8.66 | 8.96 | 3.46 | ± 5 | | 2018/9/14 | D730V2 | 1020 | войу | 10g SAR: | 5.75 | 5.91 | 2.78 | ± 5 | | 2018/9/14 | DOSEVS | 4d015 | Body | 1g SAR: | 9.55 | 9.96 | 4.29 | ± 5 | | 2018/9/14 | D835V2 | 40015 | войу | 10g SAR: | 6.27 | 6.51 | 3.83 | ± 5 | | 2018/10/1 | D24E0V2 | 735 | Body | 1g SAR: | 50.60 | 51.30 | 1.38 | ± 5 | | 2016/10/1 | D2450V2 | /35 | ьошу | 10g SAR: | 23.90 | 24.50 | 2.51 | ± 5 | Page 77 / 90 Report No.: T180821W01-SF Rev. 01 ## 15 SAR Measurements Results #### WCDMA Band II: | | | Test | | Freg. | Dist. | Power | (dBm) | Measured | Reported | | Plot | |---------|---------------------------|----------|---------|--------|-------|------------------|----------|------------------|-----------|------|------| | Band | Mode | Position | Channel | (MHz) | (mm) | Tune up
limit | Measured | 1g SAR
(W/kg) | SAR(W/kg) | Note | No. | | | | Edge 1 | 9538 | 1907.6 | 0 | 24.0 | 23.2 | 1.150 | 1.383 | | 1 | | | Rel 99
RMC
12.2Kbps | Edge 1 | 9262 | 1852.4 | 0 | 24.0 | 22.6 | 0.607 | 0.838 | 1 | | | WCDMA | | Edge 1 | 9400 | 1880.0 | 0 | 24.0 | 23.1 | 0.753 | 0.926 | 1 | | | Band II | | Edge 2 | 9538 | 1907.6 | 0 | 24.0 | 23.2 | 0.058 | 0.069 | | | | | | Rear | 9538 | 1907.6 | 0 | 24.0 | 23.2 | 0.452 | 0.543 | | | | | | Edge 1 | 9538 | 1907.6 | 0 | 24.0 | 23.2 | 1.020 | 1.226 | 2 | | - 1. Testing of other required channels within the operating mode of a frequency band is required when the reported 1-g SAR for the mid-band or highest output power channel. ≥0.8 W/kg and transmission band ≤ 100 MHz (Per KDB 447498 D01 v06 section 4.3.3) - 2. Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04) - 2.1 Original SAR = 1.15 W/kg, therefore two times repeat SAR is required. - 2.2 Repeat SAR = 1.02 W/kg < 1.45W/kg - 2.3 SAR variation= 11.3 % < 20% #### WCDMA Band IV: | | | Test | | Freg. | Dist. | Power | (dBm) | Measured | Reported | | Plot | |------------------|---------------------------|----------|---------|--------|-------|------------------|----------|------------------|-----------|------|------| | Band | Mode | Position | Channel | (MHz) | (mm) | Tune up
limit | Measured | 1g SAR
(W/kg) | SAR(W/kg) | Note | No. | | | Rel 99
RMC
12.2Kbps | Edge 1 | 1413 | 1732.6 | 0 | 24.0 | 23.0 | 0.802 | 1.010 | | 2 | | | | Edge 1 | 1312 | 1712.4 | 0 | 24.0 | 22.7 | 0.584 | 0.788 | 1 | | | WCDMA
Band IV | | Edge 1 | 1513 | 1752.6 | 0 | 24.0 | 22.5 | 0.499 | 0.705 | 1 | | | Banary | | Edge 2 | 1413 | 1732.6 | 0 | 24.0 | 23.0 | 0.070 | 0.088 | | | | | | Rear | 1413 | 1732.6 | 0 | 24.0 | 23.0 | 0.620 | 0.781 | | | 1. Testing of other required channels within the operating mode of a frequency band is required when the reported 1-g SAR for the mid-band or highest output power channel. ≥0.8 W/kg and transmission band ≤ 100 MHz (Per KDB 447498 D01 v06 section 4.3.3) Page 78 / 90 Report No.: T180821W01-SF Rev. 01 ## WCDMA Band V: | | | Test | | Freg. | Dist. | Power | (dBm) | Measured | Reported | | Plot | |-----------------|---------------------------|----------|---------|-------|-------|------------------|----------|------------------|-----------|------|------| | Band | Mode | Position | Channel | (MHz) | (mm) | Tune up
limit | Measured | 1g SAR
(W/kg) | SAR(W/kg) | Note | No. | | | Rel 99
RMC
12.2Kbps | Edge 1 | 4183 | 836.6 | 0 | 24.0 | 22.8 | 0.475 | 0.626 | | 3 | | WCD144 | | Edge 1 | 4132 | 826.4 | 0 | 24.0 | 22.1 | 0.378 | 0.585 | | | | WCDMA
Band V | | Edge 1 | 4233 | 846.6 | 0 | 24.0 | 22.4 | 0.364 | 0.526 | | | | Dana v | | Edge 2 | 4183 | 836.6 | 0 | 24.0 | 22.8 | 0.111 | 0.146 | | | | | | Rear | 4183 | 836.6 | 0 | 24.0 | 22.8 | 0.313 | 0.413 | | | Page 79 / 90 Rev. 01 #### LTE Band 2 (20MHz Bandwidth): | | | Test | | Freq. | Dist. | UL RB | UL RB | Power | (dBm) | Measured | Reported | | Plot | |-------------|-----------------|----------|---------|--------|-------|------------|-------|------------------|----------|------------------|-----------|------|------| | Band | Mode | Position | Channel | (MHz) | | Allocation | Start | Tune up
limit | Measured | 1g SAR
(W/kg) | SAR(W/kg) | Note | No. | | | | | 18900 | 1880.0 | 0 | 1 | 0 | 23.0 | 22.8 | 1.180 | 1.236 | | 4 | | | | | 18900 | 1880.0 | 0 | 1 | 49 | 23.0 | 22.8 | 1.070 | 1.120 | 2 | | | | | | 18900 | 1880.0 | 0 | 1 | 99 | 23.0 | 22.6 | 0.902 | 0.989 | 2 | | | | | | 18900 | 1880.0 | 0 | 50 | 0 | 22.0 | 22.0 | 0.772 | 0.772 | | | | | | | 18900 | 1880.0 | 0 | 50 | 24 | 22.0 | 21.8 | 0.766 | 0.802 | 2 | | | | | | 18900 | 1880.0 | 0 | 50 | 49 | 22.0 | 21.6 | 0.729 | 0.799 | 2 | | | | | Edge 1 | 18900 | 1880.0 | 0 | 100 | 0 | 22.0 | 21.6 | 0.825 | 0.905 | | | | | LTE Band 2 QPSK | | 18700 | 1860.0 | 0 | 1 | 0 | 23.0 | 22.8 | 0.932 | 0.976 | 2 | | | | | | 18700 | 1860.0 | 0 | 50 | 0 | 22.0 | 22.0 | 0.880 | 0.880 | 2 | | | ITE Band 2 | | | 18700 | 1860.0 | 0 | 100 | 0 | 22.0 | 21.8 | 0.793 | 0.830 | 2 | | | LIL Ballu Z | QF3K | | 19100 | 1900.0 | 0 | 1 | 0 | 23.0 | 22.6 | 1.050 | 1.151 | 2 | | | | | | 19100 | 1900.0 | 0 | 50 | 0 | 22.0 | 21.7 | 0.834 | 0.894 | 2 | | | | | | 19100 | 1900.0 | 0 | 100 | 0 | 22.0 | 21.7 | 0.799 | 0.856 | 2 | | | | | Edge 1 | 18900 | 1880.0 | 0 | 1 | 0 | 23.0 | 22.8 | 1.100 | 1.152 | 3 | | | | | | 18900 | 1880.0 | 0 | 1 | 0 | 23.0 | 22.8 | 0.060 | 0.063 | | | | | | Edge 2 | 18900 | 1880.0 | 0 | 50 | 0 | 22.0 | 22.0 | 0.047 | 0.047 | | | | | | | 18900 | 1880.0 | 0 | 100 | 0 | 22.0 | 21.6 | 0.062 | 0.068 | | | | | | | 18900 | 1880.0 | 0 | 1 | 0 | 23.0 | 22.8 | 0.156 | 0.163 | | | | | | Rear | 18900 | 1880.0 | 0 | 50 | 0 | 22.0 | 22.0 | 0.154 | 0.154 | | | | | | | 18900 | 1880.0 | 0 | 100 | 0 | 22.0 | 21.6 | 0.149 | 0.163 | | | - When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05 section 4.2.1) - The highest reported SAR for 1 RB and 50% RB allocation are ≥ 0.8 W/kg, SAR is
required of 100% RB. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. (Per KDB 941225 D05 v02r05 section 4.2.3) - Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04) - 3.1 Original SAR = 1.18 W/kg, therefore two times repeat SAR is required. - 3.2 Repeat SAR = 1.10 W/kg < 1.45W/kg - 3.3 SAR variation = 6.7 % < 20% Report No.: T180821W01-SF LTE Band 4 (20MHz Bandwidth): Page 80 / 90 Rev. 01 | | | Test | | Freq. | Dist. | UL RB | UL RB | Power | (dBm) | Measured | Reported | | Plot | |-----------------|-------|----------|---------|--------|-------|------------|-------|------------------|----------|------------------|-----------|------|------| | Band N | Mode | Position | Channel | (MHz) | | Allocation | | Tune up
limit | Measured | 1g SAR
(W/kg) | SAR(W/kg) | Note | No. | | | | | 20050 | 1720.0 | 0 | 1 | 0 | 23.0 | 22.9 | 0.889 | 0.910 | | | | | | | 20050 | 1720.0 | 0 | 1 | 49 | 23.0 | 22.6 | 0.877 | 0.962 | 2 | | | | | | 20050 | 1720.0 | 0 | 1 | 99 | 23.0 | 22.5 | 0.871 | 0.977 | 2 | 5 | | | | Edge1 | 20050 | 1720.0 | 0 | 50 | 0 | 22.0 | 22.0 | 0.593 | 0.593 | | | | LTE Band 4 QPSK | | | 20050 | 1720.0 | 0 | 100 | 0 | 22.0 | 21.7 | 0.616 | 0.660 | | | | | | | 20175 | 1732.5 | 0 | 1 | 0 | 23.0 | 22.7 | 0.770 | 0.825 | 2 | | | |) DCV | | 20300 | 1745.0 | 0 | 1 | 0 | 23.0 | 22.8 | 0.868 | 0.909 | 2 | | | | JP3N | | 20050 | 1720.0 | 0 | 1 | 0 | 23.0 | 22.9 | 0.939 | 0.961 | 3 | | | | | | 20050 | 1720.0 | 0 | 1 | 0 | 23.0 | 22.9 | 0.062 | 0.064 | | | | | | Edge 2 | 20050 | 1720.0 | 0 | 50 | 0 | 22.0 | 22.0 | 0.047 | 0.047 | | | | | | | 20050 | 1720.0 | 0 | 100 | 0 | 22.0 | 21.7 | 0.057 | 0.061 | | | | | ſ | _ | 20050 | 1720.0 | 0 | 1 | 0 | 23.0 | 22.9 | 0.614 | 0.628 | | | | | | Rear | 20050 | 1720.0 | 0 | 50 | 0 | 22.0 | 22.0 | 0.542 | 0.542 | | | | | | | 20050 | 1720.0 | 0 | 100 | 0 | 22.0 | 21.7 | 0.545 | 0.584 | | | - When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05 section 4.2.1) - 2. The highest reported SAR for 1 RB and 50% RB allocation are ≥ 0.8 W/kg, SAR is required of 100% RB. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. (Per KDB 941225 D05 v02r05 section 4.2.3) - Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04) - 3.1 Original SAR = 0.889 W/kg, therefore two times repeat SAR is required. - 3.2 Repeat SAR = 0.939 W/kg < 1.45 W/kg - 3.3 SAR variation = -5.6 % < 20% **Report No.:** T180821W01-SF LTE Band 5 (10MHz Bandwidth): Page 81/90 Rev. 01 | | | Test | | Freq. | Dist. | UL RB | UL RB | Power | (dBm) | Measured | Reported | | Plot | |---------------|------|----------|---------|-------|-------|------------|-------|------------------|----------|------------------|-----------|------|------| | Band | Mode | Position | Channel | (MHz) | | Allocation | _ | Tune up
limit | Measured | 1g SAR
(W/kg) | SAR(W/kg) | Note | No. | | | | Edge1 | 20600 | 844.0 | 0 | 1 | 0 | 23.0 | 22.6 | 0.523 | 0.573 | | | | | | Eugei | 20600 | 844.0 | 0 | 25 | 0 | 22.0 | 21.8 | 0.424 | 0.444 | | | | | | Edge2 | 20600 | 844.0 | 0 | 1 | 0 | 23.0 | 22.6 | 0.095 | 0.104 | | | | LTE Band 5 QP | ODSK | Lugez | 20600 | 844.0 | 0 | 25 | 0 | 22.0 | 21.8 | 0.080 | 0.084 | | | | LIE Ballu 5 | QF3K | PSK | 20600 | 844.0 | 0 | 1 | 0 | 23.0 | 22.6 | 0.625 | 0.685 | | 6 | | | Dans | 20600 | 844.0 | 0 | 25 | 0 | 22.0 | 21.8 | 0.557 | 0.583 | | | | | | | Rear | 20450 | 829.0 | 0 | 1 | 0 | 23.0 | 22.6 | 0.408 | 0.447 | | | | | | | 20525 | 836.5 | 0 | 1 | 0 | 23.0 | 22.5 | 0.497 | 0.558 | | | ### LTE Band 17 (10MHz Bandwidth): | | | Test | | Freg. | Dist. | UL RB | UL RB | Powe | r (dBm) | Measured | Reported | | Plot | |----------|---------------|----------|---------|-------|-------|------------|-------|---------|----------|------------------|-----------|------|------| | Band | Mode | Position | Channel | (MHz) | | Allocation | Start | Tune up | Measured | 1g SAR
(W/kg) | SAR(W/kg) | Note | No. | | | | Edge1 | 23790 | 710.0 | 0 | 1 | 0 | 23.0 | 22.7 | 0.305 | 0.327 | | | | | | Lugei | 23790 | 710.0 | 0 | 25 | 0 | 22.0 | 21.9 | 0.315 | 0.322 | | | | | | Edge 2 | 23790 | 710.0 | 0 | 1 | 0 | 23.0 | 22.7 | 0.023 | 0.025 | | | | LTE Band | Edge 2 | 23790 | 710.0 | 0 | 25 | 0 | 22.0 | 21.9 | 0.024 | 0.025 | | | | | 17 | OPSK - | SK | 23790 | 710.0 | 0 | 1 | 0 | 23.0 | 22.7 | 0.335 | 0.359 | | 7 | | | Rear | 23790 | 710.0 | 0 | 25 | 0 | 22.0 | 21.9 | 0.324 | 0.332 | | | | | | | 23780 | 709.0 | 0 | 1 | 0 | 23.0 | 22.7 | 0.247 | 0.265 | | | | | | | | 23800 | 711.0 | 0 | 1 | 0 | 23.0 | 22.6 | 0.270 | 0.296 | | | Page 82 / 90 Rev. 01 Wi-Fi (2.4GHz Band): | Band | | Dist. | Test | | Freq. | | Power | (dBm) | Area Scan | Meas. | Reported | | Plot | |----------------|------|-------|--------|-------|-------|---------|-------|--------|------------------|---------------|----------|-----|------| | (GHz) Mode | (mm) | | Ch# | (MHz) | Chain | Tune up | Meas. | (W/Kg) | 1g SAR
(W/kg) | SAR
(W/kg) | Note | No. | | | | | 0 | Rear | 11 | 2462 | 0 | 16.0 | 15.6 | 1.140 | 1.270 | 1.393 | | 8 | | 2.4GHz 802.11b | | 0 | Edge 3 | 11 | 2462 | 0 | 16.0 | 15.6 | 0.374 | 0.383 | 0.420 | | | | | 0 | Rear | 6 | 2437 | 0 | 16.0 | 15.4 | 0.979 | 1.150 | 1.320 | 2 | | | | | | 0 | Rear | 1 | 2412 | 0 | 16.0 | 14.8 | 0.883 | 1.030 | 1.358 | 2 | | | | | 0 | Rear | 11 | 2462 | 0 | 16.0 | 15.6 | 1.040 | 1.190 | 1.305 | 3 | | ### Note(s): - 1. Highest reported SAR is > 0.4 W/kg. Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 W/kg was reported. - 2. Highest reported SAR is > 0.8 W/kg. Added second highest power channel for this test position - Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04) - 3.1 Original SAR = 1.270 W/kg, therefore two times repeat SAR is required. - 3.2 Repeat SAR = 1.160 W/kg < 1.45W/kg - 3.3 SAR variation= 8.6 % < 20% #### **Bluetooth** | Band | | Dist. | Test | | Freq. | Power | (dBm) | Area Scan | Meas. | Reported | | Plot | |--------|------|-------|------|-----|-------|------------------|-------|-----------|------------------|---------------|------|------| | (GHz) | Mode | (mm) | _ | Ch# | (MHz) | Tune up
limit | Meas. | (W/Kg) | 1g SAR
(W/kg) | SAR
(W/kg) | Note | No. | | 2.4GHz | DH5 | 0 | Rear | 39 | 2441 | 8.0 | 7.7 | 0.002 | 0.001 | 0.001 | | 9 | Page 83 / 90 Report No.: T180821W01-SF Rev. 01 # 16 Simultaneous Transmission SAR Analysis KDB 447498 D01 General RF Exposure Guidance v06, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas: $$SPLSR = (SAR_1 + SAR_2)^{1.5} / R_i$$ Where: **SAR**₁ is the highest Reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition SAR2 is the highest Reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first Ri is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of [(x₁- $(x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2$ A new threshold of 0.04 is also introduced in the draft KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of: $(SAR_1 + SAR_2)^{1.5}/R_i < 0.04$ Page 84 / 90 Rev. 01 ## 16.1 Sum of the SAR for WCDMA II, Wi-Fi & BT | | 1 | 2 | 2 3 1+2 1+3 | | 1+2 | | 3 | |------------------|-------|-----------------|-------------|---------------------|-------------------|---------------------|-------------------| | Test
Position | WWAN | Wi-Fi
2.4GHz | Bluetooth | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | | Rear | 0.543 | 1.393 | 0.001 | 1.94 | Yes | 0.54 | No | | Edge1 | 1.383 | | | 1.38 | No | 1.38 | No | | Edge2 | 0.069 | | | 0.07 | No | 0.07 | No | | Edge3 | | 0.420 | | 0.42 | No | 0.00 | No | | Edge4 | | | | | | | | #### WCDMA Band II + 2.4GHz Band | Ī | Test
Position | Simulataneous Tra | nsmission Scenario | V 1 ~ CAD | Calculated | | | |---|------------------|-------------------|-----------------------|---------------------|------------------|-------|--------| | | | WCDMA Band II | Wi-Fi
2.4 GHz Band | ∑ 1-g SAR
(W/kg) | distance
(cm) | SPLSR | Figure | | | Rear | 0.543
| 1.393 | 1.936 | 14.40 | 0.02 | 1 | #### Note(s): The SPLSR is rounded to two decimal digits and ≤0.04 ## 16.2 Sum of the SAR for WCDMA IV, Wi-Fi & BT | | 1 | 2 | 3 1+2 1+3 | | 1+2 | | 3 | |------------------|-------|-----------------|-----------|---------------------|-------------------|---------------------|-------------------| | Test
Position | WWAN | Wi-Fi
2.4GHz | Bluetooth | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | | Rear | 0.620 | 1.393 | 0.001 | 2.01 | Yes | 0.62 | No | | Edge1 | 0.802 | | | 0.80 | No | 0.80 | No | | Edge2 | 0.070 | | | 0.07 | No | 0.07 | No | | Edge3 | | 0.420 | | 0.42 | No | 0.00 | No | | Edge4 | | | | | | | | #### WCDMA Band IV + 2.4GHz Band | Ī | Test
Position | Simulataneous Tra | nsmission Scenario | Σ1 ~ CAD | Calculated | | | |---|------------------|-------------------|-----------------------|---------------------|------------------|-------|--------| | | | WCDMA Band IV | Wi-Fi
2.4 GHz Band | ∑ 1-g SAR
(W/kg) | distance
(cm) | SPLSR | Figure | | Ī | Rear | 0.620 | 1.393 | 2.013 | 15.04 | 0.02 | 2 | ### Note(s): The SPLSR is rounded to two decimal digits and ≦0.04 Page 85 / 90 Rev. 01 ## 16.3 Sum of the SAR for WCDMA V, Wi-Fi & BT | | 1 | 2 | 3 | 1+ | 2 | 1+3 | | |------------------|-------|-----------------|-----------|---------------------|-------------------|---------------------|-------------------| | Test
Position | WWAN | Wi-Fi
2.4GHz | Bluetooth | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | | Rear | 0.413 | 1.393 | 0.001 | 1.81 | Yes | 0.41 | No | | Edge1 | 0.626 | | | 0.63 | No | 0.63 | No | | Edge2 | 0.070 | | | 0.07 | No | 0.07 | No | | Edge3 | | 0.420 | | 0.42 | No | 0.00 | No | | Edge4 | | | | | | | | #### WCDMA Band V + 2.4GHz Band | Test | Simulataneous Tra | Σ1 α CAD | Calculated | | | | | |----------|-------------------|-----------------------|---------------------|------------------|-------|--------|--| | Position | WCDMA Band V | Wi-Fi
2.4 GHz Band | ∑ 1-g SAR
(W/kg) | distance
(cm) | SPLSR | Figure | | | Rear | 0.413 | 1.393 | 1.806 | 13.26 | 0.02 | 3 | | ## Note(s): The SPLSR is rounded to two decimal digits and ≤0.04 ## 16.4 Sum of the SAR for LTE Band 2, Wi-Fi & BT | | 1 | 2 | 3 | 1+. | 2 | 1+3 | | | | | | |------------------|-------|-----------------|-----------|---------------------|-------------------|---------------------|-------------------|--|--|--|--| | Test
Position | WWAN | Wi-Fi
2.4GHz | Bluetooth | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | | | | | | Rear | 0.163 | 1.393 | 0.001 | 1.56 | No | 0.16 | No | | | | | | Edge1 | 1.236 | | | 1.24 | No | 1.24 | No | | | | | | Edge2 | 0.068 | | | 0.07 | No | 0.07 | No | | | | | | Edge3 | | 0.420 | | 0.42 | No | 0.00 | No | | | | | | Edge4 | | | | | | | | | | | | Page 86 / 90 Rev. 01 ## 16.5 Sum of the SAR for LTE Band 4, Wi-Fi & BT | | 1 | 2 | 2 3 1+2 | | 1+2 | | 3 | |------------------|-------|-----------------|-----------|---------------------|-------------------|---------------------|-------------------| | Test
Position | WWAN | Wi-Fi
2.4GHz | Bluetooth | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | | Rear | 0.628 | 1.393 | 0.001 | 2.02 | Yes | 0.63 | No | | Edge1 | 0.825 | | | 0.83 | No | 0.83 | No | | Edge2 | 0.064 | | | 0.06 | No | 0.06 | No | | Edge3 | | 0.420 | | 0.42 | No | 0.00 | No | | Edge4 | | | | | | | | #### LTE Band 4 + 2.4GHz Band | Test
Position | Simulataneous Tra | nsmission Scenario | Σ1 ~ CAD | Calculated | | | |------------------|-------------------|----------------------|---------------------|------------------|-------|--------| | | LTE Band 4 | Wi-Fi
2.4GHz Band | ∑ 1-g SAR
(W/kg) | distance
(cm) | SPLSR | Figure | | Rear | 0.628 | 1.393 | 2.021 | 15.48 | 0.02 | 4 | ## Note(s): The SPLSR is rounded to two decimal digits and ≤0.04 ## 16.6 Sum of the SAR for LTE Band 5, Wi-Fi & BT | | | | | | | | _ | |------------------|-------|-----------------|-----------|---------------------|-------------------|---------------------|-------------------| | | 1 | 2 | 3 | 1+2 | | 1+3 | | | Test
Position | WWAN | Wi-Fi
2.4GHz | Bluetooth | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | | Rear | 0.685 | 1.393 | 0.001 | 2.08 | Yes | 0.69 | No | | Edge1 | 0.573 | | | 0.57 | No | 0.57 | No | | Edge2 | 0.104 | | | 0.10 | No | 0.10 | No | | Edge3 | | 0.420 | | 0.42 | No | 0.00 | No | | Edge4 | | | | | | | | ## LTE Band 5 + 2.4GHz Band | Test
Position | Simulataneous Tra | nsmission Scenario | 5 4 - 640 | Calculated | | | |------------------|-------------------|----------------------|---------------------|------------------|-------|--------| | | LTE Band 5 | Wi-Fi
2.4GHz Band | ∑ 1-g SAR
(W/kg) | distance
(cm) | SPLSR | Figure | | Rear | 0.775 | 1.361 | 2.136 | 17.40 | 0.02 | 5 | ### Note(s): The SPLSR is rounded to two decimal digits and \leq 0.04 ## Page 87 / 90 Rev. 01 ## 16.7 Sum of the SAR for LTE Band 17, Wi-Fi & BT | | 1 | 2 | 2 3 | | 1+2 | | 1+3 | | |------------------|-------|-----------------|-----------|---------------------|-------------------|---------------------|-------------------|--| | Test
Position | WWAN | Wi-Fi
2.4GHz | Bluetooth | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | Σ 1-g SAR
(W/kg) | SPLSR
(Yes/No) | | | Rear | 0.359 | 1.393 | 0.001 | 1.75 | Yes | 0.36 | No | | | Edge1 | 0.327 | | | 0.33 | No | 0.33 | No | | | Edge2 | 0.025 | | | 0.03 | No | 0.03 | No | | | Edge3 | | 0.420 | | 0.42 | No | 0.00 | No | | | Edge4 | | | | | | | | | #### LTE Band 17 + 2.4GHz Band | Test
Position | Simulataneous Transmission Scenario | | ∇ 4 - CAD | Calculated | | | |------------------|-------------------------------------|----------------------|---------------------|------------------|-------|--------| | | LTE Band 17 | Wi-Fi
2.4GHz Band | ∑ 1-g SAR
(W/kg) | distance
(cm) | SPLSR | Figure | | Rear | 0.359 | 1.393 | 1.752 | 17.29 | 0.01 | 6 | ## Note(s): The SPLSR is rounded to two decimal digits and ≤0.04 Page 88 / 90 Rev. 01 # 17 Equipment List & Calibration Status | Name of Equipment | Manufacturer | Type/Model | Serial Number | Calibration
Cycle(year) | Calibration
Due | |---------------------------------------|--------------------|-------------|-----------------|----------------------------|--------------------| | S-Parameter Network Analyzer | Agilent | E5071C | MY46107234 | 1 | 2018/10/17 | | Electronic Probe kit | Hewlett
Packard | 85070D | N/A | N/A | N/A | | Power Meter | Agilent | 4416A | GB41291611 | 1 | 2019/08/19 | | Power Sensor | Agilent | 8481H | MY41091956 | 1 | 2019/08/19 | | Data Acquisition Electronics
(DAE) | SPEAG | DAE4 | 877 | 1 | 2019/03/19 | | Dosimetric E-Field Probe | SPEAG | EX3DV4 | 3665 | 1 | 2019/08/05 | | 750MHz System Validation
Dipole | SPEAG | D750V2 | 1020 | 1 | 2019/01/17 | | 835MHz System Validation
Dipole | SPEAG | D835V2 | 4d015 | 1 | 2019/03/18 | | 1750MHz System Validation
Dipole | SPEAG | D1750V2 | 1158 | 1 | 2019/03/22 | | 1900MHz System Validation
Dipole | SPEAG | D1900V2 | 5d056 | 1 | 2019/02/21 | | 2450 MHz System Validation
Dipole | SPEAG | D2450V2 | 735 | 1 | 2018/12/14 | | Robot | Staubli | RX90L | F02/5T69A1/A/01 | N/A | N/A | | Amplifier | Mini-Circuit | ZVE-8G | 665500309 | N/A | N/A | | Amplifier | Mini-Circuit | ZHL-1724HLN | D072602#2 | N/A | N/A | | Thermometer | Comet | S3120 | 12932714 | 1 | 2019/03/01 | | Signal Grenerator | Aglient | 83630B | 3844A01022 | 1 | 2020/05/27 | | Directional Couplers | Aglient | 87301D | MY44350252 | 1 | 2019/07/23 | Page 89 / 90 Report No.: T180821W01-SF Rev. 01 ## 18 Facilities | All measurement facilities used to collect the measurement data are located at | |--| | No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C. | | igspace No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) | | No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. | ## 19 Reference - Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996. - David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human [2] exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997. - Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996. - Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997. - CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997. - ANSI, ANSI/IEEE C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 2006. - Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E- eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM 97, Dubrovnik, October 15{17, 1997, pp. 120{124. - Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175. - Volker
Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996. - [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press. - [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992. - [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992..Dosimetric Evaluation of Sample device, month 1998 9 - [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994. - [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10 This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。 Page 90 / 90 Report No.: T180821W01-SF Rev. 01 ## 20 Attachments | Exhibit | Content | | |---------|----------------------------------|--| | 1 | System Performance Check Plots | | | 2 | SAR Test Data Plots | | | 3 | SPLSR Plots | | | 4 | SAR Equipment calibration report | | | 5 | T180821W01-SF PHOTOs | | **END OF REPORT**