Appendix D: **Dipole Calibration Parameters** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client Kyocera USA | Object(s) | D835V2 - SN:454 | | | | | |--|--|--|--|--|--| | Calibration procedure(s) | QA CAL-05.v
Calibration pr | 2
ocedure for dipole validation kits | | | | | Calibration date: | April 20, 2004 | | | | | | Condition of the calibrated llam | In Tolerance (according to the specific calibration document) | | | | | | intermational standard. All calibrations have been conduct Calibration Equipment used (M&T | | rry facility: environment temperature 22 +/- 2 degrees C | Selsius and humidity < 75%. | | | | | | | | | | | | ID# | Cal Data (Calibrated by Cartificate No.) | Scheduled Calibration | | | | Model Type | ID#
GB37480704 | Cal Date (Calibrated by, Certificate No.)
5-Nov-03 (METAS, No. 252-0254) | Scheduled Calibration
Nov-04 | | | | Model Type
Power meter EPM E442 | | Cal Date (Calibrated by, Certificate No.)
6-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254) | | | | | Model Type Power mater EPM E442 Power sensor HP 8481A | GB37480704 | 6-Nov-03 (METAS, No. 252-0254) | Nov-04 | | | | Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 6481A | GB37480704
US37292783 | 6-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254) | Nov-04
Nov-04 | | | | Model Type Power mater EPM E442 Power sensor HP 8481A Power sensor HP 6481A RF generator R&S SML-03 | GB37480704
US37292783
MY41092317 | 8-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254)
18-Oct-02 (Agilent, No. 20021018) | Nov-04
Nov-04
Oct-04 | | | | Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 6481A RF generator R&S SML-03 Network Analyzer HP 8753E | GB37480704
US37292783
MY41092317
100598 | 8-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254)
18-Oct-02 (Agitent, No. 20021018)
27-Mar-2002 (R&S, No. 20-92389) | Nov-04
Nov-04
Oct-04
In house check: Mar-05 | | | | Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 6481A RF generator R&S SML-03 Network Analyzer HP 8753E | GB37480704
US37292783
MY41092317
100998
US37390585 | 6-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254)
18-Oct-02 (Aglent, No. 20021018)
27-Mar-2002 (R&S, No. 20-92389)
18-Oct-01 (SPEAG, in house check Nov-03) | Nov-04
Nov-04
Oct-04
In house check: Mar-05
In house check: Oct 05 | | | | Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E Calibrated by: | GB37480704
US37292783
MY41092317
100598
US37390585 | 6-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254)
18-Oct-02 (Agitent, No. 20021018)
27-Mar-2002 (R&S, No. 20-92389)
18-Oct-01 (SPEAG, in house check Nov-03) | Nov-04
Nov-04
Oct-04
In house check: Mar-05
In house check: Oct 05 | | | | Model Type Power mater EPM E442 Power sensor HP 8481A Power sensor HP 6481A RF generator R&S SML-03 | GB37480704
US37292783
MY41092317
100598
US37390585
Name
Judith Must et | 8-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254)
18-Oct-02 (Agitent, No. 20021018)
27-Mar-2002 (R&S, No. 20-92389)
18-Oct-01 (SPEAG, in house check Nov-03)
Function | Nov-04
Nov-04
Oct-04
In house check: Mar-05
In house check: Oct 05 | | | 880-KP0301061-A Page 1 (1) Schmid & Partner Engineering AG speag Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com # DASY Dipole Validation Kit Type: D835V2 Serial: 454 Manufactured: January 31, 2002 Calibrated: April 20, 2004 #### 1. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz: Relative Dielectricity 42.8 ± 5% Conductivity 0.94 mbo/m ± 5% The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.3 at 835 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was 250 mW ± 3 %. The results are normalized to 1W input power. #### 2. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are: averaged over 1 cm³ (1 g) of tissue: $10.2 \text{ mW/g} \pm 16.8 \% (k=2)^{1}$ averaged over 10 cm³ (10 g) of tissue: $6.64 \text{ mW/g} \pm 16.2 \% (k=2)^{1}$. validation uncertainty #### 3. Dipole Impedance and Return Loss The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are: Electrical delay: 1.378 ns (one direction) Transmission factor: 0.988 (voltage transmission, one direction) The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements. Feedpoint impedance at 835 MHz: $Re\{Z\} = 50.9 \Omega$ $Im \{Z\} = -2.2 \Omega$ Return Loss at 835 MHz -32.3 dB #### 4. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with **body** simulating solution of the following electrical parameters at 835 MHz: Relative Dielectricity 55.5 ±5% Conductivity 0.99 mho/m ±5% The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.13 at 835 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was 250 mW ± 3 %. The results are normalized to 1W input power. #### SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are: averaged over 1 cm³ (1 g) of tissue: 10.1 mW/g \pm 16.8 % (k=2)² averaged over 10 cm³ (10 g) of tissue: $6.64 \text{ mW/g} \pm 16.2 \% (k=2)^2$ #### 6. Dipole Impedance and Return Loss The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements. Feedpoint impedance at 835 MHz: $Re\{Z\} = 47.2 \Omega$ $Im \{Z\} = -1.1 \Omega$ Return Loss at 835 MHz -29.6 dB #### 7. Handling Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole. #### Design The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. #### Power Test After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. 2 ² validation uncertainty Date/Time: 04/20/04 12:55:03 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN454 Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\varepsilon_r = 42.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: ET3DV6 SN1507; ConvF(6.3, 6.3, 6.3); Calibrated: 1/23/2004 - · Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn411; Calibrated: 11/6/2003 - Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006; - Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112 #### Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 55.5 V/m; Power Drift = -0.0 dB Maximum value of SAR (interpolated) = 2.75 mW/g # Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.5 V/m; Power Drift = -0.0 dB Maximum value of SAR (measured) = 2.76 mW/g Peak SAR (extrapolated) = 3.88 W/kg SAR(1 g) = 2.56 mW/g; SAR(10 g) = 1.66 mW/g 46201 Date/Time: 04/16/04 13:28:44 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN454 Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Muscle 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) #### DASY4 Configuration: - Probe: ET3DV6 SN1507; ConvF(6.13, 6.13, 6.13); Calibrated: 1/23/2004 - · Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn411; Calibrated: 11/6/2003 - Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006; - Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112 Pin = 250 mW; d = 15 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 54.2 V/m; Power Drift = 0.004 dB Maximum value of SAR (interpolated) = 2.74 mW/g # Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.2 V/m; Power Drift = 0.004 dB Maximum value of SAR (measured) = 2.72 mW/g Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.66 mW/g Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com # DASY Dipole Validation Kit Type: D1900V2 Serial: 5d005 Manufactured: February 14, 2002 Calibrated: March 17, 2004 # 039930 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Client Kyocera USA | | DATE OF THE STATE | | | |---|---|--|---| | Object(s) | D1900V2 - S | N.5d005 | | | Calibration procedure(s) | QA CAL-05,v | | | | | Calibration pr | ocedure for dipole validation kits | The green of College States | | | | | | | Calibration date: | March: 17, 20 | 04 (15), 15 (16) (16) (16) (16) (16) | | | Condition of the calibrated item | In Tolerance | (according to the specific calibration | document) | | This calibration statement docum | ents traceability of M&TI | E used in the calibration procedures and conformity of | | | 7025 international standard. | one resonancy of mix (| E used in the calibration procedures and conformity of | the procedures with the ISO/IEC | | VI calibrations have been conduc | ted in the closed laborat | tory facility: environment temperature 22 +/- 2 degrees | Calain and humidity a 750 | | | | " / Lawrence of the conference 22 17- 2 degrees | Celsius and numidity < 75%. | | Calibration Equipment used (M&T | | | Celsus and numidity < 75%. | | Calibration Equipment used (M&T | | | 1,100,000,000 | | Calibration Equipment used (M&1 | E critical for calibration) | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&T
Model Type
Power meter EPM E442 | E critical for calibration) | Cal Date (Calibrated by, Certificate No.)
6-Nov-03 (METAS, No. 252-0254) | Scheduled Calibration
Nov-04 | | Calibration Equipment used (M&T
Model Type
Power meter EPM E442
Power sensor HP 8481A | ID #
GB37480704 | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) | Scheduled Calibration
Nov-04
Nov-04 | | Calibration Equipment used (M&1
Model Type
Power meter EPM E442
Power sensor HP 8481A
Power sensor HP 8481A | ID #
GB37480704
US37292783 | Cal Date (Calibrated by, Certificate No.)
6-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254)
18-Oct-02 (Agilent, No. 20021018) | Scheduled Calibration
Nov-04
Nov-04
Oct-04 | | Calibration Equipment used (M&1
Model Type
Power meter EPM E442
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SML-03 | ID #
GB37480704
US37292783
MY41092317 | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) | Scheduled Calibration
Nov-04
Nov-04 | | Calibration Equipment used (M&1
Model Type
Power meter EPM E442
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SML-03 | ID # GB37480704 US37292783 MY41092317 100698 | Cal Date (Calibrated by, Certificate No.)
6-Nov-03 (METAS, No. 252-0254)
6-Nov-03 (METAS, No. 252-0254)
18-Oct-02 (Agilent, No. 20021018)
27-Mar-2002 (R&S, No. 20-92389) | Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05 | | Calibration Equipment used (M&T
Model Type
Power meter EPM E442
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SML-03
Network Analyzer HP 8753E | ID # GB37480704 US37292783 MY41092317 100698 US37390585 | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) | Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 | | Calibration Equipment used (M&T
Model Type
Power meter EPM E442
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SML-03
Network Analyzer HP 8753E | ID # GB37480704 US37292783 MY41092317 100698 US37390585 Name | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function | Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05 | | Calibration Equipment used (M&T
Model Type
Power meter EPM E442
Power sensor HP 8481A
Power sensor HP 8481A
RF generator R&S SML-03
Network Analyzer HP 8753E | ID # GB37480704 US37292783 MY41092317 100698 US37390585 Name | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function | Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05 | | Calibration Equipment used (M&T
Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E Calibrated by: | ID # GB37480704 US37292783 MY41092317 100698 US37390585 Name | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function | Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05 | | | ID # GB37480704 US37292783 MY41092317 100698 US37390585 Name | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function | Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05 | | Calibration Equipment used (M&T
Model Type Power meter EPM E442 Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E Calibrated by: | ID # GB37480704 US37292783 MY41092317 100698 US37390585 Name Judith Mueller | Cal Date (Calibrated by, Certificate No.) 6-Nov-03 (METAS, No. 252-0254) 6-Nov-03 (METAS, No. 252-0254) 18-Oct-02 (Agilent, No. 20021018) 27-Mar-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, in house check Nov-03) Function | Scheduled Calibration Nov-04 Nov-04 Oct-04 In house check: Mar-05 In house check: Oct 05 Signature Date issued: March 17, 2004 | FCC ID: OVFKWC-KX5 #### 1. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with head simulating liquid of the following electrical parameters at 1900 MHz: Relative Dielectricity 38.8 ± 5% Conductivity 1.47 mho/m ± 5% The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.96 at 1900 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power. #### 2. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are: averaged over 1 cm³ (1 g) of tissue: 42.8 mW/g \pm 16.8 % (k=2)¹ averaged over 10 cm³ (10 g) of tissue: 22.2 mW/g \pm 16.2 % (k=2)¹ . ¹ validation uncertainty #### 3. Dipole Impedance and Return Loss The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are: Electrical delay: 1.183 ns (one direction) Transmission factor: 0.984 (voltage transmission, one direction) The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements. Feedpoint impedance at 1900 MHz: $Re\{Z\} = 50.8 \Omega$ Im $\{Z\} = 2.2 \Omega$ Return Loss at 1900 MHz -32.7 dB #### 4. Measurement Conditions The measurements were performed in the flat section of the SAM twin phantom filled with **body** simulating tissue of the following electrical parameters at 1900 MHz: Relative Dielectricity 52.5 $\pm 5\%$ Conductivity 1.58 mho/m $\pm 5\%$ The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements. The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning. The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1W input power. #### 5. SAR Measurement with DASY4 System Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are: averaged over 1 cm3 (1 g) of tissue: $41.6 \text{ mW/g} \pm 16.8 \% (k=2)^2$ averaged over 10 cm3 (10 g) of tissue: 22.0 mW/g \pm 16.2 % (k=2)² ### 6. Dipole Impedance and Return Loss The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements. Feedpoint impedance at 1900 MHz: $Re{Z} = 45.5 \Omega$ $Im \{Z\} = 2.0 \Omega$ Return Loss at 1900 MHz -25.7 dB #### 7. Handling Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole. #### Design The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. #### 9. Power Test After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. _ ² validation uncertainty Date/1111e, 05/11/04 12:36:41 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d005 Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) # DASY4 Configuration: - Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn411; Calibrated: 11/6/2003 - Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006; - Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 105 # Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 94.8 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 12.1 mW/g # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 11.9 mW/g Peak SAR (extrapolated) = 19 W/kg SAR(1 g) = 10.7 mW/g; SAR(10 g) = 5.55 mW/g Date/Time: 03/17/04 10:58:12 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d005 Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment) ## DASY4 Configuration: - Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn411; Calibrated: 11/6/2003 - Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006; - Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 105 ## Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 89.9 V/m; Power Drift = -0.0 dB Maximum value of SAR (interpolated) = 11.9 mW/g # Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.9 V/m; Power Drift = -0.0 dB Maximum value of SAR (measured) = 11.8 mW/g Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.49 mW/g