

NSET

World Standar Stanton Certification & Technology

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

16-7-51

Please Contact with WSCT

TEST REPORT

FCC ID: 2ADYY-TCP02 Product: Active Pen Model No.: TCP02 Trade Mark: TECNO Report No.: WSCT-A2LA-R&E240500024A-LE Issued Date: 07 June 2024

Issued for:

TECNO MOBILE LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

世标检测认证股份 Group (Shenzhen) Co., Ltd. TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:tengbing.wang@wsct-cert.com Http://www.wsct-cert.com

Sentification & Test

W5E7

DUOM * PIT

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

TABLE OF CONTENTS

				4/0	
1.	Test Certification				
2.	Test Result Summary	<u></u>	\sim		
3.	EUT Description		AVISET		- /
4.	Genera Information			6	X
	4.1. TEST ENVIRONMENT AND MODE				
1	4.2. DESCRIPTION OF SUPPORT UNITS				SIL
5.			<u>X</u>	7	
\geq	5.1. FACILITIES			7	
	5.2. ACCREDITATIONS				- /
	5.3. MEASUREMENT UNCERTAINTY				\checkmark
	5.4. MEASUREMENT INSTRUMENTS				
6.	Test Results and Measurem	ent Data	1777		SET
/	6.1. ANTENNA REQUIREMENT				
1	6.2. CONDUCTED OUTPUT POWER	<u></u>			
ET	6.3. EMISSION BANDWIDTH	and the second	Austra		
	6.4. Power Spectral Density		<u> </u>		/
	6.5. CONDUCTED BAND EDGE AND SPURIOU	JS EMISSION MEASU	IREMENT		X
	6.6. CONDUCTED EMISSION				STA
/	6.7. RADIATED SPURIOUS EMISSION MEASU	IREMENT			

Report No.: WSCT-A2LA-R&E240500024A-LE

Test Certification 1.

WSET

1	. lest Certi	TICATION Please Contact with WSCT www.wsct-cert.com
	Product:	Active Pen
	Model No.:	TCP02
	Trade Mark:	TECNO
	Applicant:	TECNO MOBILE LIMITED
	Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
	Manufacturer:	TECNO MOBILE LIMITED 75777 WSTAT
	Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
	Date of Test:	04 June 2024 to 06 June 2024 WSET WSET
	Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB 558074 D01 DTS Meas Guidance v04

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

WSET	Warg King		WATD	WSET
Tested By:		Checked By:	No Veinu	1 aton & Testing
XX	(Wang Xiang)		(Mo Peiyun) 🛛	and addition of the stand of th
WSET WSL	T WSET	WSC.		SWSET
X	1 Digin	Х.	TIX	Se alle alle
Approved By:	man	Date: 0	June 2014	THOM * MUL
WSET	(Liu Fuxin)	AWSET	Ansar	AWSET
\bigvee				
XXX	X	X		X
			\searrow 4	
VSET WSL	T AWSEI	AWS0		507
X	X	X	X	X
Confication & Testing Ga				
Stillos The G	WSET	AWSET	WSET	
55 55 55 55 55 55 55 55 55 55 55 55 55	\sim			
Citation (WISCI) (Steel	\land	\wedge		X
12 Series				
World Standardization Certification TeSting Group (She	會测认证股份 ADD:Building A-B,Baoshi nzhen) Co., Ltd. TEL:0086-755-26996192 269	Science & Technology Park, Baosl 96053 FAX:0086-755-86376605 E-m		
World Standardization Certification & Testing Group (She			V	Member of the WSCT INC.
X	× .	A A A A A A A A A A A A A A A A A A A	X	X
	Pac	je 3 of 38		

For Question Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

2. Test Result Summary

	KULTER KULTER	The Automation	AVESTER A	THAT
	Requirement	CFR 47 Section	Result	
	Antenna requirement	§15.203/§15.247 (c)	PASS	
	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS	
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS	WITT
	Power Spectral Density	§15.247 (e)	PASS	
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS	
-	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	WEIT

Note:

Contration & Test

W5E7

SPOULON * PIT

dizatio

aroup (Shenz)

60

1. PASS: Test item meets the requirement.

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShenther fo. Int

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

3. EUT Description

	Product:	Active Pen	THE A
/	Model No.:	TCP02	
	Trade Mark:	TECNO	1
	Operation Frequency:	2402MHz~2480MHz	
	Channel Separation:	2MHz	X
_	Number of Channel:	40	1517
1	Modulation Technology:	GFSK	
57	Antenna Type:	Ceramic Antenna	1
	Antenna Gain:	1.41 dBi	
/	Rechargeable Li-Polymer Battery:	Reghargeable Li-ion Cell Model: 60340 Voltage: 3.85V Capacity: 80mAh	FIE
1	Remark:	Energy: 0.308Wh N/A.	1

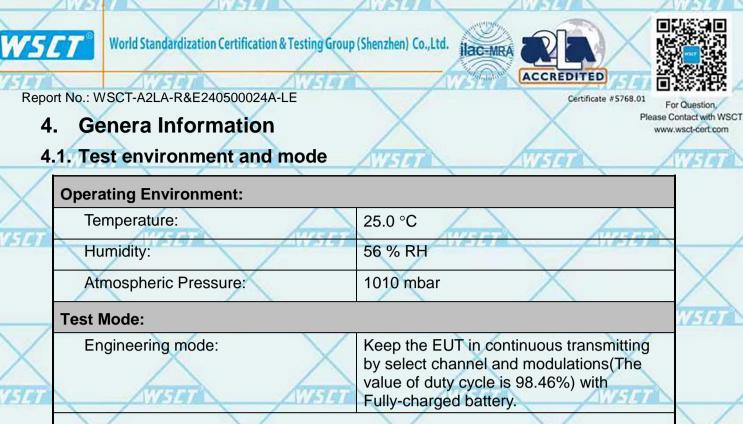
Operation Frequency each of channel

ation & Tes

W5E

S PLOM * PT

youp (Shenz)


60

Costific

dizatio

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
					$\langle \rangle$		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	2440MHz 29 2460MHz		39	2480MHz
Remark:	9 2420MHz 19 2440MHz 29 2460MHz 39 2480MHz Remark: Channel 0, 19 & 39 have been tested. <td< td=""></td<>						

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen Co. Int) TEL:86/755-26998192 26992308 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

0	Equipment	Model No.	Serial No.	FCC ID	Trade Name
			1	1	

Note:

MOM * P

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
 - 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

S

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China (Shenzhen) Co. Let

ilac-MRA

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

5. Facilities and Accreditations

5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 32. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

on & Tes

MOM * P

S

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

5.3.Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

7	No.	Item	MU	
91	1	Conducted Emission Test	±3.2dB	
	2	RF power, conducted	±0.16dB	X
	3156	Spurious emissions, conducted	±0.21dB	WISTO
/	4	All emissions, radiated(<1GHz)	±4.7dB	
1	5	All emissions, radiated(>1GHz)	±4.7dB	
[7	6	Temperature	±0.5°C	
	7 🗡	Humidity	±2.0%	X
	hanne			Land

ANTIN M

mon & Tes

W5E

S DUOM * PT

oup (Shen

Certifit

dizatio

世际检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26998192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

non & Tee

W5L

SPOULON * PIT

oup (Shenza

60

Costifie

Zatio

Report No.: WSCT-A2LA-R&E240500024A-LE

5.4. MEASUREMENT INSTRUMENTS

ACCREDITED

Certificate #5768.01 For Question,

Please Contact with WSCT

J.4.INICASOILLI				X	www.wso	t-cert.com
NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	डान
Test software	<	EZ-EMC	CON-03A	-	X-	
Test software	/	MTS8310		- 4	and a	
EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	/
LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	X
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	SIT
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	
Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	X
Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	SIT
Pre-Amplifier	CDSI	PAP-1G18-38	-	11/05/2023	11/04/2024	
Bi-log Antenna	SUNOL Sciences	JB3	A021907	11/05/2023	11/04/2024	
9*6*6 Anechoic		1977	(THE	11/05/2023	11/04/2024	
Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2023	11/04/2024	\checkmark
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	\wedge
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	stri
System-Controller	CCS	N/A	N/A	N.C.R	N.C.R	
Turn Table	CCS	N/A	N/A	N.C.R	N.C.R	
Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R	
RF cable	Murata	MXHQ87WA300 0	<u> </u>	11/05/2023	11/04/2024	\times
Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	1 - 1 - 10 - 10
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	-141
Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
Power sensor	Anritsu	MX248XD	17233	11/05/2023	11/04/2024	
Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	
X	X	X		X		X

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

For Question

Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E240500024A-LE

6. Test Results and Measurement Data

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

S

MOM * P

The Bluetooth antenna is a Ceramic Antenna. it meets the standards, and the best case gain of the antenna is1.41dBi.

25

Contration & Test

W5E

BROW & PIT

dizatio

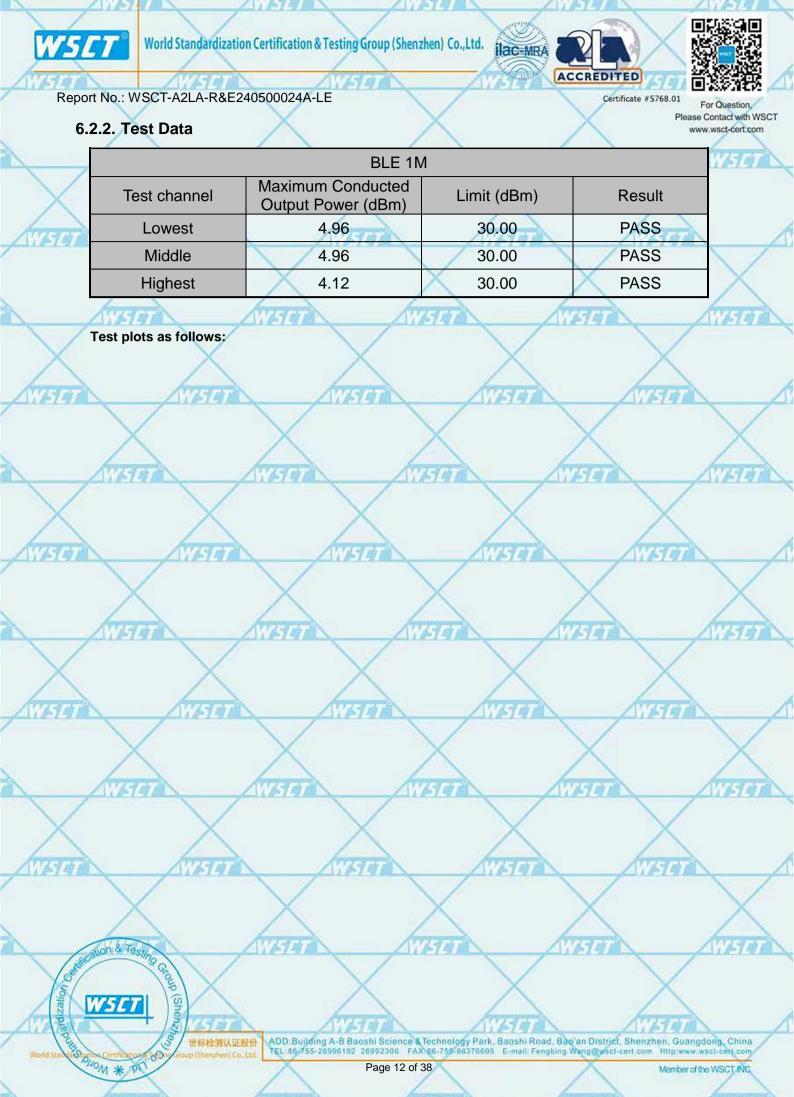
YOUP (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

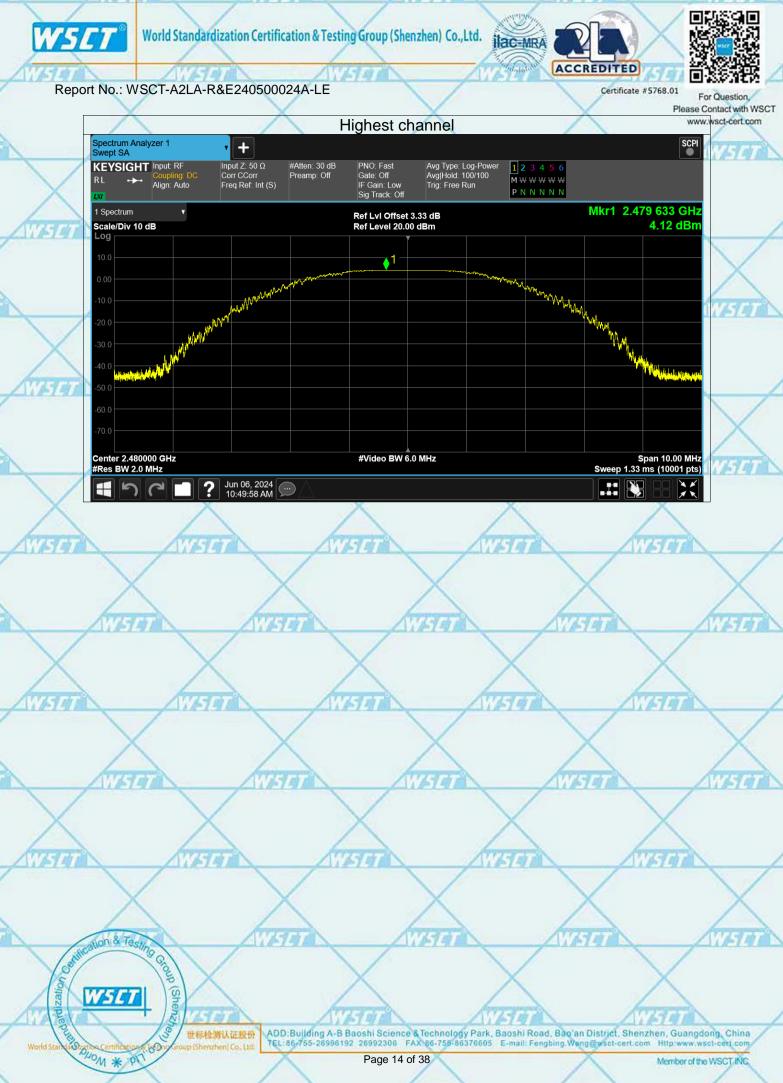
ilac-MRA

Report No.: WSCT-A2LA-R&E240500024A-LE


6.2. Conducted Output Power

WW

Please Contact with WSCT www.wsct-cert.com


6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple.
	 e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

Page 13 of 38

Page 14 of 38

Report No.: WSCT-A2LA-R&E240500024A-LE

6.3. Emission Bandwidth

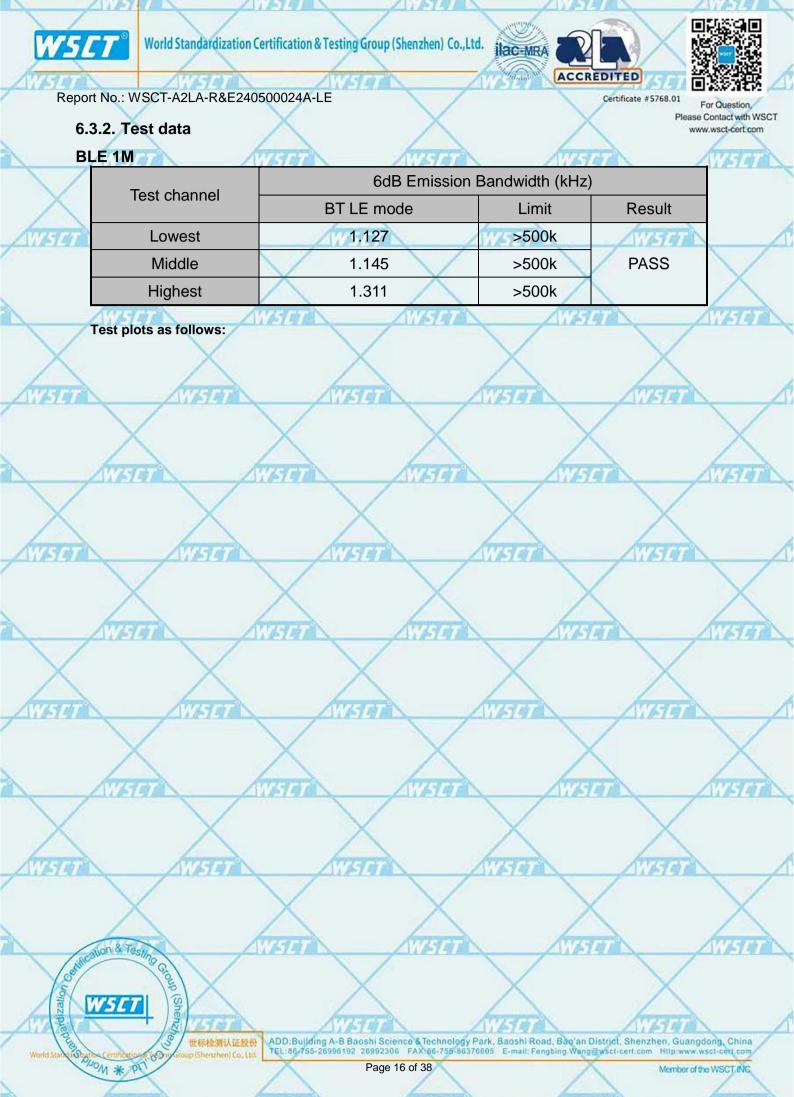
For Question, Please Contact with WSCT www.wsct-cert.com

6.3.1. Test Specification

nion & Tes

W5L

BODINOM * PT


roup (Shenz)

60

Cettific

dizatio

.S.T. Test Specification		
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	KDB558074	
Limit:	>500kHz	X
Test Setup:	Spectrum Analyzer EUT	VIST
Test Mode:	Refer to item 4.1	
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 	
Test Result:	PASS	\wedge
AVISION		<i>NSD</i>
AVE AVE	WISTON WISTON	
X	XXX	

For Question Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

6.4. Power Spectral Density

6.4.1. Test Specification

11/51C

ation & Tes

WSET

BROW & PIT

oup (Shenz)

60

Certific

dizatio

in root opcomotion	619 A A A A A A A A A A A A A A A A A A A	
Test Requirement:	FCC Part15 C Section 15.247 (e)	
Test Method:	KDB558074	
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.	1
Гest Setup:		W.
Fest Mode:	Spectrum Analyzer EUT Refer to item 4.1	
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 	
Test Result:	PASS	1

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen Co. Int) TEL:86-755-26998192 26992308 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

For Question Please Contact with WSCT

Report No.: WSCT-A2LA-R&E240500024A-LE

6.4.2. Test data

.4	.2. Test uala	\wedge	\wedge	/		www.wsct-cert.com
	Test channel	Pov	wer Spectral E	Density (dBm/3kl	Hz)	WISIET
	Test channel	BLE 1M		Limit	Result	
	Lowest	-5.3	4	8 dBm/3kHz	\wedge	
	Middle	-4.9	4	8 dBm/3kHz	PASS	
	Highest	-5.9	5	8 dBm/3kHz		\sim

150

Test plots as follows:

1.1

Sentication & Test

WSET

BB BLOM * PT

dizatio

Group (Shenzy

60

151

Page 20 of 38

1.71

Report No.: WSCT-A2LA-R&E240500024A-LE

5 nenz

.60

BB BLOM * PT

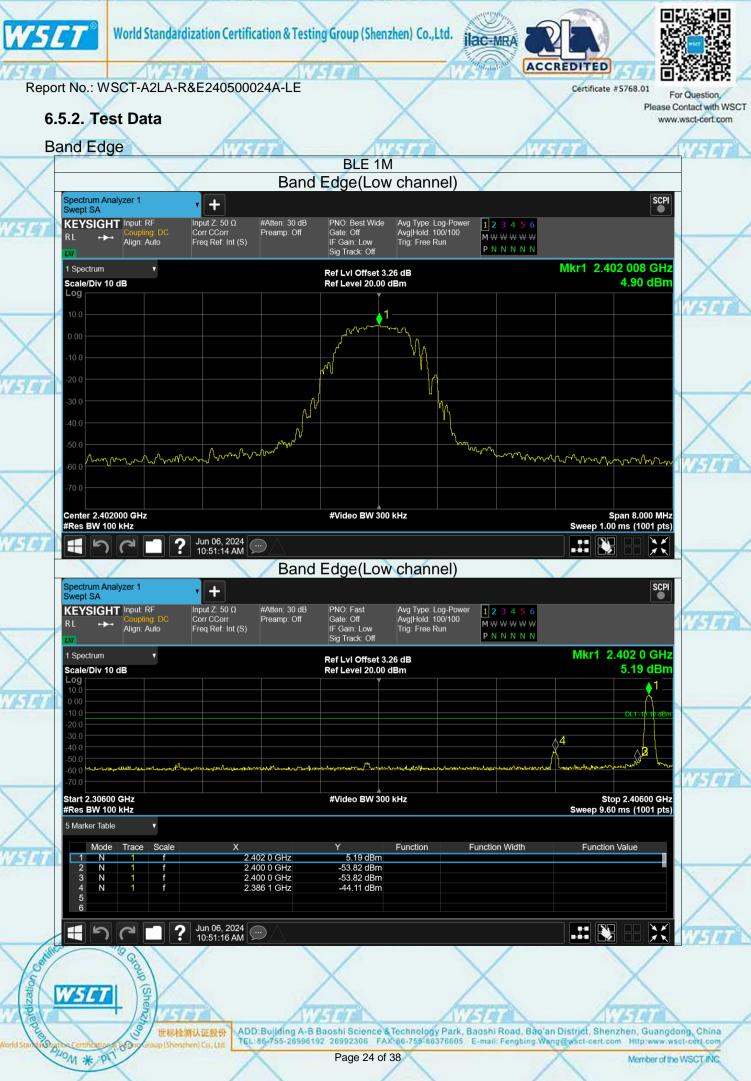
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Page 21 of 38

Page 22 of 38

Report No.: WSCT-A2LA-R&E240500024A-LE

S


M * P

For Question Please Contact with WSCT www.wsct-cert.com

6.5. Conducted Band Edge and Spurious Emission Measurement 6.5.1. Test Specification FCC Part15 C Section 15.247 (d) **Test Requirement:** KDB558074 **Test Method:** In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by Limit: RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15 209(a)

Test Setup: Spectrum Analyzer EUT Test Mode: Refer to item 4.1 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. Test Result: PASS		limits specified in Section 15.209(a).
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 	Test Setup:	
 Test Procedure: analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 	Test Mode:	Refer to item 4.1
Test Result: PASS	Test Procedure:	 analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded
	Test Result:	PASS

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 28992306 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com 世标检测认证股份

Member of the WSCT INC

.60

Settication & Testi

BB BLOM * PT

Group

.60

(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

Report No.: WSCT-A2LA-R&E240500024A-LE

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

Sellication & Test

BB BLOM * PT

Group

.60

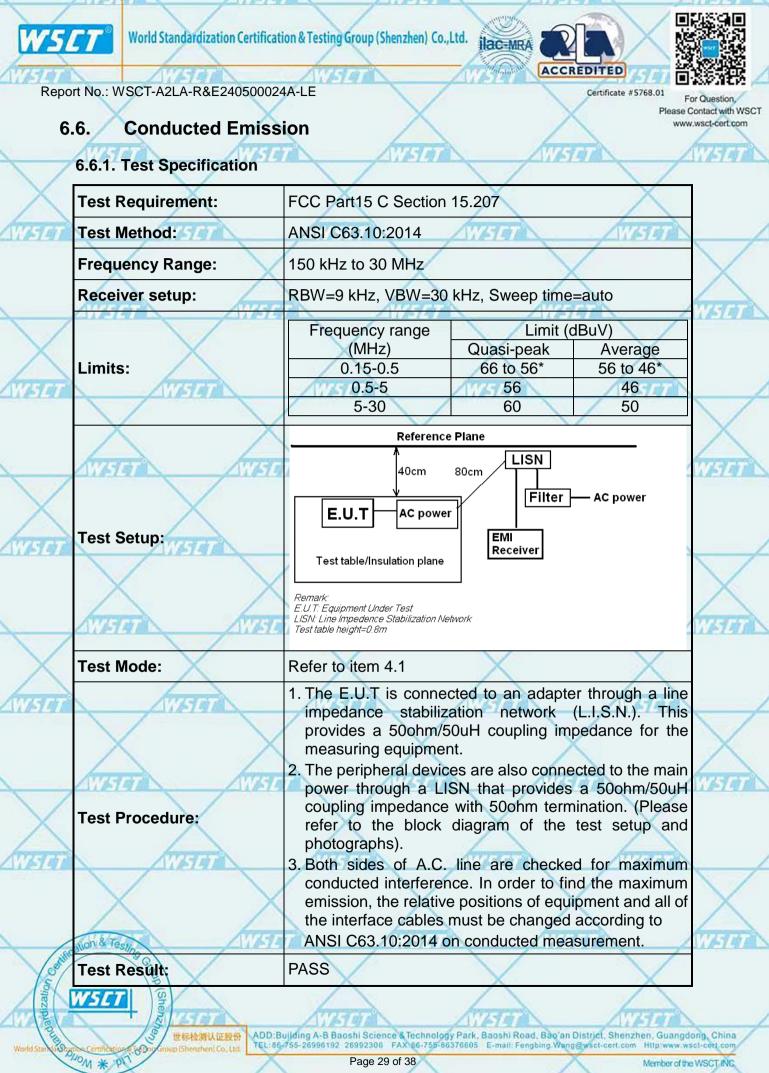
(Shenz)

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

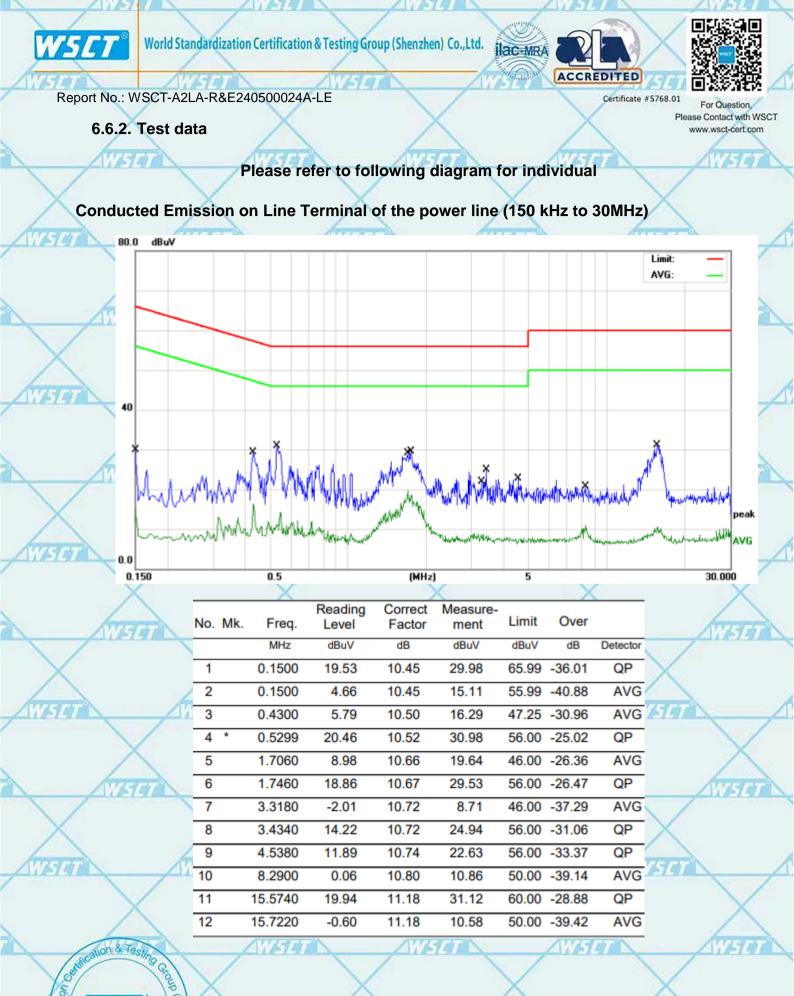
Certificate #5768.01 For Question,

Report No.: WSCT-A2LA-R&E240500024A-LE

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86 755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com


世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX 66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

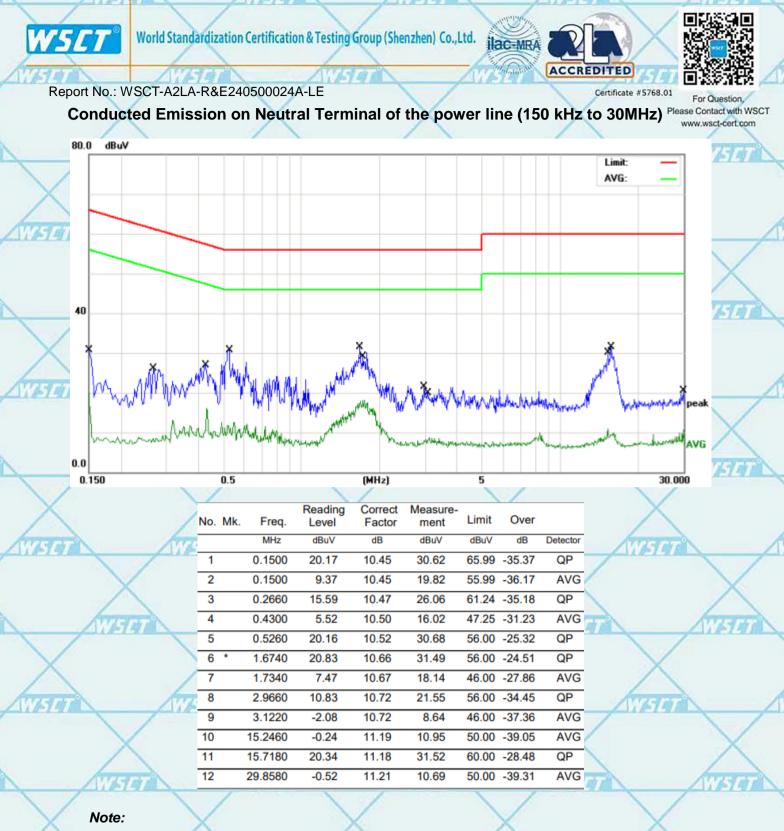
(Shenz)


.60

Zat

BB BLOM * PT

Page 29 of 38



世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com

Page 30 of 38

, (Shen

PHOM * PT

Cor

PHOM * PT

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = Antenna factor + Cable loss

- Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$
- Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

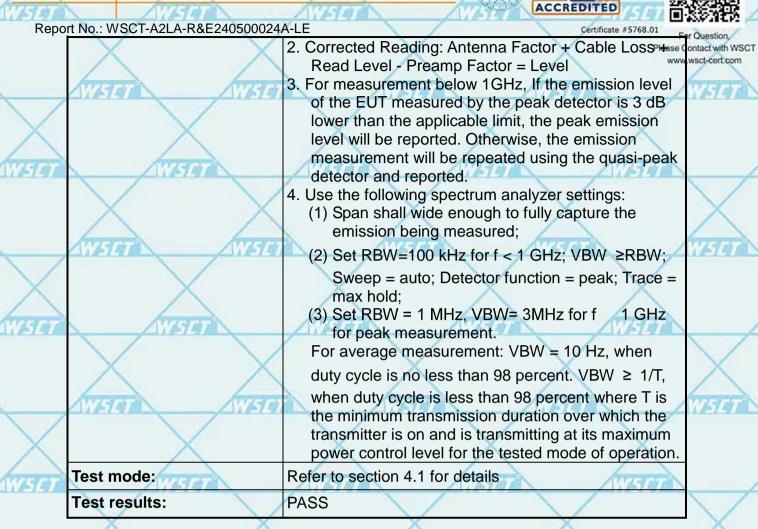
on Q.P. =Quasi-Peak AVG =average

S

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992308 FAX-86-755-86376605 E-mail: Fengbing, Wang Bwsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Report No.: WSCT-A2LA-R&E240500024A-LE


6.7. Radiated Spurious Emission Measurement

For Question, Please Contact with WSCT www.wsct-cert.com

E	7.1. Test Specification		WSET	1	AVISI		ATTA
		\sim		\sim			_
\wedge	Test Requirement:	FCC Part15	C Section	n 15.209		$ \land$	
WSET	Test Method:	ANSI C63.10):2014	AVISION		WISET	1
	Frequency Range:	9 kHz to 25 (GHz			/	
	Measurement Distance:	3 m	\wedge				
<u> </u>	Antenna Polarization:	Horizontal &	Vertical		AVISI	7	AWIST P
\sim	Operation mode:	Refer to item	4.1			\sim	
\wedge	\wedge	Frequency	Detector	RBW	VBW	Remark	
WSET	WISET	9kHz- 150kHz 150kHz-	Quasi-pea Quasi-pea		1kHz 30kHz	Quasi-peak Valu Quasi-peak Valu	
	Receiver Setup:	30MHz	Quasi-pea	IK 9KHZ	JUKHZ	Quasi-peak vait	le /
		30MHz-1GHz	Quasi-pea		300KHz	Quasi-peak Valu	ie 🔨
	Augo hugo	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	1019 a
	diria piria		11/20198		Contra Mandaria		Zur a
X	X	Frequen	су	Field Stre (microvolts/	-	Measurement Distance (meters	3)
		0.009-0.4		2400/F(H	(Hz)	300	
ANISET .	THEFT	0.490-1.7		24000/F(30	KHz)	30	<u> </u>
	\sim \sim	30-88		100		3	\neg
	\sim	88-216		150	1	3	$ \land$
	Limit:	216-96 Above 9	ALL PROPERTY.	200 500	1019	3	CIL-TH
1/		Above 3	00	300	- allow	3	- second
X	X	X	Fie	ld Strength	Measurer		
		Frequency		ovolts/meter)	Distano (meter		8
4175141	11111	Above 1GHz		500	3	Average	
	\vee		V	5000	3	Peak	-
		For radiated	emission	s below 30	MHz		
	AVEID AVEID	Di	stance = 3m			Computer	A11-14
\mathbf{X}	X	+	→	\frown		Computer	
			۱() г	Pre -	Amplifier	
AUSER	Test setup:	EUT		\square			1
	\vee \vee		□ Turn table				\sim
	\land		T			Receiver	\wedge
	Non & Terry		Grou	nd Plane	L		NUL TH
World Star May	allan & Tesling Ga	30MHz to 10	SHz				
Tion I		X		X		X	
diza	WSCT	hard		Anna		toran	
Could	3 世标检测认证股份 ADD:Bu	Iding A-B Baoshi Scie	nce & Technolo	gy Park, Baoshi Ro	oad, Bao'an D	istrict, Shenzhen, Gua	ngdong, China
World Star ta Sto	Mon * P	55-26996192 26992306 Page 3		0376605 E-mail: Fe	angoing.Wange	ewscl-cert.com Http:ww Member	of the WSCT INC.
						N	

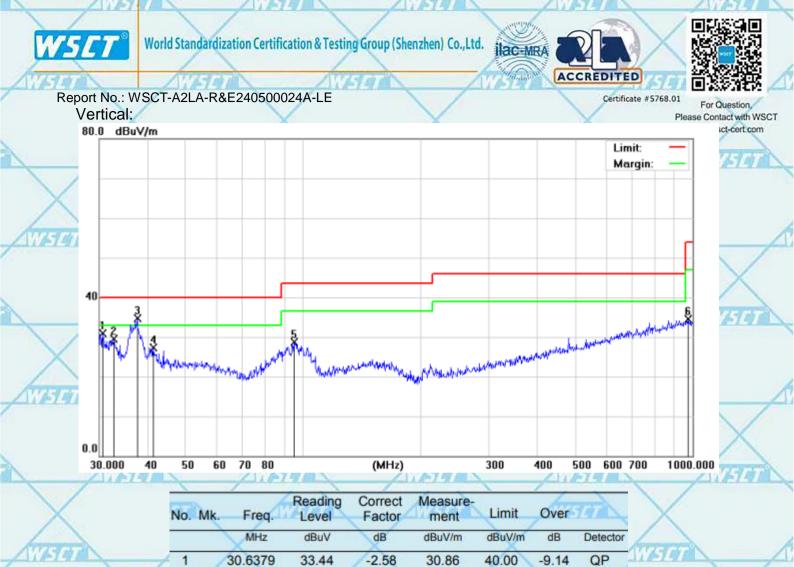
Note: Freq. = Emission frequency in MHz Reading level (dB μ V) = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB) Limit (dB μ V) = Limit stated in standard Margin (dB) = Level (dB μ V) – Limits (dB μ V)

on & Tes

PHOM * P

S

世标检测认证股份 ADD:Building A-B Baoshi Science's Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com


Member of the WSCT INC

ation & Tes

PHOM * PT

oup (Shen

Certific

-2.52

-1.78

-1.62

-5.80

8.35

Note1:

Non & Tes

PHOM * P

oup (Shen

Cestifu

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

32.01

36.45

28.95

34.50

26.22

32.6340

37.5479

41.2765

94.7601

975.7529

2

3

4

5

6

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26998192 26992308 FAX 86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cort.com

40.00

40.00

40.00

43.50

54.00

29,49

34.67

27.33

28.70

34.57

-10.51

-5.33

-12.67

-14.80

-19.43

QP

QP

QP

QP

Certificate #5768.01

For Question, Please Contact with WSCT wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

	\wedge		\wedge	Above 10	GHz		\wedge	www.
	Freq. (MHz)	Low channel: 2402MHz						
4		Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)
		H/V	PK	AV	PK	AV	PK	AV
	4804	V	59.20	41.26	74	54	-14.80	-12.74
×.	7206	V	58.35	40.51	74	54	-15.65	-13.49
1	4804	10 H	58.54	39.80	74	54	-15.46	-14.20
1	7206	Н	59.10	40.10	74	54	-14.90	-13.90
	Y		X		X		- Alexandre	

Frog	Middle channel: 2440MHz							
Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
4880	V	59.96	40.97	74	54	-14.04	-13.03	
7320	V	59.47	39.16	74	54	-14.53	-14.84	
4880	W/5H7	58.87	39.61	74	5 54	-15.13	-14.39	
7320	Н	58.81	39.81	74	54	-15.19	-14.19	

Free	High channel: 2480 MHz							
Freq. (MHz)	Ant.Pol	Emission l	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	
	H/V	PK	AV	PK	AV	PK	AV	
4960	V	60.90	39.97	74	54	-13.10	-14.03	
7440	V	58.77	39.58	74	54	-15.23	-14.42	
4960	H	59.90	40.11	74 🖌	54	-14.10	-13.89	
7440	THE T	59.65	40.65	74	54	-14.35	-13.35	

Note:

ation & Tee

PHOM * PT

oup , (Shen

Cer

Zatio

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.

 Emission Level= Reading Level+ Probe Factor +Cable Loss.
 Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

110

Contration & Test

W5E7

BBUOM * PT

dizatio

Croup (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E240500024A-LE

Restricted Bands Requirements

	Test result	for GFSK M	ode (the	worst case) Austra		Aura	
/	Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector
5	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
4	Å	AUST	1	Low Cha	nnel	AURT	X	AUTS
	2390	67.76	-8.73	59.03	74	-14.97	H	PK
	2390	47.46	-8.73	38.73	54	-15.27	нХ	AV
	2390	68.53	-8.73	59.80	74	-14.20	V	PK
	2390	47.40	-8.73	38.67	54	-15.33	V	AV
				High Cha	nnel			
5	2483.5	68.00	-8.17	59.83	74	-14.17	н	PK
ź	2483.5	45.13	-8.17	36.96	54	-17.04	Н	AV
	2483.5	69.85	-8.17	61.68	74	-12.32	V	PK
	2483.5	48.46	-8.17	40.29	54	-13.71	VX	AV
						V.		

15

*****END OF REPORT*****

145

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShenther fo. Min TEL:86-755-26996192 26992306 FAX 66-755-86376605. E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com