

IrriGreen, Inc.

IrriGreen Genius Irrigation System

FCC 15.207:2014

FCC 15.231:2014

Report #: IRRI0001 Rev.1

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: May 20, 2014 IrriGreen, Inc. Model: IrriGreen Genius Irrigation System

Emissions

Test Description	Specification	Test Method	Pass/Fail
Duty Cycle	FCC 15.231:2014	ANSI C63.10:2009	Pass
Occupied Bandwidth	FCC 15.231:2014	ANSI C63.10:2009	Pass
Field of Strength Fundamental	FCC 15.231:2014	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.231:2014	ANSI C63.10:2009	Pass
Powerline Conducted Emissions	FCC 15.207:2014	ANSI C63.10:2009	Pass

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

NVLAP

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		
01	Updated last date	5/27/2014	2, 7, 9
01	Updated functional description	5/27/2014	7
01	Added High Channel Data	5/27/2014	13-15, 19-21, 24-25, 29-30, 31-41

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

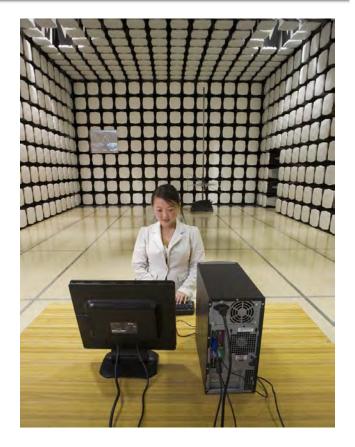
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is listed below. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	3.80	-3.80
AC Powerline Conducted Emissions (dB)	2.94	-2.94

FACILITIES



Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs NC01-05,SU02,SU07 19201 120 th Ave. NE Bothell, WA 98011 (425) 984-6600			
		VCCI					
A-0108	A-0029		A-0109	A-0110			
		Industry Canada					
2834D-1, 2834D- <i>2</i>	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1			
NVLAP							
NVLAP Lab Code: 200630-0	NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200629-0			

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	IrriGreen, Inc
Address:	5250 W. 73rd Street, Suite I
City, State, Zip:	Edina, MN 55439
Test Requested By:	Gary Klinefelter
Model:	IrriGreen Genius Irrigation System
First Date of Test:	January 14, 2014
Last Date of Test:	May 20, 2014
Receipt Date of Samples:	January 14, 2014
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Low power transceiver operating in the range of 433.92 - 443.92 MHz.

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications.

CONFIGURATIONS

Configuration IRRI0001-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Genius Server	IrriGreen, Inc.	500101	2456532-0035

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Genius Sprinkler	IrriGreen, Inc.	400101	2456532			
Irrigation Controller	Hunter	PC-3001	None			
AC Adapter	Hunter	WT57-2401000AU	None			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Irrigation	No	3.2m	No	Genius Sprinkler	Genius Server
Irrigation	No	0.5m	No	Genius Server	Irrigation Controller
DC Power	No	1.6m	No	Irrigation Controller	AC Adapter
PA = Ca	ble is permanei	ntly attached to the de	vice. Shieldin	g and/or presence of ferrite m	ay be unknown.

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	1/14/2014	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	5/19/2014	Field Strength of Fundamental	Modified from delivered configuration.	Lowered Power and raised Baud rate. Modification authorized by Gary.	EUT remained at Northwest EMC following the test.
3	5/19/2014	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	5/19/2014	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	5/20/2014	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12 mo
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo

TEST DESCRIPTION

For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

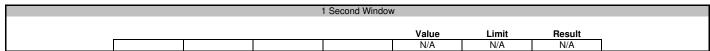
Duty Cycle = On time/100 milliseconds (or the period, whichever is less) Where "On time" = N1L1 + N2L2 + ...

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

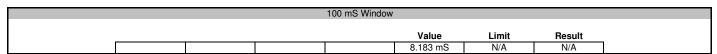
Therefore, Duty Cycle = (N1L1 + N2L2 + ...)/100mS or T, whichever is less. Where T is the period of the pulse train.

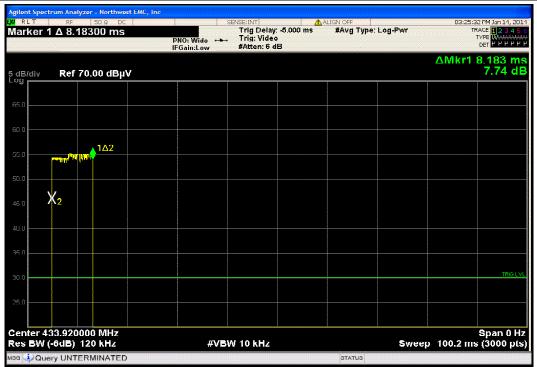
The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 8.183 mSec Number of Type 1 Pulses = 1


Duty Cycle = $20 \log [((1)(8.183))/100] = -21.7 dB$

The duty cycle correction factor of –21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.


The field strength of the fundamental (transmit) frequency meets the limits as defined in 47 CFR 15.231(b). It also meets the provisions in 15.35 for averaging pulsed emissions and for limiting peak emissions.



EUT: Irr	riGreen Genius Irrigation System				Work Order:	IRRI0001	
Serial Number: 24	456532-0035				Date:	01/14/14	
Customer: Irr	riGreen, Inc				Temperature:	23°C	
Attendees: Ga	ary Klinefelter				Humidity:	16%	
Project: No	lone				Barometric Pres.:	1016.5	
Tested by: Tr	revor Buls		Power:	110VAC/60Hz	Job Site:	MN05	
TEST SPECIFICATION	NS			Test Method			
CC 15.231:2014				ANSI C63.10:2009			
COMMENTS							
	hannel 433.92 MHz.						
Operating at low ch							
A Operating at low ch							
A Operating at low ch DEVIATIONS FROM T None Configuration #		Signature	Trevor	Buls			
Operating at low ch		Signature	Trevor	Buls	Value	Limit	Result
A Operating at low ch DEVIATIONS FROM T Jone		Signature	Trevor	Buls	Value N/A	Limit N/A	Result N/A

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24

TEST DESCRIPTION

For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

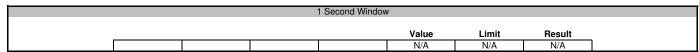
Duty Cycle = On time/100 milliseconds (or the period, whichever is less) Where "On time" = N1L1 +N2L2 +....

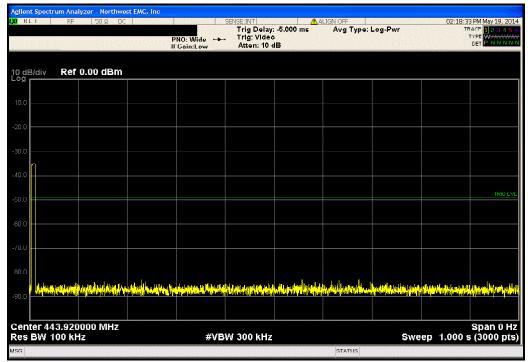
Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

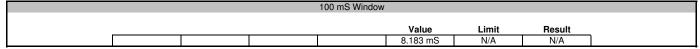
Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

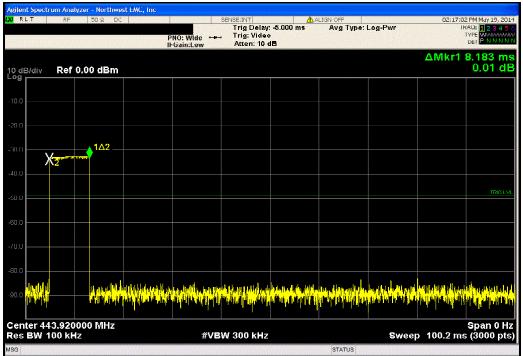
The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 8.183 mSec Number of Type 1 Pulses = 1


Duty Cycle = $20 \log [((1)(8.183))/100] = -21.7 dB$


The duty cycle correction factor of –21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.


The field strength of the fundamental (transmit) frequency meets the limits as defined in 47 CFR 15.231(b). It also meets the provisions in 15.35 for averaging pulsed emissions and for limiting peak emissions.

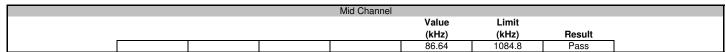


	IrriGreen Genius Irrigation Sys	stem			Wor		IRRI0005	
Serial Number:							05/19/14	
Customer:	IrriGreen, Inc				Temp	erature:	23.3 °C	
Attendees:	Gary Klinefelter						33.1% RH	
Project:							1016.2 mbar	
Tested by:	Trevor Buls			Power: 110VAC/60Hz		Job Site:	MN05	
TEST SPECIFICATION	ONS			Test Method				
CC 15.231:2014				ANSI C63.10:2009				
OLINIENITO.								
COMMENTS								
lone	// TEST STANDARD							
COMMENTS None DEVIATIONS FROM None	// TEST STANDARD							
None DEVIATIONS FROM	M TEST STANDARD							
None DEVIATIONS FROM	M TEST STANDARD			To Bula				
None DEVIATIONS FROM None		Signature	J.	Trevor Buls				
None DEVIATIONS FROM None		Signature	J	Trevor Buls				
EVIATIONS FROM		Signature	J	Trevor Buls	Val	ue	Limit	Result
None DEVIATIONS FROM None		Signature	J	Trevor Buls	Vali N/		Limit N/A	Result N/A

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12 mo
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo


TEST DESCRIPTION

The occupied bandwidth was measured with the EUT configured for continuous modulated operation at its single transmit frequency. The spectrum analyzer's resolution bandwidth was >= 1% of the 20dB bandwidth and the video bandwidth was greater than or equal to the resolution bandwidth.

The 20 dB bandwidth of the transmit frequency is less than 0.25% of the center frequency.

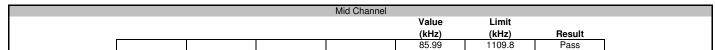
	IrriGreen Genius Irrigation System	Work Order:	IRRI0001	
Serial Number	2456532-0035	Date:	01/14/14	
Customer	IrriGreen, Inc	Temperature:	23°C	
Attendees	Gary Klinefelter	Humidity:	16%	
Project	None	Barometric Pres.:	1016.5	
Tested by	Trevor Buls Power: 110VAC/60Hz	Job Site:	MN05	
TEST SPECIFICAT	ONS Test Method			
FCC 15.231:2014	ANSI C63.10:2009			
COMMENTS	·			
Operating at low c	annel 433.92 MHz.			
DEVIATIONS FROM	I TEST STANDARD			
None				
Configuration #	1 Signature Trevor Buls			
		Value	Limit	
		(kHz)	(kHz)	Result
Low Channel		86.64	1084.8	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24

TEST DESCRIPTION


The occupied bandwidth was measured with the EUT configured for continuous modulated operation at its single transmit frequency. The spectrum analyzer's resolution bandwidth was >= 1% of the 20dB bandwidth and the video bandwidth was greater than or equal to the resolution bandwidth.

The 20 dB bandwidth of the transmit frequency is less than 0.25% of the center frequency.

	IrriGreen Genius Irrigation	on System			Work Order		,
Serial Number:	2456532-0035				Date	05/19/14	,
	IrriGreen, Inc				Temperature		,
Attendees	Gary Klinefelter					33.1% RH	
Project:					Barometric Pres.		
Tested by:	Trevor Buls			Power: 110VAC/60Hz	Job Site	MN05	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.231:2014				ANSI C63.10:2009			
COMMENTS							
None							
DEVIATIONS FROM	M TEST STANDARD						
None							•
Configuration #	IRRI0001 - 1	Signature	J	revor Buls			
					Value	Limit	
					(kHz)	(kHz)	Result
High Channel		<u> </u>		_	85.99	1109.8	Pass

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting semi-continuously at 433.92 MHz, modulated

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

IRRI0001 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 433 MHz Stop Frequency 435 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12 mo
Attenuator, 20 dB, 'SMA'	SM Electronics	SA6-20	REO	5/20/2013	12 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous modulated operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2009).

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 + N2L2 + ...

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 + N2L2 + ...)/100mS or T, whichever is less. Where T is the period of the pulse train.

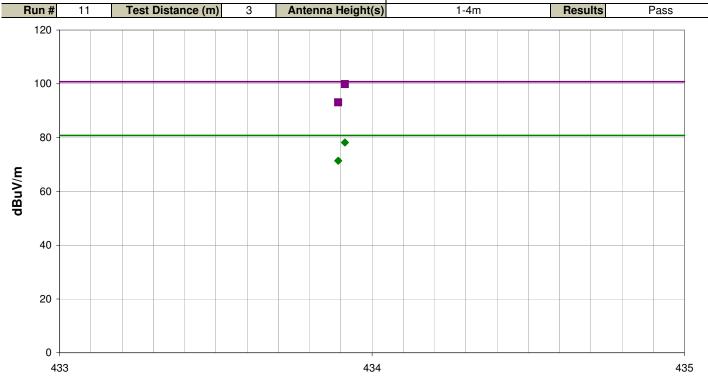
The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 8.183 mSec Number of Type 1 Pulses = 1

Duty Cycle = $20 \log [((1)(8.183))/100] = -21.7 dB$

The duty cycle correction factor of –21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

The field strength of the fundamental (transmit) frequency meets the limits as defined in 47 CFR 15.231(b). It also meets the provisions in 15.35 for averaging pulsed emissions and for limiting peak emissions.


Work Order:	IRRI0001	Date:	01/14/14	20
Project:	None	Temperature:	23.6 °C	Trevor Buls
Job Site:	MN05	Humidity:	17.2% RH	some contract
Serial Number:	2456532-0035	Barometric Pres.:	1004.1 mbar	Tested by: Trevor Buls
EUT:	IrriGreen Genius Irriga	ation System		
Configuration:	1			
	IrriGreen, Inc			
Attendees:	Gary Klinefelter			
EUT Power:	110VAC/60Hz			
Operating Mode:	Transmitting semi-cor	ntinuously at 433.92 Mł	tz, modulated.	
Deviations:	None			
	Operating at low chan position tested.	nel 433.92 MHz. Norm	al installation is in the	upright position (EUT Vertical), so that was the only

Test Specifications

FCC 15.231:2014

Test Method

ANSI C63.10:2009

MHz	■ PK	• AV	• QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
433.91	3 57.4	22.5	1.0	97.0		20.0	Vert	PK	0.0	99.9	100.8	-0.9
433.91	3 57.4	22.5	1.0	97.0	-21.7	20.0	Vert	AV	0.0	78.2	8.08	-2.6
433.89	2 50.6	22.5	1.0	122.0		20.0	Horz	PK	0.0	93.1	100.8	-7.7
433.89	2 50.6	22.5	1.0	122.0	-21.7	20.0	Horz	AV	0.0	71.4	80.8	-9.4

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting semi-continuously at 443.92 MHz, modulated.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

IRRI0001 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 443 MHz	Stop Frequency	435 MHz
---------------------------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/14/2014	12 mo
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous modulated operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2009).

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 + N2L2 + ...

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

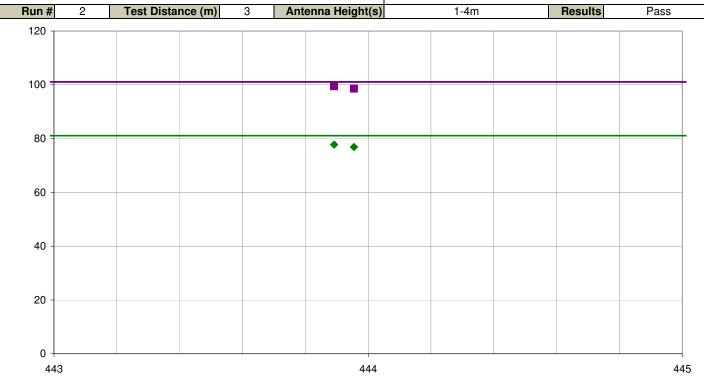
The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 8.183 mSec Number of Type 1 Pulses = 1

Duty Cycle = $20 \log [((1)(8.183))/100] = -21.7 dB$

The duty cycle correction factor of –21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

The field strength of the fundamental (transmit) frequency meets the limits as defined in 47 CFR 15.231(b). It also meets the provisions in 15.35 for averaging pulsed emissions and for limiting peak emissions.


Work Order:	IRRI0005	Date:	05/19/14	20					
Project:	None	Temperature:	23.3 °C	Trevor Buls					
Job Site:	MN05	Humidity:	33.1% RH	source & such					
Serial Number:	2456532-0035	Barometric Pres.:	1016.2 mbar	Tested by: Trevor Buls					
EUT:	IrriGreen Genius Irriga	rriGreen Genius Irrigation System							
Configuration:	IRRI0001 - 1								
	IrriGreen, Inc	iGreen, Inc							
Attendees:	Gary Klinefelter								
EUT Power:	10VAC/60Hz								
Operating Mode:	Transmitting semi-cor	Transmitting semi-continuously at 443.92 MHz, modulated.							
Deviations:	None								
Comments:	Normal installation is i	Normal installation is in the upright position (EUT Vertical), so that was the only position tested.							

Test Specifications

FCC 15.231:2014

Test Method

ANSI C63.10:2009

MHz ■ PK ◆ AV • QP

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
443.892	76.5	23.0	1.0	322.0		0.0	Vert	PK	0.0	99.5	101.1	-1.6
443.955	75.6	23.0	1.0	201.0		0.0	Horz	PK	0.0	98.6	101.1	-2.5
443.892	76.5	23.0	1.0	322.0	-21.7	0.0	Vert	AV	0.0	77.8	81.1	-3.3
443.955	75.6	23.0	1.0	201.0	-21.7	0.0	Horz	AV	0.0	76.9	81.1	-4.2

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit

MODES OF OPERATION

Transmitting semi-continuously at 433.92 MHz, modulated.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

IRRI0001 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 5 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Attenuator, 10db, 'SMA'	S.M. Electronics	SA18H-10	REN	5/20/2013	12 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	5/20/2013	12 mo
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	8/12/2013	12 mo
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	6/29/2011	36 mo
Pre-Amplifier	Miteq	AM-1616-1000	PAD	5/20/2013	12 mo
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	5/20/2013	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The single, integral antenna to be used with the EUT was tested. The EUT was configured for un-modulated, CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2009).

A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

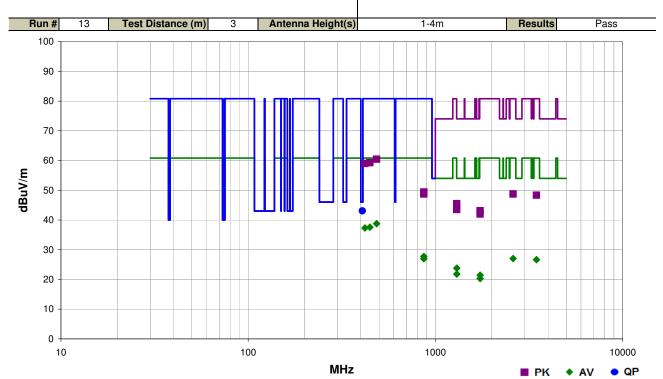
Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 8.183 mSec Number of Type 1 Pulses = 1


Duty Cycle = $20 \log [((1)(8.183))/100] = -21.7 dB$

The duty cycle correction factor of –21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

The field strength of the spurious emissions meet the limits as defined in 47 CFR 15.231(b). The spurious emissions also meet the provisions in 15.35 for averaging pulsed emissions and for limiting peak emissions. Further, spurious emissions meet the provisions of 15.205 using the measurement instrumentation specified in that section.

Work Order:	IRRI0001	Date:	01/14/14						
				0 1.					
Project:	None	Temperature:	23.6 °C	Trevor Buls					
Job Site:	MN05	Humidity:	17.2% RH	estable c state					
Serial Number:	2456532-0035	Barometric Pres.:	1004.1 mbar	Tested by: Trevor Buls					
EUT:	EUT: IrriGreen Genius Irrigation System								
Configuration:	1								
Customer:	IrriGreen, Inc								
Attendees:	Gary Klinefelter								
EUT Power:	110VAC/60Hz								
Operating Mode:	Transmitting semi-continuously at 433.92 MHz, modulated.								
Deviations:	None								
Comments:	Operating at low channel 433.92 MHz. Normal installation is in the upright position (EUT Vertical), so that was the only position tested.								
Test Specifications			Test Meth	od					
FCC 15.231(b):2014	1		ANSI C63.	10:2009					
,									

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
407.959	32.6	0.5	1.0	241.0		10.0	Vert	QP	0.0	43.1	46.0	-2.9	Normal operation
485.909	48.8	1.7	1.0	241.0		10.0	Vert	PK	0.0	60.5	80.8	-20.3	
446.933	48.1	1.1	1.0	89.0		10.0	Vert	PK	0.0	59.2	80.8	-21.6	
420.941	48.2	8.0	1.0	248.0		10.0	Vert	PK	0.0	59.0	8.08	-21.8	
485.909	48.8	1.7	1.0	241.0	-21.7	10.0	Vert	AV	0.0	38.8	60.8	-22.0	
446.933	48.1	1.1	1.0	89.0	-21.7	10.0	Vert	AV	0.0	37.5	60.8	-23.3	
420.941	48.2	8.0	1.0	248.0	-21.7	10.0	Vert	AV	0.0	37.3	60.8	-23.5	
1301.750	51.4	-5.9	1.8	233.0		0.0	Vert	PK	0.0	45.5	74.0	-28.5	
1301.750	51.4	-5.9	1.8	233.0	-21.7	0.0	Vert	AV	0.0	23.8	54.0	-30.2	
1301.842	49.4	-5.9	1.0	329.0		0.0	Horz	PK	0.0	43.5	74.0	-30.5	
867.910	30.3	9.1	1.0	224.0		10.0	Vert	PK	0.0	49.4	8.08	-31.4	
2603.465	50.8	-2.1	1.0	191.0		0.0	Horz	PK	0.0	48.7	8.08	-32.1	
867.780	29.6	9.1	1.0	10.0		10.0	Horz	PK	0.0	48.7	8.08	-32.1	
1301.842	49.4	-5.9	1.0	329.0	-21.7	0.0	Horz	AV	0.0	21.8	54.0	-32.2	
3471.600	47.7	0.6	1.2	0.0		0.0	Horz	PK	0.0	48.3	8.08	-32.5	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
867.910	30.3	9.1	1.0	224.0	-21.7	10.0	Vert	AV	0.0	27.7	60.8	-33.1	
2603.465	50.8	-2.1	1.0	191.0	-21.7	0.0	Horz	AV	0.0	27.0	60.8	-33.8	
867.780	29.6	9.1	1.0	10.0	-21.7	10.0	Horz	AV	0.0	27.0	60.8	-33.8	
3471.600	47.7	0.6	1.2	0.0	-21.7	0.0	Horz	AV	0.0	26.6	60.8	-34.2	
1735.883	47.9	-4.8	1.0	0.0		0.0	Horz	PK	0.0	43.1	80.8	-37.7	
1735.675	46.8	-4.8	3.3	256.0		0.0	Vert	PK	0.0	42.0	8.08	-38.8	
1735.883	47.9	-4.8	1.0	0.0	-21.7	0.0	Horz	AV	0.0	21.4	60.8	-39.4	
1735.675	46.8	-4.8	3.3	256.0	-21.7	0.0	Vert	AV	0.0	20.3	60.8	-40.5	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting semi-continuously at 443.92 MHz, modulated.

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

IRRI0001 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	5 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	3/14/2014	12 mo
MN05 Cables	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	3/14/2014	12 mo
Antenna, Horn (DRG)	ETS Lindgren	3115	AIP	6/29/2011	36 mo
Attenuator, 10db, 'SMA'	S.M. Electronics	SA18H-10	REN	5/15/2014	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	PAD	3/14/2014	12 mo
Antenna, Bilog	Teseq	CBL 6141B	AYD	12/17/2013	12 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/14/2014	12 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2013	24 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The single, integral antenna to be used with the EUT was tested. The EUT was configured for un-modulated, CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2009).

A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

To derive average emission measurements, a duty cycle correction factor per 15.35(c) was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 + N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

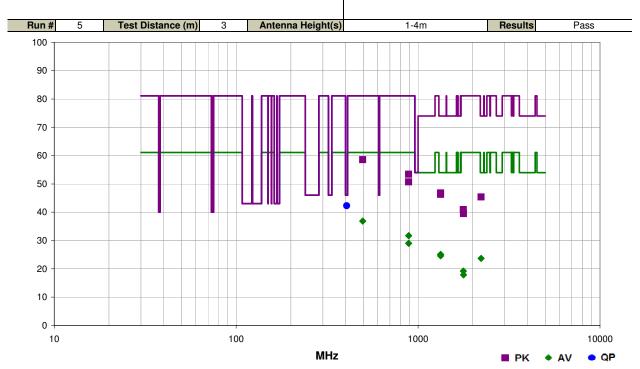
Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = 8.183 mSec Number of Type 1 Pulses = 1

Duty Cycle = $20 \log [((1)(8.183))/100] = -21.7 dB$

The duty cycle correction factor of –21.7 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.


The field strength of the spurious emissions meet the limits as defined in 47 CFR 15.231(b). The spurious emissions also meet the provisions in 15.35 for averaging pulsed emissions and for limiting peak emissions. Further, spurious emissions meet the provisions of 15.205 using the measurement instrumentation specified in that section.

Work Order:	IRRI0005	Date:	05/19/14	20					
Project:	None	Temperature:	23.3 °C	Trevor Buls					
Job Site:	MN05	Humidity:	33.1% RH	some continue					
Serial Number:	2456532-0035	Barometric Pres.:	1016.2 mbar	Tested by: Trevor Buls					
EUT:	IrriGreen Genius Irriga	tion System							
Configuration:	IRRI0001 - 1	RRI0001 - 1							
Customer:	IrriGreen, Inc	rriGreen, Inc							
Attendees:	Gary Klinefelter								
EUT Power:	110VAC/60Hz								
Operating Mode:	Transmitting semi-continuously at 443.92 MHz, modulated.								
Deviations:	None								
Comments:	Normal installation is in the upright position (EUT Vertical), so that was the only position tested.								
Test Specifications	Test Method								

FCC 15.231(b):2014

ANSI C63.10:2009

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
404.952	31.4	0.8	1.0	5.0		10.0	Vert	QP	0.0	42.3	46.0	-3.7
495.910	46.2	2.3	1.0	359.0		10.0	Vert	PK	0.0	58.5	81.1	-22.6
495.910	46.2	2.3	1.0	359.0	-21.7	10.0	Vert	AV	0.0	36.8	61.1	-24.3
1331.792	52.3	-5.5	1.0	111.0		0.0	Horz	PK	0.0	46.8	74.0	-27.2
887.910	33.6	9.8	1.0	27.0		10.0	Horz	PK	0.0	53.4	81.1	-27.7
1331.733	51.8	-5.5	1.1	51.0		0.0	Vert	PK	0.0	46.3	74.0	-27.7
2219.615	47.3	-1.9	1.0	116.0		0.0	Vert	PK	0.0	45.4	74.0	-28.6
1331.792	52.3	-5.5	1.0	111.0	-21.7	0.0	Horz	AV	0.0	25.1	54.0	-28.9
887.910	33.6	9.8	1.0	27.0	-21.7	10.0	Horz	AV	0.0	31.7	61.1	-29.4
1331.733	51.8	-5.5	1.1	51.0	-21.7	0.0	Vert	AV	0.0	24.6	54.0	-29.4
2219.615	47.3	-1.9	1.0	116.0	-21.7	0.0	Vert	AV	0.0	23.7	54.0	-30.3
887.780	30.9	9.8	1.0	160.0		10.0	Vert	PK	0.0	50.7	81.1	-30.4
887.780	30.9	9.8	1.0	160.0	-21.7	10.0	Vert	AV	0.0	29.0	61.1	-32.1
1775.517	45.8	-4.9	1.0	186.0		0.0	Horz	PK	0.0	40.9	81.1	-40.2
1775.683	44.4	-4.9	1.0	116.0		0.0	Vert	PK	0.0	39.5	81.1	-41.6
1775.517	45.8	-4.9	1.0	186.0	-21.7	0.0	Horz	AV	0.0	19.2	61.1	-41.9
1775.683	44.4	-4.9	1.0	116.0	-21.7	0.0	Vert	AV	0.0	17.8	61.1	-43.3

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESCI	ARG	04/01/2013	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HGN	05/31/2012	24 mo
Attenuator 20dB, BNC	Fairview Microwave	SA01B-20	AQP	08/09/2013	12 mo
MN03 Cables	ESM Cable Corp.	Conducted Cables	MNC	12/05/2013	12 mo
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	05/24/2013	12 mo

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.94 dB	-2.94 dB

CONFIGURATIONS INVESTIGATED

IRRI0001-1

MODES INVESTIGATED

Transmitting Semi-Continuously, modulated at 433.92 MHz.

EUT:	IrriGreen Genius Irrigation System	Work Order:	IRRI0001
Serial Number:	2456532-0035	Date:	01/15/2014
Customer:	IrriGreen, Inc	Temperature:	22.9°C
Attendees:	Gary Klinefelter	Relative Humidity:	12.4%
Customer Project:	None	Bar. Pressure:	1021.5 mb
Tested By:	Trevor Buls	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	IRRI0001-1

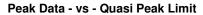
TEST SPECIFICATIONS

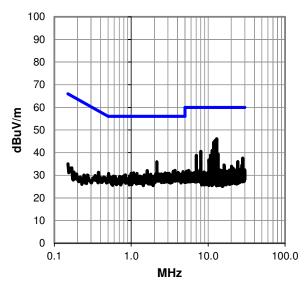
Specification:	Method:
FCC 15.207:2014	ANSI C63.10:2009

TEST PARAMETERS

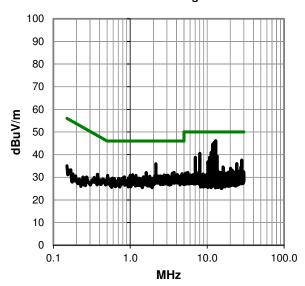
Run #: 4	Line:	Neutral	Ext. Attenuation (dB):	20

COMMENTS


None


EUT OPERATING MODES

Transmitting Semi-Continuously, modulated at 433.92 MHz.


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

RESULTS - Run #4

Peak Data - vs - Quasi Peak Limit

1 ear Data - vs - Quasi i ear Liillit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Margin (dB)			
12.928	25.3	20.9	46.2	60.0	-13.8			
12.394	24.6	20.8	45.4	60.0	-14.6			
11.857	23.9	20.8	44.7	60.0	-15.3			
12.133	22.1	20.8	42.9	60.0	-17.1			
12.096	21.6	20.8	42.4	60.0	-17.6			
11.320	20.2	20.8	41.0	60.0	-19.0			
12.171	19.9	20.8	40.7	60.0	-19.3			
8.041	20.0	20.6	40.6	60.0	-19.4			
2.153	15.7	20.3	36.0	56.0	-20.0			
13.476	18.5	20.9	39.4	60.0	-20.6			
10.775	18.1	20.7	38.8	60.0	-21.2			
7.037	18.3	20.5	38.8	60.0	-21.2			
12.062	18.0	20.8	38.8	60.0	-21.2			
28.224	15.5	22.1	37.6	60.0	-22.4			
28.314	15.1	22.1	37.2	60.0	-22.8			
10.234	16.1	20.7	36.8	60.0	-23.2			
3.717	11.8	20.4	32.2	56.0	-23.8			
1.616	11.8	20.3	32.1	56.0	-23.9			
24.270	14.4	21.7	36.1	60.0	-23.9			
3.530	11.5	20.4	31.9	56.0	-24.1			
4.713	11.2	20.4	31.6	56.0	-24.4			
3.694	11.2	20.4	31.6	56.0	-24.4			
3.627	11.0	20.4	31.4	56.0	-24.6			
4.086	10.9	20.4	31.3	56.0	-24.7			
24.191	13.5	21.7	35.2	60.0	-24.8			
1.075	10.8	20.3	31.1	56.0	-24.9			

Peak Data - vs - Average Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Margin (dB)		
12.928	25.3	20.9	46.2	50.0	-3.8		
12.394	24.6	20.8	45.4	50.0	-4.6		
11.857	23.9	20.8	44.7	50.0	-5.3		
12.133	22.1	20.8	42.9	50.0	-7.1		
12.096	21.6	20.8	42.4	50.0	-7.6		
11.320	20.2	20.8	41.0	50.0	-9.0		
12.171	19.9	20.8	40.7	50.0	-9.3		
8.041	20.0	20.6	40.6	50.0	-9.4		
2.153	15.7	20.3	36.0	46.0	-10.0		
13.476	18.5	20.9	39.4	50.0	-10.6		
10.775	18.1	20.7	38.8	50.0	-11.2		
7.037	18.3	20.5	38.8	50.0	-11.2		
12.062	18.0	20.8	38.8	50.0	-11.2		
28.224	15.5	22.1	37.6	50.0	-12.4		
28.314	15.1	22.1	37.2	50.0	-12.8		
10.234	16.1	20.7	36.8	50.0	-13.2		
3.717	11.8	20.4	32.2	46.0	-13.8		
1.616	11.8	20.3	32.1	46.0	-13.9		
24.270	14.4	21.7	36.1	50.0	-13.9		
3.530	11.5	20.4	31.9	46.0	-14.1		
4.713	11.2	20.4	31.6	46.0	-14.4		
3.694	11.2	20.4	31.6	46.0	-14.4		
3.627	11.0	20.4	31.4	46.0	-14.6		
4.086	10.9	20.4	31.3	46.0	-14.7		
24.191	13.5	21.7	35.2	50.0	-14.8		
1.075	10.8	20.3	31.1	46.0	-14.9		

CONCLUSION

Pass

Tooted Du

EUT:	IrriGreen Genius Irrigation System	Work Order:	IRRI0001
Serial Number:	2456532-0035	Date:	01/15/2014
Customer:	IrriGreen, Inc	Temperature:	22.9°C
Attendees:	Gary Klinefelter	Relative Humidity:	12.4%
Customer Project:	None	Bar. Pressure:	1021.5 mb
Tested By:	Trevor Buls	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	IRRI0001-1

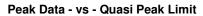
TEST SPECIFICATIONS

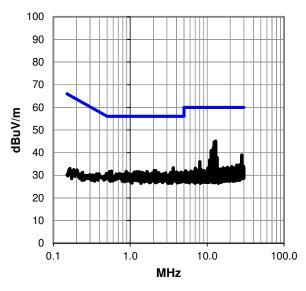
Specification:	Method:
FCC 15.207:2014	ANSI C63.10:2009

TEST PARAMETERS

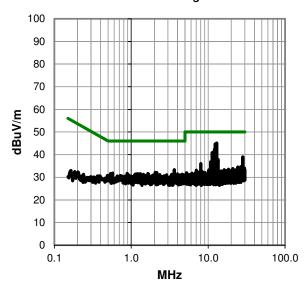
Dup #1	6	Lina	High Line	Ext. Attonuction (dD):	20
Run #:	0	Line:	High Line	Ext. Attenuation (dB):	20

COMMENTS


None


EUT OPERATING MODES

Transmitting Semi-Continuously, modulated at 433.92 MHz.


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

1.668

11.2

20.3

RESULTS - Run #6

Peak Data - vs - Quasi Peak Limit

	1 Can Da	114 V3 - G	luasi i cai		
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Margin (dB)
12.935	24.3	20.9	45.2	60.0	-14.8
12.391	23.9	20.8	44.7	60.0	-15.3
12.133	21.7	20.8	42.5	60.0	-17.5
12.096	21.4	20.8	42.2	60.0	-17.8
11.861	20.5	20.8	41.3	60.0	-18.7
11.316	20.1	20.8	40.9	60.0	-19.1
12.171	19.5	20.8	40.3	60.0	-19.7
28.220	16.9	22.1	39.0	60.0	-21.0
28.310	16.1	22.1	38.2	60.0	-21.8
12.062	17.4	20.8	38.2	60.0	-21.8
13.476	17.0	20.9	37.9	60.0	-22.1
3.631	13.0	20.4	33.4	56.0	-22.6
10.775	16.1	20.7	36.8	60.0	-23.2
28.399	14.7	22.1	36.8	60.0	-23.2
2.053	11.9	20.3	32.2	56.0	-23.8
2.153	11.8	20.3	32.1	56.0	-23.9
8.044	15.5	20.6	36.1	60.0	-23.9
0.572	11.7	20.2	31.9	56.0	-24.1
0.885	11.5	20.3	31.8	56.0	-24.2
0.538	11.5	20.2	31.7	56.0	-24.3
1.646	11.4	20.3	31.7	56.0	-24.3
1.213	11.3	20.3	31.6	56.0	-24.4
1.310	11.3	20.3	31.6	56.0	-24.4
3.989	11.2	20.4	31.6	56.0	-24.4
1.176	11.2	20.3	31.5	56.0	-24.5
1.668	11.2	20.3	31.5	56.0	-24.5

	Peak D	ata - vs - <i>i</i>	Average L	.imit	
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Margin (dB)
12.935	24.3	20.9	45.2	50.0	-4.8
12.391	23.9	20.8	44.7	50.0	-5.3
12.133	21.7	20.8	42.5	50.0	-7.5
12.096	21.4	20.8	42.2	50.0	-7.8
11.861	20.5	20.8	41.3	50.0	-8.7
11.316	20.1	20.8	40.9	50.0	-9.1
12.171	19.5	20.8	40.3	50.0	-9.7
28.220	16.9	22.1	39.0	50.0	-11.0
28.310	16.1	22.1	38.2	50.0	-11.8
12.062	17.4	20.8	38.2	50.0	-11.8
13.476	17.0	20.9	37.9	50.0	-12.1
3.631	13.0	20.4	33.4	46.0	-12.6
10.775	16.1	20.7	36.8	50.0	-13.2
28.399	14.7	22.1	36.8	50.0	-13.2
2.053	11.9	20.3	32.2	46.0	-13.8
2.153	11.8	20.3	32.1	46.0	-13.9
8.044	15.5	20.6	36.1	50.0	-13.9
0.572	11.7	20.2	31.9	46.0	-14.1
0.885	11.5	20.3	31.8	46.0	-14.2
0.538	11.5	20.2	31.7	46.0	-14.3
1.646	11.4	20.3	31.7	46.0	-14.3
1.213	11.3	20.3	31.6	46.0	-14.4
1.310	11.3	20.3	31.6	46.0	-14.4
3.989	11.2	20.4	31.6	46.0	-14.4
1.176	11.2	20.3	31.5	46.0	-14.5

CONCLUSION

Pass

Tootad Dv

31.5

-14.5

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Receiver	Rohde & Schwarz	ESR7	ARI	05/06/2014	12 mo
MN03 Cables	ESM Cable Corp.	Conducted Cables	MNC	12/05/2013	12 mo
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	05/15/2014	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HGN	05/31/2012	24 mo
Attenuator 20dB, BNC	Fairview Microwave	SA01B-20	AQP	08/09/2013	12 mo

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.94 dB	-2.94 dB

CONFIGURATIONS INVESTIGATED

IRRI0001-1

MODES INVESTIGATED

Transmitting modulated at 443.92 MHz

EUT:	IrriGreen Genius Irrigation System	Work Order:	IRRI0005
Serial Number:	2456532-0035	Date:	05/20/2014
Customer:	IrriGreen, Inc.	Temperature:	23.8°C
Attendees:	None	Relative Humidity:	42.5%
Customer Project:	None	Bar. Pressure:	1014.2 mb
Tested By:	Trevor Buls	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	IRRI0001-1

TEST SPECIFICATIONS

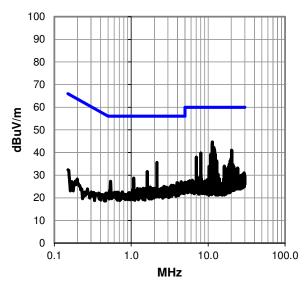
Specification:	Method:
FCC 15.207:2014	ANSI C63.10:2009

TEST PARAMETERS

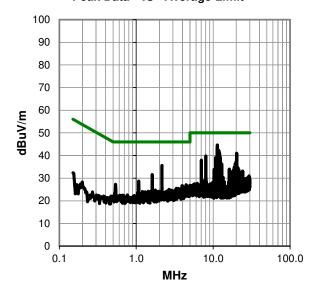
Run #:	3	Line:	Neutral	Ext. Attenuation (dB):	20

COMMENTS

None


EUT OPERATING MODES

Transmitting modulated at 443.92 MHz


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

16.189

18.338

RESULTS - Run #3

Peak Data - vs - Quasi Peak Limit

	1 Can Da	ia vo c	tuasi i car		
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Margin (dB)
11.327	23.9	20.8	44.7	60.0	-15.3
11.868	21.5	20.8	42.3	60.0	-17.7
12.100	20.6	20.8	41.4	60.0	-18.6
12.144	20.2	20.8	41.0	60.0	-19.0
20.240	19.5	21.5	41.0	60.0	-19.0
20.166	19.5	21.5	41.0	60.0	-19.0
8.037	19.2	20.6	39.8	60.0	-20.2
2.157	15.3	20.3	35.6	56.0	-20.4
12.409	18.3	20.8	39.1	60.0	-20.9
10.786	18.3	20.8	39.1	60.0	-20.9
20.304	17.5	21.5	39.0	60.0	-21.0
12.182	17.9	20.8	38.7	60.0	-21.3
7.033	17.4	20.5	37.9	60.0	-22.1
19.964	16.0	21.4	37.4	60.0	-22.6
12.059	16.1	20.8	36.9	60.0	-23.1
19.420	15.1	21.4	36.5	60.0	-23.5
12.943	15.5	20.9	36.4	60.0	-23.6
1.616	11.3	20.3	31.6	56.0	-24.4
20.501	13.5	21.5	35.0	60.0	-25.0
18.871	13.6	21.3	34.9	60.0	-25.1
21.039	13.1	21.5	34.6	60.0	-25.4
16.245	12.9	21.1	34.0	60.0	-26.0
10.246	13.1	20.8	33.9	60.0	-26.1
21.583	12.2	21.6	33.8	60.0	-26.2
16.189	12.5	21.1	33.6	60.0	-26.4
18.338	12.3	21.3	33.6	60.0	-26.4

(MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) 11.327 23.9 20.8 44.7 50.0 11.868 21.5 20.8 42.3 50.0 12.100 20.6 20.8 41.4 50.0 12.144 20.2 20.8 41.0 50.0 20.240 19.5 21.5 41.0 50.0 20.166 19.5 21.5 41.0 50.0 8.037 19.2 20.6 39.8 50.0 2.157 15.3 20.3 35.6 46.0 12.409 18.3 20.8 39.1 50.0 10.786 18.3 20.8 39.1 50.0 20.304 17.5 21.5 39.0 50.0 12.182 17.9 20.8 38.7 50.0 7.033 17.4 20.5 37.9 50.0 19.964 16.0 21.4 37.4 50.0 19.420 15.1 21.4 </th <th></th>					
				Limit	Margin (dB)
11.327	23.9	20.8	44.7	50.0	-5.3
11.868	21.5	20.8	42.3	50.0	-7.7
12.100	20.6	20.8	41.4	50.0	-8.6
12.144	20.2	20.8	41.0	50.0	-9.0
20.240	19.5	21.5	41.0	50.0	-9.0
20.166	19.5	21.5	41.0	50.0	-9.0
8.037	19.2	20.6	39.8	50.0	-10.2
2.157	15.3	20.3	35.6	46.0	-10.4
12.409	18.3	20.8	39.1	50.0	-10.9
10.786	18.3	20.8	39.1	50.0	-10.9
20.304	17.5	21.5	39.0	50.0	-11.0
12.182	17.9	20.8	38.7	50.0	-11.3
7.033	17.4	20.5	37.9	50.0	-12.1
19.964	16.0	21.4	37.4	50.0	-12.6
12.059	16.1	20.8	36.9	50.0	-13.1
19.420	15.1	21.4	36.5	50.0	-13.5
12.943	15.5	20.9	36.4	50.0	-13.6
1.616	11.3	20.3	31.6	46.0	-14.4
20.501	13.5	21.5	35.0	50.0	-15.0
18.871	13.6	21.3	34.9	50.0	-15.1
21.039	13.1	21.5	34.6	50.0	-15.4
16.245	12.9	21.1	34.0	50.0	-16.0
10.246	13.1	20.8	33.9	50.0	-16.1
21.583	12.2	21.6	33.8	50.0	-16.2

21.1

12.3

CONCLUSION

Pass

Tootad Dv

33.6

33.6

-16.4

-16.4

EUT:	IrriGreen Genius Irrigation System	Work Order:	IRRI0005
Serial Number:	2456532-0035	Date:	05/20/2014
Customer:	IrriGreen, Inc.	Temperature:	23.8°C
Attendees:	None	Relative Humidity:	42.5%
Customer Project:	None	Bar. Pressure:	1014.2 mb
Tested By:	Trevor Buls	Job Site:	MN03
Power:	110VAC/60Hz	Configuration:	IRRI0001-1

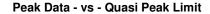
TEST SPECIFICATIONS

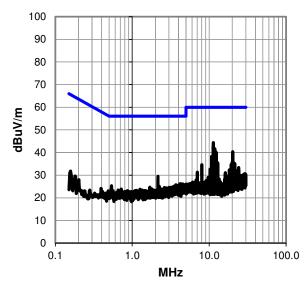
Specification:	Method:
FCC 15.207:2014	ANSI C63 10:2009

TEST PARAMETERS

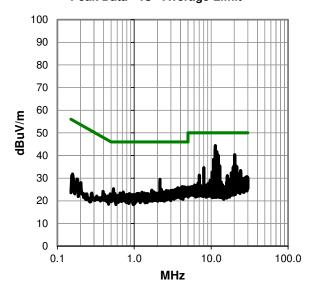
Rur	า #:	4	Line:	High Line	Ext. Attenuation (dB):	20

COMMENTS


None


EUT OPERATING MODES

Transmitting modulated at 443.92 MHz


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

RESULTS - Run #4

Peak Data - vs - Quasi Peak Limit

	reak Data - VS - Quasi reak Lillit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Margin (dB)	
11.327	23.6	20.8	44.4	60.0	-15.6	
11.868	20.9	20.8	41.7	60.0	-18.3	
12.100	19.7	20.8	40.5	60.0	-19.5	
12.144	19.6	20.8	40.4	60.0	-19.6	
20.240	18.9	21.5	40.4	60.0	-19.6	
12.186	19.3	20.8	40.1	60.0	-19.9	
12.409	19.1	20.8	39.9	60.0	-20.1	
20.166	18.2	21.5	39.7	60.0	-20.3	
20.304	17.5	21.5	39.0	60.0	-21.0	
10.783	17.5	20.8	38.3	60.0	-21.7	
12.059	15.7	20.8	36.5	60.0	-23.5	
19.964	14.3	21.4	35.7	60.0	-24.3	
12.947	14.6	20.9	35.5	60.0	-24.5	
21.054	13.9	21.5	35.4	60.0	-24.6	
21.580	13.5	21.6	35.1	60.0	-24.9	
20.501	13.5	21.5	35.0	60.0	-25.0	
19.427	13.4	21.4	34.8	60.0	-25.2	
8.037	14.0	20.6	34.6	60.0	-25.4	
21.035	12.2	21.5	33.7	60.0	-26.3	
2.157	9.2	20.3	29.5	56.0	-26.5	
24.199	11.6	21.8	33.4	60.0	-26.6	
10.246	11.9	20.8	32.7	60.0	-27.3	
18.341	11.1	21.3	32.4	60.0	-27.6	
22.113	10.7	21.6	32.3	60.0	-27.7	
18.882	10.8	21.4	32.2	60.0	-27.8	
24.292	10.3	21.8	32.1	60.0	-27.9	

Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Margin (dB)
11.327	23.6	20.8	44.4	50.0	-5.6
11.868	20.9	20.8	41.7	50.0	-8.3
12.100	19.7	20.8	40.5	50.0	-9.5
12.144	19.6	20.8	40.4	50.0	-9.6
20.240	18.9	21.5	40.4	50.0	-9.6
12.186	19.3	20.8	40.1	50.0	-9.9
12.409	19.1	20.8	39.9	50.0	-10.1
20.166	18.2	21.5	39.7	50.0	-10.3
20.304	17.5	21.5	39.0	50.0	-11.0
10.783	17.5	20.8	38.3	50.0	-11.7
12.059	15.7	20.8	36.5	50.0	-13.5
19.964	14.3	21.4	35.7	50.0	-14.3
12.947	14.6	20.9	35.5	50.0	-14.5
21.054	13.9	21.5	35.4	50.0	-14.6
21.580	13.5	21.6	35.1	50.0	-14.9
20.501	13.5	21.5	35.0	50.0	-15.0
19.427	13.4	21.4	34.8	50.0	-15.2
8.037	14.0	20.6	34.6	50.0	-15.4
21.035	12.2	21.5	33.7	50.0	-16.3
2.157	9.2	20.3	29.5	46.0	-16.5
24.199	11.6	21.8	33.4	50.0	-16.6
10.246	11.9	20.8	32.7	50.0	-17.3
18.341	11.1	21.3	32.4	50.0	-17.6
22.113	10.7	21.6	32.3	50.0	-17.7
18.882	10.8	21.4	32.2	50.0	-17.8
24.292	10.3	21.8	32.1	50.0	-17.9

CONCLUSION

Pass