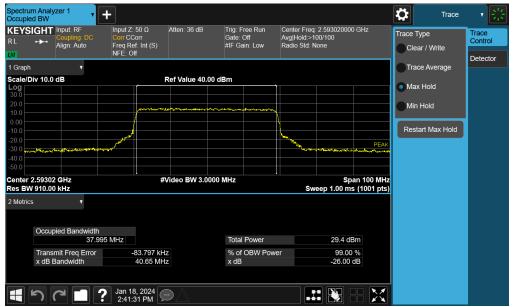
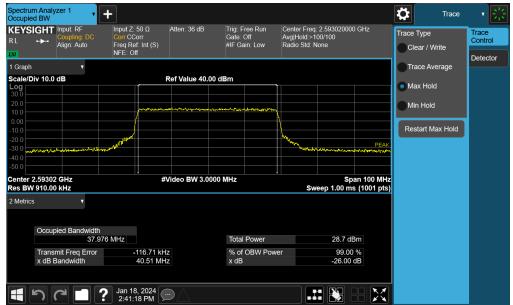
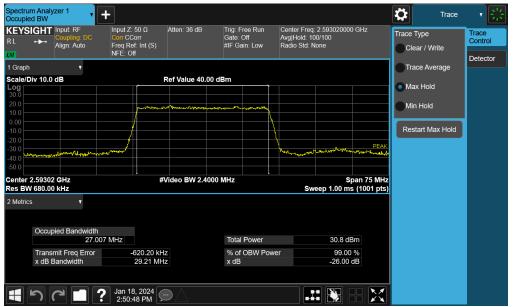

Plot 7-69. Occupied Bandwidth Plot (NR Band n41 - 50MHz QPSK - Full RB Configuration – Ant2)

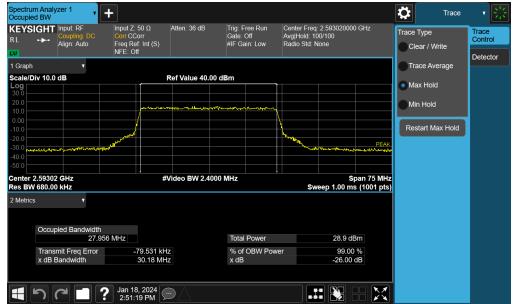

Plot 7-70. Occupied Bandwidth Plot (NR Band n41 - 50MHz 16-QAM - Full RB Configuration – Ant2)

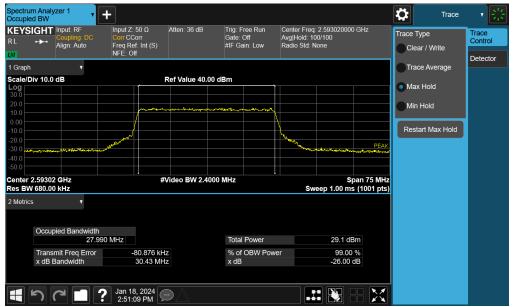
FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 58 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 56 01 125
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-71. Occupied Bandwidth Plot (NR Band n41 - 40MHz π/2 BPSK - Full RB Configuration – Ant2)


Plot 7-72. Occupied Bandwidth Plot (NR Band n41 - 40MHz QPSK - Full RB Configuration - Ant2)

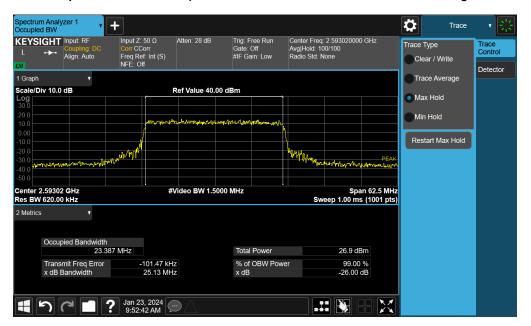
FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 59 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 59 01 125
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-73. Occupied Bandwidth Plot (NR Band n41 - 40MHz 16-QAM - Full RB Configuration – Ant2)


Plot 7-74. Occupied Bandwidth Plot (NR Band n41 - 30MHz π/2 BPSK - Full RB Configuration – Ant2)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 60 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 60 01 125
© 2024 ELEMENT			V11.1 08/28/2023

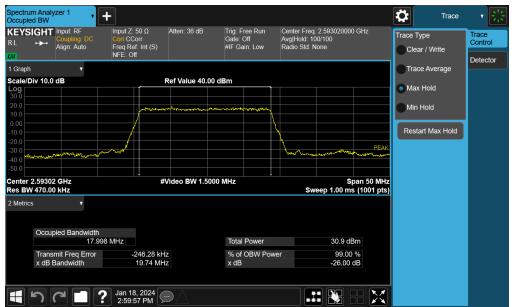
Plot 7-75. Occupied Bandwidth Plot (NR Band n41 - 30MHz QPSK - Full RB Configuration - Ant2)


Plot 7-76. Occupied Bandwidth Plot (NR Band n41 - 30MHz 16-QAM - Full RB Configuration – Ant2)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 61 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 61 01 123
© 2024 ELEMENT			V11.1 08/28/2023

Spectrum Analyzer 1 Occupied BW	+							*	Trace	- 7 景
	bling: DC C I: Auto F	orr CCorr req Ref: Int (S)	Atten: 28 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std		GHz	Trace Type Clear / V	Vrite	Trace Control
LVI 1 Graph	N	IFE: Off						Trace Av	/erage	Detector
Scale/Div 10.0 dB Log 30.0 20.0 10.0 -0.0 -20.0 -20.0 -30.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ref Value 40.00 d	1BM			PEAK	Max Hol Min Hold Restart M	ł	
-40.0 -50.0 Center 2.59302 GHz Res BW 620.00 kHz	z :		/ideo BW 1.5000) MHz			n 62.5 MHz (1001 pts)			
2 Metrics Occupied E Transmit Fi	23.028 Mi req Error	-246.02 kHz		Total Power % of OBW Pow	ver	30.8 dB	%			
		24.79 MHz Jan 23, 2024 9:50:44 AM		x dB		-26.00 d				

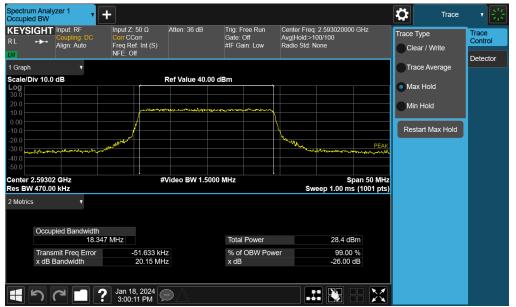
Plot 7-77. Occupied Bandwidth Plot (NR Band n41 - 25MHz π/2 BPSK - Full RB Configuration – Ant2)


Plot 7-78. Occupied Bandwidth Plot (NR Band n41 - 25MHz QPSK - Full RB Configuration – Ant2)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 62 01 125
© 2024 ELEMENT		·	V11.1 08/28/2023

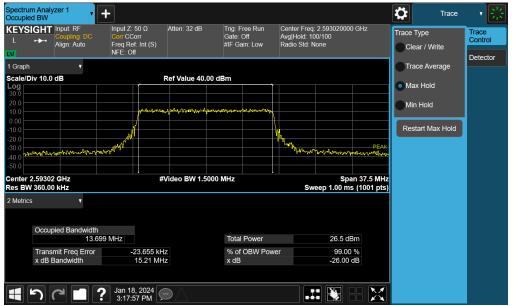
Spectrum Occupied	BW I	+					Trace	- 7 景
	GHT Input: RF ← Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 28 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fred Avg Hold: 1 Radio Std: I		Trace Type Clear / Write	Trace Control
		NFE: Off						Detector
1 Graph Scale/Div	10.0 dB		Ref Value 40.0	00 dBm			Trace Average	
Log 30.0							Max Hold	
20.0		alling the second se	herzyntywar	nteritation the second share	\ \		Min Hold	
0.00		4			\		Restart Max Hold	
-20.0	_{ครอาจ} รปกรีเหตุรีการประจำประชาชาติเป	www.han			WWWWWWWWWWWW	PEAK ปังปารเป็นสุดชัญจรรมีสำรังญาปูมุนสุดสุด		
-40.0	Aller (all all all all all all all all all al				,			
Center 2.	59302 GHz 520.00 kHz	<u> </u> #\	Video BW 1.50	000 MHz	Sv	Span 62.5 MHz veep 1.00 ms (1001 pts)		
2 Metrics	•							
C	Occupied Bandwidth 23 4	26 MHz		Total Power		27.1 dBm		
	Transmit Freg Error	-59.833 kH	z	% of OBW Pow	er	99.00 %		
>	k dB Bandwidth	24.98 MH	z	x dB		-26.00 dB		
4		? Jan 23, 2024 9:52:03 AM	\Box					


Plot 7-79. Occupied Bandwidth Plot (NR Band n41 - 25MHz 16-QAM - Full RB Configuration – Ant2)

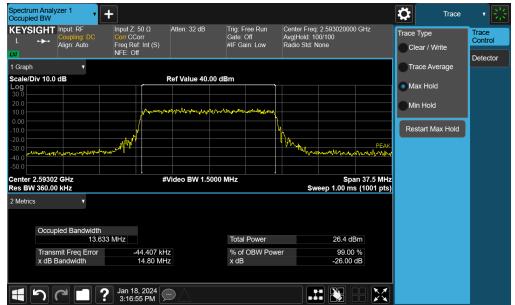

Plot 7-80. Occupied Bandwidth Plot (NR Band n41 - 20MHz π/2 BPSK - Full RB Configuration – Ant2)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 03 01 123
© 2024 ELEMENT	•		V11.1 08/28/2023

Plot 7-81. Occupied Bandwidth Plot (NR Band n41 - 20MHz QPSK - Full RB Configuration – Ant2)


Plot 7-82. Occupied Bandwidth Plot (NR Band n41 - 20MHz 16-QAM - Full RB Configuration – Ant2)

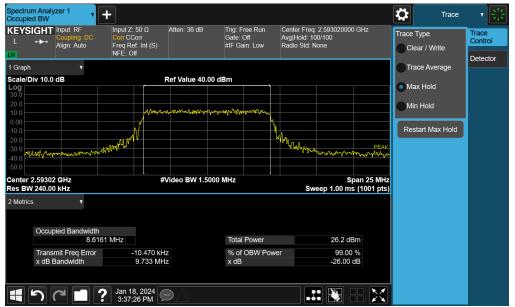
FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 64 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 04 01 123
© 2024 ELEMENT			V11.1 08/28/2023


Plot 7-83. Occupied Bandwidth Plot (NR Band n41 - 15MHz π/2 BPSK - Full RB Configuration – Ant2)

Plot 7-84. Occupied Bandwidth Plot (NR Band n41 - 15MHz QPSK - Full RB Configuration - Ant2)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 65 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 05 01 125
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-85. Occupied Bandwidth Plot (NR Band n41 - 15MHz 16-QAM - Full RB Configuration – Ant2)


Plot 7-86. Occupied Bandwidth Plot (NR Band n41 - 10MHz π/2 BPSK - Full RB Configuration - Ant2)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 66 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 66 01 125
© 2024 ELEMENT	•	•	V11.1 08/28/2023

Plot 7-87. Occupied Bandwidth Plot (NR Band n41 - 10MHz QPSK - Full RB Configuration – Ant2)

Plot 7-88. Occupied Bandwidth Plot (NR Band n41 - 10MHz 16-QAM - Full RB Configuration – Ant2)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 67 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 07 01 123
© 2024 ELEMENT			V11.1 08/28/2023

7.4 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

For Band 41, the minimum permissible attenuation level of any spurious emission is 55 + 10log₁₀(P_[Watts]).

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

- 1. Per Part 27, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 68 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 66 01 125
© 2024 ELEMENT	• •		V11.1 08/28/2023

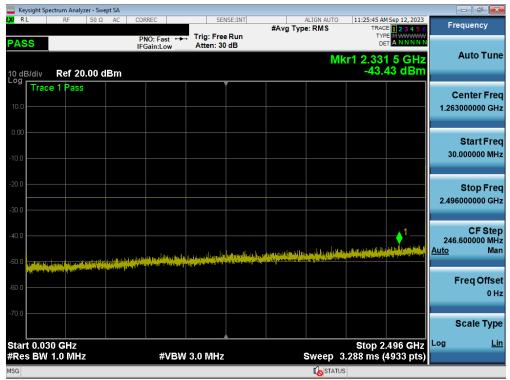
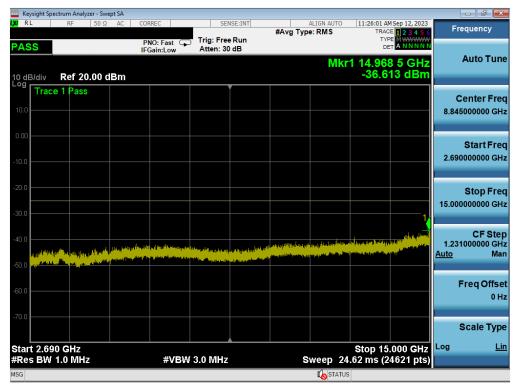
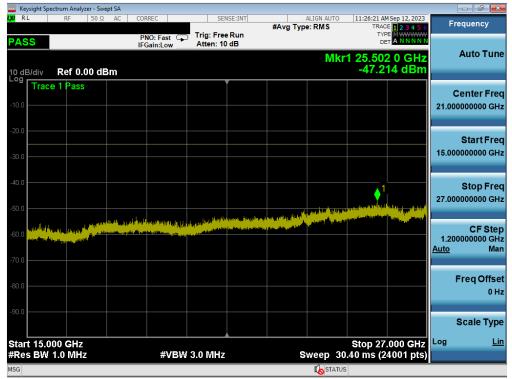

Mode	Bandwidth	Channel	Range [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]
		Low	30.0 - 2475.0	-40.15	-25	-15.15
		Low	2690.0 - 15000.0	-40.85	-25	-15.85
		Low	15000.0 - 27000.0	-48.99	-25	-23.99
		Mid	30.0 - 2500.0	-43.43	-25	-18.43
LTE-B41 PC3	20MHz	Mid	2690.0 - 15000.0	-36.61	-25	-11.61
FC3		Mid	15000.0 - 27000.0	-47.21	-25	-22.21
		High	30.0 - 2500.0	-47.64	-25	-22.64
		High	2690.0 - 15000.0	-40.78	-25	-15.78
		High	15000.0 - 27000.0	-49.89	-25	-24.89
		Low	30.0 - 2475.0	-43.03	-25	-18.03
		Low	2496.0 - 2690.0	15.84	-	-
		Low	2690.0 - 15000.0	-37.12	-25	-12.12
		Low	15000.0 - 27000.0	-51.80	-25	-26.80
LTE-B41		Mid	30.0 - 2496.0	-41.97	-25	-16.97
PC3	20+20MHz	Mid	2496.0 - 2690.0	15.70	-	-
ULCA		Mid	2690.0 - 15000.0	-38.43	-25	-13.43
		Mid	15000.0 - 27000.0	-52.03	-25	-27.03
		High	30.0 - 2496.0	-43.61	-25	-18.61
		High	2496.0 - 2690.0	14.92	-	-
		High	2715.0 - 15000.0	-38.61	-25	-13.61
		High	2690.0 - 15000.0	-52.05	-25	-27.05

Table 7-9. Conducted Spurious Emission Results – LTE – Ant1

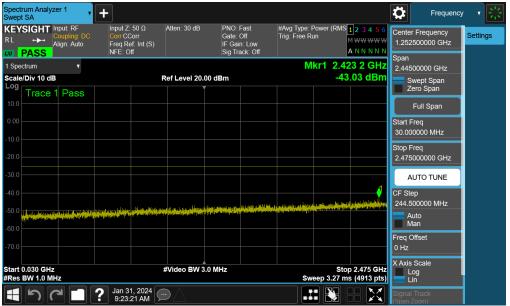

FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 69 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 09 01 123
© 2024 ELEMENT	•		V11.1 08/28/2023

LTE Band 41(PC3) – Ant1


Plot 7-89. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant1)

Plot 7-90. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant1)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 70 of 100
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 70 of 123
© 2024 ELEMENT			V11.1 08/28/2023



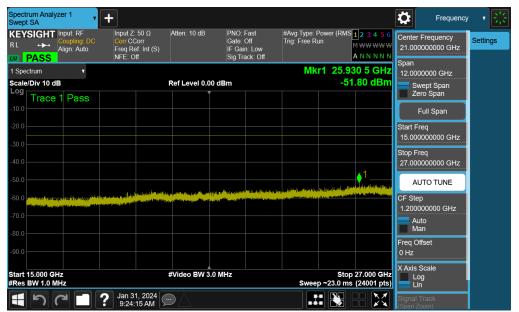
Plot 7-91. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant1)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 71 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage / 1 01 125
© 2024 ELEMENT	•		V11.1 08/28/2023

ULCA - LTE B41(PC3) - Ant1

Plot 7-92. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant1)

Spectrum Anal Swept SA	yzer 1 🔻	+								₽	Frequency	, 崇
KEYSIGHT RL ↔	Input: RF Coupling: DC Align: Auto	Input Z: Corr CCo Freq Rel NFE: Off	orr f: Int (S)	Atten: 50 dB	PNO: Gate: IF Gai Sig Tra	Off	#Avg Type: F Trig: Free Ru	in	123456 MWWWWW ANNNNN	Center Fre 2.593000		Settings
1 Spectrum Scale/Div 10 c	, iB		F	Ref Level 40.	00 dBm		Mk		6 00 GHz .84 dBm		ot Span	
30.0	46									Zero Ful	Span I Span	
20.0	1									Start Freq 2.496000		
0.00	nn Nh.									Stop Freq 2.690000		
-10.0	h			iaton bitocheral						CF Step	DTUNE	
-30.0	· · •	den riger den de							and the state of the	19.40000 Auto Man	0 MHz	
-50.0										Freq Offse 0 Hz	et	
Start 2.49600 #Res BW 1.0 I				#Video BW 3	3.0 MHz		Sw		2.69000 GHz s (4933 pts)	X Axis Sca Log Lin	ale	
H N	C	? Jan 31 9:30:2								Signal Tra (Span Zoor		


Plot 7-93. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant1)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 72 01 125
© 2024 ELEMENT	•	·	V11.1 08/28/2023

Plot 7-94. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant1)

Plot 7-95. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Low Channel Ant1)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 72 of 102
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 73 of 123
© 2024 ELEMENT	•		V11.1 08/28/2023

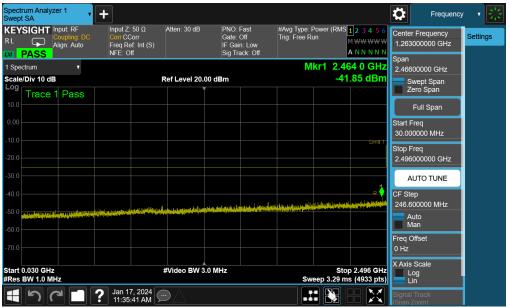

Mode	Bandwidth	Channel	Range [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]
		Low	30.0 - 2470.0	-39.98	-25	-14.98
		Low	2690.0 - 15000.0	-37.85	-25	-12.85
		Low	15000.0 - 27000.0	-51.64	-25	-26.64
NR-		Mid	30.0 - 2496.0	-43.45	-25	-18.45
n41PC3	100MHz	Mid	2690.0 - 15000.0	-38.25	-25	-13.25
1417-05		Mid	15000.0 - 27000.0	-51.05	-25	-26.05
		High	30.0 - 2496.0	-41.85	-25	-16.85
		High	2715.0 - 15000.0	-37.74	-25	-12.74
		High	15000.0 - 27000.0	-51.01	-25	-26.01

Table 7 23. Conducted Spurious Emission Results - NR - Ant1

FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 74 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 74 01 125
© 2024 ELEMENT			V11.1 08/28/2023

NR Band n41 – Ant1


Plot 7-96. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel – Ant1)

Plot 7-97. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel – Ant1)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 75 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 15 UL 123
© 2024 ELEMENT	•		V11.1 08/28/2023

Plot 7-98. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel – Ant1)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 76 of 100		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 76 of 123		
© 2024 ELEMENT			V11.1 08/28/2023		

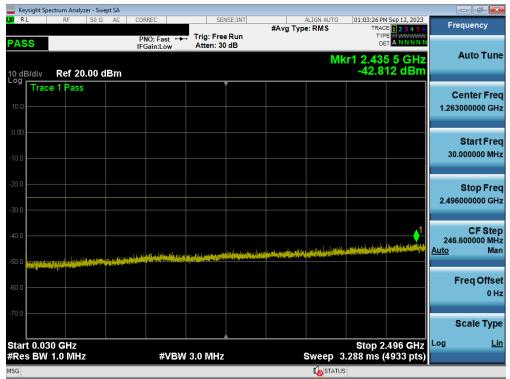
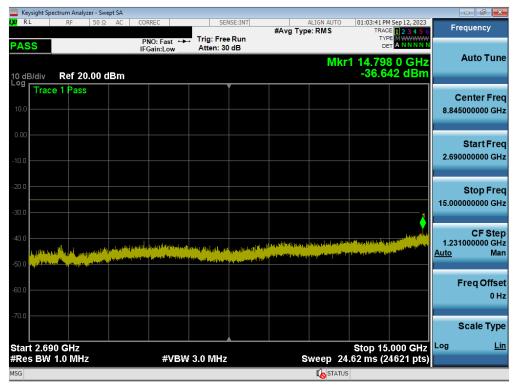

Mode	Bandwidth	Channel	Range [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]
		Low	30.0 - 2475.0	-44.37	-25	-19.37
		Low	2690.0 - 15000.0	-40.72	-25	-15.72
		Low	15000.0 - 27000.0	-49.41	-25	-24.41
LTE-B41		Mid	30.0 - 2500.0	-42.81	-25	-17.81
PC3	20MHz	Mid	2690.0 - 15000.0	-36.64	-25	-11.64
F C J		Mid	15000.0 - 27000.0	-47.20	-25	-22.20
		High	30.0 - 2500.0	-39.80	-25	-14.80
		High	2690.0 - 15000.0	-40.70	-25	-15.70
		High	15000.0 - 27000.0	-49.73	-25	-24.73
		Low	30.0 - 2475.0	-42.74	-25	-17.74
		Low	2496.0 - 2690.0	15.44	-	-
		Low	2690.0 - 15000.0	-38.20	-25	-13.20
		Low	15000.0 - 27000.0	-51.33	-25	-26.33
LTE-B41		Mid	30.0 - 2496.0	-42.56	-25	-17.56
PC3	20+20MHz	Mid	2496.0 - 2690.0	16.49	-	-
ULCA		Mid	2690.0 - 15000.0	-38.00	-25	-13.00
ULUA		Mid	15000.0 - 27000.0	-51.53	-25	-26.53
		High	30.0 - 2496.0	-42.51	-25	-17.51
		High	2496.0 - 2690.0	15.26	-	-
		High	2715.0 - 15000.0	-37.50	-25	-12.50
		High	2690.0 - 15000.0	-51.16	-25	-26.16

Table 7-10. Conducted Spurious Emission Results – LTE – Ant2


FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 77 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 11 OF 125
© 2024 ELEMENT	•		V11.1 08/28/2023

LTE Band 41(PC3) – Ant2


Plot 7-99. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel – Ant2)

Plot 7-100. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel – Ant2)

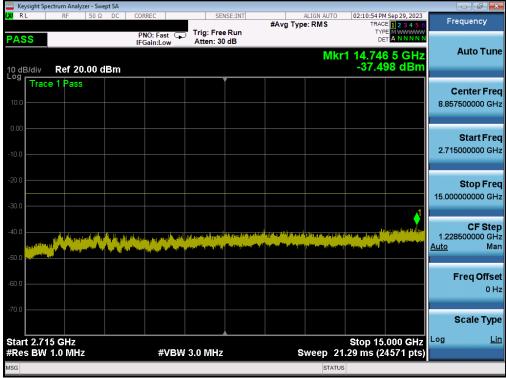
FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 78 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 70 01 125
© 2024 ELEMENT	-		V11.1 08/28/2023

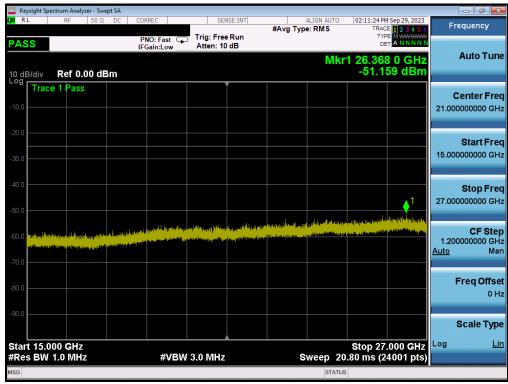
Plot 7-101. Conducted Spurious Plot (LTE Band 41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel - Ant2)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 79 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 79 01 125
© 2024 ELEMENT	•		V11.1 08/28/2023

ULCA - LTE B41(PC3) - Ant2

- F								pt SA	n Analyzer - Swe	ysight Spectru	🖌 Key
Frequency	PM Sep 29, 2023		ALIGN AUTO e: RMS	#Avg Typ	ISE:INT	SEN	REC	DC COF	RF 50 Ω	L	X/RL
		TYF DE		• ,.		Trig: Free Atten: 30	IO: Fast 🖵 Sain:Low			s	PAS
Auto Tur	74 5 GHz 510 dBm	42.5 kr1	Mk					Bm	ef 20.00 d	3/div	0 dE
Center Fre						· · · · · · · · · · · · · · · · · · ·			Pass	Trace 1	. ^{og}
1.263000000 GI											10.0
											0.00
Start Fre 30.000000 Mi											
											0.0
Stop Fre											20.0
2.496000000 GI											30.0
CF Ste	1										10.0
246.600000 Mi Auto Mi		and south the factor	وملافته والالأرام و	فليترا ومتنا ومتناو	alah museeda		L an a s				+U.U -
			parama padalar	an analah ara bina bi	- Hills - Address				interest and a state of the sta	ता है जात्रता लाग साह सन्दर्भ जात्रता लाग साह	50.0
Freq Offs											0.0
01											10.0
Scale Typ											'0.0
Log <u>L</u>	2.450 GHZ	Stop 2								t 0.030 (
	; (5161 pts)	3.096 ms (Sweep 3			3.0 MHz	#VBW		MHz	s BW 1.(Res


Plot 7-102. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant2)


Plot 7-103. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant2)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 90 of 122
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 80 of 123
© 2024 ELEMENT	·		V11.1 08/28/2023

Plot 7-104. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant2)

Plot 7-105. Conducted Spurious Plot (ULCA LTE B41(PC3) - 20MHz QPSK - RB Size 1, RB Offset 0 - High Channel Ant2)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 81 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage of 01 125
© 2024 ELEMENT			V11.1 08/28/2023

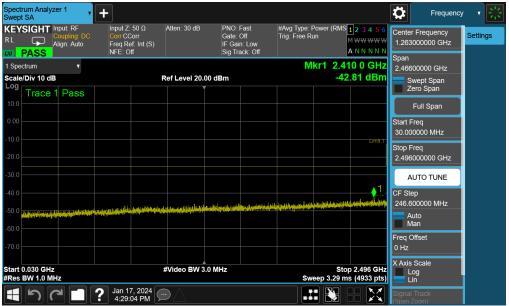

Mode	Bandwidth	Channel	Range [MHz]	Level [dBm]	Limit [dBm]	Margin [dB]
		Low	30.0 - 2470.0	-43.17	-25	-18.17
		Low	2690.0 - 15000.0	-37.99	-25	-12.99
		Low	15000.0 - 27000.0	-52.32	-25	-27.32
NR-		Mid	30.0 - 2496.0	-43.14	-25	-18.14
n41PC3	100MHz	Mid	2690.0 - 15000.0	-38.06	-25	-13.06
11417-05		Mid	15000.0 - 27000.0	-51.49	-25	-26.49
		High	30.0 - 2496.0	-42.81	-25	-17.81
		High	2715.0 - 15000.0	-37.65	-25	-12.65
		High	15000.0 - 27000.0	-52.01	-25	-27.01

Table 7 23. Conducted Spurious Emission Results – NR – Ant2

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 82 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 62 01 125
© 2024 ELEMENT			V11.1 08/28/2023

NR Band n41 – Ant2

Plot 7-106. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel – Ant2)

Plot 7-107. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel - Ant2)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 92 of 122
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 83 of 123
© 2024 ELEMENT	•	•	V11.1 08/28/2023

Plot 7-108. Conducted Spurious Plot (NR Band n41 - 100MHz QPSK - RB Size 1, RB Offset 0 - High Channel – Ant2)

FCC ID: A3LSMS928JPN	PART 27 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 84 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 64 01 125
© 2024 ELEMENT			V11.1 08/28/2023

7.5 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The minimum permissible attenuation level for Band 30 is > 43 + 10 log10 (P[Watts] at 2300-2305MHz & 2345-2360MHz, > 55 + 10 log10 (P[Watts]) at 2320-2324MHz & 2341-2345MHz, > 61 + 10 log10 (P[Watts]) at 2324-2328MHz & 2337-2341MHz, > 67 + 10 log10 (P[Watts]) at 2288-2292MHz & 2328-2337MHz, and > 70 + 10 log10 (P[Watts]) at frequencies < 2288MHz & >2365MHz.

The minimum permissible attenuation level for Band 41 is as noted in the Test Notes on the following page.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dage 95 of 122
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 85 of 123
© 2024 ELEMENT	·	· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

- Per 27.53(m) for operations in the BRS/EBS bands, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 86 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage of OF 125
© 2024 ELEMENT			V11.1 08/28/2023

Mode	Bandwidth	Channel	Test Case	Level [dBm]	Limit [dBm]	Margin [dB]
	20 MHz	Low	Band Edge	-28.90	-25	-3.90
		High	Band Edge	-41.05	-25	-16.05
	PC3 10 MHz	Low	Band Edge	-27.39	-25	-2.39
LTE B41		High	Band Edge	-39.54	-25	-14.54
PC3		Low	Band Edge	-26.13	-25	-1.13
		High	Band Edge	-37.01	-25	-12.01
		Low	Band Edge	-19.90	-13	-6.90
5 MHz		High	Band Edge	-18.80	-10	-8.80
LTE-B41	20+20MHz	Low	Band Edge	-33.38	-25	-8.38
PC3 ULCA		High	Band Edge	-21.58	-13	-8.58

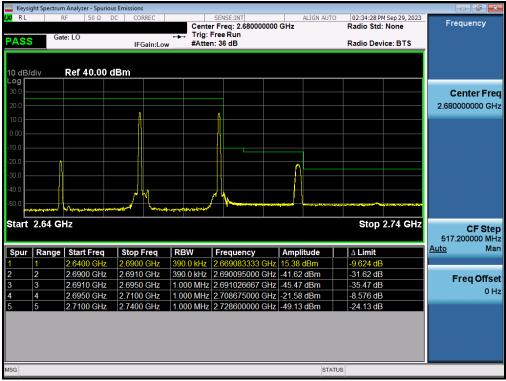
Table 7-11. Conducted Band Edge Test Results – LTE – Ant1

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 87 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage of OI 125
© 2024 ELEMENT			V11.1 08/28/2023

LTE Band 41(PC3) – Ant1

Plot 7-109. Lower ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant1)

Plot 7-110. Upper ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant1)


FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 88 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 88 01 123
© 2024 ELEMENT			V/11 1 08/28/2023

ULCA - LTE Band 41(PC3) – Ant1

ASS	RF 50 Ω	us Emissions					
PASS		AC CORREC	Cente	SENSE:INT Freq: 2.50600000	ALIGN AUTO	04:22:49 PM Oct 03, 2023 Radio Std: None	Frequency
'ASS	Gate: LO		Trig:	Free Run	0112		
		IFGain:Lo	w #Atte	n: 36 dB		Radio Device: BTS	-
I0 dB/div	Ref 40.00	dBm					
-og							
30.0							Center Free
20.0							2.506000000 GH
10.0							
0.00							
10.0				<mark>/</mark>			
20.0							
30.0			~				
40.0							
50.0		and the second	manual mountain			/ h.	
				and a state of the	warder and the outer and the second		
Start 2.44	46 GHZ					Stop 2.546 GHz	CF Step 10.000000 MHz
Spur Rai	nge Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	Auto Mar
1 1	2.4460 GHz	2.4905 GHz	1.000 MHz	2.486198333 GHz	-33.38 dBm	-8.385 dB	
	0.1005.011	2.4950 GHz	1.000 MHz	2.490890000 GHz		-37.19 dB	
2 2	2.4905 GHz						Ered Offse
	2.4905 GHz 2.4950 GHz 2.4960 GHz	2.4960 GHz 2.5460 GHz		2.495448333 GHz 2.525916667 GHz		-40.56 dB -15.56 dB	Freq Offset

Plot 7-111. Lower ACP Plot - A-MPR (ULCA LTE B41(PC3) - 20MHz QPSK - Full RB - Ant1)

Plot 7-112. Upper ACP Plot (ULCA LTE B41(PC3) - 20MHz QPSK - Full RB - Ant1)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 90 of 122
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 89 of 123
© 2024 ELEMENT			V11 1 08/28/2023

Mode	Bandwidth	Channel	Test Case	Level [dBm]	Limit [dBm]	Margin [dB]
	100 MHz	Low	Band Edge	-37.89	-25	-12.89
		High	Band Edge	-29.96	-10	-19.96
	90 MHz	Low	Band Edge	-37.17	-25	-12.17
	90 10112	High	Band Edge	-30.40	-10	-20.40
	80 MHz	Low	Band Edge	-36.76	-25	-11.76
		High	Band Edge	-33.14	-10	-23.14
	70 MHz	Low	Band Edge	-36.41	-25	-11.41
		High	Band Edge	-36.94	-10	-26.94
	60 MHz 50 MHz 1 40 MHz	Low	Band Edge	-36.76	-25	-11.76
		High	Band Edge	-27.74	-10	-17.74
		Low	Band Edge	-40.41	-25	-15.41
NR n41		High	Band Edge	-36.20	-10	-26.20
		Low	Band Edge	-42.49	-25	-17.49
		High	Band Edge	-34.90	-10	-24.90
	30 MHz	Low	Band Edge	-41.11	-25	-16.11
		High	Band Edge	-49.51	-25	-24.51
	25 MHz	Low	Band Edge	-39.80	-25	-14.80
		High	Band Edge	-39.78	-25	-14.78
		Low	Band Edge	-37.23	-25	-12.23
	20 MHz	High	Band Edge	-45.86	-25	-20.86
		Low	Band Edge	-38.37	-25	-13.37
	15 MHz	High	Band Edge	-47.75	-25	-22.75
	10 MHz	Low	Band Edge	-37.83	-25	-12.83
		High	Band Edge	-34.38	-10	-24.38

Table 7-12. Conducted Band Edge Results – NR – Ant1

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 90 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 90 01 123
© 2024 ELEMENT	•	·	V11.1 08/28/2023

NR Band n41 – ANT 1

Plot 7-113. Lower ACP Plot (NR Band n41 - 70MHz DFT-s-QPSK – Full RB Configuration)

S All Range Graph S All Range	MHz
og 000 000 000 000 000 000 000	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
D00 Freq Offset 0 Hz 000	
art 2.603 GHz Stop 2.778 GHz	
All Range Table	
· · ·	
Measure Trace 1 Trace Type Trace Average (Active)	
Spur Range Start Freq Stop Freq RBW Frequency Amplitude ∆Limit 1 1 2.6025 GHz 2.6900 GHz 750.0 kHz 2.622112069 GHz 0.059 dBm -24.94 dB	
2 2 26900 GHz 26910 GHz 1000 MHz 2629000000 GHz 36.94 dBm 26.94 dB	
3 3 2.6910 GHz 2.6950 GHz 1.000 MHz 2.691000000 GHz -40.07 dBm -30.07 dB	
4 4 2.6950 GHz 2.7600 GHz 1.000 MHz 2.696007752 GHz -43.22 dBm -30.22 dB	
5 5 2.7600 GHz 2.7775 GHz 1.000 MHz 2.760875000 GHz -54.01 dBm -29.01 dB	

Plot 7-114. Upper ACP Plot (NR Band n41 - 70MHz DFT-s-QPSK – Full RB Configuration)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 01 of 102
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 91 of 123
© 2024 ELEMENT	•		V11.1 08/28/2023

Mode	Bandwidth	Channel	Test Case	Level [dBm]	Limit [dBm]	Margin [dB]
	LTE B41 PC3 20 MHz 15 MHz 10 MHz	Low	Band Edge	-27.48	-25	-2.48
		High	Band Edge	-31.10	-13	-18.10
		Low	Band Edge	-28.56	-25	-3.56
LTE B41		High	Band Edge	-40.09	-25	-15.09
PC3		Low	Band Edge	-27.36	-25	-2.36
		High	Band Edge	-39.02	-25	-14.02
		Low	Band Edge	-17.81	-13	-4.81
5 MH		High	Band Edge	-23.90	-10	-13.90
LTE-B41	20+20MHz	Low	Band Edge	-29.59	-25	-4.59
PC3 ULCA		High	Band Edge	-36.92	-25	-11.92

Table 7-13. Conducted Band Edge Test Results – LTE – Ant2

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 92 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 92 01 123
© 2024 ELEMENT			V11.1 08/28/2023

LTE Band 41(PC3) – Ant2

		n Analyzer - Sp											
XI R	6	RF 50 Ω ite: LO	2 AC	CORREC	••••	Trig: I	SENSE:INT r Freq: 2.5 Free Run	0100000		ALIGN AUT	Radio S	5 PM Sep 12, 2023	Frequency
PAS	5			IFGain:L	.ow	#Atter	n: 26 dB				Radio D	evice: BTS	
10 d	B/div	Ref 40.0	0 dBm	1									
Log													
													Center Fre
												_	2.501000000 GH
		pites were apply a subject of the second and the second									γ		
-20.0													
			a a state of the s	k olohigi ji	unu publik		<u></u>					the marking has a few	
		ashaw burn			ulititus		1412 ⁴					and an a start of the	
		, Juli											
Sta	t 2.484 (GHz									Stop	2.509 GHz	CF Ster
													15.000000 MH
Spu	ır Range	Start Fre	a St	op Freq	RB	W	Frequen	ICV.	Ampli	itude	∆ Limi	t	Auto Ma
1	1	2.4835 G		905 GHz			2.490266				-2.365		
2	2	2.4905 GI		950 GHz			2.494760				-11.96		
3	3	2.4950 GI		960 GHz			2.495935				-16.32		Freq Offse
4	4	2.4960 GI	Hz 2.5	085 GHz			2.501000				-19.21		0 H
ISG						_	_			I STA	TUS		

Plot 7-115. Lower ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant2)

Plot 7-116. Upper ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB - Ant2)

FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 93 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	
© 2024 ELEMENT	•		V11.1 08/28/2023

ULCA - LTE Band 41(PC3) – Ant2

	ght Spectrum																		
X/RL			0Ω	DC	COR	REC		Talan	er Fre		60000	00 GHz	ALIGN A	UTO	02:14:3 Radio \$		ep 29, 2023 Ione	F	equency
PASS	Gat	e: LO			IFG	ain:Lo	w 📩	#Atte							Radio I	Devic	e: BTS		
10 dB/	div	Ref 40	0.00	dBrr	1														
Log 30.0																			Center Fre
20.0																			6000000 GH
10.0																			
0.00										P. A. Property	auga and		n processo	-		<u>m</u>			
-10.0										[<u> </u>				
-20.0																			
-30.0																			
-40.0						and a start of the			•							- then	1999-19-19-18-1812		
-50.0				فمعمدين															
Start	2.446 0	SHz													Sto	0 2.5	46 GHz	51	CF Ste
Spur	Range	Start F	req	St	top F	req	R	BW	Fre	quenc	:y	Am	plitude		∆ Lim	it		<u>Auto</u>	Ma
1		2.4460			1905			000 MHz	_						-4.586				
2	2	2.4905			1950			00 MHz							-16.21				Freq Offse
3 4	3	2.4950 2.4960			1960 5460			0.0 kHz 0.0 kHz							-19.48				. он
+	4	2.4900	GHZ	2.5	J400	GHZ	39	0.0 KHZ	2.0	290000	55 GI	12 2.20			-22.19	uD			

Plot 7-117. Lower ACP Plot (ULCA LTE B41(PC3) - 20MHz QPSK - Full RB - Ant2)

Plot 7-118. Upper ACP Plot (ULCA LTE B41(PC3) - 20MHz QPSK - Full RB - Ant2)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Report S/N: Test Dates: EUT Type:		Page 94 of 123				
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 94 01 125				
© 2024 ELEMENT	<u>.</u>		V11.1 08/28/2023				

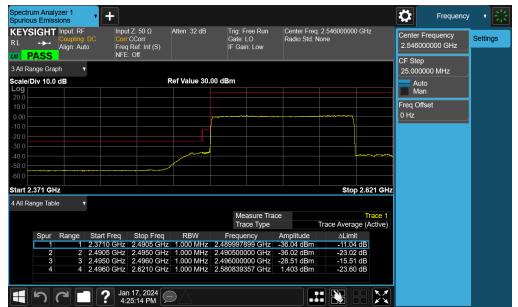

Mode	Bandwidth	Channel	Test Case	Level	Limit	Margin
		Low	Dond Edge	[dBm]	[dBm]	[dB]
	100 MHz	Low	Band Edge	-36.04	-25	-11.04
		High	Band Edge	-29.46	-10	-19.46
	90 MHz	Low	Band Edge	-38.45	-25	-13.45
		High	Band Edge	-31.72	-10	-21.72
	80 MHz	Low	Band Edge	-37.61	-25	-12.61
		High	Band Edge	-33.04	-10	-23.04
		Low	Band Edge	-37.51	-25	-12.51
	70 MHz	High	Band Edge	-35.59	-10	-25.59
		Low	Band Edge	-41.88	-25	-16.88
NR n41	60 MHz	High	Band Edge	-27.64	-10	-17.64
		Low	Band Edge	-44.16	-25	-19.16
	50 MHz	High	Band Edge	-49.32	-25	-24.32
INFX (14-1		Low	Band Edge	-43.32	-25	-18.32
	40 MHz	High	Band Edge	-34.10	-10	-24.10
		Low	Band Edge	-43.23	-25	-18.23
	30 MHz	High	Band Edge	-47.48	-25	-22.48
		Low	Band Edge	-43.63	-25	-18.63
	25 MHz	High	Band Edge	-43.60	-25	-18.80
		Low	Band Edge	-39.15	-25	-14.15
	20 MHz	High	Band Edge	-45.33	-25	-20.33
		Low	Band Edge	-45.68	-25	-20.68
	15 MHz	High	Band Edge	-45.51	-25	-20.51
		Low	Band Edge	-44.99	-25	-19.99
	10 MHz	High	Band Edge	-32.81	-10	-22.81

Table 7-14. Conducted Band Edge Results - NR - Ant2

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT					
Test Report S/N:	Test Dates:	EUT Type:	Page 95 of 123				
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 95 01 125				
© 2024 ELEMENT	•	·	V11.1 08/28/2023				

NR Band n41 – Ant2

Plot 7-119. Lower ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK – Full RB Configuration – Ant2)

Plot 7-120. Upper ACP Plot (NR Band n41 - 100MHz CP-OFDM-QPSK – Full RB Configuration – Ant2)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 06 of 122	
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 96 of 123	
© 2024 ELEMENT			V11.1 08/28/2023	

7.6 Radiated Power (EIRP)

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.2.4.4

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration.
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize.

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 07 of 122	
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 97 of 123	
© 2024 ELEMENT			V11.1 08/28/2023	

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

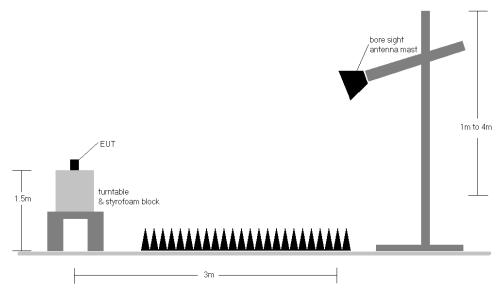


Figure 7-5. Radiated Test Setup >1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 98 of 123
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 96 01 125
© 2024 ELEMENT			V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
N	QPSK	2506.0	н	140	253	4.17	1 / 50	17.36	21.53	0.142	33.01	-11.48
MHz	QPSK	2593.0	н	136	247	4.00	1 / 50	18.87	22.87	0.194	33.01	-10.14
20 4	QPSK	2680.0	н	129	245	4.50	1/0	19.45	23.95	0.248	33.01	-9.06
7	16-QAM	2680.0	Н	129	245	4.50	1/0	18.55	23.05	0.202	33.01	-9.96
N	QPSK	2503.5	Н	140	253	4.17	1 / 74	17.19	21.36	0.137	33.01	-11.65
MHz	QPSK	2593.0	Н	136	247	4.00	1/0	18.70	22.70	0.186	33.01	-10.31
15 1	QPSK	2682.5	Н	129	245	4.51	1/0	19.24	23.75	0.237	33.01	-9.26
-	16-QAM	2682.5	Н	129	245	4.51	1/0	18.68	23.19	0.209	33.01	-9.82
N	QPSK	2501.0	н	140	253	4.17	1/0	17.10	21.27	0.134	33.01	-11.74
MHz	QPSK	2593.0	Н	136	247	4.00	1/0	18.58	22.58	0.181	33.01	-10.43
0	QPSK	2685.0	Н	129	245	4.52	1 / 25	19.29	23.81	0.241	33.01	-9.20
-	16-QAM	2685.0	Н	129	245	4.52	1 / 25	18.22	22.74	0.188	33.01	-10.27
N	QPSK	2498.5	Н	140	253	4.16	1 / 24	17.30	21.46	0.140	33.01	-11.55
MHz	QPSK	2593.0	Н	136	247	4.00	1/0	18.72	22.72	0.187	33.01	-10.29
2 ≤	QPSK	2687.5	Н	129	245	4.53	1/0	19.35	23.88	0.244	33.01	-9.13
	16-QAM	2687.5	Н	129	245	4.53	1/0	18.32	22.85	0.193	33.01	-10.16
20 MHz	WCP	2680.0	Н	116	154	4.50	1 / 50	18.00	22.50	0.178	33.01	-10.51

Table 7-121. EIRP Data (LTE Band 41(PC3)) – Ant1

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT					
Test Report S/N:	t S/N: Test Dates: EUT Type:		Page 99 of 123				
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 99 01 123				
© 2024 ELEMENT	•		V11.1 08/28/2023				

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
	π/2 BPSK	2546.01	Н	101	337	4.19	1 / 136	15.95	20.14	0.103	33.01	-12.87
N	π/2 BPSK	2592.99	Н	105	337	4.00	1 / 136	16.98	20.98	0.125	33.01	-12.03
MHz	π/2 BPSK	2640.00	Н	100	338	4.31	1/1	17.58	21.89	0.155	33.01	-11.12
100	QPSK	2546.01 2592.99	н	101	337	4.19	1 / 136	16.04	20.23	0.105	33.01	-12.78
¥	QPSK QPSK	2592.99 2640.00	H	105 100	337 338	4.00 4.31	1/136	17.00 17.70	21.00 22.01	0.126	33.01 33.01	-12.01 -11.00
-	16-QAM	2640.00	н	100	338	4.31	1/1	15.70	20.01	0.100	33.01	-13.00
	π/2 BPSK	2541.00	Н	100	337	4.19	1 / 122	15.69	19.88	0.097	33.01	-13.13
-	π/2 BPSK	2592.99	Н	105	337	4.00	1 / 122	16.74	20.74	0.119	33.01	-12.27
¥	π/2 BPSK	2644.98	н	100	338	4.36	1 / 122	17.40	21.76	0.150	33.01	-11.25
ZHM 06	QPSK	2541.00	Н	101	337	4.19	1 / 122	15.89	20.08	0.102	33.01	-12.93
)6	QPSK	2592.99	н	105	337	4.00	1 / 122	16.83	20.83	0.121	33.01	-12.18
	QPSK 10 OM	2644.98	н	100	338	4.36	1 / 122	17.57	21.93	0.156	33.01	-11.08
	16-QAM	2644.98 2536.02	H	100 101	338 337	4.36	1 / 122	16.00	20.35	0.108	33.01	-12.66 -13.03
-	π/2 BPSK π/2 BPSK	2536.02	н	101	337	4.19 4.00	1 / 108	15.79 16.64	19.98 20.64	0.099	33.01 33.01	-13.03
현	π/2 BPSK	2649.99	н	100	338	4.40	1 / 215	17.49	21.89	0.155	33.01	-11.12
80 MHz	QPSK	2536.02	Н	101	337	4.19	1 / 108	16.06	20.25	0.106	33.01	-12.76
80	QPSK	2592.99	н	105	337	4.00	1 / 108	16.96	20.96	0.125	33.01	-12.05
-	QPSK	2649.99	Н	100	338	4.40	1 / 215	17.44	21.84	0.153	33.01	-11.18
	16-QAM	2649.99	Н	100	338	4.40	1 / 215	15.62	20.02	0.100	33.01	-12.99
	π/2 BPSK	2531.01	Н	101	337	4.18	1 / 187	15.91	20.09	0.102	33.01	-12.92
N	π/2 BPSK	2592.99	н	105	337	4.00	1/94	16.79	20.79	0.120	33.01	-12.22
MHz	π/2 BPSK	2655.00	H	100	338	4.42	1/94	17.50	21.92	0.155	33.01	-11.09
N 02	QPSK QPSK	2531.01 2592.99	H	101 105	337 337	4.18 4.00	1 / 187 1 / 94	16.18 16.50	20.37 20.49	0.109	33.01 33.01	-12.64 -12.52
~	QPSK QPSK	2592.99 2655.00	H	105	337	4.00	1/94	16.50	20.49	0.112	33.01	-12.52
	16-QAM	2655.00	н	100	338	4.42	1 / 94	16.07	21.55	0.143	33.01	-11.46
	π/2 BPSK	2526.00	н	100	337	4.18	1 / 160	15.85	20.03	0.101	33.01	-12.98
	π/2 BPSK	2592.99	Н	105	337	4.00	1/1	16.74	20.74	0.119	33.01	-12.27
뷮	π/2 BPSK	2659.98	н	100	338	4.43	1/1	17.50	21.93	0.156	33.01	-11.08
60 MHz	QPSK	2526.00	Н	101	337	4.18	1 / 160	16.15	20.33	0.108	33.01	-12.68
60	QPSK	2592.99	Н	105	337	4.00	1/1	16.64	20.63	0.116	33.01	-12.38
	QPSK	2659.98	Н	100	338	4.43	1/1	17.53	21.97	0.157	33.01	-11.04
	16-QAM	2592.99	Н	105	337	4.00	1/1	16.28	20.27	0.107	33.01	-12.74
-	π/2 BPSK	2521.02	н	101	337 337	4.18	1/66	16.05	20.23	0.106	33.01	-12.78
N	π/2 BPSK π/2 BPSK	2592.99 2664.99	H H	105 100	337	4.00 4.45	1 / 66 1 / 66	17.19 17.69	21.18 22.14	0.131 0.164	33.01 33.01	-11.83 -10.87
MHz	QPSK	2521.02	Н	100	337	4.43	1/66	16.30	20.48	0.104	33.01	-12.53
201	QPSK	2592.99	н	105	337	4.00	1/1	16.73	20.40	0.112	33.01	-12.33
	QPSK	2664.99	н	100	338	4.45	1 / 66	18.20	22.65	0.184	33.01	-10.36
	16-QAM	2664.99	н	100	338	4.45	1 / 66	15.59	20.04	0.101	33.01	-12.97
	π/2 BPSK	2516.01	Н	101	337	4.18	1 / 104	15.79	19.97	0.099	33.01	-13.04
	π/2 BPSK	2592.99	н	105	337	4.00	1 / 104	17.16	21.16	0.131	33.01	-11.85
MHz	π/2 BPSK	2670.00	H	100	338	4.47	1 / 104	17.85	22.32	0.170	33.01	-10.69
40 N	QPSK	2516.01	н	101	337	4.18	1 / 104	16.60	20.78	0.120	33.01	-12.23
4	QPSK OBSK	2592.99	н	105	337	4.00	1 / 104	17.72	21.72	0.149	33.01	-11.29
-	QPSK 16-QAM	2670.00 2592.99	H	100 105	338 337	4.47 4.00	1 / 104 1 / 104	17.06 16.12	21.53 20.12	0.142	33.01 33.01	-11.48 -12.89
	π/2 BPSK	2511.00	н	100	337	4.18	1/1	15.88	20.06	0.100	33.01	-12.95
-	π/2 BPSK	2592.99	н	105	337	4.00	1/1	17.06	21.06	0.128	33.01	-11.95
보	π/2 BPSK	2674.98	н	100	338	4.48	1/1	17.59	22.07	0.161	33.01	-10.94
30 MHz	QPSK	2511.00	Н	101	337	4.18	1/1	16.84	21.02	0.126	33.01	-11.99
30	QPSK	2592.99	н	105	337	4.00	1/1	16.56	20.56	0.114	33.01	-12.45
-	QPSK	2674.98	Н	100	338	4.48	1/1	17.85	22.34	0.171	33.01	-10.67
	16-QAM	2592.99	н	105	337	4.00	1/1	16.13	20.13	0.103	33.01	-12.88
	TT/2 BPSK	2508.50 2592.99	Н	101	337	4.17	1/1	15.54	19.72	0.094	33.01	-13.29
ы	π/2 BPSK π/2 BPSK	2592.99 2677.48	H H	105 100	337 338	4.00 4.49	1 / 39 1 / 39	16.56 17.02	20.56 21.51	0.114 0.142	33.01 33.01	-12.45 -11.50
MHz	QPSK	2508.50	H	100	338	4.49	1/39	17.02	21.51 20.03	0.142	33.01	-11.50
25	QPSK	2592.99	н	105	337	4.00	1/39	16.79	20.79	0.120	33.01	-12.22
	QPSK	2677.48	Н	100	338	4.49	1 / 39	17.14	21.63	0.146	33.01	-11.38
	16-QAM	2592.99	Н	105	337	4.00	1 / 39	16.01	20.01	0.100	33.01	-13.00
	TT/2 BPSK	2506.02	Н	101	337	4.17	1/1	15.92	20.09	0.102	33.01	-12.92
N	π/2 BPSK	2592.99	Н	105	337	4.00	1/1	17.52	21.52	0.142	33.01	-11.49
MHz	π/2 BPSK	2679.99	н	100	338	4.50	1/1	17.19	21.70	0.148	33.01	-11.31
20 M	QPSK OBSK	2506.02	Н	101	337	4.17	1/1	15.48	19.65	0.092	33.01	-13.36
2	QPSK QPSK	2592.99 2679.99	н	105 100	337	4.00 4.50	1/1	17.35 17.04	21.35 21.54	0.136 0.143	33.01 33.01	-11.66 -11.47
	16-QAM	2679.99	H	100	338 338	4.50	1/1	17.04	21.54	0.143	33.01 33.01	-11.47
	TT/2 BPSK	2503.50	Н	100	337	4.30	1/1	14.55	20.33	0.080	33.01	-12.68
	π/2 BPSK	2592.99	н	105	337	4.00	1/1	17.45	21.45	0.140	33.01	-11.56
₽	π/2 BPSK	2682.48	Н	100	338	4.51	1/36	17.49	22.00	0.159	33.01	-11.01
15 MHz	QPSK	2503.50	Н	101	337	4.17	1/1	16.46	20.63	0.116	33.01	-12.38
15	QPSK	2592.99	Н	105	337	4.00	1/1	16.36	20.36	0.109	33.01	-12.65
	QPSK	2682.48	Н	100	338	4.51	1/36	17.97	22.48	0.177	33.01	-10.53
	16-QAM	2682.48	н	100	338	4.51	1/36	15.41	19.92	0.098	33.01	-13.09
	TT/2 BPSK	2501.01	н	101	337	4.17	1 / 12	16.32	20.49	0.112	33.01	-12.52
N	π/2 BPSK π/2 BPSK	2592.99 2685.00	H H	105 100	337 338	4.00 4.52	1/1 1/12	17.00 18.23	21.00 22.74	0.126	33.01 33.01	-12.01 -10.27
Η	QPSK	2501.01	H	100	338	4.52	1/12	18.23	20.23	0.188	33.01	-10.27 -12.78
10 MHz	QPSK	2592.99	Н	101	337	4.17	1/12	16.06	20.23	0.105	33.01	-12.78
	QPSK	2685.00	н	100	338	4.52	1/12	18.00	22.52	0.130	33.01	-10.49
	16-QAM	2592.99	H	105	337	4.00	1/1	16.45	20.45	0.111	33.01	-12.56
100 MH-	QPSK (CP-OFDM)	#N/A	H	100	338	4.31	1/1	15.92	20.23	0.106	33.01	-12.78
100 MHz	QPSK (WCP)	2640.00	Н	100	338	4.31	1 / 136	16.16	20.47	0.112	33.01	-12.54
	-	Tabla 7	7_127		P Dat	o (NE	P Band	n41) -	- Ant′	1 -		

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT						
Test Report S/N:	Test Dates: EUT Type:		Page 100 of 123					
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 100 01 125					
© 2024 ELEMENT			V11.1 08/28/2023					

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
N	QPSK	2506.0	н	120	321	4.17	1/0	19.44	23.61	0.230	33.01	-9.40
MHz	QPSK	2593.0	Н	145	315	4.00	1/0	19.07	23.07	0.203	33.01	-9.94
20 M	QPSK	2680.0	Н	131	310	4.50	1/0	19.01	23.51	0.224	33.01	-9.50
2	16-QAM	2506.0	Н	120	321	4.17	1/0	18.21	22.38	0.173	33.01	-10.63
N	QPSK	2503.5	Н	120	321	4.17	1 / 74	19.75	23.92	0.247	33.01	-9.09
MHz	QPSK	2593.0	Н	145	315	4.00	1 / 37	18.82	22.82	0.192	33.01	-10.19
15 1	QPSK	2682.5	Н	131	310	4.51	1 / 74	18.96	23.47	0.223	33.01	-9.54
-	16-QAM	2682.5	Н	131	310	4.51	1 / 74	17.94	22.45	0.176	33.01	-10.56
N	QPSK	2501.0	Н	120	321	4.17	1 / 49	19.53	23.70	0.235	33.01	-9.31
MHz	QPSK	2593.0	Н	145	315	4.00	1 / 49	18.76	22.76	0.189	33.01	-10.25
10 1	QPSK	2685.0	Н	131	310	4.52	1 / 49	18.93	23.45	0.221	33.01	-9.56
-	16-QAM	2685.0	Н	131	310	4.52	1 / 49	17.67	22.18	0.165	33.01	-10.83
N	QPSK	2498.5	Н	120	321	4.16	1 / 24	18.91	23.07	0.203	33.01	-9.94
MHz	QPSK	2593.0	н	145	315	4.00	1 / 24	19.34	23.34	0.216	33.01	-9.67
5 N	QPSK	2687.5	Н	131	310	4.53	1 / 24	18.57	23.10	0.204	33.01	-9.91
	16-QAM	2687.5	Н	131	310	4.53	1 / 24	18.52	23.05	0.202	33.01	-9.96
20 MHz	WCP	2506.0	Н	153	303	4.17	1/0	18.30	22.47	0.177	33.01	-10.54

Table 7-123. EIRP Data (LTE Band 41(PC3)) – Ant2

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 101 of 123			
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 101 01 125			
© 2024 ELEMENT	· ·	·	V11.1 08/28/2023			

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
	π/2 BPSK	2546.01	Н	100	128	4.19	1 / 136	18.37	22.56	0.180	33.01	-10.45
₽	π/2 BPSK π/2 BPSK	2592.99 2640.00	H	100 115	113 116	4.00 4.31	1 / 136 1 / 1	18.20 19.11	22.20 23.42	0.166	33.01 33.01	-10.81 -9.59
100 MHz	QPSK	2546.01	н	100	128	4.19	1 / 136	18.43	22.62	0.220	33.01	-10.39
8	QPSK	2592.99	н	100	113	4.00	1 / 136	18.37	22.37	0.173	33.01	-10.53
-	QPSK	2640.00	Н	115	116	4.31	1/1	18.82	23.13	0.206	33.01	-9.88
	16-QAM	2640.00	н	115	116	4.31	1/1	17.11	21.42	0.139	33.01	-11.59
	π/2 BPSK	2541.00	Н	100	128	4.19	1 / 122	18.30	22.49	0.177	33.01	-10.52
	π/2 BPSK	2592.99	H	100	113	4.00	1 / 122	18.09	22.08	0.162	33.01	-10.93
Ŧ	π/2 BPSK	2644.98	Н	115	116	4.36	1 / 122	19.29	23.64	0.231	33.01	-9.37
90 MHz	QPSK	2541.00	н	100	128	4.19	1 / 122	18.68	22.87	0.194	33.01	-10.14
6	QPSK	2592.99	н	100	113	4.00	1 / 122	18.57	22.57	0.181	33.01	-10.44
	QPSK	2644.98	н	115	116	4.36	1 / 122	18.79	23.14	0.206	33.01	-9.87
	16-QAM	2541.00 2536.02	H	100	128 128	4.19 4.19	1 / 122	17.66 18.36	21.85	0.153	33.01 33.01	-11.16 -10.47
	π/2 BPSK π/2 BPSK	2536.02	н	100	128	4.19	1/108	18.36	22.54	0.180	33.01	-10.47
м	π/2 BPSK	2649.99	н	115	116	4.40	1/1	19.14	22.40	0.174	33.01	-9.47
80 MHz	QPSK	2536.02	н	100	128	4.19	1 / 108	18.83	23.01	0.220	33.01	-10.00
n de la comunicación de la comun	QPSK	2592.99	н	100	113	4.00	1/1	18.47	22.47	0.200	33.01	-10.54
~	QPSK	2649.99	н	115	116	4.40	1/1	18.43	22.83	0.192	33.01	-10.18
	16-QAM	2536.02	н	100	128	4.19	1 / 108	17.84	22.02	0.159	33.01	-10.99
	π/2 BPSK	2531.01	Н	100	128	4.18	1/94	18.44	22.62	0.183	33.01	-10.39
	π/2 BPSK	2592.99	н	100	113	4.00	1/1	18.01	22.01	0.159	33.01	-11.00
₽	π/2 BPSK	2655.00	Н	115	116	4.42	1 / 187	19.08	23.50	0.224	33.01	-9.51
MHz	QPSK	2531.01	н	100	128	4.18	1/94	18.96	23.14	0.206	33.01	-9.87
20	QPSK	2592.99	Н	100	113	4.00	1/1	18.66	22.66	0.184	33.01	-10.35
	QPSK	2655.00	Н	115	116	4.42	1 / 187	18.58	23.00	0.199	33.01	-10.01
	16-QAM	2655.00	Н	115	116	4.42	1 / 187	17.59	22.01	0.159	33.01	-11.01
	π/2 BPSK	2526.00	Н	100	128	4.18	1 / 160	18.51	22.69	0.186	33.01	-10.32
	π/2 BPSK	2592.99	Н	100	113	4.00	1 / 81	17.92	21.92	0.155	33.01	-11.10
문	π/2 BPSK	2659.98	Н	115	116	4.43	1 / 160	18.69	23.12	0.205	33.01	-9.89
60 MHz	QPSK	2526.00	н	100	128	4.18	1 / 160	18.76	22.94	0.197	33.01	-10.07
õ	QPSK	2592.99	н	100	113	4.00	1 / 81	17.77	21.77	0.150	33.01	-11.24
	QPSK	2659.98	н	115	116	4.43	1 / 160	18.74	23.18	0.208	33.01	-9.83
	16-QAM	2659.98	Н	115	116	4.43	1 / 160	16.59	21.02	0.126	33.01	-11.99
	T/2 BPSK	2521.02	н	100	128	4.18	1 / 131	18.63	22.81	0.191	33.01	-10.20
N	π/2 BPSK π/2 BPSK	2592.99 2664.99	H	100 115	113 116	4.00 4.45	1/1 1/66	18.36 19.45	22.36 23.90	0.172 0.245	33.01 33.01	-10.65 -9.11
ΗW	QPSK	2521.02	н	100	128	4.43	1 / 131	18.32	22.50	0.243	33.01	-10.51
50 MHz	QPSK	2592.99	н	100	113	4.00	1/1	18.63	22.63	0.170	33.01	-10.31
40	QPSK	2664.99	н	115	115	4.45	1/66	19.29	23.74	0.237	33.01	-9.27
	16-QAM	2664.99	Н	115	116	4.45	1 / 66	16.84	21.29	0.135	33.01	-11.72
	π/2 BPSK	2516.01	н	100	128	4.18	1/1	18.61	22.79	0.190	33.01	-10.22
	π/2 BPSK	2592.99	н	100	113	4.00	1/1	18.43	22.42	0.175	33.01	-10.59
부	π/2 BPSK	2670.00	н	115	116	4.47	1 / 53	18.87	23.34	0.216	33.01	-9.67
40 MHz	QPSK	2516.01	н	100	128	4.18	1/1	18.26	22.43	0.175	33.01	-10.58
40	QPSK	2592.99	н	100	113	4.00	1/1	18.66	22.66	0.184	33.01	-10.35
	QPSK	2670.00	Н	115	116	4.47	1 / 53	19.08	23.54	0.226	33.01	-9.47
	16-QAM	2670.00	Н	115	116	4.47	1 / 53	16.83	21.30	0.135	33.01	-11.71
	π/2 BPSK	2511.00	Н	100	128	4.18	1/1	18.72	22.90	0.195	33.01	-10.11
	π/2 BPSK	2592.99	Н	100	113	4.00	1/1	17.80	21.80	0.151	33.01	-11.22
30 MHz	π/2 BPSK	2674.98	Н	115	116	4.48	1/39	19.01	23.50	0.224	33.01	-9.51
N N	QPSK	2511.00	н	100	128	4.18	1/1	18.19	22.37	0.172	33.01	-10.64
ĕ	QPSK	2592.99	н	100	113	4.00	1/1	18.11	22.11	0.162	33.01	-10.90
	QPSK 16-QAM	2674.98 2674.98	H	115 115	116 116	4.48	1/39	19.82 16.10	24.30 20.58	0.269	33.01 33.01	-8.71
		2508.50	н	100	128	4.46		18.10				
	π/2 BPSK π/2 BPSK	2508.50	н	100	128	4.17	1/39	18.10	22.28 21.71	0.169 0.148	33.01 33.01	-10.73 -11.30
Ņ	π/2 BPSK π/2 BPSK	2592.99 2677.48	н	100	113	4.00	1/1	17.71	21.71	0.148	33.01	-11.30
25 MHz	QPSK	2508.50	н	100	128	4.49	1/39	18.20	22.38	0.173	33.01	-10.63
25	QPSK	2592.99	н	100	113	4.00	1/3	18.09	22.09	0.173	33.01	-10.03
	QPSK	2677.48	н	115	116	4.49	1/39	18.28	22.77	0.189	33.01	-10.24
	16-QAM	2677.48	Н	115	116	4.49	1/39	17.05	21.55	0.143	33.01	-11.46
	TT/2 BPSK	2506.02	Н	100	128	4.17	1 / 39	18.76	22.93	0.197	33.01	-10.08
	π/2 BPSK	2592.99	Н	100	113	4.00	1/1	18.32	22.32	0.171	33.01	-10.69
Ŧ	π/2 BPSK	2679.99	Н	115	116	4.50	1/1	18.86	23.36	0.217	33.01	-9.65
20 MH2	QPSK	2506.02	Н	100	128	4.17	1 / 39	17.98	22.15	0.164	33.01	-10.86
20	QPSK	2592.99	н	100	113	4.00	1/1	18.63	22.63	0.183	33.01	-10.38
	QPSK	2679.99	н	115	116	4.50	1/1	18.51	23.01	0.200	33.01	-10.00
	16-QAM	2679.99	Н	115	116	4.50	1/1	17.33	21.83	0.152	33.01	-11.18
	π/2 BPSK	2503.50	н	100	128	4.17	1/39	18.17	22.34	0.171	33.01	-10.67
N	π/2 BPSK	2592.99	н	100	113	4.00	1/39	18.11	22.11	0.163	33.01	-10.90
Ť	π/2 BPSK QPSK	2682.48 2503.50	H	115	116 128	4.51 4.17	1 / 76 1 / 39	18.96 17.89	23.47 22.07	0.223	33.01 33.01	-9.54 -10.94
15 MHz	QPSK QPSK	2503.50	н	100 100	128	4.17 4.00	1/39	17.89	22.07	0.161 0.151	33.01	-10.94
	QPSK	2682.48	н	115	113	4.00	1/39	17.79	21.79	0.151	33.01	-11.22
	16-QAM	2682.48	н	115	116	4.51	1 / 76	17.02	22.71	0.187	33.01	-10.30
	π/2 BPSK	2501.01	н	100	128	4.17	1/1	18.30	22.47	0.142	33.01	-10.54
	π/2 BPSK	2592.99	н	100	113	4.00	1/1	17.94	21.94	0.156	33.01	-11.07
₽	π/2 BPSK	2685.00	н	115	116	4.52	1/1	19.18	23.69	0.234	33.01	-9.32
10 MHz	QPSK	2501.01	н	100	128	4.17	1/1	18.68	22.86	0.193	33.01	-10.15
9	QPSK	2592.99	Н	100	113	4.00	1/1	18.92	22.92	0.196	33.01	-10.09
	QPSK	2685.00	н	115	116	4.52	1/1	18.29	22.81	0.191	33.01	-10.20
	16-QAM	2685.00	Н	115	116	4.52	1/1	16.50	21.02	0.126	33.01	-11.99
100 MHz	QPSK (CP-OFDM)	#N/A	н	115	116	4.31	1/1	16.76	21.07	0.128	33.01	-11.94
TOO MHZ	QPSK (WCP)	2640.0	Н	115	116	4.31	1/1	18.35	22.66	0.185	33.01	-10.35
								18.35 1 n41)			33.01	-1

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 102 of 122		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 102 of 123		
© 2024 ELEMENT	<u>.</u>	•	V11.1 08/28/2023		

7.7 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 – Section 5.5.4

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT				
Test Report S/N:	Test Dates:	EUT Type:	Page 102 of 102			
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 103 of 123			
© 2024 ELEMENT V11.1 08/28/2023						

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

The EUT and measurement equipment were set up as shown in the diagram below.

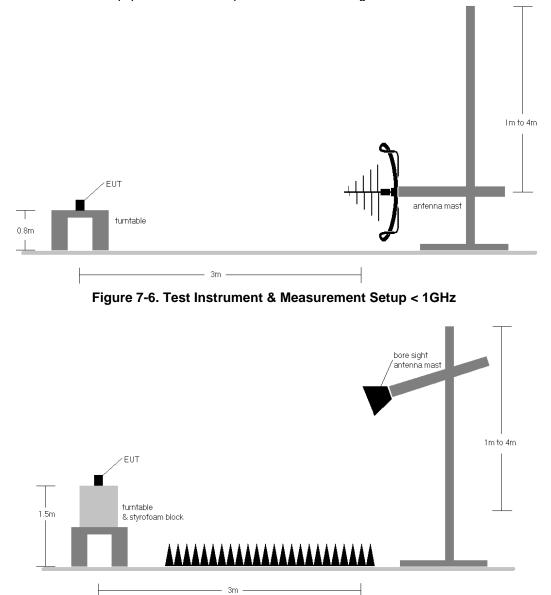
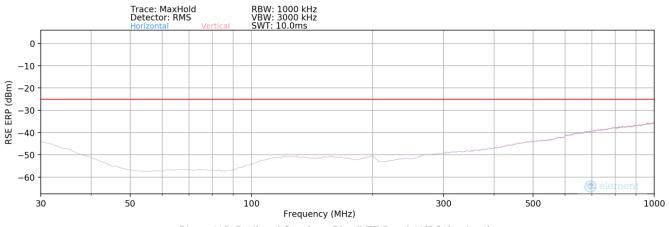
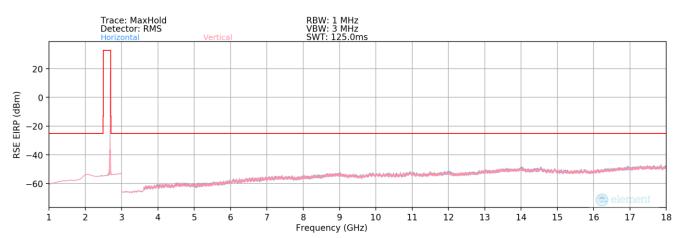


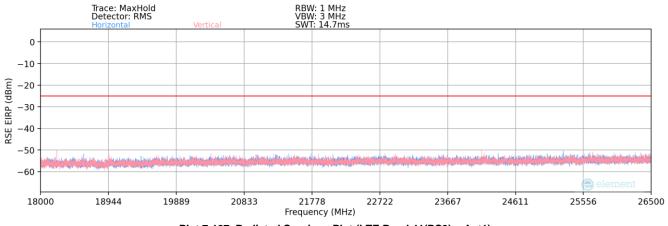
Figure 7-7. Test Instrument & Measurement Setup >1 GHz

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 104 of 122		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 104 of 123		
© 2024 ELEMENT	•		V11.1 08/28/2023		


Test Notes

- 1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
 - a) $E(dB\mu V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB\mu V/m) + 20logD 104.8; where D is the measurement distance in meters.$
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst-case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested with its standard battery.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 7) ULCA spurious emissions measurements were evaluated for the two contiguous channels using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 8) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.
- 9) Spurious emission in EN-DC Operating mode with Sub 6GHz NR carrier as well as an LTE carrier (anchor) has been checked and was found to not to be the worst case. Spurious emissions from the NR carrier device are subject to the rules under which the NR carrier operates. Spurious emissions caused by the LTE carrier must meet the requirements of the rules under which the LTE carrier operates.


FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 105 of 123		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 105 01 125		
© 2024 ELEMENT			V11.1 08/28/2023		


LTE Band 41(PC3) – Ant1

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 106 of 123		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 100 01 125		
© 2024 ELEMENT			V11.1 08/28/2023		

Frequency (MHz)	Ant. Pol.	Antenna	Turntable Azimuth	
RB / Offset:	set: 1 / 50			
Frequency (MHz):				
Bandwidth (MHz):		20		

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5012.00	V	-	-	-77.02	3.17	33.15	-62.11	-25.00	-37.11
7518.00	V	-	-	-76.61	8.91	39.30	-55.96	-25.00	-30.96
10024.00	V	-	-	-78.46	11.10	39.64	-55.62	-25.00	-30.62

Table 7-15. Radiated Spurious Data (LTE Band 41(PC3) - Low Channel - Ant1)

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ana Le	
RB / Offset	1 / 50				
Frequency (MHz)	: 2593.0				
Bandwidth (MHz)	20				

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.00	V	326	366	-73.97	3.49	36.52	-58.73	-25.00	-33.73
7779.00	V	-	-	-77.31	8.22	37.91	-57.35	-25.00	-32.35
10372.00	V	-	-	-77.26	11.63	41.37	-53.89	-25.00	-28.89
12965.00	V	208	329	-78.95	14.13	42.18	-53.08	-25.00	-28.08
15558.00	V	-	-	-79.67	13.98	41.31	-53.95	-25.00	-28.95

Table 7-16. Radiated Spurious Data (LTE Band 41(PC3) – Mid Channel – Ant1)

Bandwidth (MHz):	20
Frequency (MHz):	2680.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.00	V	222	358	-74.50	3.36	35.86	-59.40	-25.00	-34.40
8040.00	V	-	-	-77.69	9.00	38.31	-56.95	-25.00	-31.95
10720.00	V	-	-	-78.93	11.91	39.98	-55.28	-25.00	-30.28
13400.00	V	298	342	-78.98	14.98	43.00	-52.25	-25.00	-27.25
16080.00	V	-	-	-79.98	14.59	41.61	-53.64	-25.00	-28.64

Table 7-17. Radiated Spurious Data (LTE Band 41(PC3) – High Channel – Ant1)

Bandwidth (MHz):				
Frequency (MHz):				
RB / Offset: 1 / 50				
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth	Analyze Level
	[]		[degree]	[dBm]

Table 7-18. Radiated Spurious Data (LTE Band 41(PC3) – High Channel – Ant1)

Field

Strength [dBµV/m]

43.19

AFCL

[dB/m]

20.00

ERP Spurious

Emission Level

[dBm]

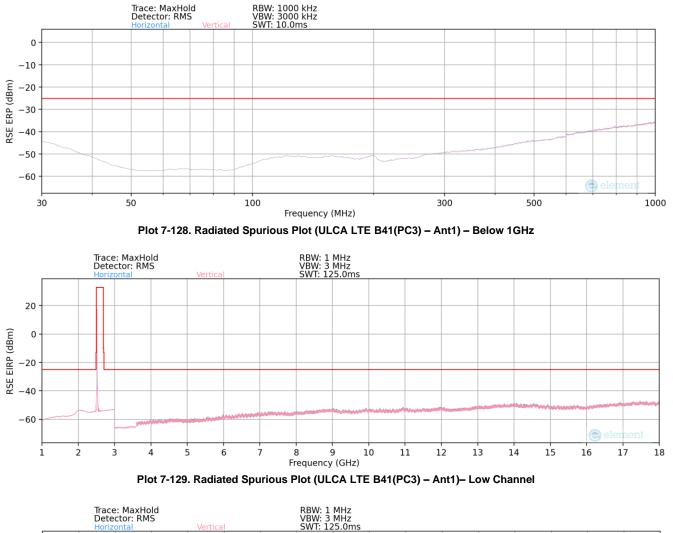
-54.22

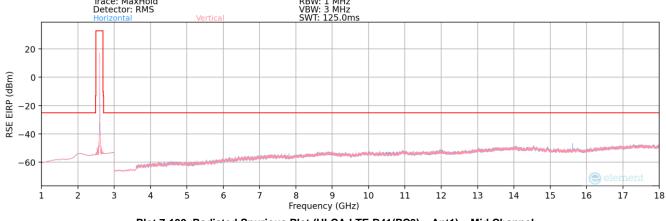
Limit

[dBm]

-25.00

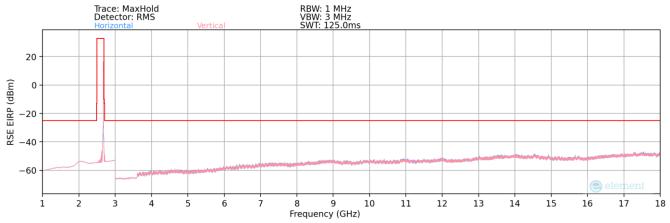
Margin

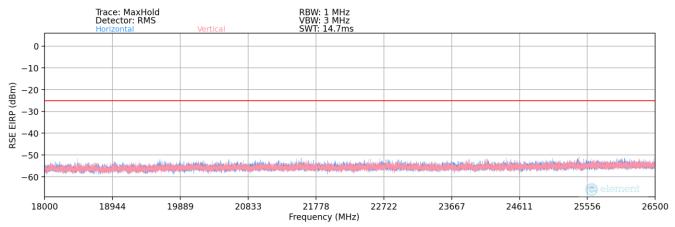

[dB]


-29.22

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 107 of 123		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 107 01 123		
© 2024 ELEMENT	•		V11.1 08/28/2023		

ULCA - LTE B41(PC3) - Ant1




Plot 7-130. Radiated Spurious Plot (ULCA LTE B41(PC3) – Ant1) – Mid Channel

FCC ID: A3LSMS928JPN		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Page 108 of 123	
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	- 2/2/2024 Portable Handset		
© 2024 ELEMENT			V11.1 08/28/2023	

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2506.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2525.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5031.80	V	271	349	-61.55	3.17	48.62	-46.64	-25.00	-21.64
7547.70	V	288	349	-61.19	8.91	54.72	-40.54	-25.00	-15.54
10063.60	V	187	21	-62.74	11.10	55.36	-39.90	-25.00	-14.90
12579.50	V	217	359	-62.72	12.91	57.19	-38.07	-25.00	-13.07
15095.40	V	220	357	-73.31	14.66	48.35	-46.91	-25.00	-21.91
17611.30	V	-	-	-77.80	16.72	45.92	-49.34	-25.00	-24.34
20127.20	V	-	-	-58.77	3.25	51.48	-53.32	-25.00	-28.32
22643.10	V	-	-	-59.16	4.10	51.94	-52.86	-25.00	-27.86

Table 7-19. Radiated Spurious Data (ULCA LTE B41(PC3) – Low Channel – Ant1)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 109 of 123		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 109 01 125		
© 2024 ELEMENT V11.1 08/28/202					

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2593.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2612.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5205.80	V	255	356	-60.29	3.49	50.20	-45.05	-25.00	-20.05
7808.70	V	282	347	-62.99	8.22	52.23	-43.03	-25.00	-18.03
10411.60	V	183	6	-62.60	11.63	56.03	-39.23	-25.00	-14.23
13014.50	V	208	5	-68.13	14.13	53.00	-42.26	-25.00	-17.26
15617.40	V	203	64	-67.97	13.98	53.01	-42.25	-25.00	-17.25
18220.30	V	-	-	-57.43	1.83	51.40	-53.40	-25.00	-28.40
20823.20	V	-	-	-57.84	3.60	52.75	-52.05	-25.00	-27.05
23426.10	V	-	-	-59.59	4.09	51.50	-53.30	-25.00	-28.30

Table 7-20. Radiated Spurious Data (ULCA LTE B41(PC3) – Mid Channel – Ant1)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2680.0
PCC RB / Offset:	1/0
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2660.2
SCC RB / Offset:	1 / 99

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5340.20	V	288	6	-59.39	3.36	50.97	-44.29	-25.00	-19.29
8010.30	V	275	345	-59.45	9.00	56.55	-38.71	-25.00	-13.71
10680.40	V	203	8	-64.90	11.91	54.01	-41.25	-25.00	-16.25
13350.50	V	206	347	-68.53	14.98	53.45	-41.80	-25.00	-16.80
16020.60	V	184	358	-72.99	14.59	48.60	-46.65	-25.00	-21.65
18690.70	V	-	-	-57.20	1.98	51.78	-53.02	-25.00	-28.02
21360.80	V	-	-	-58.53	3.99	52.46	-52.34	-25.00	-27.34
24030.90	V	-	-	-59.38	4.07	51.69	-53.11	-25.00	-28.11

Table 7-21. Radiated Spurious Data (ULCA LTE B41(PC3) – High Channel – Ant1)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2680.0
PCC RB / Offset:	1/0
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2660.2
SCC RB / Offset:	1 / 99
SCC Frequency (MHz):	2660.2

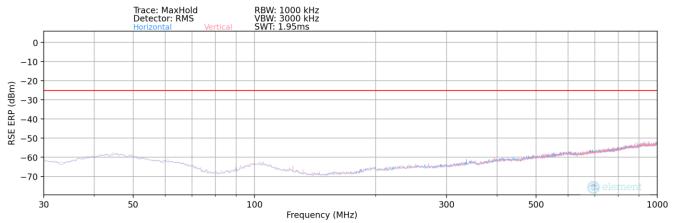
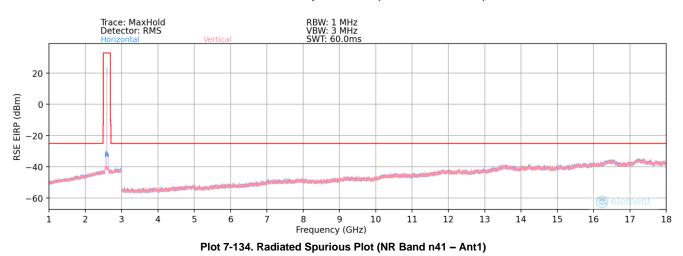
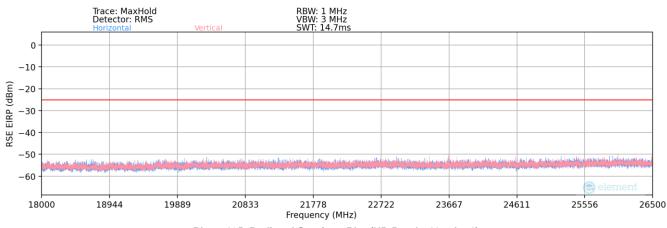

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
888.60	V	-	-	-97.05	31.09	41.04	-56.37	-25.00	-31.37

Table 7-22. Radiated Spurious Data (ULCA LTE B41(PC3) – High Channel – Ant1)


FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 110 of 123		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Fage 110 01 125		
© 2024 ELEMENT		·	V11.1 08/28/2023		



NR Band n41 – Ant1

FCC ID: A3LSMS928JPN		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 111 of 122		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 111 of 123		
© 2024 ELEMENT			V11.1 08/28/2023		

Bandwidth (MHz):	100
Frequency (MHz):	2546.01
RB / Offset:	1 / 136

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5092.02	Н	-	-	-72.40	10.12	44.72	-50.54	-25.00	-25.54
7638.03	Н	-	-	-74.97	15.84	47.87	-47.38	-25.00	-22.38
10184.04	н	-	-	-75.86	19.71	50.85	-44.40	-25.00	-19.40

Table 7-23. Radiated Spurious Data (NR Band n41 – Low Channel – Ant1)

Bandwidth (MHz):	100
Frequency (MHz):	2592.99
RB / Offset:	1 / 136

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5185.98	н	-	-	-72.43	10.54	45.11	-50.15	-25.00	-25.15
7778.97	Н	-	-	-74.14	15.59	48.45	-46.81	-25.00	-21.81
10371.96	Н	-	-	-74.54	19.60	52.06	-43.20	-25.00	-18.20

Table 7-24. Radiated Spurious Data (NR Band n41 – Mid Channel – Ant1)

Bandwidth (MHz):	100
Frequency (MHz):	2640.00
RB / Offset:	1 / 136

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5280.00	Н	-	-	-72.56	10.33	44.77	-50.48	-25.00	-25.48
7920.00	Н	-	-	-73.45	15.63	49.18	-46.07	-25.00	-21.07
10560.00	Н	-	-	-75.25	19.99	51.74	-43.52	-25.00	-18.52

Table 7-25. Radiated Spurious Data (NR Band n41 – High Channel – Ant1)

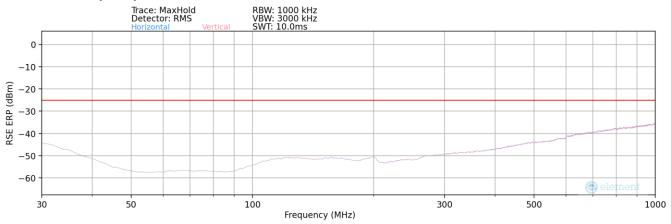
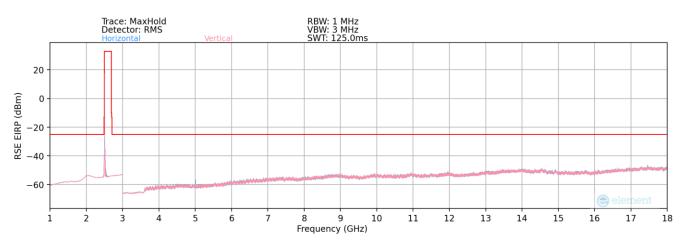
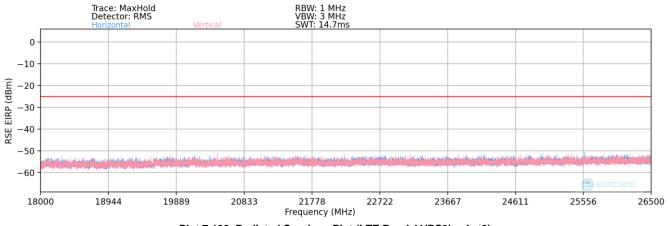

Bandwidth (MHz):		100							
Frequency (MHz):		2592.99							
RB / Offset:		1 / 136							
			Turntable	Applyzor		Field	ERP Spurious		
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Strength [dBµV/m]	Emission Level [dBm]	Limit [dBm]	Margin [dB]

Table 7-26. Radiated Spurious Data (NR Band n41 - Low Channel - Ant1)


FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 112 of 122		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 112 of 123		
© 2024 ELEMENT	· ·		V11.1 08/28/2023		


LTE Band 41(PC3) – Ant2

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 112 of 122		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 113 of 123		
© 2024 ELEMENT			V11.1 08/28/2023		

Bandwidth (MHz):	20
Frequency (MHz):	2506.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5012.00	Н	192	322	-68.75	3.17	41.42	-53.84	-25.00	-28.84
7518.00	Н	162	23	-77.75	8.91	38.16	-57.10	-25.00	-32.10
10024.00	Н	-	-	-78.17	11.10	39.93	-55.33	-25.00	-30.33
12530.00	Н	154	48	-76.33	12.91	43.58	-51.68	-25.00	-26.68
15036.00	Н	-	-	-80.77	14.66	40.89	-54.37	-25.00	-29.37
17542.00	Н	-	-	-79.27	16.72	44.45	-50.81	-25.00	-25.81

Table 7-27. Radiated Spurious Data (LTE Band 41(PC3) - Low Channel - Ant2)

Bandwidth (MHz):	20
Frequency (MHz):	2593.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.00	Н	200	330	-73.90	3.49	36.59	-58.66	-25.00	-33.66
7779.00	Н	182	356	-76.35	8.22	38.87	-56.39	-25.00	-31.39
10372.00	Н	-	-	-79.61	11.63	39.02	-56.24	-25.00	-31.24
12965.00	Н	-	-	-79.99	14.13	41.14	-54.12	-25.00	-29.12
15558.00	Н	-	-	-79.69	13.98	41.29	-53.97	-25.00	-28.97

Table 7-28. Radiated Spurious Data (LTE Band 41(PC3) - Mid Channel - Ant2)

Bandwidth (MHz):	20
Frequency (MHz):	2680.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.00	Н	179	45	-75.39	3.36	34.97	-60.29	-25.00	-35.29
8040.00	н	-	-	-77.46	9.00	38.54	-56.72	-25.00	-31.72
10720.00	Н	-	-	-79.87	11.91	39.04	-56.22	-25.00	-31.22
13400.00	Н	-	-	-79.50	14.98	42.48	-52.77	-25.00	-27.77

Table 7-29. Radiated Spurious Data (LTE Band 41(PC3) – High Channel – Ant2)

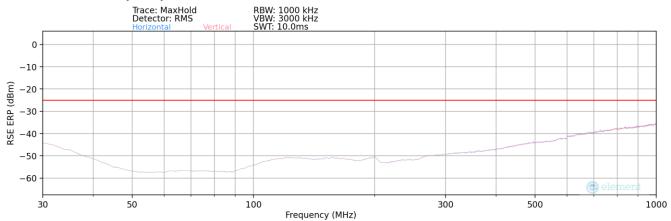
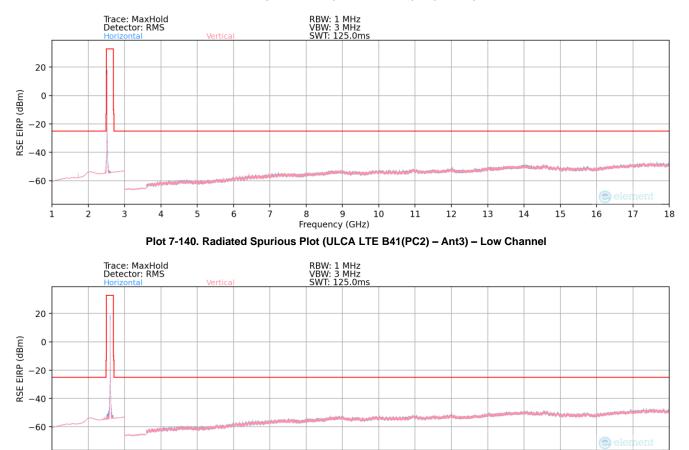
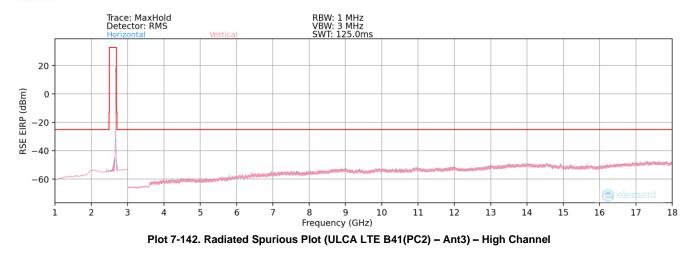
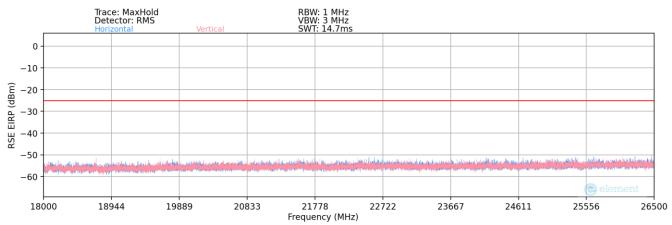

Bandwidth (MHz):		20							
Frequency (MHz):		2593.0							
RB / Offset:		1 / 50							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
200.00	Н	-	-	-86.22	20.36	41.14	-56.27	-25.00	-31.27

Table 7-30. Radiated Spurious Data (LTE Band 41(PC3) – Mid Channel – Ant2)


FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 114 of 100
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 114 of 123
© 2024 ELEMENT	-		V11.1 08/28/2023

ULCA - LTE B41(PC3) – Ant2





Frequency (GHz)

FCC ID: A3LSMS928JPN		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 115 of 122
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 115 of 123
© 2024 ELEMENT		·	V11.1 08/28/2023

Plot 7-143. Radiated Spurious Plot (ULCA LTE B41(PC3) - Ant2)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2506.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2525.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5031.80	Н	172	44	-70.77	3.17	39.40	-55.86	-25.00	-30.86
7547.70	Н	-	-	-77.10	8.91	38.81	-56.45	-25.00	-31.45
10063.60	Н	-	-	-77.44	11.10	40.66	-54.60	-25.00	-29.60
12579.50	Н	-	-	-78.02	12.91	41.89	-53.37	-25.00	-28.37

Plot 7-31. Radiated Spurious Plot (ULCA LTE B41(PC3) - Ant2 - Low Channel)

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 116 of 100		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 116 of 123		
© 2024 ELEMENT	·		V11.1 08/28/2023		

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2593.0
PCC RB / Offset:	1 / 99
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2612.8
SCC RB / Offset:	1/0

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5205.80	Н	151	47	-74.20	3.49	36.29	-58.96	-25.00	-33.96
7808.70	н	-	-	-76.68	8.22	38.54	-56.72	-25.00	-31.72
10411.60	Н	-	-	-78.39	11.63	40.24	-55.02	-25.00	-30.02
13014.50	Н	-	-	-78.49	14.13	42.64	-52.62	-25.00	-27.62

Plot 7-32. Radiated Spurious Plot (ULCA LTE B41(PC3) - Ant2 - Mid Channel)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2680.0
PCC RB / Offset:	1/0
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2660.2
SCC RB / Offset:	1 / 99

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5340.20	Н	-	-	-75.67	3.36	34.69	-60.57	-25.00	-35.57
8010.30	Н	-	-	-76.92	9.00	39.08	-56.18	-25.00	-31.18
10680.40	Н	-	-	-77.76	11.91	41.15	-54.11	-25.00	-29.11
13350.50	Н	-	-	-77.71	14.98	44.27	-50.98	-25.00	-25.98

Plot 7-33. Radiated Spurious Plot (ULCA LTE B41(PC3) - Ant2 - High Channel)

PCC Bandwidth (MHz):	20
PCC Frequency (MHz):	2680.0
PCC RB / Offset:	1/0
SCC Bandwidth (MHz):	20
SCC Frequency (MHz):	2660.2
SCC RB / Offset:	1 / 99

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
836.80	Н	-	-	-95.02	30.72	42.70	-54.71	-25.00	-29.71

Plot 7-34. Radiated Spurious Plot (ULCA LTE B41(PC3) - Ant2 - High Channel

FCC ID: A3LSMS928JPN		PART 27 MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 117 of 102		
1M2312110124-18.A3L	09/12/2023 - 2/2/2024	Portable Handset	Page 117 of 123		
© 2024 ELEMENT	•		V11.1 08/28/2023		