

FCC PART 15C TEST REPORT No. I14Z45961-SRD03

for

TCT Mobile Limited

CDMA 1X BC0/BC1/BC10 mobile phone

Model Name: B3G 1X

Marketing Name: 2017B/2017P

FCC ID: RAD506

with

Hardware Version: Revison 1.1

Software Version: 2017BVB2

Issued Date: 2014-06-18

DAR accreditation (DIN EN ISO/IEC 17025): No. D-PL-12123-01-01

FCC 2.948 Listed: No.733176
IC O.A.T.S listed: No.6629B-1

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology Shouxiang Science Building, No 51, Xueyuan Road, Haidian District, Beijing, P.R.China 100191 Tel:+86(0)10-62304633, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com. www.emcite.com

CONTENTS

1. T	EST LABORATORY	3
1.1.	TESTING LOCATION	3
1.2.	TESTING ENVIRONMENT	3
1.3.	Project data	3
1.4.	Signature	3
2. C	LIENT INFORMATION	4
2.1.	APPLICANT INFORMATION	4
2.2.	MANUFACTURER INFORMATION	4
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1.	ABOUT EUT	5
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.4.	NORMAL ACCESSORY SETTING	5
3.5.	GENERAL DESCRIPTION	5
4. R	EFERENCE DOCUMENTS	6
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	6
4.2.	REFERENCE DOCUMENTS FOR TESTING	6
5. L	ABORATORY ENVIRONMENT	7
6. SI	UMMARY OF TEST RESULTS	8
6.1.	SUMMARY OF TEST RESULTS	8
6.2.	STATEMENTS	8
7. T	EST EQUIPMENTS UTILIZED	9
ANNE	X A: MEASUREMENT RESULTS	10
A.1.	MEASUREMENT METHOD	10
A.2.	PEAK OUTPUT POWER - CONDUCTED	12
A.3.	FREQUENCY BAND EDGES - CONDUCTED.	13
A.4.	CONDUCTED EMISSION	20
A.5.	RADIATED EMISSION	45
	TIME OF OCCUPANCY (DWELL TIME)	
A.7.	20dB Bandwidth	74
A.8.	CARRIER FREQUENCY SEPARATION	80
A.9.	NUMBER OF HOPPING CHANNELS	82
A.10). AC POWERLINE CONDUCTED EMISSION	86

1. Test Laboratory

1.1. Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT

Address: Shouxiang Science Building, No 51, Xueyuan Road, Haidian District,

Beijing, P.R.China

Postal Code: 100191

Telephone: 00861062304633

Fax: 00861062304633-2504

1.2. Testing Environment

Normal Temperature: 15-35°C Extreme Temperature: -20/+55°C Relative Humidity: 20-75%

1.3. Project data

Project Leader: Zi Xiaogang
Testing Start Date: 2014-05-20
Testing End Date: 2014-06-16

1.4. Signature

Zi Xiaogang

(Prepared this test report)

孙何前

Sun Xiangqian

(Reviewed this test report)

路城村

Lu Bingsong

Deputy Director of the laboratory

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: TCT Mobile Limited

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China.

City: Shanghai Postal Code: 201203 Country: China

Contact Person: Gong Zhizhou

Contact Email zhizhou.gong@jrdcom.com

Telephone: 0086-21-61460890 Fax: 0086-21-61460602

2.2. Manufacturer Information

Company Name: TCT Mobile Limited

Address /Post: 5F, C building, No. 232, Liang Jing Road ZhangJiang High-Tech Park,

Pudong Area Shanghai, P.R. China.

City: Shanghai
Postal Code: 201203
Country: China

Telephone: 0086-21-61460890 Fax: 0086-21-61460602

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description CDMA 1X BC0/BC1/BC10 mobile phone

Model Name B3G 1X
Marketing Name 2017B
FCC ID RAD506

Frequency Band ISM 2400MHz~2483.5MHz
Type of Modulation GFSK/π/4 DQPSK/8DPSK

Number of Channels 79

Power Supply 3.7V DC by Battery

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
UT03a	270113183512242648	Revison 1.1	2017BVB2
UT04a	270113183512242649	Revison 1.1	2017BVB2

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE1 Battery / Inbuilt

AE1

Model CAB3120000C1

Manufacturer BYD
Capacitance 850 mAh
Nominal voltage 3.7 V

3.4. Normal Accessory setting

Fully charged battery should be used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of CDMA 1X BC0/BC1/BC10 mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

ino renewing accument	is noted in the occurrence for tooming.				
	FCC CFR 47, Part 15, Subpart C:				
	15.205 Restricted bands of operation;				
FCC Part15	15.209 Radiated emission limits, general requirements;	10-1-13			
	15.247 Operation within the bands 902–928MHz,				
	2400-2483.5 MHz, and 5725-5850 MHz.				
ANSI C63.10	American National Standard for Testing Unlicensed	2009			
74101 000.10	Wireless Devices				
FCC Part 2	Frequency Allocations and Radio Treaty Matters;				
10014112	General Rules and Regulations				

5. LABORATORY ENVIRONMENT

Control room / conducted chamber did not exceed following limits along the EMC testing:

	· · · · · · · · · · · · · · · · · · ·
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =20 %, Max. = 80 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber 2 (8.6 meters × 6.1 meters × 3.85 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Electrical insulation	> 2 MΩ
Ground system resistance	<1 Ω
Site voltage standing-wave ratio (S_{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 4000 MHz

Semi-anechoic chamber 2 / Fully-anechoic chamber 3 (10 meters × 6.7 meters × 6.15 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 35 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 2 MΩ
Ground system resistance	< 0.5 Ω
Normalised site attenuation (NSA)	< ±3.5 dB, 3 m distance
Site voltage standing-wave ratio (S_{VSWR})	Between 0 and 6 dB, from 1GHz to 18GHz
Uniformity of field strength	Between 0 and 6 dB, from 80 to 3000 MHz

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- F Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by TMC

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
Peak Output Power - Conducted	15.247 (b)(1)	Р
Frequency Band Edges	15.247 (d)	Р
Conducted Emission	15.247 (d)	Р
Radiated Emission	15.247, 15.205, 15.209	Р
Time of Occupancy (Dwell Time)	15.247 (a) (1)(iii)	Р
20dB Bandwidth	15.247 (a)(1)	NA
Carrier Frequency Separation	15.247 (a)(1)	Р
Number of hopping channels	15.247 (a)(b)(iii)	Р
AC Powerline Conducted Emission	15.107, 15.207	Р

Please refer to ANNEX A for detail.

The measurement is made according to ANSI C63.10.

6.2. Statements

TMC has evaluated the test cases requested by the applicant /manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

7. Test Equipments Utilized

Conducted test system

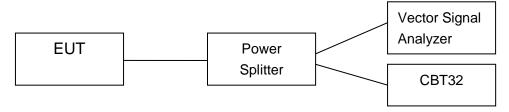
No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	2014-01-07	2015-01-06
2	Bluetooth Tester	CBT32	100649	Rohde & Schwarz	2014-02-10	2015-02-09

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration date	Calibration Due date
1	Test Receiver	ESU26	100376	Rohde & Schwarz	2013-11-06	2014-11-05
2	EMI Antenna	VULB 9163	9163 175	Schwarzbeck	2011-07-14	2014-07-13
3	EMI Antenna	3117	00119021	ETS-Lindgren	2014-04-20	2017-04-19
4	Dual-Ridge Waveguide Horn Antenna	3116	2663	ETS-Lindgren	2011-07-01	2014-06-30
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	2011-07-01	2014-06-30
6	Bluetooth Tester	CBT	100153	Rohde & Schwarz	2013-09-16	2014-09-15
7	LISN	ESH2-Z5	829991/012	Rohde & Schwarz	2014-04-15	2017-04-14
8	Loop Antenna	HFH2-Z2	829324/007	Rohde & Schwarz	2011-12-13	2014-12-12
9	Pre-amplifier(18GHz)	SCU18	1005277	Rohde & Schwarz	1	/
10	Pre-amplifier(26.5GHz)	SCU26	1006788	Rohde & Schwarz	1	/

Anechoic chamber

Fully anechoic chamber by Frankonia German.


ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

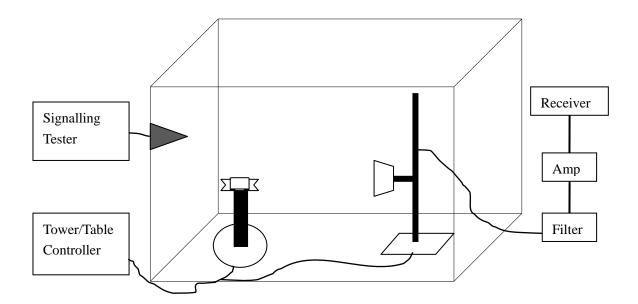
A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10


The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

A.2. Peak Output Power - Conducted

Measurement Limit:

Standard	Limit (dBm)	
FCC Part 15.247(b)(1)	< 30	

The measurement is made according to ANSI C63.10.

Test Condition

Hopping Mode	RBW	VBW	Span	Sweeptime	Detector	Trace Mode
Hopping OFF	3MHz	3MHz	5MHz	2.5ms	Peak	Max Hold

Measurement Results:

For GFSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted				
Output Power	6.34	5.91	6.12	Р
(dBm)				

Forπ/4 DQPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted				
Output Power	6.94	6.52	6.70	Р
(dBm)				

For 8DPSK

Channel	Ch 0 2402 MHz	Ch 39 2441 MHz	Ch 78 2480 MHz	Conclusion
Peak Conducted	-			
Output Power	6.23	5.83	6.01	Р
(dBm)				

Conclusion: PASS

A.3. Frequency Band Edges - Conducted

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

The measurement is made according to ANSI C63.10.

Test Condition

Hopping Mode	RBW	VBW	Span	Sweeptime	Detector	Trace Mode
Hopping OFF/ON	100KHz	300KHz	10MHz	5ms	Peak	Max Hold

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an abosolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

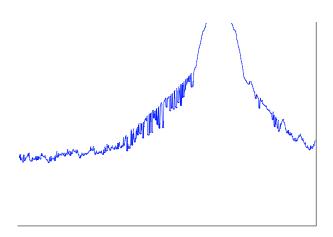
Measurement Result:

For GFSK

Channel	Hopping	Band Edge	Conclusion	
0	Hopping OFF	Fig.1	-48.78	Р
0	Hopping ON	Fig.2	-52.88	Р
70	Hopping OFF	Fig.3	-61.98	Р
78	Hopping ON	Fig.4	-62.31	Р

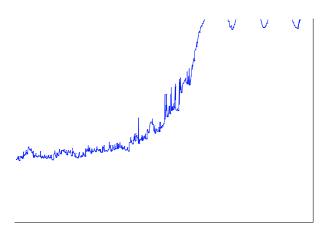
Forπ/4 DQPSK

Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.5	-49.83	Р
0	Hopping ON	Fig.6	-54.48	Р
70	Hopping OFF	Fig.7	-61.45	Р
78	Hopping ON	Fig.8	-62.41	Р


For 8DPSK

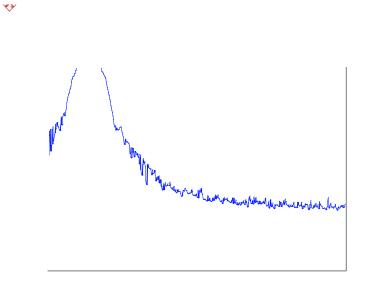
Channel	Hopping	Band Edge Power (dBc)		Conclusion
0	Hopping OFF	Fig.9	-49.81	Р
0	Hopping ON	Fig.10	-49.41	Р
70	Hopping OFF	Fig.11	-61.19	Р
78	Hopping ON	Fig.12	-61.48	Р

Conclusion: PASS
Test graphs as below



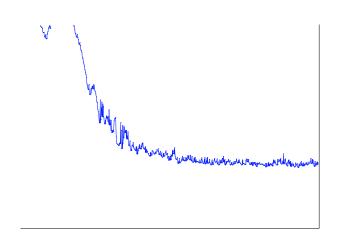
Date: 23.MAY.2014 13:26:37

Fig.1. Frequency Band Edges: GFSK, Channel 0, Hopping Off


43/

Date: 23.MAY.2014 13:28:56

Fig.2. Frequency Band Edges: GFSK, Channel 0, Hopping On



Date: 23.MAY.2014 13:26:54

Fig.3. Frequency Band Edges: GFSK, Channel 78, Hopping Off

43/

Date: 23.MAY.2014 13:30:59

Fig.4. Frequency Band Edges: GFSK, Channel 78, Hopping On

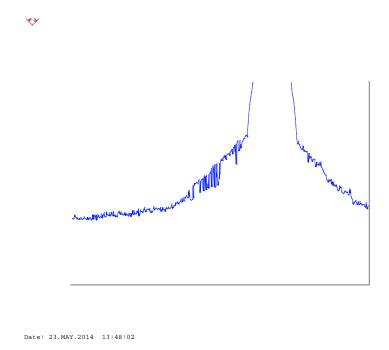


Fig.5. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping Off

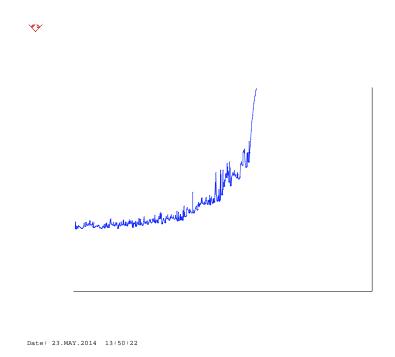


Fig.6. Frequency Band Edges: $\pi/4$ DQPSK, Channel 0, Hopping On

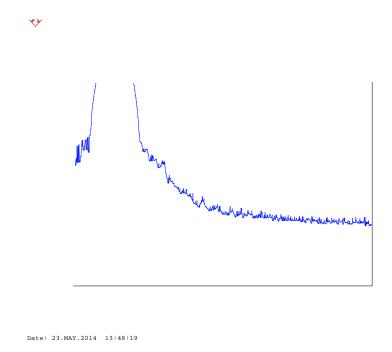


Fig.7. Frequency Band Edges: $\pi/4$ DQPSK, Channel 78, Hopping Off

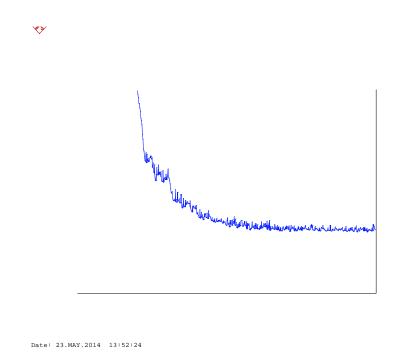
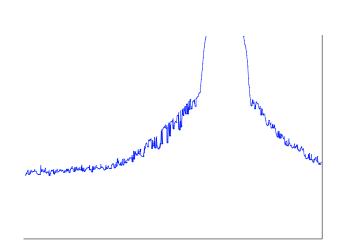
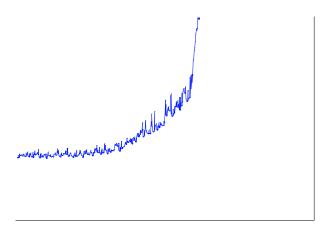



Fig.8. Frequency Band Edges: $\pi/4$ DQPSK, Channel 78, Hopping On



Date: 23.MAY.2014 14:09:22

Fig.9. Frequency Band Edges: 8DPSK, Channel 0, Hopping Off

YY

Date: 23.MAY.2014 14:11:41

Fig.10. Frequency Band Edges: 8DPSK, Channel 0, Hopping On

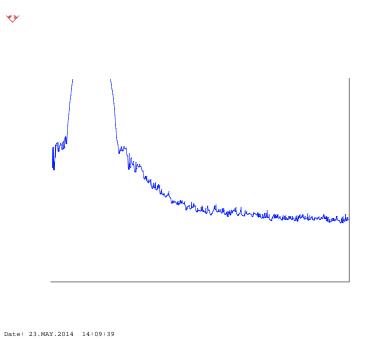


Fig.11. Frequency Band Edges: 8DPSK, Channel 78, Hopping Off

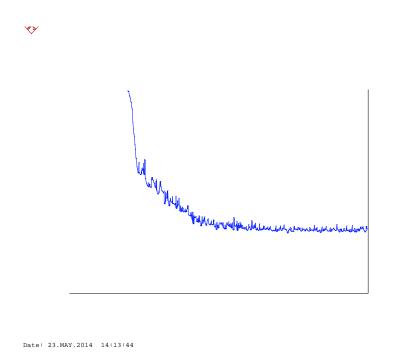


Fig.12. Frequency Band Edges: 8DPSK, Channel 78, Hopping On

A.4. Conducted Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247 (d)	20dB below peak output power in 100 kHz bandwidth	

The measurement is made according to ANSI C63.10

Test Condition

Hopping Mode	RBW	VBW	Sweeptime	Detector	Trace Mode
Hopping OFF	100KHz	300KHz	Auto	Peak	Max Hold

Measurement Procedure - Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW \geq 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Results:

For GFSK

Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.13	Р
Oh O	30 MHz ~ 1 GHz	Fig.14	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.15	Р
2.022	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р
	Center Frequency	Fig.18	Р
Oh 20	30 MHz ~ 1 GHz	Fig.19	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.20	Р
	3 GHz ~ 10 GHz	Fig.21	Р
	10 GHz ~ 26 GHz	Fig.22	Р
	Center Frequency	Fig.23	Р
Ch 70	30 MHz ~ 1 GHz	Fig.24	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.25	Р
2 100 1111 12	3 GHz ~ 10 GHz	Fig.26	Р
	10 GHz ~ 26 GHz	Fig.27	Р

For π/4 DQPSK

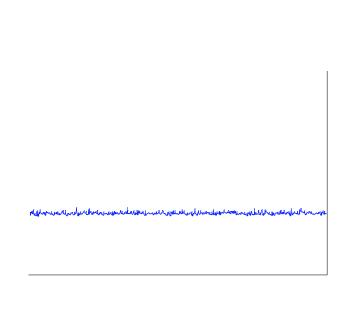
Channel	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.28	Р
Ch O	30 MHz ~ 1 GHz	Fig.29	Р
Ch 0 2402 MHz	1 GHz ~ 3 GHz	Fig.30	Р
2 102 11112	3 GHz ~ 10 GHz	Fig.31	Р
	10 GHz ~ 26 GHz	Fig.32	Р
	Center Frequency	Fig.33	Р
Ch 20	30 MHz ~ 1 GHz	Fig.34	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.35	Р
	3 GHz ~ 10 GHz	Fig.36	Р
	10 GHz ~ 26 GHz	Fig.37	Р
	Center Frequency	Fig.38	Р
Ch 70	30 MHz ~ 1 GHz	Fig.39	Р
Ch 78 2480 MHz	1 GHz ~ 3 GHz	Fig.40	Р
2 .002	3 GHz ~ 10 GHz	Fig.41	Р
	10 GHz ~ 26 GHz	Fig.42	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	Center Frequency	Fig.43	Р
2402 MHz	30 MHz ~ 1 GHz	Fig.44	Р

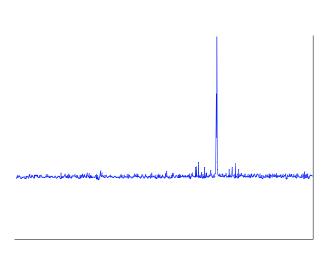
	1 GHz ~ 3 GHz	Fig.45	Р
	3 GHz ~ 10 GHz	Fig.46	Р
	10 GHz ~ 26 GHz	Fig.47	Р
Ch 39 2441 MHz	Center Frequency	Fig.48	Р
	30 MHz ~ 1 GHz	Fig.49	Р
	1 GHz ~ 3 GHz	Fig.50	Р
	3 GHz ~ 10 GHz	Fig.51	Р
	10 GHz ~ 26 GHz	Fig.52	Р
Ch 78 2480 MHz	Center Frequency	Fig.53	Р
	30 MHz ~ 1 GHz	Fig.54	Р
	1 GHz ~ 3 GHz	Fig.55	Р
	3 GHz ~ 10 GHz	Fig.56	Р
	10 GHz ~ 26 GHz	Fig.57	Р

Conclusion: PASS
Test graphs as below



Date: 23.MAY.2014 13:31:18

Fig.13. Conducted spurious emission: GFSK, Channel 0,2402MHz



Date: 23.MAY.2014 13:31:35

Fig.14. Conducted spurious emission: GFSK, Channel 0, 30MHz - 1GHz

43

Date: 23.MAY.2014 13:32:06

Fig.15. Conducted spurious emission: GFSK, Channel 0, 1GHz - 3GHz

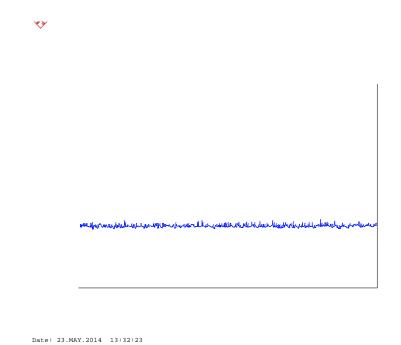
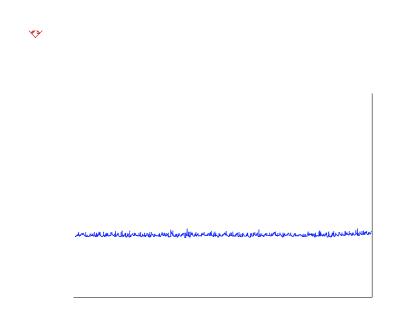



Fig.16. Conducted spurious emission: GFSK, Channel 0, 3GHz - 10GHz

Date: 23.MAY.2014 13:32:39

Fig.17. Conducted spurious emission: GFSK, Channel 0,10GHz - 26GHz

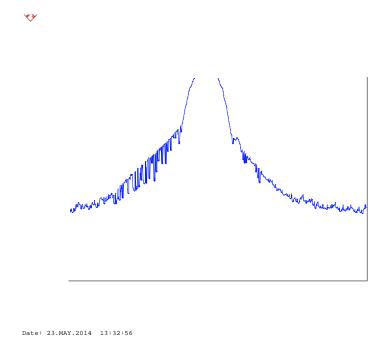


Fig.18. Conducted spurious emission: GFSK, Channel 39, 2441MHz

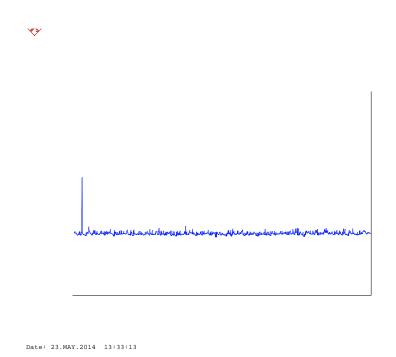


Fig.19. Conducted spurious emission: GFSK, Channel 39, 30MHz - 1GHz

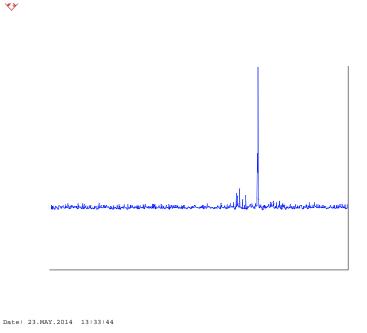


Fig.20. Conducted spurious emission: GFSK, Channel 39, 1GHz – 3GHz

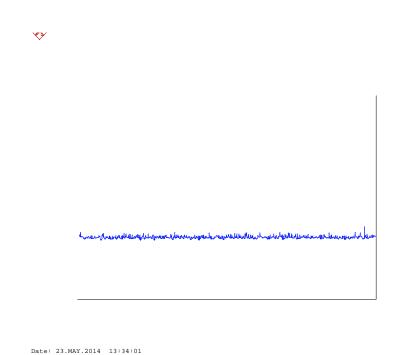


Fig.21. Conducted spurious emission: GFSK, Channel 39, 3GHz – 10GHz

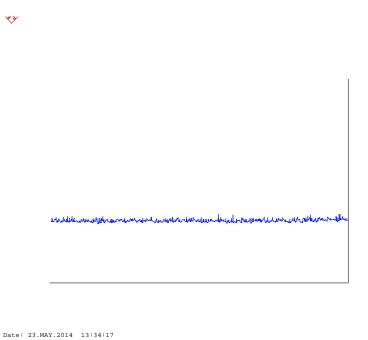
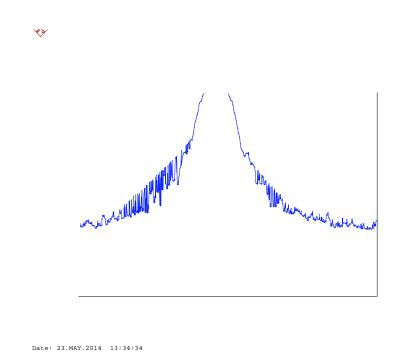
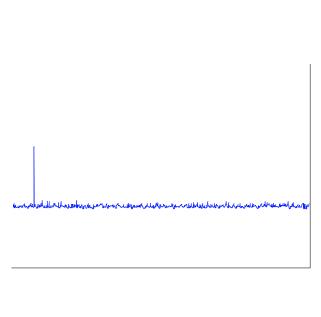
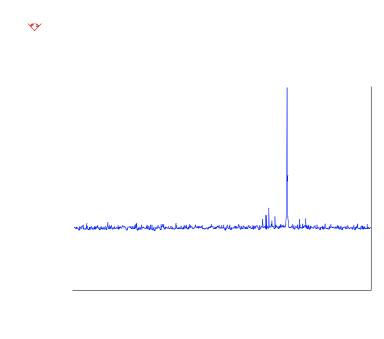


Fig.22. Conducted spurious emission: GFSK, Channel 39, 10GHz – 26GHz


Fig.23. Conducted spurious emission: GFSK, Channel 78, 2480MHz

Date: 23.MAY.2014 13:34:50

Fig.24. Conducted spurious emission: GFSK, Channel 78, 30MHz - 1GHz

Date: 23.MAY.2014 13:35:22

Fig.25. Conducted spurious emission: GFSK, Channel 78, 1GHz - 3GHz

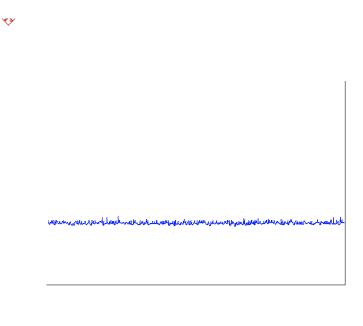
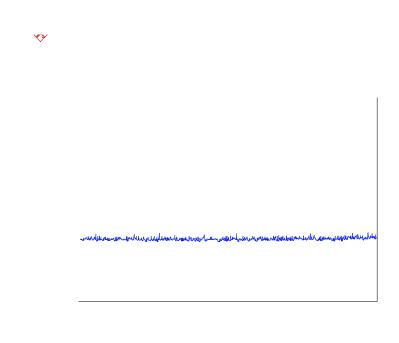



Fig.26. Conducted spurious emission: GFSK, Channel 78, 3GHz - 10GHz

Date: 23.MAY.2014 13:35:39

Date: 23.MAY.2014 13:35:55

Fig.27. Conducted spurious emission: GFSK, Channel 78, 10GHz - 26GHz

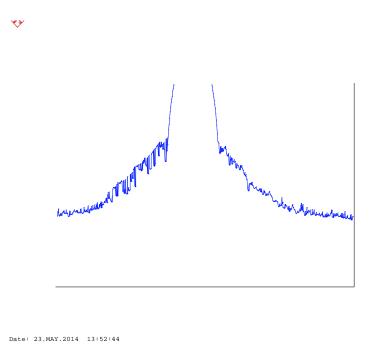


Fig.28. Conducted spurious emission: π/4 DQPSK, Channel 0,2402MHz

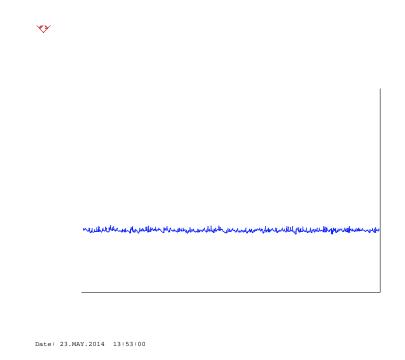


Fig.29. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 30MHz - 1GHz

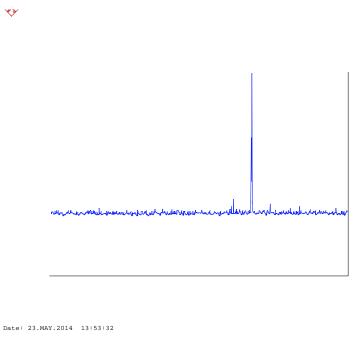


Fig.30. Conducted spurious emission: π/4 DQPSK, Channel 0, 1GHz - 3GHz

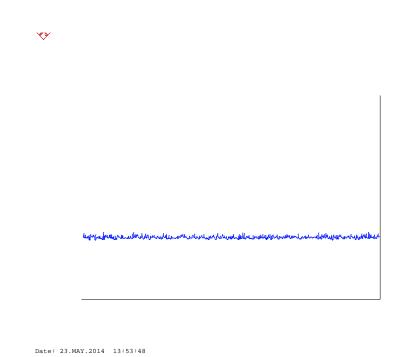
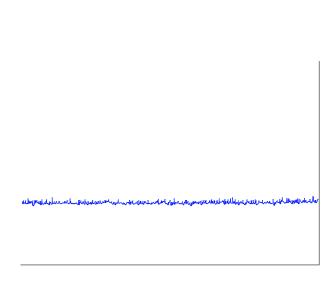



Fig.31. Conducted spurious emission: $\pi/4$ DQPSK, Channel 0, 3GHz - 10GHz

Date: 23.MAY.2014 13:54:05

Fig.32. Conducted spurious emission: π/4 DQPSK, Channel 0,10GHz - 26GHz

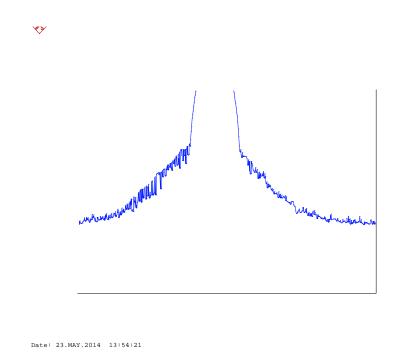


Fig.33. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 2441MHz

Date: 23.MAY.2014 13:54:38

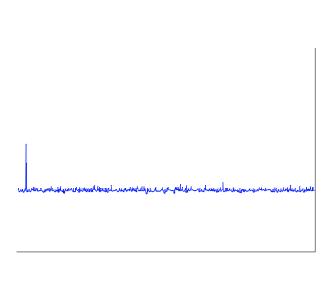


Fig.34. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 30MHz - 1GHz

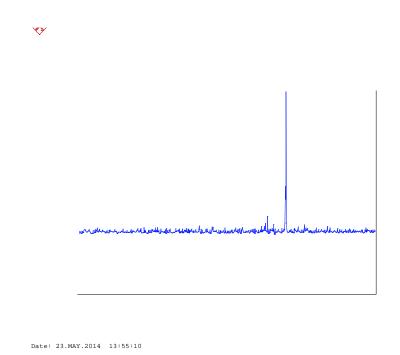
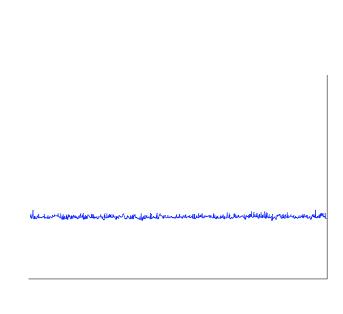



Fig.35. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 1GHz - 3GHz

Date: 23.MAY.2014 13:55:26

Fig.36. Conducted spurious emission: π/4 DQPSK, Channel 39, 3GHz - 10GHz

in the healthing have been been been an in concept our household for the filled hear of the life blighter and another in the world.

Date: 23.MAY.2014 13:55:43

Fig.37. Conducted spurious emission: $\pi/4$ DQPSK, Channel 39, 10GHz - 26GHz

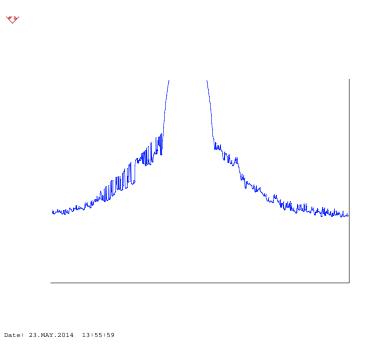


Fig.38. Conducted spurious emission: π/4 DQPSK, Channel 78, 2480MHz

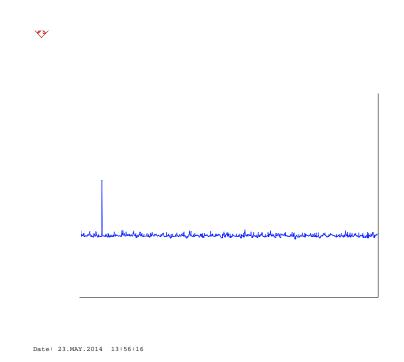


Fig.39. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 30MHz - 1GHz

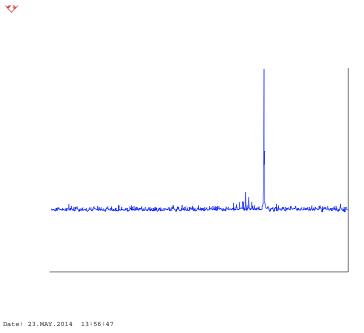


Fig.40. Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 1GHz - 3GHz

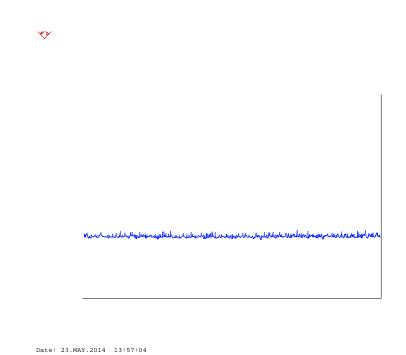


Fig.41. Conducted spurious emission: π/4 DQPSK, Channel 78, 3GHz - 10GHz

Date: 23.MAY.2014 13:57:20

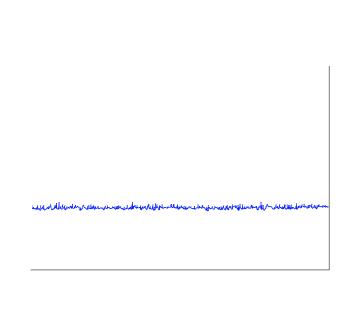


Fig.42. Fig.30 Conducted spurious emission: $\pi/4$ DQPSK, Channel 78, 10GHz - 26GHz

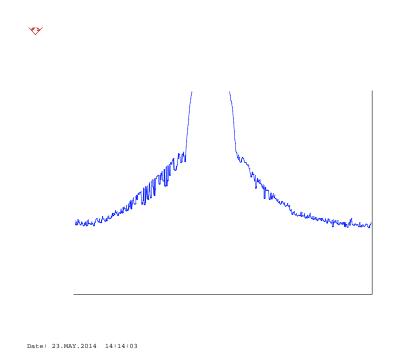
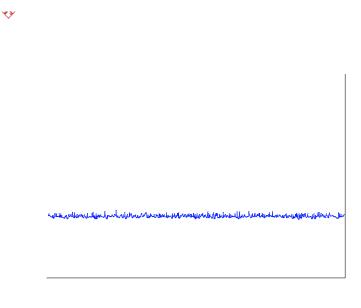
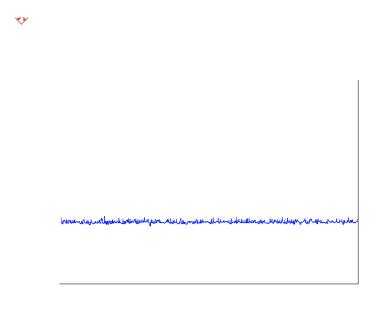



Fig.43. Conducted spurious emission: 8DPSK, Channel 0,2402MHz

Date: 23.MAY.2014 14:14:19


Fig.44. Conducted spurious emission: 8DPSK, Channel 0, 30MHz - 1GHz

actual graph, we has for more introduction, management which and he had not been a site and the selection and

Date: 23.MAY.2014 14:14:51

Fig.45. Conducted spurious emission: 8DPSK, Channel 0, 1GHz - 3GHz

Date: 23.MAY.2014 14:15:07

Fig.46. Conducted spurious emission: 8DPSK, Channel 0, 3GHz - 10GHz

Date: 23.MAY.2014 14:15:24

Fig.47. Conducted spurious emission: 8DPSK, Channel 0,10GHz - 26GHz

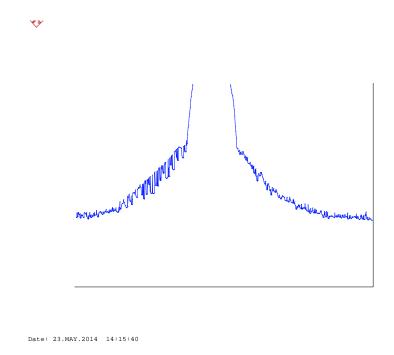


Fig.48. Conducted spurious emission: 8DPSK, Channel 39, 2441MHz

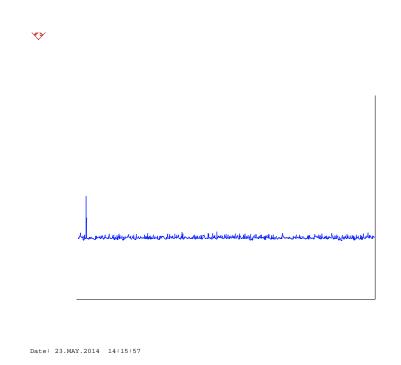


Fig.49. Conducted spurious emission: 8DPSK, Channel 39, 30MHz - 1GHz

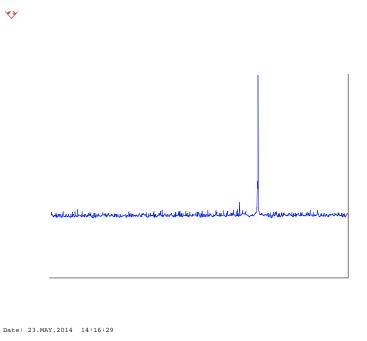


Fig.50. Conducted spurious emission: 8DPSK, Channel 39, 1GHz - 3GHz

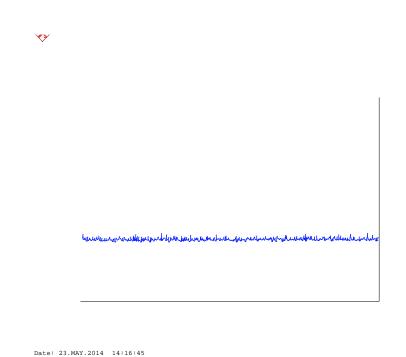


Fig.51. Conducted spurious emission: 8DPSK, Channel 39, 3GHz - 10GHz

Date: 23.MAY.2014 14:17:02

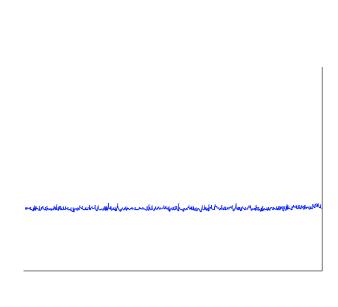


Fig.52. Conducted spurious emission: 8DPSK, Channel 39, 10GHz – 26GHz

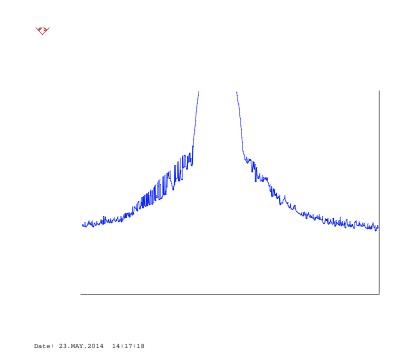


Fig.53. Conducted spurious emission: 8DPSK, Channel 78, 2480MHz

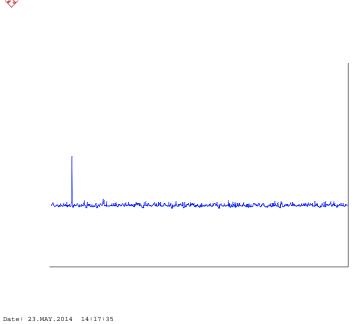


Fig.54. Conducted spurious emission: 8DPSK, Channel 78, 30MHz - 1GHz

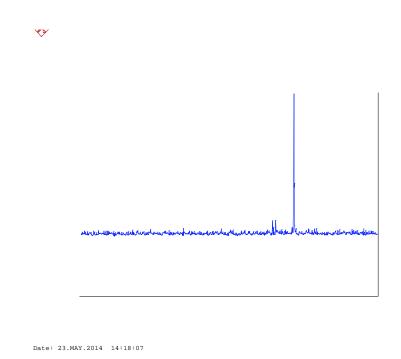


Fig.55. Conducted spurious emission: 8DPSK, Channel 78, 1GHz - 3GHz

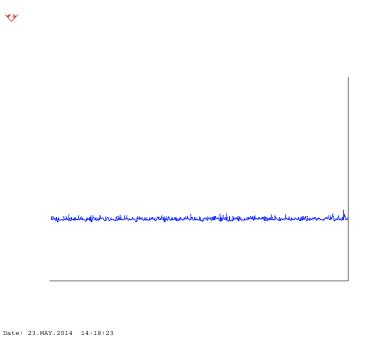


Fig.56. Conducted spurious emission: 8DPSK, Channel 78, 3GHz - 10GHz

Fig.57. Conducted spurious emission: 8DPSK, Channel 78, 10GHz - 26GHz

A.5. Radiated Emission

Measurement Limit:

Standard	Limit	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

The measurement is made according to ANSI C63.10

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Measurement Results:

Result=P_{Mea}+ARPL

For GFSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	1 GHz ~ 3 GHz	Fig.58	Р
2402 MHz	3 GHz ~ 18 GHz	Fig.59	Р
Ch 20	30 MHz ~ 1 GHz	Fig.60	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.61	Р
	3 GHz ~ 18 GHz	Fig.62	Р
Ch 78	1 GHz ~ 3 GHz	Fig.63	Р
2480 MHz	3 GHz ~ 18 GHz	Fig.64	Р
Power	2.38GHz~2.4GHzL	Fig.65	Р
Power	2.45GHz~2.5GHzH	Fig.66	Р

For all channels	18 GHz ~ 26 GHz	Fig.67	Р			
Forπ/4 DQPSK						
<u> </u>						

Channel	Frequency Range	Test Results	Conclusion
Ch 0	1 GHz ~ 3 GHz	Fig.68	Р
2402 MHz	3 GHz ~ 18 GHz	Fig.69	Р
Ch 39	30 MHz ~ 1 GHz	Fig.70	Р
2441 MHz	1 GHz ~ 3 GHz	Fig.71	Р
2-7-1 1411 12	3 GHz ~ 18 GHz	Fig.72	Р
Ch 78	1 GHz ~ 3 GHz	Fig.73	Р
2480 MHz	3 GHz ~ 18 GHz	Fig.74	Р
Power	2.38GHz~2.4GHzL	Fig.75	Р
Power	2.45GHz~2.5GHzH	Fig.76	Р
For all channels	18 GHz ~ 26 GHz	Fig.77	Р

For 8DPSK

Channel	Frequency Range	Test Results	Conclusion
Ch 0	1 GHz ~ 3 GHz	Fig.78	Р
2402 MHz	3 GHz ~ 18 GHz	Fig.79	Р
Ch 20	30 MHz ~ 1 GHz	Fig.80	Р
Ch 39 2441 MHz	1 GHz ~ 3 GHz	Fig.81	Р
2441 1011 12	3 GHz ~ 18 GHz	Fig.82	Р
Ch 78	1 GHz ~ 3 GHz	Fig.83	Р
2480 MHz	3 GHz ~ 18 GHz	Fig.84	Р
Power	2.38GHz~2.4GHzL	Fig.85	Р
Power	2.45GHz~2.5GHzH	Fig.86	Р
For all channels	18 GHz ~ 26 GHz	Fig.87	Р

GFSK Ch 0 - Average

_				
Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	PMea(dBuv/m)	Polarization
2390.000	32.9	-11.10	44.0	V
17806.500	40.4	27.10	13.3	Н
17986.500	40.3	27.90	12.4	V
17982.000	40.2	27.90	12.3	Н
17992.500	40.2	27.90	12.3	V
17998.500	40.0	27.90	12.1	V

GFSK Ch 39 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17992.500	40.3	27.90	12.4	V
17811.000	40.2	27.10	13.1	V
17998.500	40.1	27.90	12.2	V
17982.000	40.1	27.90	12.2	V
17973.000	40.0	27.90	12.1	V
17776.500	40.0	27.10	12.9	V

©Copyright. All rights reserved by TMC Beijing.

GFSK Ch 78 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2484.000	35.6	-11.20	46.8	V
17982.000	40.4	27.90	12.5	V
17989.500	40.4	27.90	12.5	Н
17995.500	40.3	27.90	12.4	V
17976.000	40.2	27.90	12.3	Н
17787.000	40.2	27.10	13.1	V

π/4 DQPSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2390.000	33.5	-11.10	44.6	V
17992.500	40.5	27.90	12.6	V
17982.000	40.4	27.90	12.5	V
17976.000	40.3	27.90	12.4	Н
17986.500	40.3	27.90	12.4	V
17799.000	40.1	27.10	13.0	V

π/4 DQPSK Ch 39 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17982.000	40.7	27.90	12.8	V
17776.500	40.5	27.10	13.4	V
17992.500	40.2	27.90	12.3	V
17976.000	40.2	27.90	12.3	V
17979.000	40.2	27.90	12.3	V
17965.500	40.1	27.90	12.2	Н

π/4 DQPSK Ch 78 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2483.500	34.9	-11.20	46.1	V
17979.000	40.5	27.90	12.6	V
17982.000	40.2	27.90	12.3	V
17806.500	40.2	27.10	13.1	Н
17986.500	40.1	27.90	12.2	V
17874.000	40.1	27.10	13.0	V

8DPSK Ch 0 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2390.000	33.4	-11.10	44.5	V
17979.000	40.4	27.90	12.5	V
17992.500	40.3	27.90	12.4	V
17976.000	40.3	27.90	12.4	V
17982.000	40.3	27.90	12.4	V
17766.000	40.1	27.10	13.0	V

8DPSK Ch 39 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
17995.500	40.3	27.90	12.400	V
17806.500	40.2	27.10	13.100	V
17776.500	40.0	27.10	12.900	Н
17979.000	40.0	27.90	12.100	V
17982.000	40.0	27.90	12.100	V
17779.500	39.9	27.10	12.800	V

8DPSK Ch 78 - Average

Frequency(MHz)	Result(dBuv/m)	ARPL (dB)	Pmea(dBuv/m)	Polarization
2483.770	35.0	-11.20	46.2	V
17992.500	40.6	27.90	12.7	V
17982.000	40.4	27.90	12.5	V
17776.500	40.3	27.10	13.2	Н
17989.500	40.3	27.90	12.4	V
17979.000	40.2	27.90	12.3	V

Conclusion: PASS
Test graphs as below:

RE_BT_1G-3GHz

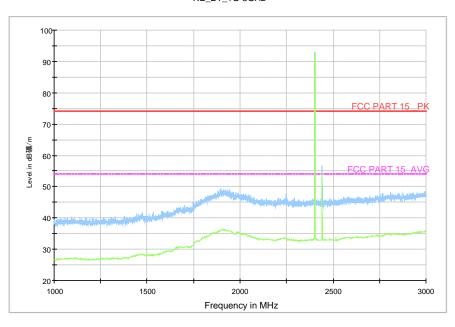
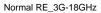



Fig.58. Radiated emission: GFSK, Channel 0, 1 GHz - 3 GHz

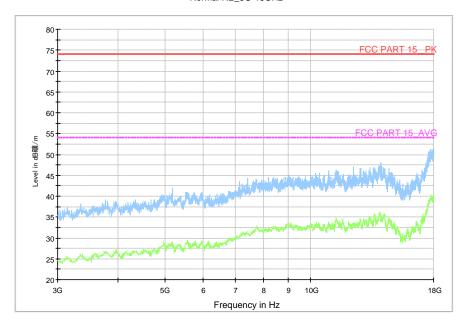


Fig.59. Radiated emission: GFSK, Channel 0, 3 GHz - 18 GHz

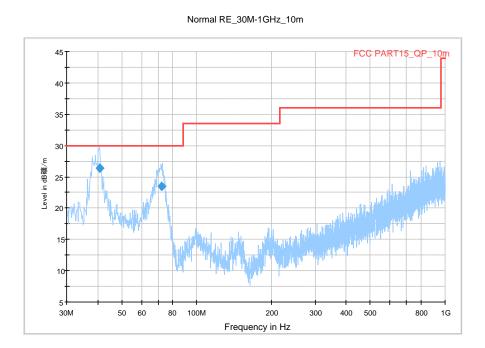


Fig.60. Radiated emission: GFSK, Channel 39, 30 MHz - 1 GHz

Fig.61. Radiated emission: GFSK, Channel 39, 1 GHz - 3 GHz

Frequency in MHz

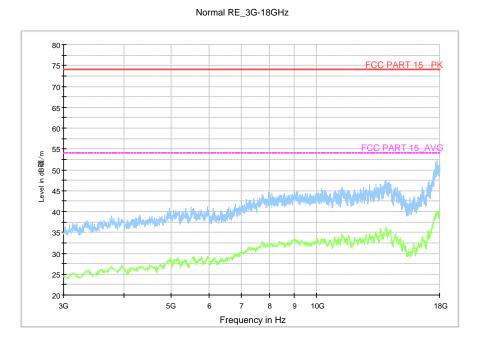


Fig.62. Radiated emission: GFSK, Channel 39, 3 GHz - 18 GHz

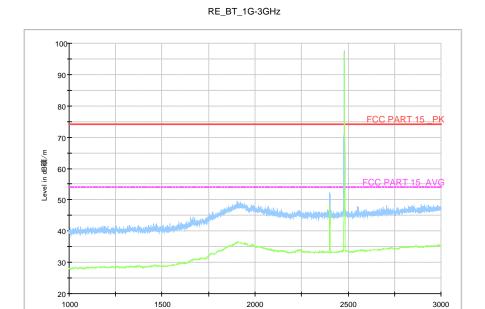


Fig.63. Radiated emission: GFSK, Channel 78, 1 GHz - 3 GHz

Frequency in MHz

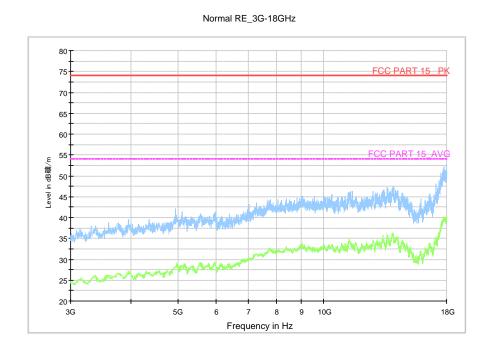
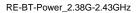



Fig.64. Radiated emission: GFSK, Channel 78, 3 GHz - 18 GHz

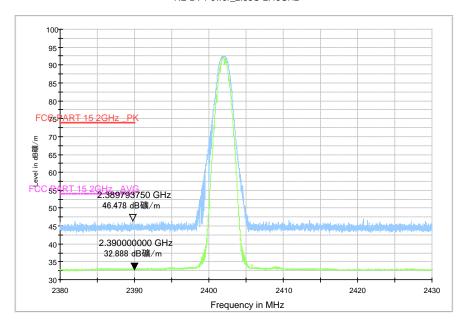


Fig.65. Radiated emission (Power): GFSK, low channel

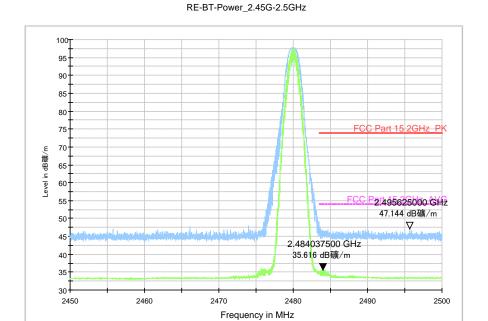


Fig.66. Radiated emission (Power) GFSK, high channel

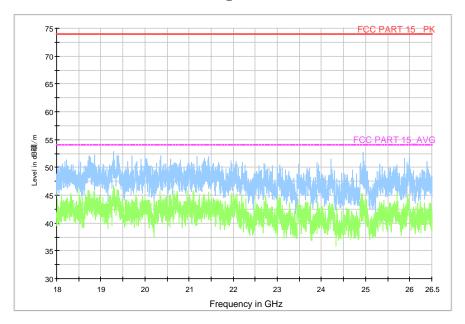


Fig.67. Radiated emission: GFSK, 18 GHz - 26 GHz

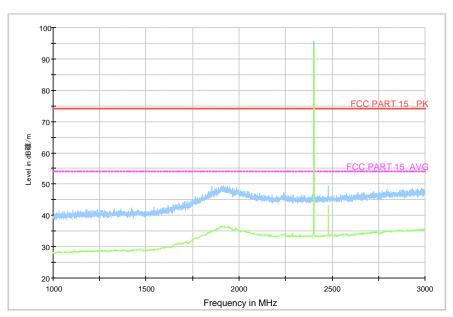


Fig.68. Radiated emission: $\pi/4$ DQPSK, Channel 0, 1 GHz - 3 GHz

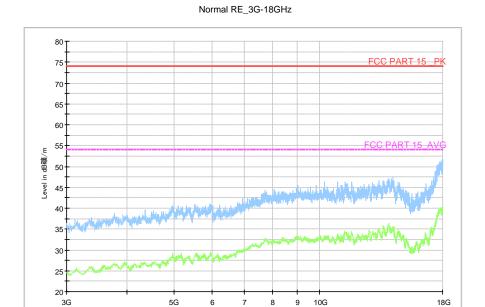


Fig.69. Radiated emission: $\pi/4$ DQPSK, Channel 0, 3 GHz - 18 GHz

Frequency in Hz

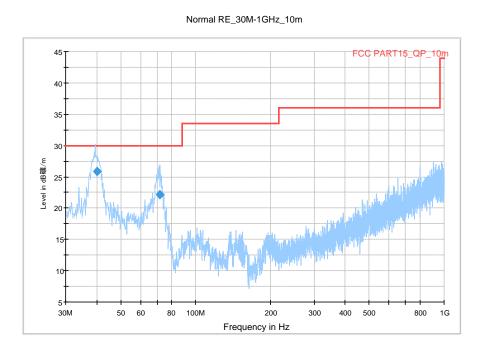


Fig.70. Radiated emission: $\pi/4$ DQPSK, Channel 39, 30 MHz - 1 GHz

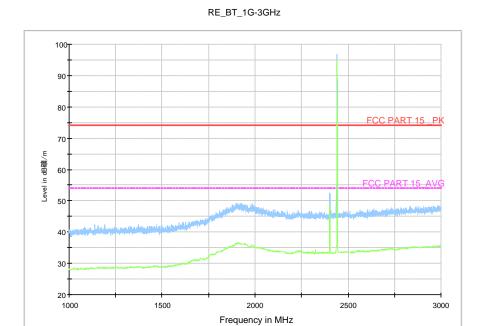


Fig.71. Radiated emission: $\pi/4$ DQPSK, Channel 39, 1 GHz - 3 GHz

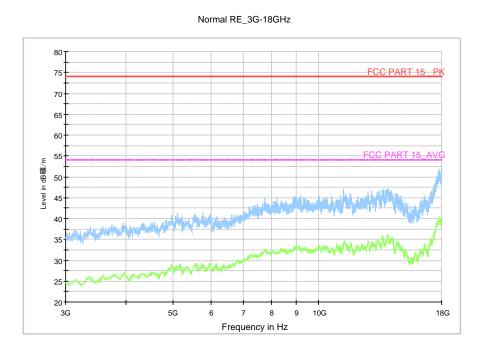


Fig.72. Radiated emission: $\pi/4$ DQPSK, Channel 39, 3 GHz - 18 GHz

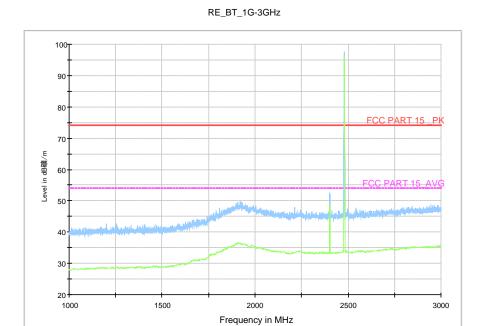


Fig.73. Radiated emission: $\pi/4$ DQPSK, Channel 78, 1 GHz - 3 GHz

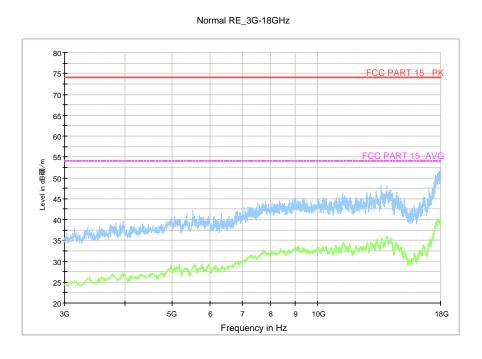
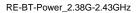



Fig.74. Radiated emission: $\pi/4$ DQPSK, Channel 78, 3 GHz - 18 GHz

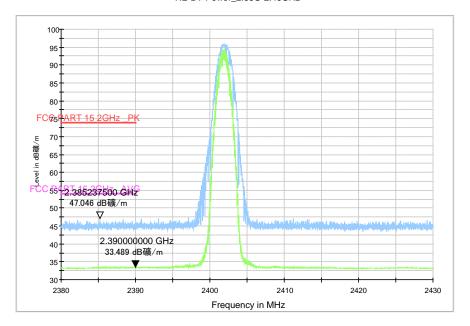
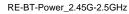



Fig.75. Radiated emission (Power): $\pi/4$ DQPSK, low channel

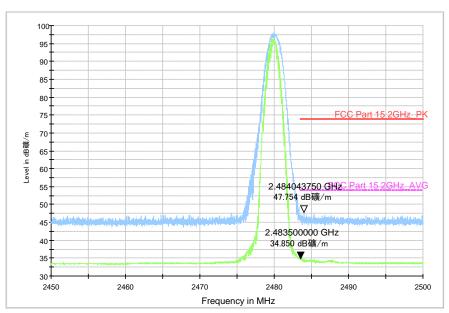
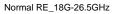



Fig.76. Radiated emission (Power): π/4 DQPSK, high channel

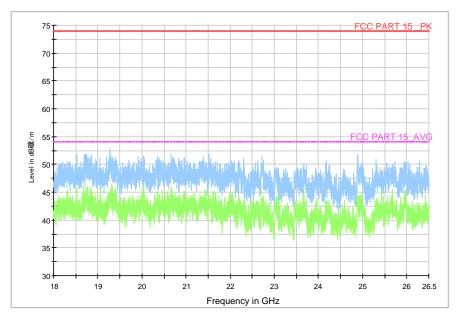


Fig.77. Radiated emission: $\pi/4$ DQPSK, 18 GHz - 26 GHz

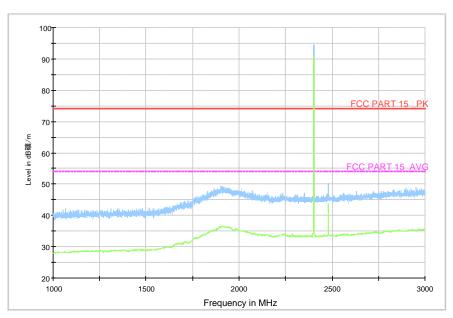


Fig.78. Radiated emission: 8DPSK, Channel 0, 1 GHz - 3 GHz

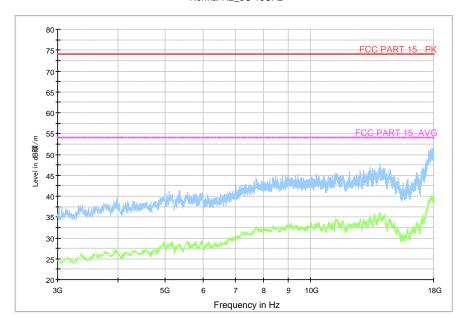


Fig.79. Radiated emission: 8DPSK, Channel 0, 3 GHz - 18 GHz



Fig.80. Radiated emission: 8DPSK, Channel 39, 30 MHz - 1 GHz

1000

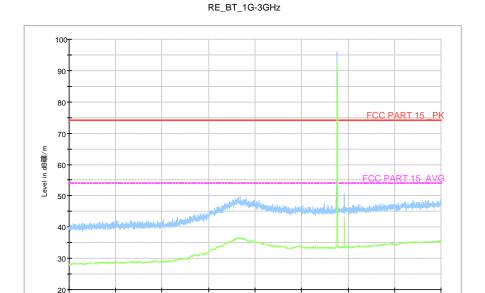


Fig.81. Radiated emission: 8DPSK, Channel 39, 1 GHz - 3 GHz

Frequency in MHz

2500

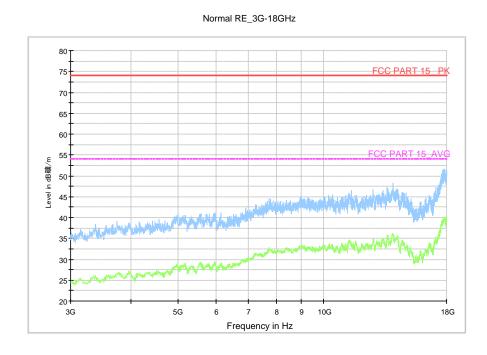
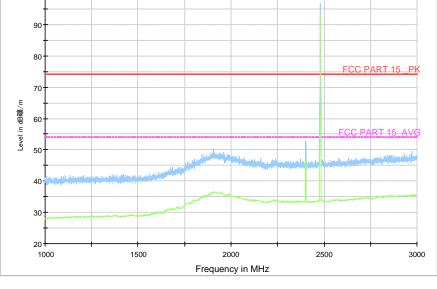



Fig.82. Radiated emission: 8DPSK, Channel 39, 3 GHz - 18 GHz

Fig.83. Radiated emission: 8DPSK, Channel 78, 1 GHz - 3 GHz

RE_BT_1G-3GHz

Normal RE_3G-18GHz

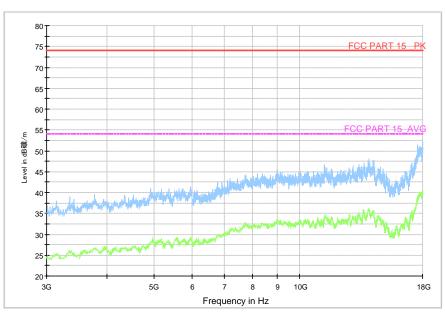
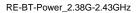



Fig.84. Radiated emission: 8DPSK, Channel 78, 3 GHz - 18 GHz

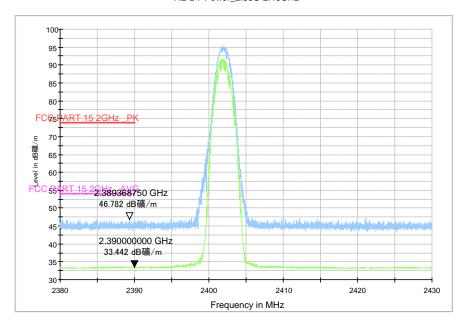
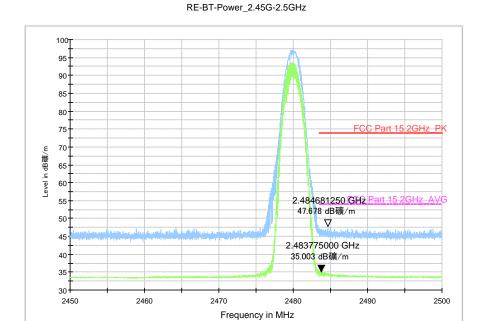



Fig.85. Radiated emission (Power): 8DPSK, low channel

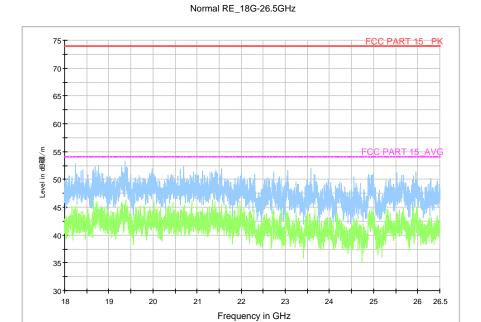


Fig.87. Radiated emission: 8DPSK, 18 GHz - 26 GHz

A.6. Time of Occupancy (Dwell Time)

Measurement Limit:

Standard	Limit (ms)
FCC 47 CFR Part 15.247(a) (1)(iii)	< 400

The measurement is made according to ANSI C63.10

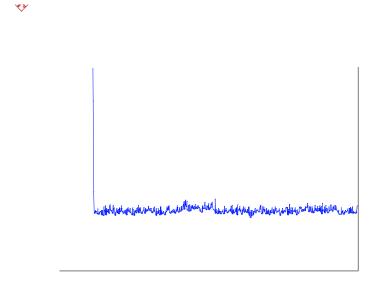
Measure a pulse time in time domain at middle frequency and then count the hopping number in 31.6s(which equals with 0.4 multiply 79) of middle frequency ,then multiply the pulse time and hopping number and record them.

Measurement Result:

For GFSK

Channel	Packet	Dwell Time (ms)		Conclusion
39	DH1	Fig.88	110.04	Р
		Fig.89		
	DH3	Fig.90	189.75	Р
		Fig.91		
	DH5	Fig.92	157.07	Р
		Fig.93		

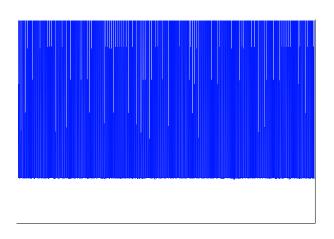
For π/4 DQPSK


Channel	Packet	Dwell Time (ms)		Conclusion		
39	DH1	Fig.94	109.97	Р		
		Fig.95				
	DH3	Fig.96	172.15	Р		
		Fig.97				
	DH5	Fig.98	203.61	Р		
		Fig.99				

For 8DPSK

Channel	Packet	Dwell Time (ms)		Conclusion
39	DH1	Fig.100	108.79	Р
	ВП	Fig.101		
	DH3	Fig.102	185.39	Р
		Fig.103		
	DH5	Fig.104	229.78	Р
		Fig.105		

Conclusion: PASS
Test graphs as below:



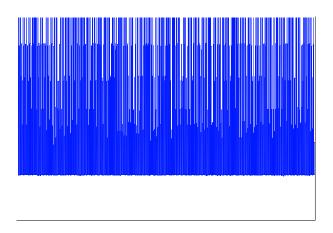
Date: 23.MAY.2014 13:37:18

Fig.88. Time of occupancy (Dwell Time): Channel 39, Packet DH1

43

Date: 23.MAY.2014 13:37:06

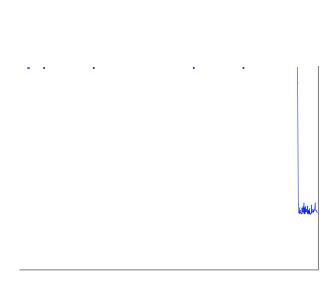
Fig.89. Number of Transmissions Measurement: Channel 39, Packet DH1



Date: 23.MAY.2014 13:38:37

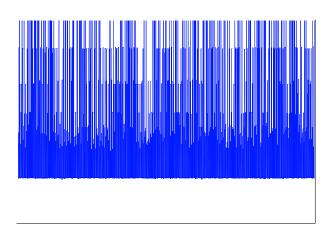
Fig.90. Time of occupancy (Dwell Time): Channel 39, Packet DH3

****>


%

Date: 23.MAY.2014 13:38:25

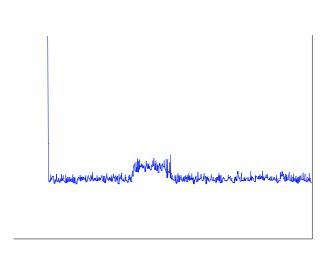
Fig.91. Number of Transmissions Measurement: Channel 39, Packet DH3



Date: 23.MAY.2014 13:39:51

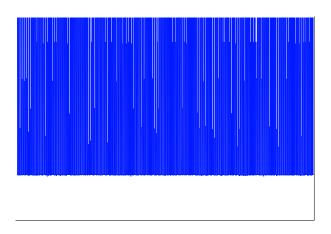
Fig.92. Time of occupancy (Dwell Time): Channel 39, Packet DH5

%>


%>

Date: 23.MAY.2014 13:39:40

Fig.93. Number of Transmissions Measurement: Channel 39, Packet DH5



Date: 23.MAY.2014 13:58:44

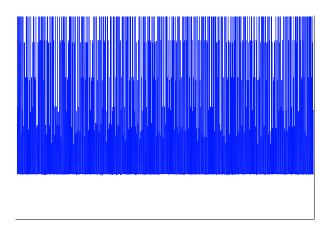
Fig.94. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH1

YY

%3

Date: 23.MAY.2014 13:58:32

Fig.95. Number of Transmissions Measurement: Channel 39, Packet 2-DH1


accine of sight hand be to such procedy be and procedy be and the such procedy as the such sight.

Date: 23.MAY.2014 14:00:00

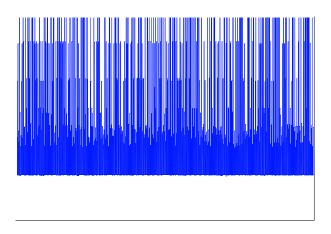
Fig.96. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH3

%

%>

Date: 23.MAY.2014 13:59:48

Fig.97. Number of Transmissions Measurement:Channel 39,Packet 2-DH3



Date: 23.MAY.2014 14:01:14

Fig.98. Time of occupancy (Dwell Time): Channel 39, Packet 2-DH5

YY

%>

Date: 23.MAY.2014 14:01:02

Fig.99. Number of Transmissions Measurement: Channel 39, Packet 2-DH5

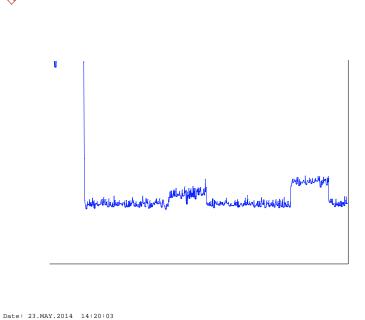


Fig.100. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH1

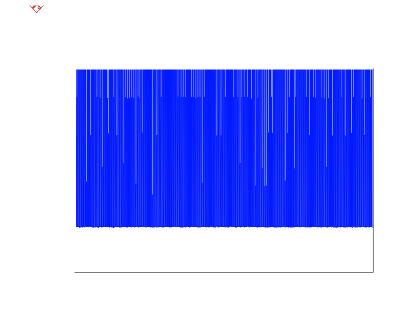


Fig.101. Number of Transmissions Measurement: Channel 39, Packet 3-DH1

Date: 23.MAY.2014 14:19:51

%

Date: 23.MAY.2014 14:21:10

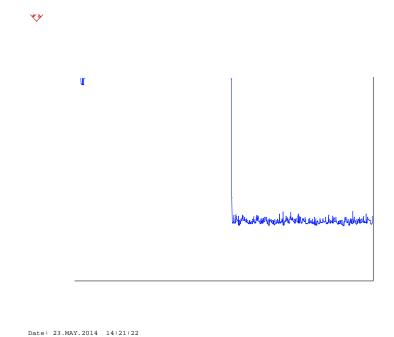


Fig.102. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH3

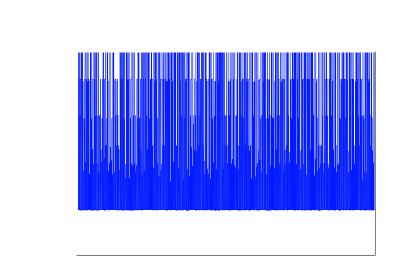
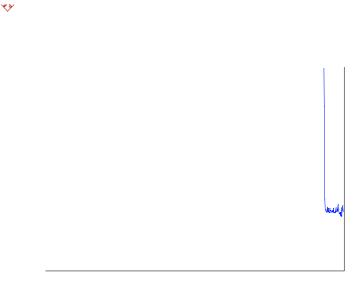
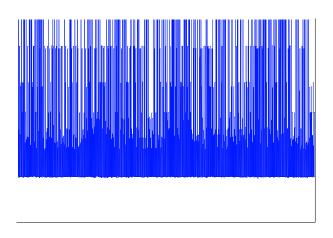



Fig.103. Number of Transmissions Measurement: Channel 39, Packet 3-DH3



Date: 23.MAY.2014 14:22:38

Fig.104. Time of occupancy (Dwell Time): Channel 39, Packet 3-DH5

YY

Date: 23.MAY.2014 14:22:26

Fig.105. Number of Transmissions Measurement: Channel 39, Packet 3-DH5

A.7. 20dB Bandwidth

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(1)	NA *

The measurement is made according to ANSI C63.10

Test Condition

Hopping Mode	RBW	VBW	SPAN	Sweeptime	Detector	Trace Mode
Hopping OFF	20KHz	100KHz	3MHz	Auto	Peak	Max Hold

Use NdB Down function of the SA to measure the 20dB Bandwidth

* Comment: This test case is not required according to the latest FCC 47 CFR Part 15.247. But the test results are necessary for "carrier frequency separation" test case, in Annex A.8.

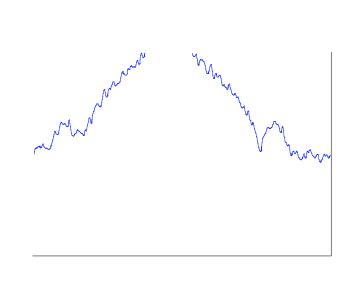
Measurement Results:

For GFSK

Channel	20dB Band	Conclusion	
0	Fig.106 865.38		NA
39	Fig.107	865.38	NA
78	Fig.108	870.19	NA

Forπ/4 DQPSK

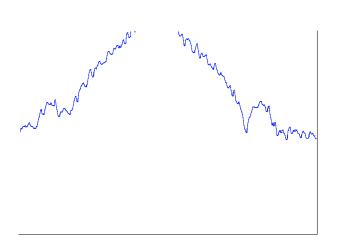
Channel	20dB Band	Conclusion	
0	Fig.109 1264.42		NA
39	Fig.110	1293.27	NA
78	Fig.111	1269.23	NA


For 8DPSK

Channel	20dB Band	Conclusion	
0	Fig.112 1264.42		NA
39	Fig.113	1274.04	NA
78	Fig.114	1264.42	NA

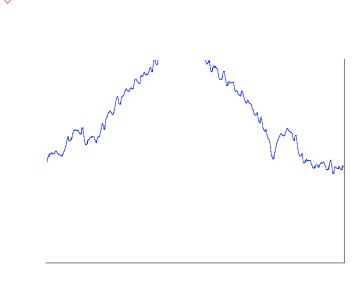
Conclusion: NA

Test graphs as below:



Date: 23.MAY.2014 13:40:28

Fig.106. 20dB Bandwidth: GFSK, Channel 0


X>

Date: 23.MAY.2014 13:41:00

Fig.107. 20dB Bandwidth: GFSK, Channel 39

Date: 23.MAY.2014 13:41:31

Date: 23.MAY.2014 14:01:48

Fig.108. 20dB Bandwidth: GFSK, Channel 78

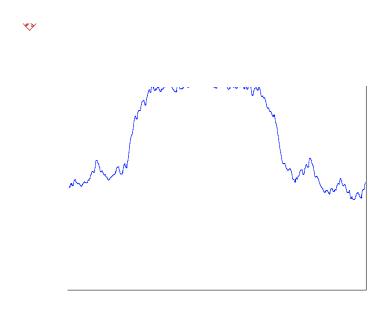


Fig.109. 20dB Bandwidth: $\pi/4$ DQPSK, Channel 0

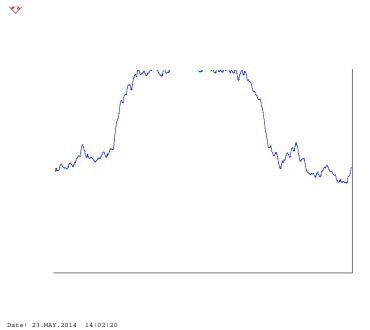


Fig.110. 20dB Bandwidth: π/4 DQPSK, Channel 39

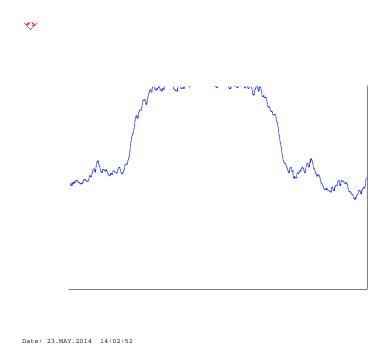


Fig.111. 20dB Bandwidth: $\pi/4$ DQPSK, Channel 78

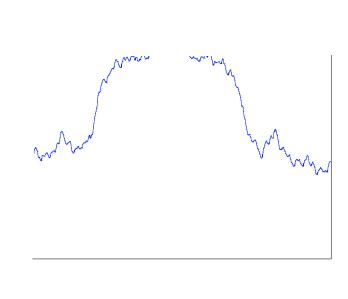


Fig.112. 20dB Bandwidth: 8DPSK, Channel 0

Date: 23.MAY.2014 14:23:12

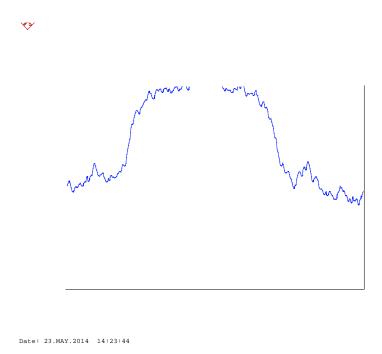


Fig.113. 20dB Bandwidth: 8DPSK, Channel 39

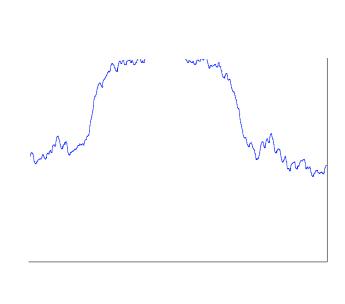


Fig.114. 20dB Bandwidth: 8DPSK, Channel 78

Date: 23.MAY.2014 14:24:16

A.8. Carrier Frequency Separation

Measurement Limit:

Standard	Limit(kHz)
FCC 47 CFR Part 15.247(a)(1)	over 25 kHz or (2/3) * 20dB bandwidth

The measurement is made according to ANSI C63.10

Test Condition

Hopping Mode	RBW	VBW	SPAN	Sweeptime	Detector	Trace Mode
Hopping ON	300KHz	1MHz	3MHz	Auto	Peak	Max Hold

Search the peak marks of the middle frequency and adjacent channel, the record the separation between them

* Comment: This limit should be over 25 kHz or (2/3) * 20dB bandwidth, whichever is greater.

Measurement Result:

For GFSK

Channel	Carrier frequency	Conclusion	
39	Fig.115	1004.81	Р

For π/4 DQPSK

Channel	Carrier frequency	Conclusion	
39	Fig.116	1024.04	Р

For 8DPSK

Channel	Carrier frequency	Conclusion	
39	Fig.117	971.15	Р

Conclusion: PASS
Test graphs as below:

Date: 23.MAY.2014 13:43:36

Fig.115. Carrier frequency separation measurement: GFSK, Channel 39

Fig.116. Carrier frequency separation measurement: $\pi/4$ DQPSK, Channel 39

Date: 23.MAY.2014 14:04:56

Date: 23.MAY.2014 14:26:20

Fig.117. Carrier frequency separation measurement: 8DPSK, Channel 39

A.9. Number of Hopping Channels

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a) (1)(iii)	At least 15 non-overlapping channels

The measurement is made according to ANSI C63.10

Test Condition

Hopping Mode	RBW	VBW	Sweeptime	Detector	Trace Mode
Hopping ON	500KHz	500KHz	Auto	Peak	Max Hold

Measurement Result:

For GFSK

Channel	Number of hop	Conclusion		
0~39	Fig.118	70	В	
40~78	Fig.119	79	Р	

Forπ/4 DQPSK

Channel	Number of hop	Conclusion	
0~39	Fig.120	70	D
40~78	Fig.121	79	Р

For 8DPSK

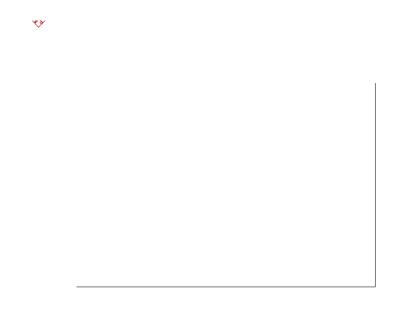
Channel	Number of hop	Conclusion	
0~39	Fig.122	70	D
40~78	Fig.123	79	Р

Conclusion: PASS
Test graphs as below:

43

Date: 23.MAY.2014 13:45:40

Date: 23.MAY.2014 13:47:42


Fig.119. Number of hopping frequencies: GFSK, Channel 40 - 78

Date: 23.MAY.2014 14:07:00

Fig.120. Number of hopping frequencies: $\pi/4$ DQPSK, Channel 0 - 39

Date: 23.MAY.2014 14:09:02

Fig.121. Number of hopping frequencies: $\pi/4$ DQPSK, Channel 40 - 78

Date: 23.MAY.2014 14:28:24

Fig.122. Number of hopping frequencies: 8DPSK, Channel 0 - 39

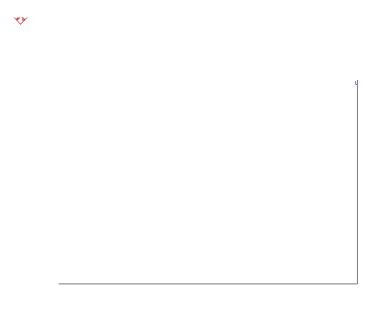


Fig.123. Number of hopping frequencies: 8DPSK, Channel 40 - 78

Date: 23.MAY.2014 14:30:26

A.10. AC Powerline Conducted Emission

Test Condition

Voltage (V)	Frequency (Hz)		
120	60		

Measurement Result and limit:

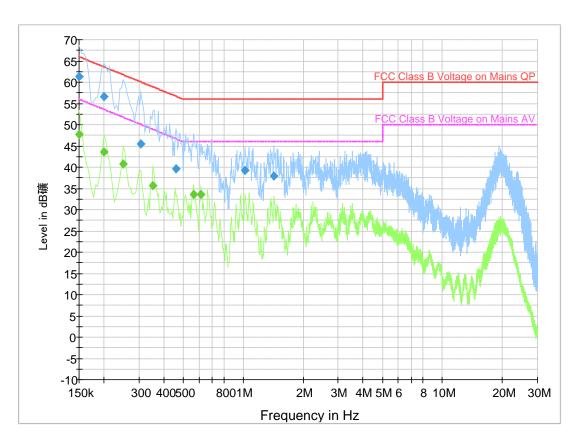
Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Conclusion
0.15 to 0.5	66 to 56	
0.5 to 5	56	Р
5 to 30	60	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Bluetooth (Average Limit)

Frequency range (MHz)	Average Limit (dBμV)	Conclusion
0.15 to 0.5	56 to 46	
0.5 to 5	46	Р
5 to 30	50	

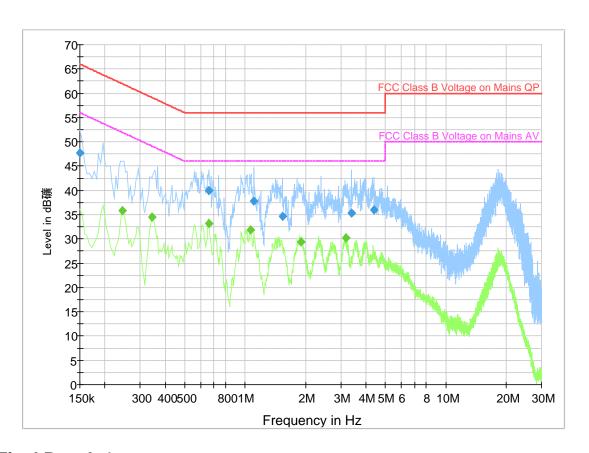

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

The measurement is made according to ANSI C63.10

Conclusion: PASS
Test graphs as below:

Traffic:

Final Result 1


Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.150000	61.3	GND	L1	9.8	4.7	66.0
0.199500	56.6	GND	L1	9.8	7.0	63.6
0.307500	45.5	GND	L1	9.8	14.5	60.0
0.460500	39.7	GND	N	9.8	17.0	56.7
1.023000	39.2	GND	L1	9.7	16.8	56.0
1.428000	37.8	GND	L1	9.7	18.2	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	47.8	GND	L1	9.8	8.2	56.0
0.199500	43.6	GND	L1	9.8	10.1	53.6
0.249000	40.8	GND	L1	9.8	11.0	51.8
0.352500	35.6	GND	L1	9.8	13.3	48.9
0.564000	33.6	GND	L1	9.8	12.4	46.0
0.613500	33.5	GND	L1	9.8	12.5	46.0

Idle:

Final Result 1

Frequency (MHz)	QuasiPeak (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	47.7	GND	N	9.8	18.3	66.0
0.658500	40.0	GND	L1	9.8	16.0	56.0
1.108500	37.9	GND	L1	9.7	18.1	56.0
1.536000	34.7	GND	L1	9.7	21.3	56.0
3.385500	35.4	GND	L1	9.7	20.6	56.0
4.389000	36.0	GND	L1	9.7	20.0	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.244500	35.7	GND	L1	9.8	16.2	51.9
0.343500	34.6	GND	L1	9.8	14.5	49.1
0.658500	33.2	GND	L1	9.8	12.8	46.0
1.063500	31.9	GND	L1	9.7	14.1	46.0
1.891500	29.4	GND	L1	9.7	16.6	46.0
3.169500	30.2	GND	L1	9.7	15.8	46.0

*** END OF REPORT BODY ***