EC25 Mini PCIe Hardware Design #### **LTE Module Series** Rev. EC25_Mini_PCle_Hardware_Design_V1.1 Date: 2017-01-24 Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters: #### **Quectel Wireless Solutions Co., Ltd.** Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233 Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u> #### Or our local office. For more information, please visit: http://www.quectel.com/support/salesupport.aspx #### For technical support, or to report documentation errors, please visit: http://www.quectel.com/support/techsupport.aspx Or email to: Support@quectel.com #### **GENERAL NOTES** QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. THE INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. #### **COPYRIGHT** THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright © Quectel Wireless Solutions Co., Ltd. 2017. All rights reserved. ## **About the Document** ## **History** | Revision | Date | Author | Description | | | |----------|------------|------------------------------|---|--|--| | 1.0 | 2016-06-07 | Mountain ZHOU/
Frank WANG | Initial | | | | 1.1 | 2017-01-24 | Lyndon LIU/
Frank WANG | Deleted description of EC25-AUT Mini PCle in Table 1. Added description of EC25-AU and EC25-J Mini PCle in Table 1. Updated key features of EC25 Mini PCle in Table 2. Added current consumption in Chapter 4.7. Updated conducted RF receiving sensitivity of EC25-A Mini PCle in Table 17. Added conducted RF receiving sensitivity of EC25-J Mini PCle in Table 18. | | | #### **Contents** | | | | ument | | |-----|--------------------------------|--------|-----------------------------------|----| | | | | | | | | | | | | | Fig | ure Ind | ех | | 6 | | 1 | Introd | uctic | on | 7 | | | 1.1. | | ety Information | | | • | D I | 0 | | 40 | | 2 | | | oncept | | | | 2.1.
2.2. | | neral Description | | | | 2.2. | | • | | | | 2.3. | - | nctional Diagram | | | | 2.4. | Full | ictional Diagram | | | 3 | Applic | ation | n Interface | 18 | | | 3.1. | Ger | neral Description | 18 | | | 3.2. | EC2 | 25 Mini PCIe Interface | 18 | | | 3.5 | 2.1. | Definition of Interface | 18 | | | 3.5 | 2.2. | Pin Assignment | | | | 3.3. | Pov | wer Supply | 22 | | | 3.4. | USI | IM Card Interface | 23 | | | 3.5. | USF | B Interface | 24 | | | 3.6. | UAF | RT Interface | 25 | | | 3.7. | | M and I2C Interfaces | | | | 3.8. | | ntrol Signals | | | | 3.8 | 8.1. | RI Signal | | | | 3.8 | 8.2. | DTR Signal | | | | | 8.3. | W_DISABLE# Signal | | | | | 8.4. | PERST# Signal | | | | 3.8 | 8.5. | LED_WWAN# Signal | | | | 3.8 | 8.6. | WAKE# Signal | | | | 3.9. | Ante | enna Interfaces | 31 | | 4 | Electri | ical a | and Radio Characteristics | 33 | | | 4.1. | Ger | neral Description | 33 | | | 4.2. Power Supply Requirements | | wer Supply Requirements | 33 | | | 4.3. | I/O | Requirements | 34 | | | 4.4. | RF | Characteristics | 34 | | | 4.5. | GN | SS Receiver | 36 | | | 4.6. | ESI | D Characteristics | 37 | | | 4.7. | Cur | rrent Consumption | 37 | | 5 | Dimen | nsion | ns and Packaging | Δ2 | | 9 | 5.1. | | neral Description | | | | | -01 | · · · · · · = · · · · · · · · · · | | | 6 | Annen | dix References | 45 | |---|-------|---|----| | | 5.4. | rackaging Specification | 44 | | | | Packaging Specification | | | | 5.3. | Standard Dimensions of Mini PCI Express | 43 | | | 5.2. | Mechanical Dimensions of EC25 Mini PCIe | 42 | | | | | | #### **Table Index** | TABLE 1: DESCRIPTION OF EC25 MINI PCIE | 14 | |--|----| | TABLE 2: KEY FEATURES OF EC25 MINI PCIE | 15 | | TABLE 3: DEFINITION OF I/O PARAMETERS | 18 | | TABLE 4: DESCRIPTION OF PINS | 19 | | TABLE 5: DEFINITION OF VCC_3V3 AND GND PINS | 22 | | TABLE 6: USIM PIN DEFINITION | 23 | | TABLE 7: PIN DEFINITION OF USB INTERFACE | 24 | | TABLE 8: PIN DEFINITION OF THE UART INTERFACE | 25 | | TABLE 9: PIN DEFINITION OF PCM AND I2C INTERFACES | 26 | | TABLE 10: PIN DEFINITION OF CONTROL SIGNALS | 28 | | TABLE 11: RADIO OPERATIONAL STATES | 29 | | TABLE 12: INDICATIONS OF NETWORK STATUS | 30 | | TABLE 13: ANTENNA REQUIREMENTS | 31 | | TABLE 14: POWER SUPPLY REQUIREMENTS | 33 | | TABLE 15: I/O REQUIREMENTS | 34 | | TABLE 16: EC25 MINI PCIE CONDUCTED RF OUTPUT POWER | 34 | | TABLE 17: EC25-A MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY | 35 | | TABLE 18: EC25-J MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY | 35 | | TABLE 19: EC25-E MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY | 36 | | TABLE 20: EC25-V MINI PCIE CONDUCTED RF RECEIVING SENSITIVITY | 36 | | TABLE 21: ESD CHARACTERISTICS OF EC25 MINI PCIE | 37 | | TABLE 22: CURRENT CONSUMPTION OF EC25-A MINI PCIE | 37 | | TABLE 23: CURRENT CONSUMPTION OF EC25-E MINI PCIE | 38 | | TABLE 24: CURRENT CONSUMPTION OF EC25-V MINI PCIE | 41 | | TABLE 25: GNSS CURRENT CONSUMPTION OF EC25 MINI PCIE SERIES MODULE | 41 | | TABLE 26: RELATED DOCUMENTS | 45 | | TABLE 27: TERMS AND ABBREVIATIONS | 45 | ## Figure Index | FIGURE 1: FUNCTIONAL DIAGRAM | | |--|------| | FIGURE 2: PIN ASSIGNMENT | 21 | | FIGURE 3: REFERENCE DESIGN OF POWER SUPPLY | 22 | | FIGURE 4: REFERENCE CIRCUIT OF USIM CARD INTERFACE WITH A 6-PIN USIM CARD CONNECT | ГOR | | | 23 | | FIGURE 5: REFERENCE CIRCUIT OF USB INTERFACE | | | FIGURE 6: TIMING IN PRIMARY MODE | 27 | | FIGURE 7: TIMING IN AUXILIARY MODE | 27 | | FIGURE 8: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC | 28 | | FIGURE 9: RI BEHAVIOR | 29 | | FIGURE 10: TIMING OF RESETTING MODULE | 30 | | FIGURE 11: LED_WWAN# SIGNAL REFERENCE CIRCUIT DIAGRAM | | | FIGURE 12: WAKE# BEHAVIOR | | | FIGURE 13: DIMENSIONS OF THE RF CONNECTOR (UNIT: MM) | 32 | | FIGURE 14: MECHANICALS OF U.FL-LP CONNECTORS | | | FIGURE 15: MECHANICAL DIMENSIONS OF EC25 MINI PCIE (UNIT: MM) | 42 | | FIGURE 16: STANDARD DIMENSIONS OF MINI PCI EXPRESS (UNIT: MM) | 43 | | FIGURE 17: DIMENSIONS OF THE MINI PCLEXPRESS CONNECTOR (MOLEX 679100002, LINIT: MM | \ 44 | # 1 Introduction This document defines EC25 Mini PCIe module, and describes its hardware interfaces which are connected with your application as well as its air interfaces. This document can help you to quickly understand the interface specifications, electrical and mechanical details as well as other related information of EC25 Mini PCIe module. To facilitate its application in different fields, relevant reference design documents are also provided. Associated with application note and user guide of EC25 Mini PCIe module, you can use the module to design and set up mobile applications easily. #### 1.1. Safety Information The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating EC25 Mini PCle module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions. Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving. Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft. Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are desinged to prevent possible interference with sensitive medical equipment. Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid USIM/SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength. Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment. In
locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc. FCC Certification Requirements. According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device. And the following conditions must be met: 1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091. 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter. 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201909EC25AFX. 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed: ☐ WCDMA B2/LTE B2: <8dBi ☐ WCDMA B4LTE B4/B66: <5dBi </p> ☐ WCDMA B5/LTE B5: <9.416dBi ☐ LTE B14: <9.255dBi ☐ LTE B13: <9.173dBi ☐ LTE B12: <8.734dBi ☐ LTE B71: <8.545dBi 5. This module must not transmit simultaneously with any other antenna or transmitter 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines. For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093 If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations. For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs: A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph). For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: XMR201909EC25AFX" or "Contains FCC ID: XMR201909EC25AFX" must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID. The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements. #### **IC Statement** **IRSS-GEN** "This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device." or "Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: 1) l'appareil ne doit pas produire de brouillage; 2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement." Déclaration sur l'exposition aux rayonnements RF L'autre utilisé pour l'émetteur doit être installé pour fournir une distance de séparation d'au moins 20 cm de toutes les personnes et ne doit pas être colocalisé ou fonctionner conjointement avec une autre antenne ou un autre émetteur. The host product shall be properly labeled to identify the modules within the host product. The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labeled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word "Contains" or similar wording expressing the same meaning, as follows: "Contains IC: 10224A-2019EC25AFX" or "where: 10224A-2019EC25AFX is the module's certification number" Le produit hôte doit être correctement étiqueté pour identifier les modules dans le produit hôte. L'étiquette de certification d'Innovation, Sciences et Développement économique Canada d'un module doit être clairement visible en tout temps lorsqu'il est installédans le produit hôte; sinon, le produit hôte doit porter une étiquette indiquant le numéro de certification d'Innovation, Sciences et Développement économique Canada pour le module, précédé du mot «Contient» ou d'un libellé semblable exprimant la même signification, comme suit: "Contient IC: 10224A-2019EC25AFX" ou "où: 10224A-2019EC25AFX est le numéro de certification du module" # **2** Product Concept #### 2.1. General Description EC25 Mini PCIe module provides data connectivity on LTE-FDD, LTE-TDD, WCDMA and GSM networks with PCI Express Mini Card 1.2 standard interface. It supports embedded operating systems such as WinCE, Linux, Android, etc., and also provides audio, high-speed data transmission and GNSS functionalities for your applications. EC25 Mini PCIe module can be applied in the following fields: - PDA and Laptop Computer - Remote Monitor System - Vehicle System - Wireless POS System - Intelligent Meter Reading System - Wireless Router and Switch - Other Wireless Terminal Devices This chapter generally introduces the following aspects of EC25 Mini PCle module: - Product Series - Key Features - Functional Diagram #### **NOTE** EC25 Mini PCIe contains **Telematics** version and **Data-only** version. **Telematics** version supports voice and data functions, while **Data-only** version only supports data function. ### 2.2. Description of Product Series The following table shows the product series of EC25 Mini PCIe module. Table 1: Description of EC25 Mini PCle | Product Series | Description | |---------------------------------|--| | | Support WCDMA: B2/B4/B5 | | | Support LTE-FDD: B2/B4/B12 | | EC25-A Mini PCIe | Support LTE/WCDMA receive diversity | | | Support GNSS ¹⁾ | | | Support digital audio ²⁾ | | | Support GSM: 850/900/1800/1900MHz | | | Support WCDMA: B1/B2/B5/B8 | | 3) | Support LTE-FDD: B1/B2/B3/B4/B5/B7/B8/B28 | | EC25-AU Mini PCIe ³⁾ | Support LTE-TDD: B40 | | | Support LTE/WCDMA receive diversity ³⁾ | | | Support GNSS ¹⁾ | | | Support digital audio ²⁾ | | | Support WCDMA: B1/B6/B8/B19 | | | Support LTE-FDD: B1/B3/B8/B18/B19/B26 | | EC25-J Mini PCIe | Support LTE-TDD: B41 Support LTE/WCDMA receive diversity | | | Support GNSS ¹⁾ | | | Support digital audio ²⁾ | | | Support GSM: 900/1800MHz | | | Support WCDMA: B1/B5/B8 | | | Support LTE-FDD: B1/B3/B5/B7/B8/B20 | | EC25-E Mini PCIe | Support LTE-TDD: B38/B40/B41 | | | Support LTE/WCDMA receive diversity | | | Support GNSS ¹⁾ | | | Support digital audio ²⁾ | | | Support LTE-FDD: B4/B13 | | EC25-V Mini PCIe | Support LTE receive diversity | | EG25-V IVIIIII PGIE | Support GNSS ¹⁾ | | | Support digital audio ²⁾ | #### **NOTES** - 1. 1) GNSS function is optional. - 2. ²⁾ Digital audio (PCM) function is only supported in **Telematics** version. 3. ³⁾B2 band on EC25-AU Mini PCIe module does not support receive diversity. ## 2.3. Key Features The following table describes the detailed features of EC25 Mini PCIe
module. Table 2: Key Features of EC25 Mini PCle | Function Interface PCI Express Mini Card 1.2 Standard Interface Power Supply Supply voltage: 3.0~3.6V
Typical supply voltage: 3.3V Class 4 (33dBm±2dB) for GSM850
Class 4 (33dBm±2dB) for GSM900
Class 1 (30dBm±2dB) for DCS1800
Class 1 (30dBm±2dB) for PCS1900
Class 2 (27dBm±3dB) for GSM900 8-PSK Transmitting Power Class 2 (27dBm±3dB) for GSM900 8-PSK
Class E2 (26dBm±3dB) for DCS1800 8-PSK
Class 2 (26dBm±3dB) for DCS1800 8-PSK
Class 3 (24dBm+1/-3dB) for WCDMA bands
Class 3 (23dBm±2dB) for LTE-FDD bands
Class 3 (23dBm±2dB) for LTE-FDD bands LTE Features Support up to non-CA Cat 4
Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction
FDD: Max 50Mbps (UL), 150Mbps (DL)
TDD: Max 35Mbps (UL), 130Mbps (DL) WCDMA Features Support 16-QAM, 64-QAM and QPSK modulation
3GPP R8 Cat 6 HSUPA: Max 5.76Mbps (UL)
3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99:
CSD: 9.6kbps, 14.4kbps GPRS: | | |---|--| | Typical supply voltage: 3.3V | | | Class 4 (33dBm±2dB) for GSM850 Class 4 (33dBm±2dB) for GSM900 Class 1 (30dBm±2dB) for DCS1800 Class 1 (30dBm±2dB) for PCS1900 Class 2 (27dBm±3dB) for GSM850 8-PSK Transmitting Power Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands LTE Features Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class 4 (33dBm±2dB) for GSM900 Class 1 (30dBm±2dB) for DCS1800 Class 1 (30dBm±2dB) for PCS1900 Class E2 (27dBm±3dB) for GSM850 8-PSK Transmitting Power Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class 1 (30dBm±2dB) for DCS1800 Class 1 (30dBm±2dB) for PCS1900 Class E2 (27dBm±3dB) for GSM850 8-PSK Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Class 3 (23dBm±2dB) for LTE-TDD bands LTE Features Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class 1 (30dBm±2dB) for PCS1900 Class E2 (27dBm±3dB) for GSM850 8-PSK Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class E2 (27dBm±3dB) for GSM850 8-PSK Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Transmitting Power Class E2 (27dBm±3dB) for GSM900 8-PSK Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class E2 (26dBm±3dB) for DCS1800 8-PSK Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class E2 (26dBm±3dB) for PCS1900 8-PSK Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class 3 (24dBm+1/-3dB) for WCDMA bands Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class 3 (23dBm±2dB) for LTE-FDD bands Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Class 3 (23dBm±2dB) for LTE-TDD bands Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Support up to non-CA Cat 4 Support 1.4 to 20MHz RF bandwidth Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Support 1.4 to 20MHz RF bandwidth LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | LTE Features Support MIMO in DL direction FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | FDD: Max 50Mbps (UL), 150Mbps (DL) TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat
24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | TDD: Max 35Mbps (UL), 130Mbps (DL) Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | Support 3GPP R8 DC-HSPA+ Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | WCDMA Features Support 16-QAM, 64-QAM and QPSK modulation 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | 3GPP R6 Cat 6 HSUPA: Max 5.76Mbps (UL) 3GPP R8 Cat 24 DC-HSPA+: Max 42Mbps (DL) R99: CSD: 9.6kbps, 14.4kbps | | | R99: CSD: 9.6kbps, 14.4kbps | | | CSD: 9.6kbps, 14.4kbps | | | · | | | GPRS: | | | | | | GSM Features Support GPRS multi-slot class 12 (12 by default) | | | Coding scheme: CS-1, CS-2, CS-3 and CS-4 | | | Maximum of four Rx time slots per frame | | | | - FDOE | |----------------------------|---| | | EDGE: Support EDGE multi-slot class 12 (12 by default) Support GMSK and 8-PSK for different MCS (Modulation and Coding Scheme) | | | Downlink coding schemes: CS 1-4, MCS 1-9 Uplink coding schemes: CS 1-4, MCS 1-9 | | Internet Protocol Features | Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/HTTPS*/SMTP*/ MMS*/FTPS*/SMTPS*/SSL* protocols Support the protocols PAP (Password Authentication Protocol) and CHAP (Challenge Handshake Authentication Protocol) usually used for PPP connections | | SMS | Text and PDU mode Point to point MO and MT SMS cell broadcast SMS storage: ME by default | | USIM Interface | Support USIM/SIM card: 1.8V, 3.0V | | UART Interface | Baud rate can reach up to 230400bps, 115200bps by default Used for AT command communication | | Audio Feature | Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression | | PCM Interface | Support 8-bit A-law*, µ-law* and 16-bit linear data formats Support long frame synchronization and short frame synchronization Support master and slave mode, but must be the master in long frame synchronization | | USB Interface | Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, firmware upgrade, software debugging, GNSS NMEA output and voice over USB* USB Driver: Windows XP, Windows Vista, Windows 7, Windows 8/8.1, Windows 10, Linux 2.6 or later, Android 4.0/4.2/4.4/5.0/5.1/6.0 | | Antenna Interface | Include main antenna, diversity antenna and GNSS antenna | | Rx-diversity | Support LTE/WCDMA Rx-diversity | | GNSS Features | Gen8C Lite of Qualcomm Protocol: NMEA 0183 | | AT Commands | Compliant with 3GPP TS 27.007, 27.005 and Quectel enhanced AT commands | | Physical Characteristics | Size: (51.0±0.1) × (30.0±0.1) × (4.9±0.2 mm)
Weight: approx. 9.8g | | Temperature Range | Operation temperature range: -35°C ~ +75°C ¹⁾ Extended temperature range: -40°C ~ +80°C ²⁾ | |-------------------|--| | Firmware Upgrade | USB interface and DFOTA* | | RoHS | All hardware components are fully compliant with EU RoHS directive | #### NOTES - 1. "*" means under development. - 2. 1) Within operating temperature range, the module is 3GPP compliant. - 3. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction; there are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operating temperature levels, the module is compliant with 3GPP specification again. #### 2.4. Functional Diagram The following figure shows the block diagram of EC25 Mini PCIe. Figure 1: Functional Diagram # **3** Application Interface #### 3.1. General Description The physical connections and signal levels of EC25 Mini PCIe comply with PCI Express Mini CEM specifications. This chapter mainly describes the following interfaces' definition and application of EC25 Mini PCIe: - Power supply - USIM card interface - USB interface - UART interface - PCM&I2C interfaces - Control signals - Antenna interface #### 3.2. EC25 Mini PCle Interface #### 3.2.1. Definition of Interface The following tables show the pin definition and description of EC25 Mini PCIe on the 52-pin application. Table 3: Definition of I/O Parameters | Туре | Description | |------|----------------| | IO | Bidirectional | | DI | Digital input | | DO | Digital output | | OC | Open collector | | PI | Power input | | РО | Power output | **Table 4: Description of Pins** | Pin No. | Mini PCI Express Standard Name | EC25 Mini PCle
Pin Name | I/O | Description | Comment | |---------|--------------------------------|----------------------------|-----|--|-------------------------------------| | 1 | WAKE# | WAKE# | OC | Output signal can be used to wake up the host. | | | 2 | 3.3Vaux | VCC_3V3 | PI | 3.3V DC supply | | | 3 | COEX1 | RESERVED | | Reserved | | | 4 | GND | GND | | Mini card ground | | | 5 | COEX2 | RESERVED | | Reserved | | | 6 | 1.5V | NC | | | | | 7 | CLKREQ# | RESERVED | | Reserved | | | 8 | UIM_PWR | USIM_VDD | РО | Power source for the USIM card | | | 9 | GND | GND | | Mini card ground | | | 10 | UIM_DATA | USIM_DATA | Ю | USIM data signal | | | 11 | REFCLK- | UART_RX | DI | UART receive data | Connect to DTE's TX | | 12 | UIM_CLK | USIM_CLK | DO | USIM clock signal | | | 13 | REFCLK+ | UART_TX | DO | UART transmit data | Connect to DTE's RX | | 14 | UIM_RESET | USIM_RST | DO | USIM reset signal | | | 15 | GND | GND | | Mini card ground | | | 16 | UIM_VPP | RESERVED | | Reserved | | | 17 | RESERVED | RI | DO | Output signal can be used to wake up the host. | | | 18 | GND | GND | | Mini card ground | | | 19 | RESERVED | RESERVED | | Reserved | | | 20 | W_DISABLE# | W_DISABLE# | DI | Disable wireless communications | Pull-up by
default
Active low | | 21 | GND | GND | | Mini card ground | | | 22 | PERST# | PERST# | DI | Functional reset to the card | Active low | | 23 | PERn0 | UART_CTS | DI | UART clear to send | Connect to DTE's RTS | | 24 | 3.3Vaux | RESERVED | | Reserved | | |----|-----------|-----------|----|--|--| | 25 | PERp0 | UART_RTS | DO | UART request to send | Connect to DTE's CTS | | 26 | GND | GND | | Mini card ground | | | 27 | GND | GND | | Mini card ground | | | 28 | 1.5V | NC | | | | | 29 | GND | GND | | Mini card ground | | | 30 | SMB_CLK | I2C_SCL | DO | I2C serial clock | Require
external
pull-up to
1.8V. | | 31 | PETn0 | DTR | DI | Sleep mode control | | | 32 | SMB_DATA | I2C_SDA | Ю | I2C serial data | Require
external
pull-up to
1.8V. | | 33 | PETp0 | RESERVED | | Reserved | | | 34 | GND | GND | | Mini card ground | | | 35 | GND | GND | | Mini card ground | | | 36 | USB_D- | USB_DM | Ю | USB differential data (-) | | | 37 | GND | GND | | Mini card ground | | | 38 | USB_D+ | USB_DP | Ю | USB differential data (+) | | | 39 | 3.3Vaux | VCC_3V3 | PI | 3.3V DC supply | | | 40 | GND | GND | | Mini card ground | | | 41 | 3.3Vaux | VCC_3V3 | PI | 3.3V DC supply | | | 42 | LED_WWAN# | LED_WWAN# | OC | Active-low. LED signal for indicating the state of the card. | | | 43 | GND | GND | | Mini card ground | | | 44 | LED_WLAN# | RESERVED | | Reserved | | | 45 | RESERVED | PCM_CLK* | Ю | PCM clock signal | | | 46 | LED_WPAN# | RESERVED | | Reserved | | | 47 | RESERVED | PCM_DOUT* | DO | PCM data output | | | | | | | | | | 48 | 1.5V | NC | | | |----|----------|-----------|----|---------------------------| | 49 | RESERVED | PCM_DIN* | DI | PCM data input | | 50 | GND | GND | | Mini card ground | | 51 | RESERVED | PCM_SYNC* | Ю | PCM frame synchronization | | 52 | 3.3Vaux | VCC_3V3 | PI | 3.3V DC supply | #### **NOTES** - 1. Keep all NC, reserved and unused pins unconnected. - 2. "*" means the digital audio (PCM) function is only supported on **Telematics** version. #### 3.2.2. Pin Assignment The following figure shows the pin assignment of EC25 Mini PCIe module. The top side contains EC25 module and antenna connectors. Figure 2: Pin Assignment #### 3.3. Power Supply The following table shows pin definition of VCC_3V3 pins and ground pins. Table 5: Definition of VCC_3V3 and GND Pins | Pin No. | Pin Name | I/O | Power Domain | Description | |--|----------|-----|--------------|------------------| | 2, 39, 41, 52 | VCC_3V3 | PI | 3.0~3.6V | 3.3V DC supply | | 4, 9, 15, 18, 21,
26, 27, 29, 34, 35,
37, 40, 43, 50 | GND | | | Mini card ground | The typical supply voltage of EC25 Mini PCIe is 3.3V. In the 2G networks, the input peak current may reach to 2.7A during the transmitting time. Therefore, the power supply must be able to provide enough current, and a bypass capacitor of no less than $470\mu F$ with low ESR should be used to prevent the voltage from dropping. The following figure shows a reference design of power supply. The precision of resistor R2 and R3 is 1%, and the capacitor C3 needs a low ESR. Figure 3: Reference Design of
Power Supply #### 3.4. USIM Card Interface The following table shows the pin definition of USIM card interface. **Table 6: USIM Pin Definition** | Pin No. | Pin Name | I/O | Power Domain | Description | |---------|-----------|-----|--------------|--------------------------------| | 8 | USIM_VDD | РО | 1.8V/3.0V | Power source for the USIM card | | 10 | USIM_DATA | IO | 1.8V/3.0V | USIM data signal | | 12 | USIM_CLK | DO | 1.8V/3.0V | USIM clock signal | | 14 | USIM_RST | DO | 1.8V/3.0V | USIM reset signal | EC25 Mini PCIe supports 1.8V and 3.0V USIM cards. The following figure shows a reference design for a 6-pin USIM card connector. Figure 4: Reference Circuit of USIM Card Interface with a 6-Pin USIM Card Connector In order to enhance the reliability and availability of the USIM card in your application, please follow the criteria below in USIM circuit design: - Keep layout of USIM card as close to the module as possible. Keep the trace length as less than 200mm as possible. - Keep USIM card signal away from RF and power supply traces. - Keep the trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential. The decouple capacitor of USIM_VDD should be less than 1uF and must near to USIM card connector. - To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. - In order to offer good ESD protection, it is recommended to add a TVS whose parasitic capacitance should not be more than 50pF. The 22 ohm resistors should be added in series between the module and the USIM card so as to suppress EMI spurious transmission and enhance ESD protection. The 33pF capacitors are used for filtering interference of GSM900. Please note that the USIM peripheral circuit should be close to the USIM card connector. - The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the USIM card connector. #### 3.5. USB Interface The following table shows the pin definition of USB interface. **Table 7: Pin Definition of USB Interface** | Pin No. | Pin Name | I/O | Description | Comment | |---------|----------|-----|---------------------------|--| | 36 | USB_DM | Ю | USB differential data (-) | Require differential impedance of 90Ω | | 38 | USB_DP | Ю | USB differential data (+) | Require differential impedance of 90Ω | EC25 Mini PCIe is compliant with USB 2.0 specification. It can only be used as a slave device. Meanwhile, it supports high speed (480Mbps) mode and full speed (12Mbps) mode. The USB interface is used for AT command communication, data transmission, GNSS NMEA output, software debugging, firmware upgrade and voice over USB*. The following figure shows a reference circuit of USB interface. Figure 5: Reference Circuit of USB Interface In order to ensure the integrity of USB data line signal, components R1, R2, R3 and R4 must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible. In order to ensure the USB interface design corresponding with the USB 2.0 specification, please comply with the following principles: - It is important to route the USB signal traces as differential pairs with total grounding. The impedance of USB differential trace is 90 ohm. - Do not route signal traces under crystals, oscillators, magnetic devices or RF signal traces. It is important to route the USB differential traces in inner-layer with ground shielding on not only upper and lower layers but also right and left sides. - If USB connector is used, please keep the ESD protection components to the USB connector as close as possible. Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF. - Keep traces of USB data test points short to avoid noise coupled on USB data lines. If possible, reserve a 0R resistor on these two lines. #### NOTES - 1. There are three preconditions when enabling EC25 Mini PCIe to enter into the sleep mode: - a) Execute AT+QSCLK=1 command to enable the sleep mode. Please refer to document [2] for details. - b) DTR pin should be kept in high level (pull-up internally). - c) USB interface on Mini PCIe must be connected with the USB interface of the host and please guarantee the USB of the host is in suspended state. - 2. "*" means under development. #### 3.6. UART Interface The following table shows the pin definition of the UART interface. **Table 8: Pin Definition of the UART Interface** | Pin No. | EC25 Mini PCle Pin Name | I/O | Power Domain | Description | |---------|-------------------------|-----|--------------|----------------------| | 11 | UART_RX | DI | 3.3V | UART receive data | | 13 | UART_TX | DO | 3.3V | UART transmit data | | 23 | UART_CTS | DI | 3.3V | UART clear to send | | 25 | UART_RTS | DO | 3.3V | UART request to send | The UART interface supports 9600, 19200, 38400, 57600, 115200 and 230400bps baud rate. The default is 115200bps. This interface can be used for AT command communication. #### **NOTE** **AT+IPR** command can be used to set the baud rate of the UART, and **AT+IFC** command can be used to set the hardware flow control (hardware flow control is disabled by default). Please refer to **document [2]** for details. #### 3.7. PCM and I2C Interfaces The following table shows the pin definition of PCM and 12C interfaces that can be applied in audio codec design. Table 9: Pin Definition of PCM and I2C Interfaces | Pin No. | Pin Name | I/O | Power Domain | Description | |---------|----------|-----|--------------|---| | 45 | PCM_CLK | Ю | 1.8V | PCM clock signal | | 47 | PCM_DOUT | DO | 1.8V | PCM data output | | 49 | PCM_DIN | DI | 1.8V | PCM data input | | 51 | PCM_SYNC | Ю | 1.8V | PCM frame synchronization | | 30 | I2C_SCL | DO | 1.8V | I2C serial clock, require external pull-up to 1.8V. | | 32 | I2C_SDA | Ю | 1.8V | I2C serial data, require external pull-up to 1.8V. | EC25 Mini PCIe provides one PCM digital interface, which supports 8-bit A-law* and μ -law*, and also supports 16-bit linear data formats and the following modes: - Primary mode (short frame synchronization, works as either master or slave) - Auxiliary mode (long frame synchronization, works as master only) #### NOTE "*" means under development. In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, PCM_CLK supports 128, 256, 512, 1024 and 2048kHz for different speed codecs. The following figure shows the timing relationship in primary mode with 8kHz PCM_SYNC and 2048kHz PCM_CLK. Figure 6: Timing in Primary Mode In auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge; while the PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 128kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC only. The following figure shows the timing relationship in auxiliary mode with 8kHz PCM_SYNC and 128kHz PCM_CLK. Figure 7: Timing in Auxiliary Mode Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048kHz PCM_CLK and 8kHz PCM_SYNC. In addition, EC25 Mini PCIe's firmware has integrated the configuration on some PCM codec's application with I2C interface. Please refer to *document [2]* for details about **AT+QDAI** command. The following figure shows a reference design of PCM interface with an external codec IC. Figure 8: Reference Circuit of PCM Application with Audio Codec #### 3.8. Control Signals The following table shows the pin definition of control signals. **Table 10: Pin Definition of Control Signals** | Pin No. | Pin Name | I/O | Power Domain | Description | |---------|------------|-----|--------------|--| | 17 | RI | DO | 3.3V | Output signal can be used to wake up the host. | | 31 | DTR | DI | 3.3V | Sleep mode control | | 20 | W_DISABLE# | DI | 3.3V | Disable wireless communications; pull-up by default, active low. | | 22 | PERST# | DI | 3.3V | Functional reset to the card; active low. | | 42 | LED_WWAN# | OC | | Active-low. LED signal for indicating the state of the module. | | 1 | WAKE# | OC | | Output signal can be used to wake up the host. | #### 3.8.1. RI Signal The RI signal can be used to wake up the host. When URC returns, there will be the following behavior on the RI pin after executing **AT+QCFG="risignaltype","physical"** command. Figure 9: RI Behavior #### 3.8.2. DTR Signal The DTR signal supports sleep control function. Driving it to low level will wake up the module. #### 3.8.3. W_DISABLE# Signal EC25 Mini PCle provides W_DISABLE# signal to disable wireless communications through hardware operation. The following table shows the radio operational states of the module. Please refer to **document [2]** for related AT commands. **Table 11: Radio Operational States** | W_DISABLE# | AT Commands | Radio Operation | |------------|-------------------------------------|-----------------| | High Level | AT+CFUN=1 | Enabled | | High Level | AT+CFUN=0
AT+CFUN=4 | Disabled | | Low Level | AT+CFUN=0
AT+CFUN=1
AT+CFUN=4 | Disabled | #### 3.8.4. PERST# Signal The PERST# signal can be used to force a hardware reset on the card. You can reset the module by driving the PERST# to a low level voltage with the time frame of 150~460ms and then releasing it. The reset scenario is illustrated in the following figure. Figure 10: Timing of Resetting Module #### 3.8.5. LED_WWAN# Signal The LED_WWAN# signal of EC25 Mini PCIe is used to indicate the network status of the module, which can absorb the current up
to 40mA. According to the following circuit, in order to reduce the current of the LED, a resistor must be placed in series with the LED. The LED is emitting light when the LED_WWAN# output signal is active low. Figure 11: LED_WWAN# Signal Reference Circuit Diagram The following table shows the network status indications of the LED_WWAN# signal. **Table 12: Indications of Network Status** | LED_WWAN# | Description | |----------------------------|--| | Low Level (Light on) | Registered on network | | High-impedance (Light off) | No network coverage or not registered W_DISABLE# signal is at low level. (Disable the RF) AT+CFUN=0, AT+CFUN=4 | #### 3.8.6. WAKE# Signal The WAKE# signal is an open collector signal which is similar to RI signal, but a host pull-up resistor and AT+QCFG="risignaltype", "physical" command are required. When URC returns, there will be 120ms low level pulse output as below. Figure 12: WAKE# Behavior #### 3.9. Antenna Interfaces EC25 Mini PCIe antenna interfaces include a main antenna interface, an Rx-diversity antenna interface and a GNSS antenna interface. And Rx-diversity function is enabled by default. The following table shows the requirement on main antenna, Rx-diversity antenna and GNSS antenna. **Table 13: Antenna Requirements** | Туре | Requirements | |---------------|---| | | Frequency range: 1561~1615MHz | | GNSS | Polarization: RHCP or linear | | GN33 | VSWR: <2 (Typ.) | | | Passive antenna gain: >0dBi | | | VSWR: ≤2 | | | Gain (dBi): 1 | | | Max Input Power (W): 50 | | | Input Impedance (ohm): 50 | | | Polarization Type: Vertical | | GSM/WCDMA/LTE | Cable Insertion Loss: <1dB | | | (GSM900, WCDMA B5/B8, LTE B5/B8/B12/B17/B20) | | | Cable Insertion Loss: <1.5dB | | | (GSM1800, WCDMA B1/B2/B3/B4, LTE B1/B2/B3/B4) | | | Cable insertion loss: <2dB | | | (LTE B7/B38/B40/B41) | The following figure shows the overall sizes of RF connector. Figure 13: Dimensions of the RF Connector (Unit: mm) U.FL-LP serial connectors listed in the following figure can be used to match the RF connector. | | U.FL-LP-040 | U.FL-LP-066 | U.FL-LP(V)-040 | U.FL-LP-062 | U.FL-LP-088 | | |------------------|---|---|------------------------------|----------------------------|---|--| | Part No. | £ 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | £ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 3.4 | 87 | 185
287
297
297
297
297
297
297
297
297
297
29 | | | Mated Height | 2.5mm Max.
(2.4mm Nom.) | 2.5mm Max.
(2.4mm Nom.) | 2.0mm Max.
(1.9mm Nom.) | 2.4mm Max.
(2.3mm Nom.) | 2.4mm Max.
(2.3mm Nom.) | | | Applicable cable | Dia. 0.81mm
Coaxial cable | Dia. 1.13mm and Dia. 1.32mm Coaxial cable | Dia. 0.81mm
Coaxial cable | Dia. 1mm
Coaxial cable | Dia. 1.37mm
Coaxial cable | | | Weight (mg) | 53.7 | 59.1 | 34.8 | 45.5 | 71.7 | | | RoHS | YES | | | | | | Figure 14: Mechanicals of U.FL-LP Connectors # **4** Electrical and Radio Characteristics #### 4.1. General Description This chapter mainly describes the following electrical and radio characteristics of EC25 Mini PCIe: - Power supply requirements - I/O requirements - Current consumption - RF characteristics - GNSS receiver - ESD characteristics #### 4.2. Power Supply Requirements The input voltage of EC25 Mini PCle is 3.3V±9%, as specified by *PCl Express Mini CEM Specifications* 1.2. The following table shows the power supply requirements of EC25 Mini PCle. **Table 14: Power Supply Requirements** | Parameter | Description | Min. | Тур. | Max. | Unit | |-----------|--------------|------|------|------|------| | VCC_3V3 | Power Supply | 3.0 | 3.3 | 3.6 | V | #### 4.3. I/O Requirements The following table shows the I/O requirements of EC25 Mini PCIe. Table 15: I/O Requirements | Parameter | Description | Min. | Max. | Unit | |-----------------|---------------------|---------------|---------------|------| | V _{IH} | Input High Voltage | 0.7 × VCC_3V3 | VCC_3V3+0.3 | V | | V _{IL} | Input Low Voltage | -0.3 | 0.3 × VCC_3V3 | V | | V _{OH} | Output High Voltage | VCC_3V3-0.5 | VCC_3V3 | V | | V _{OL} | Output Low Voltage | 0 | 0.4 | V | #### **NOTES** - 1. The PCM and I2C interfaces belong to 1.8V power domain and other I/O interfaces belong to VCC_3V3 power domain. - 2. The maximum voltage value of V_{IL} for PERST# signal and W_DISABLE# signal is 0.5V. #### 4.4. RF Characteristics The following tables show the conducted RF output power and receiving sensitivity of EC25 Mini PCIe module. Table 16: EC25 Mini PCIe Conducted RF Output Power | Frequency | Max. | Min. | |-------------------------|--------------|----------| | GSM850/GSM900 | 33dBm±2dB | 5dBm±5dB | | DCS1800/PCS1900 | 30dBm±2dB | 0dBm±5dB | | GSM850/GSM900 (8-PSK) | 27dBm±3dB | 5dBm±5dB | | DCS1800/PCS1900 (8-PSK) | 26dBm±3dB | 0dBm±5dB | | WCDMA bands | 24dBm+1/-3dB | <-50dBm | | LTE-FDD bands | 23dBm±2dB | <-44dBm | | LTE-TDD bands | 23dBm±2dB | <-44dBm | |---------------|-----------|---------| | | | | Table 17: EC25-A Mini PCIe Conducted RF Receiving Sensitivity | Frequency | Primary | Diversity | SIMO | 3GPP (SIMO) | |-------------------|-----------|-----------|-----------|-------------| | WCDMA B2 | -110.0dBm | 1 | 1 | -104.7dBm | | WCDMA B4 | -110.0dBm | 1 | 1 | -106.7dBm | | WCDMA B5 | -110.5dBm | 1 | 1 | -104.7dBm | | LTE FDD B2 (10M) | -98.0dBm | -98.0dBm | -101.0dBm | -94.3dBm | | LTE FDD B4 (10M) | -97.5dBm | -99.0dBm | -101.0dBm | -96.3dBm | | LTE FDD B12 (10M) | -96.5dBm | -98.0dBm | -101.0dBm | -93.3dBm | Table 18: EC25-J Mini PCIe Conducted RF Receiving Sensitivity | Primary | Diversity | SIMO | 3GPP (SIMO) | |-----------|---|---|---| | -110.0dBm | 1 | 1 | -106.7dBm | | -110.5dBm | 1 | 1 | -106.7dBm | | -110.5dBm | 1 | 1 | -106.7dBm | | -110.5dBm | 1 | 1 | -106.7dBm | | -97.5dBm | -98.7dBm | -100.2dBm | -96.3dBm | | -96.5dBm | -97.1dBm | -100.5dBm | -93.3dBm | | -98.4dBm | -99.0dBm | -101.2dBm | -93.3dBm | | -99.5dBm | -99.0dBm | -101.7dBm | -96.3dBm | | -99.2dBm | -99.0dBm | -101.4dBm | -96.3dBm | | -99.5dBm | -99.0dBm | -101.5dBm | -93.8dBm | | -95.0dBm | -95.7dBm | -99.0dBm | -94.3dBm | | | -110.0dBm -110.5dBm -110.5dBm -110.5dBm -97.5dBm -96.5dBm -98.4dBm -99.5dBm -99.5dBm -99.5dBm | -110.0dBm / -110.5dBm / -110.5dBm / -110.5dBm / -110.5dBm / -97.5dBm -98.7dBm -96.5dBm -97.1dBm -98.4dBm -99.0dBm -99.5dBm -99.0dBm -99.5dBm -99.0dBm | -110.0dBm / / -110.5dBm / / -110.5dBm / / -110.5dBm / / -110.5dBm / / -97.5dBm -98.7dBm -100.2dBm -96.5dBm -97.1dBm -100.5dBm -98.4dBm -99.0dBm -101.2dBm -99.5dBm -99.0dBm -101.7dBm -99.5dBm -99.0dBm -101.7dBm -99.5dBm -99.0dBm -101.5dBm | Table 19: EC25-E Mini PCIe Conducted RF Receiving Sensitivity | Frequency | Primary | Diversity | SIMO | 3GPP (SIMO) | |-------------------|-----------|-----------|-----------|-------------| | GSM900 | -109.0dBm | 1 | 1 | -102.0dBm | | DCS1800 | -109.0dBm | 1 | 1 | -102.0dbm | | WCDMA B1 | -110.5dBm | 1 | 1 | -106.7dBm | | WCDMA B5 | -110.5dBm | 1 | 1 | -104.7dBm | | WCDMA B8 | -110.5dBm | 1 | 1 | -103.7dBm | | LTE-FDD B1 (10M) | -98.0dBm | -98.0dBm | -101.5dBm | -96.3dBm | | LTE-FDD B3 (10M) | -96.5dBm | -98.5dBm | -101.5dBm | -93.3dBm | | LTE-FDD B5 (10M) | -98.0dBm | -98.5dBm | -101.0dBm | -94.3dBm | | LTE-FDD B7 (10M) | -97.0dBm | -94.5dBm | -99.5dBm | -94.3dBm | | LTE-FDD B8 (10M) | -97.0dBm | -97.0dBm | -101.0dBm | -93.3dBm | | LTE-FDD B20 (10M) | -97.5dBm | -99.0dBm | -102.5dBm | -93.3dBm | | LTE-TDD B38 (10M) | -96.7dBm | -97.0dBm | -100.0dBm | -96.3dBm | | LTE-TDD B40 (10M) | -96.3dBm | -98.0dBm | -101.0dBm | -96.3dBm | | LTE-TDD B41 (10M) | -95.2dBm | -95.7dBm | -99.0dBm | -94.3dBm | Table 20: EC25-V Mini PCIe Conducted RF Receiving Sensitivity | Frequency | Primary | Diversity | SIMO | 3GPP (SIMO) | |-------------------|----------|-----------|-----------|-------------| | LTE-FDD B4 (10M) | -97.5dBm | -99.0dBm | -101.0dBm | -96.3dBm | | LTE-FDD B13 (10M) | -95.0dBm | -97.0dBm | -100.0dBm | -93.3dBm | ### 4.5. GNSS Receiver EC25 Mini PCIe integrates a GNSS receiver that supports IZat Gen 8C Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo, QZSS). Meanwhile, it supports Qualcomm gpsOneXTRA technology (one kind of A-GNSS). This technology will download XTRA file from the internet server to enhance the TTFF. XTRA file contains predicted GPS and GLONASS satellites coordinates and clock biases valid for up to 7 days. It is best if XTRA file is downloaded every 1-2 days. Additionally, EC25 Mini PCIe can support standard NMEA-0183 protocol and output NMEA messages with 1Hz via USB NMEA interface. EC25 Mini PCIe GNSS engine is switched off by default. You must switch on it by AT command. Please refer to *document [3]* for more details about GNSS engine technology and configurations. A passive antenna should be used for the GNSS engine. #### 4.6. ESD Characteristics The following table shows the ESD characteristics of EC25 Mini PCle. Table 21: ESD Characteristics of EC25 Mini PCle | Part | Contact Discharge | Air Discharge | Unit | |----------------------|-------------------|---------------|------| | Power Supply and GND | +/-5 | +/-10 | kV | | Antenna Interface | +/-4 | +/-8 | kV | | USB Interface | +/-4 | +/-8 | kV | | USIM
Interface | +/-4 | +/-8 | kV | | Others | +/-0.5 | +/-1 | kV | ## 4.7. Current Consumption The following tables describe the current consumption of EC25 Mini PCIe series module. Table 22: Current Consumption of EC25-A Mini PCle | Parameter | Description | Conditions | Тур. | Unit | |-------------------|-------------|----------------------------------|------|------| | | | AT+CFUN=0 (USB disconnected) | 3.6 | mA | | 1 | Sleep state | WCDMA PF=64 (USB disconnected) | 4.4 | mA | | I _{VBAT} | | WCDMA PF=128 (USB disconnected) | 3.8 | mA | | | | LTE-FDD PF=64 (USB disconnected) | 5.9 | mA | | | LTE-FDD PF=128 (USB disconnected) | 4.8 | mA | |------------------------|-----------------------------------|--------|----| | | WCDMA PF=64 (USB disconnected) | 27.0 | mA | | Idla atata | WCDMA PF=64 (USB connected) | 40.0 | mA | | Idle state | LTE-FDD PF=64 (USB disconnected) | 43.0 | mA | | | LTE-FDD PF=64 (USB connected) | 59.0 | mA | | | WCDMA B2 HSDPA @22.63dBm | 764.0 | mA | | | WCDMA B2 HSUPA @23.19dBm | 741.0 | mA | | WCDMA data | WCDMA B4 HSDPA @22.45dBm | 745.0 | mA | | transfer
(GNSS OFF) | WCDMA B4 HSUPA @22.57dBm | 752.0 | mA | | | WCDMA B5 HSDPA @22.49dBm | 616.0 | mA | | | WCDMA B5 HSUPA @22.43dBm | 637.0 | mA | | LTE data | LTE-FDD B2 @22.92dBm | 977.0 | mA | | transfer | LTE-FDD B4 @23.42dBm | 1094.0 | mA | | (GNSS OFF) | LTE-FDD B12 @23.39dBm | 847.0 | mA | | WCDMA
voice call | WCDMA B2 @23.59dBm | 861.0 | mA | | | WCDMA B4 @23.47dBm | 812.0 | mA | | | WCDMA B5 @23.46dBm | 683.0 | mA | | | | | | Table 23: Current Consumption of EC25-E Mini PCle | Parameter | Description | Conditions | Тур. | Unit | |-------------------|-------------|----------------------------------|------|------| | | | AT+CFUN=0 (USB disconnected) | 3.9 | mA | | | | GSM DRX=2 (USB disconnected) | 5.1 | mA | | ı | Class state | GSM DRX=9 (USB disconnected) | 4.3 | mA | | I _{VBAT} | Sleep state | WCDMA PF=64 (USB disconnected) | 5.5 | mA | | | | WCDMA PF=128 (USB disconnected) | 4.8 | mA | | | | LTE-FDD PF=64 (USB disconnected) | 5.8 | mA | | | LTE-FDD PF=128 (USB disconnected) | 5.0 | mA | |------------------------|-----------------------------------|-------|----| | | LTE-TDD PF=64 (USB disconnected) | 5.8 | mA | | | LTE-TDD PF=128 (USB disconnected) | 4.9 | mA | | | GSM DRX=5 (USB disconnected) | 30.0 | mA | | | GSM DRX=5 (USB connected) | 43.0 | mA | | | WCDMA PF=64 (USB disconnected) | 31.0 | mA | | Laller of a fee | WCDMA PF=64 (USB connected) | 45.0 | mA | | Idle state | LTE-FDD PF=64 (USB disconnected) | 31.0 | mA | | | LTE-FDD PF=64 (USB connected) | 44.0 | mA | | | LTE-TDD PF=64 (USB disconnected) | 32.0 | mA | | | LTE-TDD PF=64 (USB connected) | 44.0 | mA | | | GSM900 4DL/1UL @33.08dBm | 372.0 | mA | | | GSM900 3DL/2UL @31.03dBm | 626.0 | mA | | | GSM900 2DL/3UL @29.86dBm | 706.0 | mA | | GPRS data transfer | GSM900 1DL/4UL @29.44dBm | 767.0 | mA | | (GNSS OFF) | DCS1800 4DL/1UL @30.39dBm | 262.0 | mA | | | DCS1800 3DL/2UL @30.19dBm | 417.0 | mA | | | DCS1800 2DL/3UL @30.02dBm | 564.0 | mA | | | DCS1800 1DL/4UL @29.86dBm | 709.0 | mA | | | GSM900 4DL/1UL @27.59dBm | 233.0 | mA | | | GSM900 3DL/2UL @27.45dBm | 370.0 | mA | | EDGE data | GSM900 2DL/3UL @27.31dBm | 500.0 | mA | | transfer
(GNSS OFF) | GSM900 1DL/4UL @27.14dBm | 623.0 | mA | | | DCS1800 4DL/1UL @26.24dBm | 224.0 | mA | | | DCS1800 3DL/2UL @26.13dBm | 334.0 | mA | | | DCS1800 2DL/3UL @25.97dBm | 440.0 | mA | |------------------------|---------------------------|--------|----| | | DCS1800 1DL/4UL @25.82dBm | 553.0 | mA | | | WCDMA B1 HSDPA @22.49dBm | 798.0 | mA | | | WCDMA B1 HSUPA @21.87dBm | 788.0 | mA | | VCDMA data | WCDMA B5 HSDPA @22.66dBm | 781.0 | mA | | transfer
(GNSS OFF) | WCDMA B5 HSUPA @21.99dBm | 770.0 | mA | | | WCDMA B8 HSDPA @22.23dBm | 655.0 | mA | | | WCDMA B8 HSUPA @21.68dBm | 659.0 | mA | | | LTE-FDD B1 @23.12dBm | 940.0 | mA | | | LTE-FDD B3 @22.75dBm | 989.0 | mA | | | LTE-FDD B5 @22.92dBm | 962.0 | mA | | LTE data | LTE-FDD B7 @23.42dBm | 1188.0 | mA | | transfer | LTE-FDD B8 @22.97dBm | 911.0 | mA | | (GNSS OFF) | LTE-FDD B20 @22.51dBm | 946.0 | mA | | | LTE-TDD B38 @22.58dBm | 686.0 | mA | | | LTE-TDD B40 @22.31dBm | 576.0 | mA | | | LTE-TDD B41 @22.03dBm | 611.0 | mA | | GSM
voice call | GSM900 PCL=5 @33.31dBm | 367.0 | mA | | | DCS1800 PCL=0 @20.48dBm | 248.0 | mA | | | WCDMA B1 @23.18dBm | 868.0 | mA | | WCDMA
voice call | WCDMA B5 @22.62dBm | 808.0 | mA | | | WCDMA B8 @23.02dBm | 728.0 | mA | | | | | | Table 24: Current Consumption of EC25-V Mini PCle | Parameter | Description | Conditions | Тур. | Unit | |------------|----------------------|-----------------------------------|-------|------| | | | AT+CFUN=0 (USB disconnected) | 3.4 | mA | | | Sleep state | LTE-FDD PF=64 (USB disconnected) | 4.8 | mA | | | | LTE-FDD PF=128 (USB disconnected) | 4.3 | mA | | I_{VBAT} | Idle state | LTE-FDD PF=64 (USB disconnected) | 30.0 | mA | | | idle State | LTE-FDD PF=64 (USB connected) | 42.0 | mA | | | LTE data
transfer | LTE-FDD B4 @23.3dBm | 873.0 | mA | | | (GNSS OFF) | LTE-FDD B13 @22.13dBm | 638.0 | mA | Table 25: GNSS Current Consumption of EC25 Mini PCle Series Module | Parameter | Description | Conditions | Тур. | Unit | |-----------------------------|--------------------------|-----------------------------|------|------| | | Searching | Cold start @Passive Antenna | 75.0 | mA | | | (AT+CFUN=0) | Lost state @Passive Antenna | 74.0 | mA | | I _{VBAT}
(GNSS) | | Instrument environment | 44.0 | mA | | , | Tracking (AT+CFUN=0) | Open Sky @Passive Antenna | 53.0 | mA | | (//// 01 01 01 01 | Open Sky @Active Antenna | 58.0 | mA | | # **5** Dimensions and Packaging ## 5.1. General Description This chapter mainly describes mechanical dimensions as well as packaging specification of EC25 Mini PCIe module. ### 5.2. Mechanical Dimensions of EC25 Mini PCle Figure 15: Mechanical Dimensions of EC25 Mini PCle (Unit: mm) ## 5.3. Standard Dimensions of Mini PCI Express The following figure shows the standard dimensions of Mini PCI Express. Please refer to **document [1]** for detailed A and B. Figure 16: Standard Dimensions of Mini PCI Express (Unit: mm) EC25 Mini PCIe adopts a standard Mini PCI Express connector which compiles with the directives and standards listed in the *document [1]*. The following figure takes the Molex 679100002 as an example. Figure 17: Dimensions of the Mini PCI Express Connector (Molex 679100002, Unit: mm) ## 5.4. Packaging Specification The EC25 Mini PCIe is packaged in a tray. Each tray contains 10pcs of modules. The smallest package of EC25 Mini PCIe contains 100pcs. # **6** Appendix References **Table 26: Related Documents** | SN | Document Name | Remark | |-----|--|--| | [1] | PCI Express Mini Card Electromechanical Specification Revision 1.2 | Mini PCI Express Specification | | [2] | Quectel_EC25&EC21_AT_Commands_Manual | EC25 and EC21 AT Commands Manual | | [3] | Quectel_EC25&EC21_GNSS_AT_Commands_
Manual | EC25 and EC21 GNSS AT Commands
Manual | **Table 27: Terms and Abbreviations** | Abbreviation | Description | |--------------|---| | AMR | Adaptive Multi-rate | | bps | Bits Per Second | | CS | Coding Scheme | | DC-HSPA+ | Dual-carrier High Speed Packet Access | | DFOTA | Delta Firmware Upgrade Over The Air | | DL | Down Link | | EFR | Enhanced Full Rate | | ESD | Electrostatic Discharge | | FDD | Frequency Division Duplexing | | FR | Full Rate | | GLONASS | GLObalnaya Navigatsionnaya Sputnikovaya Sistema, the Russian Global Navigation Satellite System | | GMSK | Gaussian Minimum Shift Keying | | GNSS | Global Navigation Satellite System | |-------|---| | GPS | Global Positioning System | | GSM | Global System for Mobile Communications | | HR | Half Rate | | kbps | Kilo Bits Per Second | | LED | Light Emitting Diode | | LTE | Long-Term Evolution | | Mbps | Million Bits Per Second | | ME | Mobile Equipment (Module) | | MIMO | Multiple-Input Multiple-Output | | MMS | Multimedia Messaging Service | | MO | Mobile Originated | | MT | Mobile Terminated | | PCM | Pulse Code Modulation | | PDU | Protocol Data Unit | | PPP | Point-to-Point Protocol | | RF | Radio Frequency | | Rx | Receive | | USIM | Universal Subscriber Identification Module | | SIMO | Single Input Multiple Output | | SMS | Short Message Service | | UART | Universal Asynchronous Receiver & Transmitter | | UL | Up Link | | URC | Unsolicited Result Code | | WCDMA | Wideband Code Division Multiple Access | | | | FCC Certification Requirements. According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device. And the following conditions must be met: - 1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091. - 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter. - 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: 10224A-2019EC25AFX. - 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed: - ☐ WCDMA B2/LTE B2: <8dBi - ☐ WCDMA B4LTE B4/B66: <5dBi </p> - WCDMA B5/LTE B5: <6.1dBi</p> - ☐ LTE B5: <9.4dBi - ☐ LTE B12: <8.73dBi - ☐ LTE B13: <9.17dBi - □ LTE B14: <9.26dBi</p> - ☐ LTE B 71: <8.55dBi - 5. This module must not transmit simultaneously with any other antenna or transmitter - 6.
The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines. For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093 If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations. For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs: A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph). For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: XMR201909EC25AFX_" or "Contains FCC ID: XMR201909EC25AFX_" must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID. The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device. The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form. This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment. To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements. #### **IC Statement** #### **IRSS-GEN** "This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions: (1) This device may not cause interference; and (2) This device must accept any interference, including interference that may cause undesired operation of the device." or "Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : 1) l'appareil ne doit pas produire de brouillage; 2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement." Déclaration sur l'exposition aux rayonnements RF L'autre utilisé pour l'émetteur doit être installé pour fournir une distance de séparation d'au moins 20 cm de toutes les personnes et ne doit pas être colocalisé ou fonctionner conjointement avec une autre antenne ou un autre émetteur. The host product shall be properly labeled to identify the modules within the host product. The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labeled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word "Contains" or similar wording expressing the same meaning, as follows: "Contains IC: 10224A-2019EC25AFX" or "where: 10224A-2019EC25AFX is the module's certification number". Le produit hôte doit être correctement étiqueté pour identifier les modules dans le produit hôte. L'étiquette de certification d'Innovation, Sciences et Développement économique Canada d'un module doit être clairement visible en tout temps lorsqu'il est installédans le produit hôte; sinon, le produit hôte doit porter une étiquette indiquant le numéro de certification d'Innovation, Sciences et Développement économique Canada pour le module, précédé du mot «Contient» ou d'un libellé semblable exprimant la même signification, comme suit: "Contient IC: 10224A-2019EC25AFX" ou "où: 10224A-2019EC25AFX est le numéro de certification du module".