

# **TEST REPORT**

| Report No.:           | BCTC2402565717-2E                       |  |  |  |
|-----------------------|-----------------------------------------|--|--|--|
| Applicant:            | LEADOYS Technology (ShenZhen) Co., Ltd. |  |  |  |
| Product Name:         | Smart watch                             |  |  |  |
| Test Model:           | X1                                      |  |  |  |
| Tested Date:          | 2024-02-29 to 2024-03-06                |  |  |  |
| Issued Date:          | 2024-03-07                              |  |  |  |
| She                   | enzhen BCTC Testing Co., Ltd.           |  |  |  |
| No. : BCTC/RF-EMC-005 | Page: 1 of 53                           |  |  |  |



# FCC ID: 2BFCM-X1

| Product Name:         | Smart watch                                                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Trademark:            | N/A                                                                                                                                                 |
| Model/Type Reference: | X1<br>X1 PRO, X1 PLUS, X3, X3 PRO, X3 PLUS, BT80                                                                                                    |
| Prepared For:         | LEADOYS Technology (ShenZhen) Co., Ltd.                                                                                                             |
| Address:              | Room 505, Building B, Bantian International Center, Longgang, Shenzhen, China                                                                       |
| Manufacturer:         | LEADOYS Technology (ShenZhen) Co., Ltd.                                                                                                             |
| Address:              | Room 505, Building B, Bantian International Center, Longgang, Shenzhen, China                                                                       |
| Prepared By:          | Shenzhen BCTC Testing Co., Ltd.                                                                                                                     |
| Address:              | 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road,<br>Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China |
| Sample Received Date: | 2024-02-29                                                                                                                                          |
| Sample Tested Date:   | 2024-02-29 to 2024-03-06                                                                                                                            |
| Issue Date:           | 2024-03-07                                                                                                                                          |
| Report No.:           | BCTC2402565717-2E                                                                                                                                   |
| Test Standards:       | FCC Part15.247<br>ANSI C63.10-2013                                                                                                                  |
| Test Results:         | PASS                                                                                                                                                |
| Remark:               | This is Bluetooth BLE radio test report.                                                                                                            |

Tested by: Zil

Eric Yang/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

No. : BCTC/RF-EMC-005

Page: 2 of 53



Table Of Content

| Test                  | Report Declaration                                                                                                                                   | Page     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.                    | Version                                                                                                                                              | 5        |
| 2.                    | Test Summary                                                                                                                                         | 6        |
| 3.                    | Measurement Uncertainty                                                                                                                              | 7        |
| 4.                    | Product Information And Test Setup                                                                                                                   |          |
| 4.1                   | Product Information                                                                                                                                  |          |
| 4.2                   | Test Setup Configuration                                                                                                                             |          |
| 4.3                   | Support Equipment                                                                                                                                    |          |
| 4.4                   | Channel List                                                                                                                                         |          |
| 4.5                   | Test Mode                                                                                                                                            |          |
| 4.6                   | Table of parameters of text software setting                                                                                                         |          |
| <del>-</del> .0<br>5. | Test Facility And Test Instrument Used                                                                                                               |          |
| 5.1                   | Test Facility                                                                                                                                        |          |
| 5.2                   | Test Instrument Used                                                                                                                                 |          |
| -                     |                                                                                                                                                      |          |
| 6.                    | Conducted Emissions                                                                                                                                  |          |
| 6.1                   | Block Diagram Of Test Setup                                                                                                                          |          |
| 6.2                   | Limit                                                                                                                                                |          |
| 6.3                   | Test procedure                                                                                                                                       |          |
| 6.4                   | EUT Operating Conditions                                                                                                                             |          |
| 6.5                   | Test Result                                                                                                                                          |          |
| 7.                    | Radiated Emissions                                                                                                                                   |          |
| 7.1                   | Block Diagram Of Test Setup                                                                                                                          |          |
| 7.2                   | Limit                                                                                                                                                |          |
| 7.3                   | Test procedure                                                                                                                                       |          |
| 7.4                   | EUT operating Conditions                                                                                                                             |          |
| 7.5                   | Test Result                                                                                                                                          |          |
| 8.                    | Radiated Band Emission Measurement And Restricted Bands Of Operat                                                                                    | ion24    |
| 8.1                   | Block Diagram Of Test Setup                                                                                                                          | 24       |
| 8.2                   | Limit                                                                                                                                                | 24       |
| 8.3                   | Test Procedure                                                                                                                                       | 25       |
| 8.4                   | EUT Operating Conditions                                                                                                                             | 26       |
| 8.5                   | Test Result.                                                                                                                                         |          |
| 9.                    | Power Spectral Density Test                                                                                                                          |          |
| 9.1                   | Block Diagram Of Test Setup                                                                                                                          |          |
| 9.2                   | Limit<br>Test procedure<br>EUT Operating Conditions<br>Test Result                                                                                   | 27       |
| 9.3                   | Test procedure                                                                                                                                       |          |
| 9.4                   | FUT Operating Conditions                                                                                                                             | 27       |
| 9.5                   | Test Result                                                                                                                                          | 28       |
| 10.                   | Randwidth Test                                                                                                                                       | 32       |
|                       |                                                                                                                                                      |          |
| 10.1                  | Block Diagram Of Test Setup<br>Limit<br>Test procedure<br>EUT operating Conditions<br>Test Result<br>Peak Output Power Test<br>Diagram Of Test Setup |          |
| 10.2                  | Test procedure                                                                                                                                       | ວ∠<br>ຊາ |
| 10.3                  | EUT oporating Conditions                                                                                                                             | ບ∠<br>ດາ |
| 10.4                  |                                                                                                                                                      | ວ∠       |
| 10.5                  | Dook Output Dowor Toot                                                                                                                               | 33<br>27 |
| 11.                   | Plack Diagram Of Test Satur                                                                                                                          | 3/<br>   |
| 11.1                  | Block Diagram Of Test Setup                                                                                                                          |          |

Page: 3 of 53

Edition: B,1

,TC 3C

PR

еро



| 11.2 Limit                                   |    |
|----------------------------------------------|----|
| 11.3 Test Procedure                          |    |
| 11.4 EUT Operating Conditions                |    |
| 11.5 Test Result                             |    |
| 12. 100 kHz Bandwidth Of Frequency Band Edge |    |
| 12.1 Block Diagram Of Test Setup             |    |
| 12.2 Limit                                   |    |
| 12.3 Test procedure                          |    |
| 12.4 EUT operating Conditions                |    |
| 12.5 Test Result                             |    |
| 13. Antenna Requirement                      | 49 |
| 13.1 Limit                                   | 49 |
| 13.2 Test Result                             | 49 |
| 14. EUT Photographs                          | 50 |
| 15. EUT Test Setup Photographs               |    |
|                                              |    |

(Note: N/A Means Not Applicable)

No.: BCTC/RF-EMC-005

Page: 4 of 53

Edition : B.1

t Sea



# 1. Version

| Report No.        | Issue Date | Description | Approved |
|-------------------|------------|-------------|----------|
| BCTC2402565717-2E | 2024-03-07 | Original    | Valid    |
|                   |            |             |          |

ΞD

Page: 5 of 53



# 2. Test Summary

The Product has been tested according to the following specifications:

| No. | Test Parameter                    | Clause No.         | Results |
|-----|-----------------------------------|--------------------|---------|
| 1   | Conducted Emission                | 15.207             | PASS    |
| 2   | 6dB Bandwidth                     | 15.247 (a)(2)      | PASS    |
| 3   | Peak Output Power                 | 15.247 (b)         | PASS    |
| 4   | Radiated Spurious Emission        | 15.247 (d), 15.205 | PASS    |
| 5   | Power Spectral Density            | 15.247 (e)         | PASS    |
| 6   | Restricted Band of Operation      | 15.205             | PASS    |
| 7   | Band Edge (Out of Band Emissions) | 15.247(d)          | PASS    |
| 8   | Antenna Requirement               | 15.203             | PASS    |



No.: BCTC/RF-EMC-005

Page: 6 of 53



# 3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| No. | Item                                                 | Uncertainty |
|-----|------------------------------------------------------|-------------|
| 1   | 3m chamber Radiated spurious emission(30MHz-1GHz)    | U=4.3dB     |
| 2   | 3m chamber Radiated spurious<br>emission(9KHz-30MHz) | U=3.7dB     |
| 3   | 3m chamber Radiated spurious emission(1GHz-18GHz)    | U=4.5dB     |
| 4   | 3m chamber Radiated spurious emission(18GHz-40GHz)   | U=3.34dB    |
| 5   | Conducted Emission (150kHz-30MHz)                    | U=3.20dB    |
| 6   | Conducted Adjacent channel power                     | U=1.38dB    |
| 7   | Conducted output power uncertainty Above 1G          | U=1.576dB   |
| 8   | Conducted output power uncertainty below 1G          | U=1.28dB    |
| 9   | humidity uncertainty                                 | U=5.3%      |
| 10  | Temperature uncertainty                              | U=0.59℃     |





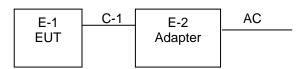
# 4. Product Information And Test Setup

# 4.1 Product Information

| Model/Type Reference: | X1 PRO, X1 PLUS, X3, X3 PRO, X3 PLUS, BT80                                                                                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Model Differences:    | All the model are the same circuit and RF module, except model names.                                                                              |
| Bluetooth Version:    | 5.2                                                                                                                                                |
| Operation Frequency:  | 2402-2480MHz                                                                                                                                       |
| Type of Modulation:   | GFSK 1Mbps, GFSK 2Mbps,                                                                                                                            |
| Number Of Channel     | 40CH                                                                                                                                               |
| Antenna installation: | FPC antenna                                                                                                                                        |
| Antenna Gain:         | -6.75 dBi                                                                                                                                          |
| Ratings:              | DC 3.8V From battery, DC 5V From adapter                                                                                                           |
| Remark:               | The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information. |



No.: BCTC/RF-EMC-005


Page: 8 of 53



# 4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission and Radiated Spurious Emission:



RF Test



# 4.3 Support Equipment

No.: BCTC/RF-EMC-005

| No. | Device Type | Brand | Model | Series No. | Note      |
|-----|-------------|-------|-------|------------|-----------|
| E-2 | Adapter     | N/A   | CD226 | N/A        | Auxiliary |
|     |             |       |       |            |           |

| Item | Shielded Type | Ferrite Core | Length | Note                |
|------|---------------|--------------|--------|---------------------|
| C-1  | N/A           | N/A          | 0.3M   | DC cable unshielded |

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page: 9 of 53

Edition: B.1

DOI



#### 4.4 Channel List

|         | Channel List       |         |                    |         |                    |
|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 01      | 2402               | 11      | 2422               | 21      | 2442               |
| 02      | 2404               | 12      | 2424               | 22      | 2444               |
| 03      | 2406               | 13      | 2426               | 23      | 2446               |
| ~       | ~                  | ~       | ~                  | ~       | ~                  |
| 09      | 2418               | 19      | 2438               | 39      | 2478               |
| 10      | 2420               | 20      | 2440               | 40      | 2480               |

#### 4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| For All Mode | Description                                        | Modulation Type |  |
|--------------|----------------------------------------------------|-----------------|--|
| Mode 1       | CH01                                               |                 |  |
| Mode 2       | Mode 2 CH20                                        |                 |  |
| Mode 3       | Mode 3 CH40                                        |                 |  |
| Mode 4       | CH01                                               |                 |  |
| Mode 5       | CH20                                               | GFSK(2Mbps)     |  |
| Mode 6       | CH40                                               |                 |  |
| Mode 7       | Link mode (Conducted Emission & Radiated emission) |                 |  |

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

#### 4.6 Table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

| Test software Version | M        | PKitSetupPackage-v5.3.1.8 | 1        |
|-----------------------|----------|---------------------------|----------|
| Frequency             | 2402 MHz | 2440 MHz                  | 2480 MHz |
| Parameters            | DEF      | DEF                       | DEF      |



# 5. Test Facility And Test Instrument Used

#### 5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

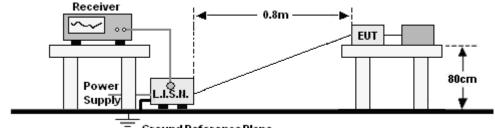
ISED CAB identifier: CN0017

#### 5.2 Test Instrument Used

|               | Conducted Emissions Test |            |                |                |                |  |
|---------------|--------------------------|------------|----------------|----------------|----------------|--|
| Equipment     | Manufacturer             | Model#     | Serial#        | Last Cal.      | Next Cal.      |  |
| Receiver      | R&S                      | ESR3       | 102075         | May 15, 2023   | May 14, 2024   |  |
| LISN          | R&S                      | ENV216     | 101375         | May 15, 2023   | May 14, 2024   |  |
| Software      | Frad                     | EZ-EMC     | EMC-CON<br>3A1 | /              | /              |  |
| Pulse limiter | Schwarzbeck              | VTSD9561-F | 01323          | Sept. 22, 2023 | Sept. 21, 2024 |  |

|                                     | RF Conducted Test |                |            |              |              |
|-------------------------------------|-------------------|----------------|------------|--------------|--------------|
| Equipment                           | Manufacturer      | Model#         | Serial#    | Last Cal.    | Next Cal.    |
| Power Metter                        | Keysight          | E4419          |            | May 15, 2023 | May 14, 2024 |
| Power Sensor<br>(AV)                | Keysight          | E9300A         |            | May 15, 2023 | May 14, 2024 |
| Signal<br>Analyzer20kH<br>z-26.5GHz | Keysight          | N9020A         | MY49100060 | May 15, 2023 | May 14, 2024 |
| Spectrum<br>Analyzer9kHz-<br>40GHz  | R&S               | FSP40          | 100363     | May 15, 2023 | May 14, 2024 |
| Radio<br>frequency<br>control box   | MAIWEI            | MW100-RFC<br>B |            | \<br>\       |              |
| Software                            | MAIWEI            | MTS-8310       |            |              |              |




|                                    | Radiated Emissions Test (966 Chamber01) |                      |                  |              |               |  |
|------------------------------------|-----------------------------------------|----------------------|------------------|--------------|---------------|--|
| Equipment                          | Manufacturer                            | Model#               | Serial#          | Last Cal.    | Next Cal.     |  |
| 966 chamber                        | ChengYu                                 | 966 Room             | 966              | May 15, 2023 | May 14, 2026  |  |
| Receiver                           | R&S                                     | ESR3                 | 102075           | May 15, 2023 | May 14, 2024  |  |
| Receiver                           | R&S                                     | ESRP                 | 101154           | May 15, 2023 | May 14, 2024  |  |
| Amplifier                          | Schwarzbeck                             | BBV9744              | 9744-0037        | May 15, 2023 | May 14, 2024  |  |
| TRILOG<br>Broadband<br>Antenna     | Schwarzbeck                             | VULB9163             | 942              | May 29, 2023 | May 28, 2024  |  |
| Loop<br>Antenna(9KHz<br>-30MHz)    | Schwarzbeck                             | FMZB1519B            | 00014            | May 31, 2023 | May 30, 2024  |  |
| Amplifier                          | SKET                                    | LAPA_01G1<br>8G-45dB | SK202104090<br>1 | May 15, 2023 | May 14, 2024  |  |
| Horn Antenna                       | Schwarzbeck                             | BBHA9120D            | 1541             | May 31, 2023 | May 30, 2024  |  |
| Amplifier(18G<br>Hz-40GHz)         | MITEQ                                   | TTA1840-35-<br>HG    | 2034381          | May 15, 2023 | May 14, 2024  |  |
| Horn<br>Antenn(18GH<br>z-40GHz)    | Schwarzbeck                             | BBHA9170             | 00822            | May 31, 2023 | May 30, 2024  |  |
| Spectrum<br>Analyzer9kHz-<br>40GHz | R&S                                     | FSP40                | 100363           | May 15, 2023 | May 14, 2024  |  |
| Software                           | Frad                                    | EZ-EMC               | FA-03A2 RE       |              | $\Lambda_{j}$ |  |

2 00.,175



#### 6. Conducted Emissions

# 6.1 Block Diagram Of Test Setup



#### Ground Reference Plane

#### 6.2 Limit

|                 | Limit     | (dBuV)    |
|-----------------|-----------|-----------|
| Frequency (MHz) | Quas-peak | Average   |
| 0.15 -0.5       | 66 - 56 * | 56 - 46 * |
| 0.50 -5.0       | 56.00     | 46.00     |
| 5.0 -30.0       | 60.00     | 50.00     |

#### Notes:

1. \*Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

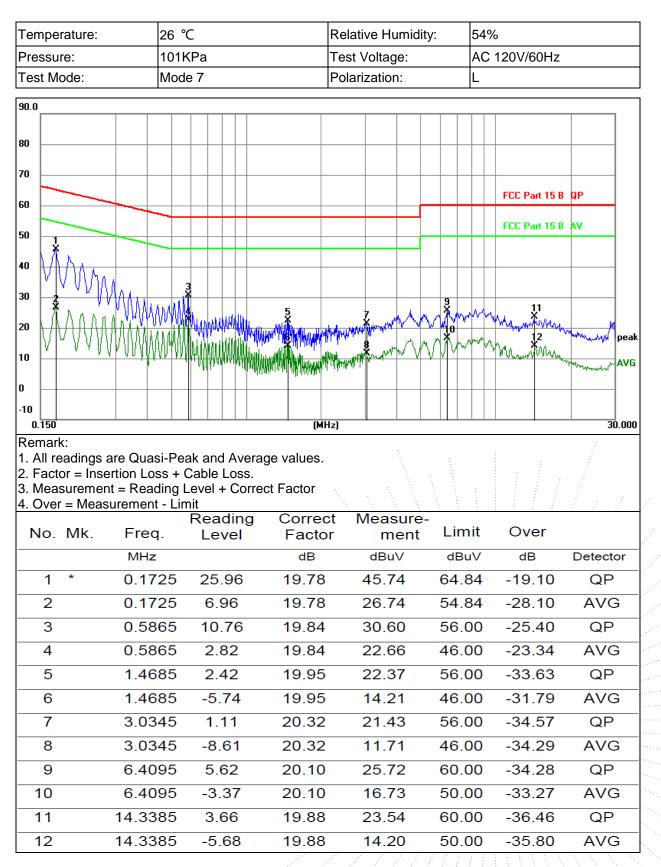
#### 6.3 Test procedure

| Receiver Parameters | Setting  |  |  |
|---------------------|----------|--|--|
| Attenuation         | 10 dB    |  |  |
| Start Frequency     | 0.15 MHz |  |  |
| Stop Frequency      | 30 MHz   |  |  |
| IF Bandwidth        | 9 kHz    |  |  |

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


#### 6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

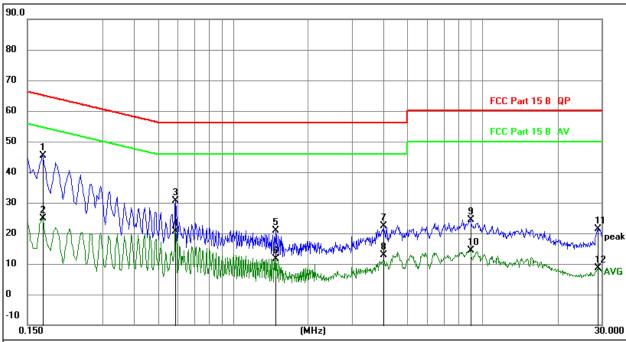
No.: BCTC/RF-EMC-005



#### 6.5 Test Result



No.: BCTC/RF-EMC-005


Page: 14 of 53

Edition : B.1

E



| Temperature: | 26 °C  | Relative Humidity: | 54%          |
|--------------|--------|--------------------|--------------|
| Pressure:    | 101KPa | Test Voltage:      | AC 120V/60Hz |
| Test Mode:   | Mode 7 | Polarization:      | Ν            |

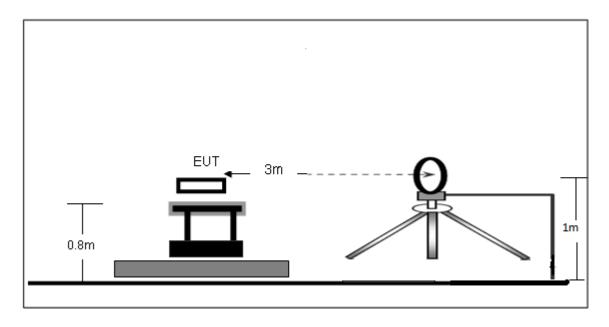


#### Remark:

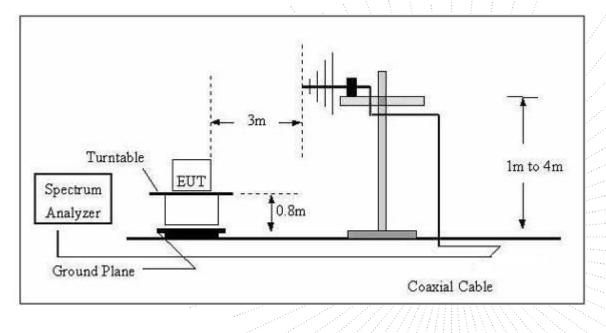
All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

| 4.000 = 10 | ieasuiement - Li |                  |                   |                  |       |        | 1        |
|------------|------------------|------------------|-------------------|------------------|-------|--------|----------|
| No. Mk     | . Freq.          | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|            | MHz              |                  | dB                | dBuV             | dBuV  | dB     | Detector |
| 1 *        | 0.1722           | 25.67            | 19.77             | 45.44            | 64.85 | -19.41 | QP       |
| 2          | 0.1722           | 5.14             | 19.77             | 24.91            | 54.85 | -29.94 | AVG      |
| 3          | 0.5885           | 10.74            | 19.84             | 30.58            | 56.00 | -25.42 | QP       |
| 4          | 0.5885           | 0.78             | 19.84             | 20.62            | 46.00 | -25.38 | AVG      |
| 5          | 1.4874           | 1.04             | 19.95             | 20.99            | 56.00 | -35.01 | QP       |
| 6          | 1.4874           | -8.23            | 19.95             | 11.72            | 46.00 | -34.28 | AVG      |
| 7          | 4.0062           | 1.68             | 20.66             | 22.34            | 56.00 | -33.66 | QP       |
| 8          | 4.0062           | -7.79            | 20.66             | 12.87            | 46.00 | -33.13 | AVG      |
| 9          | 8.9637           | 4.48             | 19.91             | 24.39            | 60.00 | -35.61 | QP       |
| 10         | 8.9637           | -5.48            | 19.91             | 14.43            | 50.00 | -35.57 | AVG      |
| 11         | 29.0613          | 1.46             | 19.99             | 21.45            | 60.00 | -38.55 | QP       |
| 12         | 29.0613          | -11.43           | 19.99             | 8.56             | 50.00 | -41.44 | AVG      |
|            |                  |                  |                   |                  |       |        |          |

Page: 15 of 53


JC JC JC

<sup>e</sup>poi



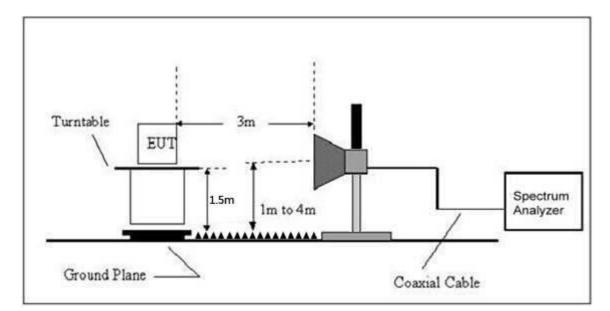

# 7. Radiated Emissions

- 7.1 Block Diagram Of Test Setup
  - (A) Radiated Emission Test-Up Frequency Below 30MHz








TE.

**T(** 

t sea



(C) Radiated Emission Test-Up Frequency Above 1GHz



# 7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Field Strength | Distance                                                       | Field Strength Li                                                                                                                                                                    | mit at 3m Distance                                                                                                                                                                                                                                                                                            |
|----------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| uV/m           | (m)                                                            | uV/m                                                                                                                                                                                 | dBuV/m                                                                                                                                                                                                                                                                                                        |
| 2400/F(kHz)    | 300                                                            | 10000 * 2400/F(kHz)                                                                                                                                                                  | 20log <sup>(2400/F(kHz))</sup> + 80                                                                                                                                                                                                                                                                           |
| 24000/F(kHz)   | 30                                                             | 100 * 24000/F(kHz)                                                                                                                                                                   | 20log <sup>(24000/F(kHz))</sup> + 40                                                                                                                                                                                                                                                                          |
| 30             | 30                                                             | 100 * 30                                                                                                                                                                             | 20log <sup>(30)</sup> + 40                                                                                                                                                                                                                                                                                    |
| 100            | 3                                                              | 100                                                                                                                                                                                  | 20log <sup>(100)</sup>                                                                                                                                                                                                                                                                                        |
| 150            | 3                                                              | 150                                                                                                                                                                                  | 20log <sup>(150)</sup>                                                                                                                                                                                                                                                                                        |
| 200            | 3                                                              | 200                                                                                                                                                                                  | 20log <sup>(200)</sup>                                                                                                                                                                                                                                                                                        |
| 500            | 3                                                              | 500                                                                                                                                                                                  | 20log <sup>(500)</sup>                                                                                                                                                                                                                                                                                        |
|                | uV/m<br>2400/F(kHz)<br>24000/F(kHz)<br>30<br>100<br>150<br>200 | uV/m         (m)           2400/F(kHz)         300           24000/F(kHz)         30           30         30           100         3           150         3           200         3 | uV/m         (m)         uV/m           2400/F(kHz)         300         10000 * 2400/F(kHz)           24000/F(kHz)         30         100 * 24000/F(kHz)           30         30         100 * 30           100         3         100           150         3         150           200         3         200 |

Limits Of Radiated Emission Measurement (Above 1000MHz)

|                      | Limit (dBuV/m) (at 3M) |         |  |  |  |
|----------------------|------------------------|---------|--|--|--|
| Frequency (MHz) Peak |                        | Average |  |  |  |
| Above 1000           | 74                     | 54      |  |  |  |

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

ΞD



(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

# 7.3 Test procedure

| Receiver Parameter | Setting           |
|--------------------|-------------------|
| Attenuation        | Auto              |
| 9kHz~150kHz        | RBW 200Hz for QP  |
| 150kHz~30MHz       | RBW 9kHz for QP   |
| 30MHz~1000MHz      | RBW 120kHz for QP |

| Spectrum Parameter | Setting                                                            |
|--------------------|--------------------------------------------------------------------|
| 1-25GHz            | RBW 1 MHz /VBW 1 MHz for Peak,<br>RBW 1 MHz / VBW 10Hz for Average |

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.



Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

# 7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

#### 7.5 Test Result

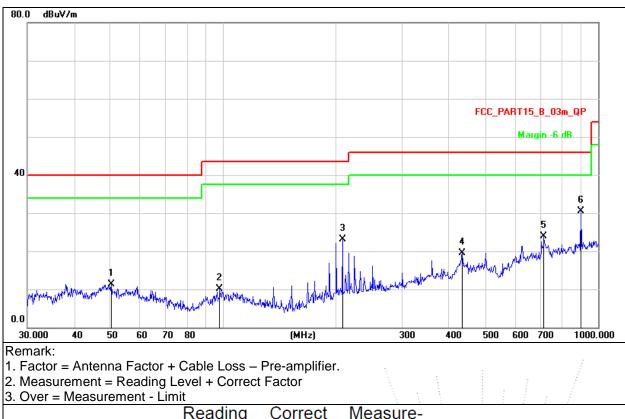
#### Below 30MHz

| Temperature: | 26 °C  | Relative Humidity: 54%     |  |
|--------------|--------|----------------------------|--|
| Pressure:    | 101KPa | Test Voltage: AC 120V/60Hz |  |
| Test Mode:   | Mode 7 |                            |  |

| Freq. | Reading  | Limit Margin  | State |
|-------|----------|---------------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) (dB) | P/F   |
|       |          |               | PASS  |
|       |          |               | PASS  |

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

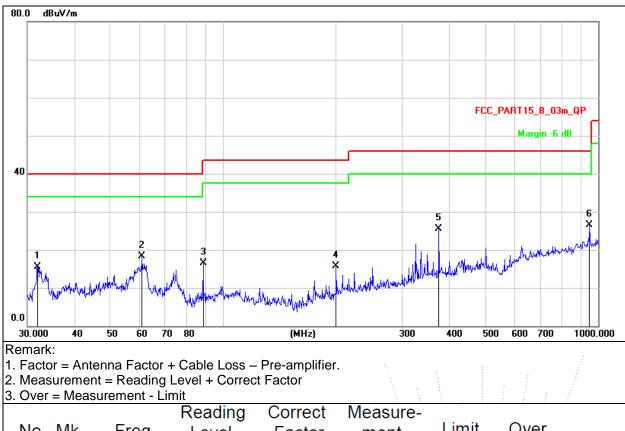

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.



Between 30MHz – 1GHz

| Temperature: | 26 ℃   | Relative Humidity: | 54%          |
|--------------|--------|--------------------|--------------|
| Pressure:    | 101KPa | Test Voltage:      | AC 120V/60Hz |
| Test Mode:   | Mode 7 | Polarization:      | Horizontal   |




| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 50.2324  | 25.28            | -13.93            | 11.35            | 40.00 | -28.65 | QP       |
| 2   |     | 97.7983  | 26.32            | -16.25            | 10.07            | 43.50 | -33.43 | QP       |
| 3   | 2   | 207.8501 | 38.70            | -15.50            | 23.20            | 43.50 | -20.30 | QP       |
| 4   | 4   | 134.0651 | 29.60            | -10.17            | 19.43            | 46.00 | -26.57 | QP       |
| 5   | 7   | 16.6820  | 29.30            | -5.47             | 23.83            | 46.00 | -22.17 | QP       |
| 6   | * ( | 900.1474 | 33.70            | -3.12             | 30.58            | 46.00 | -15.42 | QP       |

E



| Temperature: | 26 ℃   | Relative Humidity: | 54%          |
|--------------|--------|--------------------|--------------|
| Pressure:    | 101KPa | Test Voltage:      | AC 120V/60Hz |
| Test Mode:   | Mode 7 | Polarization:      | Vertical     |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 31.9546  | 31.68            | -16.27            | 15.41            | 40.00 | -24.59 | QP       |
| 2   |     | 60.7044  | 33.78            | -15.44            | 18.34            | 40.00 | -21.66 | QP       |
| 3   |     | 88.3421  | 34.35            | -17.79            | 16.56            | 43.50 | -26.94 | QP       |
| 4   |     | 199.9856 | 31.47            | -15.72            | 15.75            | 43.50 | -27.75 | QP       |
| 5   |     | 375.9385 | 36.74            | -11.15            | 25.59            | 46.00 | -20.41 | QP       |
| 6   | * ( | 948.7610 | 29.48            | -2.94             | 26.54            | 46.00 | -19.46 | QP       |

No.: BCTC/RF-EMC-005

JC JC JC

Pol



#### Between 1GHz - 25GHz

1Mbps

|       |           |                  | GFSK              |                  |              |        |          |
|-------|-----------|------------------|-------------------|------------------|--------------|--------|----------|
| Polar | Frequency | Reading<br>Level | Correct<br>Factor | Measure-m<br>ent | Limits       | Over   | Detector |
| (H/V) | (MHz)     | (dBuV/m)         | (dB)              | (dBuV/m)         | (dBuV/<br>m) | (dB)   | Туре     |
|       |           |                  | Low chan          | nel              |              |        |          |
| V     | 4804.00   | 72.13            | -19.99            | 52.14            | 74.00        | -21.86 | PK       |
| V     | 4804.00   | 62.66            | -19.99            | 42.67            | 54.00        | -11.33 | AV       |
| V     | 7206.00   | 61.27            | -14.22            | 47.05            | 74.00        | -26.95 | PK       |
| V     | 7206.00   | 50.32            | -14.22            | 36.10            | 54.00        | -17.90 | AV       |
| Н     | 4804.00   | 70.75            | -19.99            | 50.76            | 74.00        | -23.24 | PK       |
| Н     | 4804.00   | 61.03            | -19.99            | 41.04            | 54.00        | -12.96 | AV       |
| Н     | 7206.00   | 58.77            | -14.22            | 44.55            | 74.00        | -29.45 | PK       |
| Н     | 7206.00   | 50.44            | -14.22            | 36.22            | 54.00        | -17.78 | AV       |
|       |           |                  | Middle cha        | nnel             |              |        |          |
| V     | 4880.00   | 71.12            | -19.84            | 51.28            | 74.00        | -22.72 | PK       |
| V     | 4880.00   | 64.61            | -19.84            | 44.77            | 54.00        | -9.23  | AV       |
| V     | 7320.00   | 60.57            | -13.90            | 46.67            | 74.00        | -27.33 | PK       |
| V     | 7320.00   | 50.81            | -13.90            | 36.91            | 54.00        | -17.09 | AV       |
| Н     | 4880.00   | 69.16            | -19.84            | 49.32            | 74.00        | -24.68 | PK       |
| Н     | 4880.00   | 60.13            | -19.84            | 40.29            | 54.00        | -13.71 | AV       |
| Н     | 7320.00   | 59.45            | -13.90            | 45.55            | 74.00        | -28.45 | / PK     |
| Н     | 7320.00   | 50.71            | -13.90            | 36.81            | 54.00        | -17.19 | AV       |
|       |           |                  | High chan         | nel              |              |        |          |
| V     | 4960.00   | 73.84            | -19.68            | 54.16            | 74.00        | -19.84 | PK       |
| V     | 4960.00   | 63.55            | -19.68            | 43.87            | 54.00        | -10.13 | AV       |
| V     | 7440.00   | 65.50            | -13.57            | 51.93            | 74.00        | -22.07 | PK       |
| V     | 7440.00   | 55.65            | -13.57            | 42.08            | 54.00        | -11.92 | AV       |
| Н     | 4960.00   | 71.12            | -19.68            | 51.44            | 74.00        | -22.56 | PK       |
| Н     | 4960.00   | 60.79            | -19.68            | 41.11            | 54.00        | -12.89 | AV       |
| Н     | 7440.00   | 64.38            | -13.57            | 50.81            | 74.00        | -23.19 | PK       |
| Н     | 7440.00   | 55.81            | -13.57            | 42.24            | 54.00        | -11.76 | AV       |

#### Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

In restricted bands of operation, The spurious emissions below the permissible value more than 20dB
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

TE, T( OV



2Mbps

|       |           |                  | GFSK              |                  |              |           |          |
|-------|-----------|------------------|-------------------|------------------|--------------|-----------|----------|
| Polar | Frequency | Reading<br>Level | Correct<br>Factor | Measure-m<br>ent | Limits       | Over      | Detector |
| (H/V) | (MHz)     | (dBuV/m)         | (dB)              | (dBuV/m)         | (dBuV/<br>m) | (dB) Type |          |
|       |           |                  | Low chann         | nel              |              |           |          |
| V     | 4804.00   | 71.50            | -19.99            | 51.51            | 74.00        | -22.49    | PK       |
| V     | 4804.00   | 62.64            | -19.99            | 42.65            | 54.00        | -11.35    | AV       |
| V     | 7206.00   | 61.25            | -14.22            | 47.03            | 74.00        | -26.97    | PK       |
| V     | 7206.00   | 51.84            | -14.22            | 37.62            | 54.00        | -16.38    | AV       |
| Н     | 4804.00   | 69.85            | -19.99            | 49.86            | 74.00        | -24.14    | PK       |
| Н     | 4804.00   | 60.48            | -19.99            | 40.49            | 54.00        | -13.51    | AV       |
| Н     | 7206.00   | 58.64            | -14.22            | 44.42            | 74.00        | -29.58    | PK       |
| Н     | 7206.00   | 50.87            | -14.22            | 36.65            | 54.00        | -17.35    | AV       |
|       |           | •                | Middle char       | nel              |              |           | •        |
| V     | 4880.00   | 69.79            | -19.84            | 49.95            | 74.00        | -24.05    | PK       |
| V     | 4880.00   | 62.73            | -19.84            | 42.89            | 54.00        | -11.11    | AV       |
| V     | 7320.00   | 61.52            | -13.90            | 47.62            | 74.00        | -26.38    | PK       |
| V     | 7320.00   | 52.68            | -13.90            | 38.78            | 54.00        | -15.22    | AV       |
| Н     | 4880.00   | 66.74            | -19.84            | 46.90            | 74.00        | -27.10    | PK       |
| Н     | 4880.00   | 55.93            | -19.84            | 36.09            | 54.00        | -17.91    | AV       |
| Н     | 7320.00   | 60.14            | -13.90            | 46.24            | 74.00        | -27.76    | PK       |
| Н     | 7320.00   | 52.69            | -13.90            | 38.79            | 54.00        | -15.21    | AV       |
|       |           |                  | High chan         | nel              |              |           |          |
| V     | 4960.00   | 71.45            | -19.68            | 51.77            | 74.00        | -22.23    | PK       |
| V     | 4960.00   | 62.22            | -19.68            | 42.54            | 54.00        | -11.46    | AV       |
| V     | 7440.00   | 64.76            | -13.57            | 51.19            | 74.00        | -22.81    | PK       |
| V     | 7440.00   | 54.73            | -13.57            | 41.16            | 54.00        | -12.84    | AV       |
| Н     | 4960.00   | 69.72            | -19.68            | 50.04            | 74.00        | -23.96    | PK       |
| Н     | 4960.00   | 60.12            | -19.68            | 40.44            | 54.00        | -13.56    | AV       |
| Н     | 7440.00   | 63.48            | -13.57            | 49.91            | 74.00        | -24.09    | PK       |
| Н     | 7440.00   | 54.93            | -13.57            | 41.36            | 54.00        | -12.64    | AV       |

#### Remark:

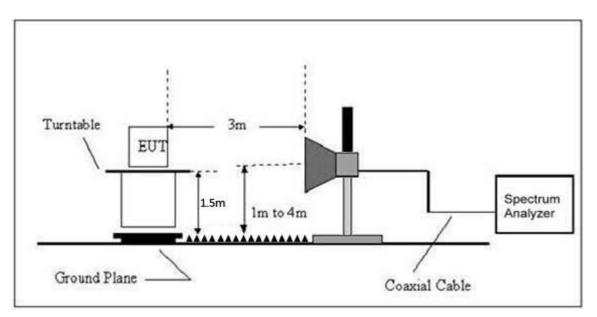
1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005

Page: 23 of


) ED



### 8. Radiated Band Emission Measurement And Restricted Bands Of Operation

# 8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz



#### 8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                      | MHz                 | MHz           | GHz              |
|--------------------------|---------------------|---------------|------------------|
| 0.090-0.110              | 16.42-16.423        | 399.9-410     | 4.5-5.15         |
| <sup>1</sup> 0.495-0.505 | 16.69475-16.69525   | 608-614       | 5.35-5.46        |
| 2.1735-2.1905            | 16.80425-16.80475   | 960-1240      | 7.25-7.75        |
| 4.125-4.128              | 25.5-25.67          | 1300-1427     | 8.025-8.5        |
| 4.17725-4.17775          | 37.5-38.25          | 1435-1626.5   | 9.0-9.2          |
| 4.20725-4.20775          | 73-74.6             | 1645.5-1646.5 | 9.3-9.5          |
| 6.215-6.218              | 74.8-75.2           | 1660-1710     | 10.6-12.7        |
| 6.26775-6.26825          | 108-121.94          | 1718.8-1722.2 | 13.25-13.4       |
| 6.31175-6.31225          | 123-138             | 2200-2300     | 14.47-14.5       |
| 8.291-8.294              | 149.9-150.05        | 2310-2390     | 15.35-16.2       |
| 8.362-8.366              | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4        |
| 8.37625-8.38675          | 156.7-156.9         | 2690-2900     | 22.01-23.12      |
| 8.41425-8.41475          | 162.0125-167.17     | 3260-3267     | 23.6-24.0        |
| 12.29-12.293             | 167.72-173.2        | 3332-3339     | 31.2-31.8        |
| 12.51975-12.52025        | 240-285             | 3345.8-3358   | 36.43-36.5       |
| 12.57675-12.57725        | 322-335.4           | 3600-4400     | ( <sup>2</sup> ) |
| 13.36-13.41              |                     |               |                  |



Limits Of Radiated Emission Measurement (Above 1000MHz)

| Frequency (MHz) | Limit (dBuV/m) (at 3M) |         |  |  |  |  |
|-----------------|------------------------|---------|--|--|--|--|
|                 | Peak                   | Average |  |  |  |  |
| Above 1000      | 74                     | 54      |  |  |  |  |

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

#### 8.3 Test Procedure

| Receiver Parameter                    | Setting                                          |
|---------------------------------------|--------------------------------------------------|
| Attenuation                           | Auto                                             |
| Start Frequency                       | 2300MHz                                          |
| Stop Frequency                        | 2520                                             |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average |

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



#### 8.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

#### 8.5 Test Result

| GFSK(2Mbps)         Image: Constraint of the second se | Result | Over     | nits<br>V/m) |       | Measure-<br>ment<br>(dBuV/m) | Correct<br>Factor | Reading<br>Level<br>(dBuV/m) | Frequency<br>(MHz) | Polar<br>(H/V) | Test mode    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------------|-------|------------------------------|-------------------|------------------------------|--------------------|----------------|--------------|
| GFSK(1Mbps)         H         2390.00         72.72         -25.43         47.29         74.00         54.00         -26.71           H         2400.00         74.13         -25.40         48.73         74.00         54.00         -25.27           V         2390.00         72.43         -25.43         47.00         74.00         54.00         -25.27           V         2390.00         72.43         -25.43         47.00         74.00         54.00         -25.27           V         2400.00         73.97         -25.40         48.57         74.00         54.00         -25.43           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2500.00         69.13         -25.10         44.03         74.00         54.00         -28.24           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -27.19           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | PK       | AV           | PK    | PK                           | (dB)              | (ubuv/iii)                   |                    |                |              |
| H         2400.00         74.13         -25.40         48.73         74.00         54.00         -25.27           V         2390.00         72.43         -25.43         47.00         74.00         54.00         -27.00         V           V         2400.00         73.97         -25.40         48.57         74.00         54.00         -25.43           High Channel 2480MHz           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2483.50         70.91         -25.15         45.61         74.00         54.00         -28.39           H         2500.00         69.13         -25.10         44.03         74.00         54.00         -28.24           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -27.19           H         2390.00         72.24         -25.43         46.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |          |              |       | nel 2402MHz                  | Low Chan          |                              |                    |                |              |
| V         2390.00         72.43         -25.43         47.00         74.00         54.00         -27.00           V         2400.00         73.97         -25.40         48.57         74.00         54.00         -25.43            High Chamel 2480MHz           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2500.00         69.13         -25.10         44.03         74.00         54.00         -28.24           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -27.19           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -25.23           H         2400.00         72.64         -25.43         47.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PASS   | -26.71   | 54.00        | 74.00 | 47.29                        | -25.43            | 72.72                        | 2390.00            | Н              |              |
| V         2400.00         73.97         -25.40         48.57         74.00         54.00         -25.43           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2500.00         69.13         -25.10         44.03         74.00         54.00         -28.39           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -28.24           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -26.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PASS   | -25.27   | 54.00        | 74.00 | 48.73                        | -25.40            | 74.13                        | 2400.00            | Н              |              |
| GFSK(1MBps)         High Channel 2480MHz           H         2483.50         70.76         -25.15         45.61         74.00         54.00         -28.39           H         2500.00         69.13         -25.10         44.03         74.00         54.00         -29.97           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -28.24           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -26.79           V         2390.00         72.64         -25.43         47.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PASS   | -27.00   | 54.00        | 74.00 | 47.00                        | -25.43            | 72.43                        | 2390.00            | V              |              |
| High Channel 2480MH2         H       2483.50       70.76       -25.15       45.61       74.00       54.00       -28.39         H       2500.00       69.13       -25.10       44.03       74.00       54.00       -29.97         V       2483.50       70.91       -25.15       45.76       74.00       54.00       -28.24         V       2483.50       70.91       -25.15       45.76       74.00       54.00       -28.24         V       2500.00       67.64       -25.10       42.54       74.00       54.00       -31.46         H       2390.00       72.24       -25.43       46.81       74.00       54.00       -27.19         H       2390.00       72.24       -25.43       46.81       74.00       54.00       -27.19         H       2390.00       72.24       -25.43       46.81       74.00       54.00       -25.23         V       2390.00       72.64       -25.43       47.21       74.00       54.00       -26.79         V       2400.00       72.91       -25.40       47.51       74.00       54.00       -26.79         V       2400.00       72.91       -25.40       47.51 </th <td>PASS</td> <td>-25.43</td> <td>54.00</td> <td>74.00</td> <td>48.57</td> <td>-25.40</td> <td>73.97</td> <td>2400.00</td> <td>V</td> <td>GESK(1Mbpc)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PASS   | -25.43   | 54.00        | 74.00 | 48.57                        | -25.40            | 73.97                        | 2400.00            | V              | GESK(1Mbpc)  |
| H         2500.00         69.13         -25.10         44.03         74.00         54.00         -29.97           V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -31.46           Low Channel 2402MHz           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -25.23           V         2390.00         72.64         -25.43         47.21         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.49           V         2400.00         72.91         -25.40         47.51         74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | <u>.</u> |              |       | nel 2480MHz                  | High Chan         |                              |                    |                | GESK(TWIDPS) |
| V         2483.50         70.91         -25.15         45.76         74.00         54.00         -28.24           V         2500.00         67.64         -25.10         42.54         74.00         54.00         -31.46           Low Channel 2402MHz           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -26.79           V         2390.00         72.64         -25.43         47.21         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.49           W         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.49           High Channel 2480MHz         High Channel 2480MHz         High Channel 2480MHz         High Channel 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PASS   | -28.39   | 54.00        | 74.00 | 45.61                        | -25.15            | 70.76                        | 2483.50            | Н              |              |
| V         2500.00         67.64         -25.10         42.54         74.00         54.00         -31.46           Low Channel 2402MHz           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -25.23           V         2390.00         72.64         -25.43         47.21         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.49           High Channel 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASS   | -29.97   | 54.00        | 74.00 | 44.03                        | -25.10            | 69.13                        | 2500.00            | Н              |              |
| Low Channel 2402MHz           H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -25.23           V         2390.00         72.64         -25.43         47.21         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.49           High Channel 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PASS   | -28.24   | 54.00        | 74.00 | 45.76                        | -25.15            | 70.91                        | 2483.50            | V              |              |
| H         2390.00         72.24         -25.43         46.81         74.00         54.00         -27.19           H         2400.00         74.17         -25.40         48.77         74.00         54.00         -25.23           V         2390.00         72.64         -25.43         47.21         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.49           High Channel 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PASS   | -31.46   | 54.00        | 74.00 | 42.54                        | -25.10            | 67.64                        | 2500.00            | V              |              |
| H         2400.00         74.17         -25.40         48.77         74.00         54.00         -25.23           V         2390.00         72.64         -25.43         47.21         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           High Channel 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |              |       | nel 2402MHz                  | Low Chan          |                              |                    |                |              |
| V         2390.00         72.64         -25.43         47.21         74.00         54.00         -26.79           V         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.79           High Channel 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PASS   | -27.19   | 54.00        | 74.00 | 46.81                        | -25.43            | 72.24                        | 2390.00            | Н              |              |
| W         2400.00         72.91         -25.40         47.51         74.00         54.00         -26.49           High Channel 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PASS   | -25.23   | 54.00        | 74.00 | 48.77                        | -25.40            | 74.17                        | 2400.00            | Н              |              |
| High Channel 2480MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PASS   | -26.79   | 54.00        | 74.00 | 47.21                        | -25.43            | 72.64                        | 2390.00            | V              |              |
| High Channel 2480MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PASS   | -26.49   | 54.00        | 74.00 | 47.51                        | -25.40            | 72.91                        | 2400.00            | V              | CESK(2Mbpc)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | /        |              |       | nel 2480MHz                  | High Chan         |                              |                    |                | GFSK(ZWIDPS) |
| H 2483.50 70.81 -25.15 45.66 74.00 54.00 -28.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS   | -28.34   | 54.00        | 74.00 | 45.66                        | -25.15            | 70.81                        | 2483.50            | Н              |              |
| H 2500.00 67.39 -25.10 42.29 74.00 54.00 -31.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS   | -31.71   | 54.00        | 74.00 | 42.29                        | -25.10            | 67.39                        | 2500.00            | Н              |              |
| V 2483.50 71.01 -25.15 45.86 74.00 54.00 -28.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS   | -28.14   | 54.00        | 74.00 | 45.86                        | -25.15            | 71.01                        | 2483.50            | V              |              |
| V 2500.00 67.39 -25.10 42.29 74.00 54.00 -31.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PASS   | -31.71   | 54.00        | 74.00 | 42.29                        | -25.10            | 67.39                        | 2500.00            | V              |              |

#### Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



#### 9. Power Spectral Density Test

#### 9.1 Block Diagram Of Test Setup



#### 9.2 Limit

| FCC Part15 (15.247), Subpart C |                        |                     |                          |        |  |  |
|--------------------------------|------------------------|---------------------|--------------------------|--------|--|--|
| Section                        | Test Item              | Limit               | Frequency Range<br>(MHz) | Result |  |  |
| 15.247                         | Power Spectral Density | 8 dBm (in any 3KHz) | 2400-2483.5              | PASS   |  |  |

Limits Of Radiated Emission Measurement (Above 1000MHz)

#### 9.3 Test procedure

1. Set analyzer center frequency to DTS channel center frequency.

- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW  $\geq$  3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum amplitude level within the RBW.

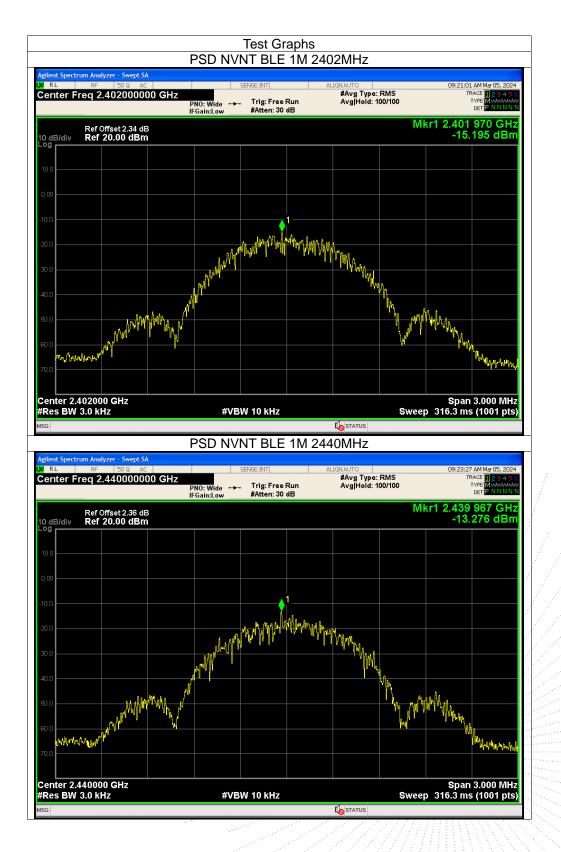
10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### 9.4 EUT Operating Conditions.

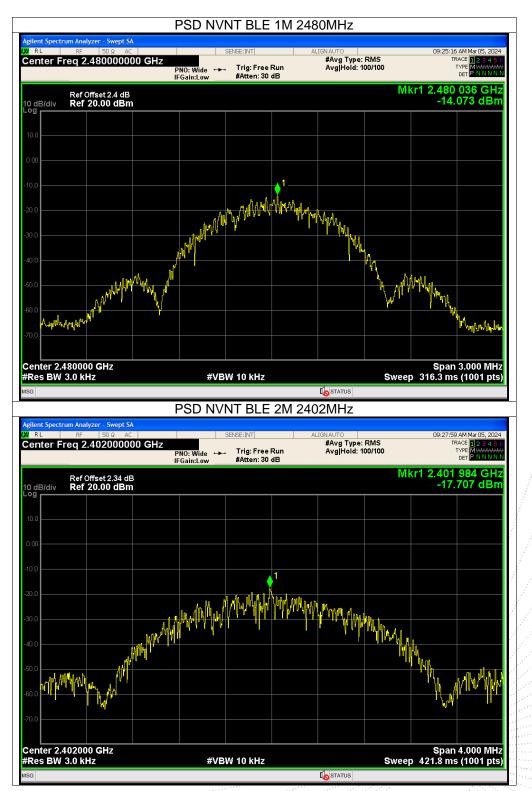
The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

DOI

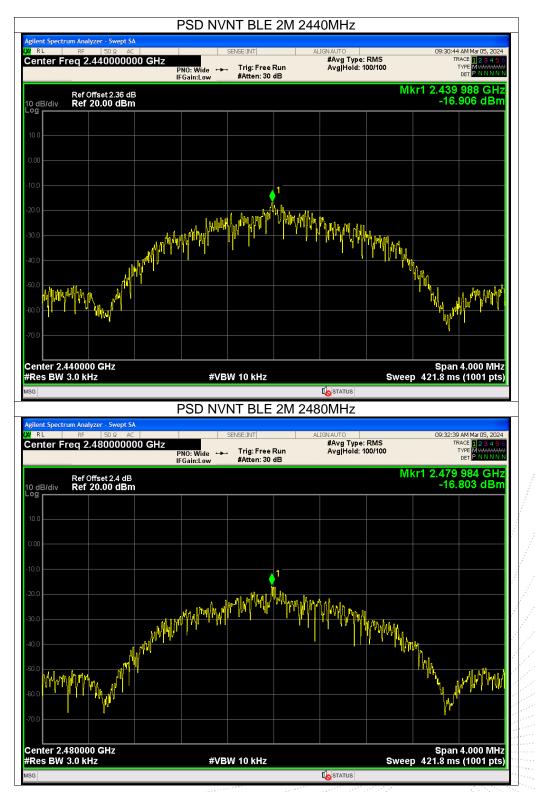



# 9.5 Test Result

| Temperature: | 26 ℃      |        | Relative Humidity:    |                     | 54% |         |  |
|--------------|-----------|--------|-----------------------|---------------------|-----|---------|--|
| Pressure:    | 101KPa    | 101KPa |                       | Test Voltage :      |     | DC 3.8V |  |
| Mode         | Frequency |        | Spectral<br>dBm/3kHz) | z) Limit (dBm/3kHz) |     | Result  |  |
|              | 2402 MHz  | -1:    | 5.20                  | 8                   |     | PASS    |  |
| GFSK(1Mbps)  | 2440 MHz  | -13.28 |                       | 8                   |     | PASS    |  |
|              | 2480 MHz  | -14.07 |                       | 8                   |     | PASS    |  |
| GFSK(2Mbps)  | 2402 MHz  | -17.71 |                       | 8                   |     | PASS    |  |
|              | 2440 MHz  | -16    | 6.91                  | 8                   |     | PASS    |  |
|              | 2480 MHz  | -16    | 6.80                  | 8                   |     | PASS    |  |


No. : BCTC/RF-EMC-005

Page: 28 of 53


















#### 10. Bandwidth Test

#### 10.1 Block Diagram Of Test Setup



#### 10.2 Limit

| FCC Part15 (15.247) , Subpart C |           |                               |                       |        |  |
|---------------------------------|-----------|-------------------------------|-----------------------|--------|--|
| Section                         | Test Item | Limit                         | Frequency Range (MHz) | Result |  |
| 15.247(a)(2)                    | Bandwidth | >= 500KHz<br>(-6dB bandwidth) | 2400-2483.5           | PASS   |  |

#### 10.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW)  $\ge$  3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### 10.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

No.: BCTC/RF-EMC-005

Page: 32 of



# 10.5 Test Result

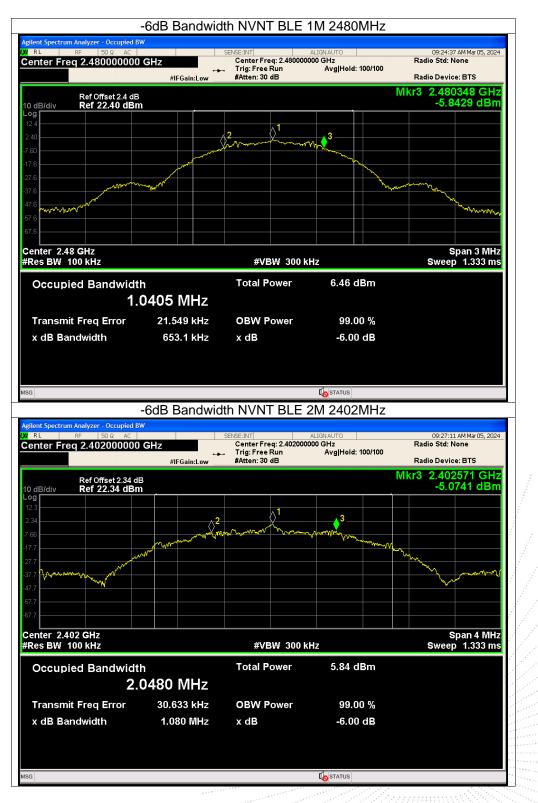
| Temperature: | 26 °C  | Relative Humidity: | 54%     |
|--------------|--------|--------------------|---------|
| Pressure:    | 101KPa | Test Voltage :     | DC 3.8V |

| Mode        | Frequency (MHz) | -6dB bandwidth<br>(MHz) | Limit (kHz) | Result |
|-------------|-----------------|-------------------------|-------------|--------|
| GFSK(1Mbps) | 2402            | 0.656                   | 500         | Pass   |
|             | 2440            | 0.645                   | 500         | Pass   |
|             | 2480            | 0.653                   | 500         | Pass   |
| GFSK(2Mbps) | 2402            | 1.080                   | 500         | Pass   |
|             | 2440            | 0.941                   | 500         | Pass   |
|             | 2480            | 1.099                   | 500         | Pass   |

,TC 3C ероі

Page: 33 of 53









No.: BCTC/RF-EMC-005

Page: 34 of 53









C 00.,LT



### 11. Peak Output Power Test

### 11.1 Block Diagram Of Test Setup



### 11.2 Limit

|       |          |                      | FCC Part15 (15.247), | Subpart C             |        |
|-------|----------|----------------------|----------------------|-----------------------|--------|
| See   | ction    | Test Item            | Limit                | Frequency Range (MHz) | Result |
| 15.24 | 17(b)(3) | Peak Output<br>Power | 1 watt or 30dBm      | 2400-2483.5           | PASS   |

### 11.3 Test Procedure

a. The EUT was directly connected to the Power meter

### 11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

#### 11.5 Test Result

| Temperature: | 26 °C  | Relative Humidity: 54% |
|--------------|--------|------------------------|
| Pressure:    | 101KPa | Test Voltage : DC 3.8V |
|              |        |                        |

| Mode        | Frequency(MHz) | Maximum Conducted<br>Output Power(PK)<br>(dBm) | Conducted Output<br>Power Limit(dBm) |
|-------------|----------------|------------------------------------------------|--------------------------------------|
|             | 2402           | 0.13                                           | 30                                   |
| GFSK(1Mbps) | 2440           | 0.38                                           | 30                                   |
|             | 2480           | 0.57                                           | 30                                   |
|             | 2402           | 0.12                                           | 30                                   |
| GFSK(2Mbps) | 2440           | 0.47                                           | 30                                   |
|             | 2480           | 0.72                                           | 30                                   |



# 12. 100 kHz Bandwidth Of Frequency Band Edge

### 12.1 Block Diagram Of Test Setup



### 12.2 Limit

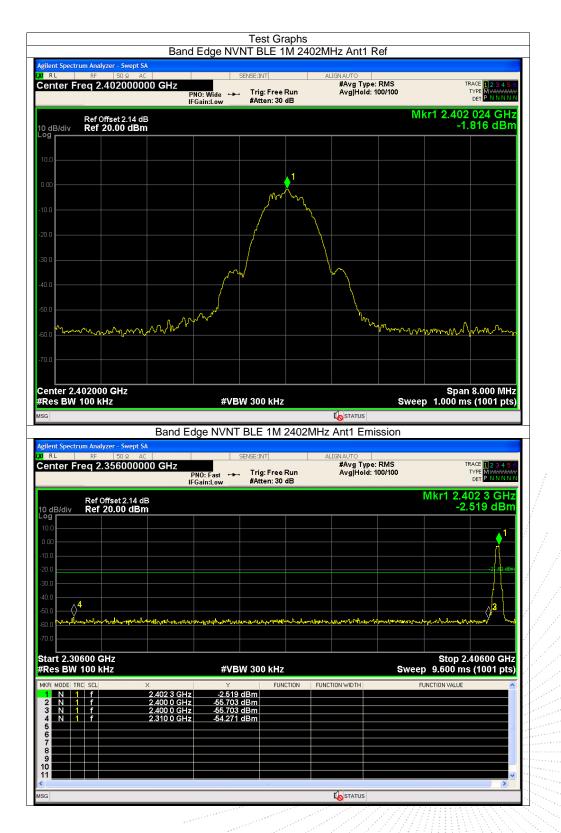
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

### 12.3 Test procedure

Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize.

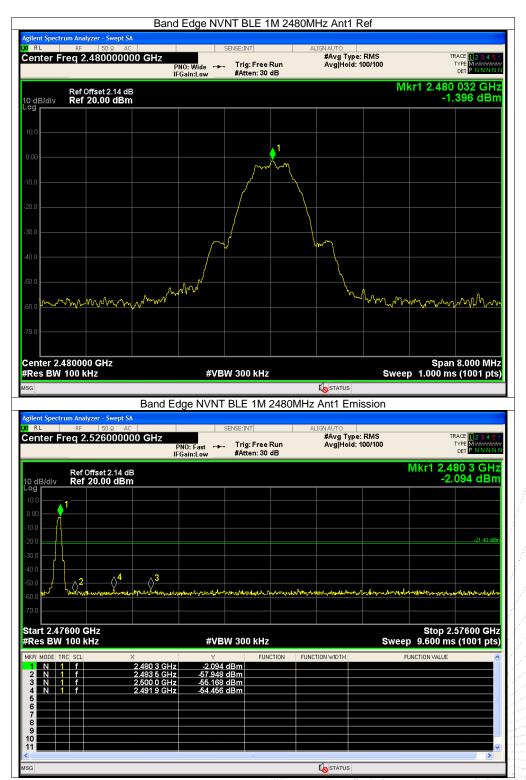
# 12.4 EUT operating Conditions


The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

### 12.5 Test Result

| Temperature: | 26 ℃   | Relative Humidity: | 54%     |  |
|--------------|--------|--------------------|---------|--|
| Pressure:    | 101KPa | Test Voltage :     | DC 3.8V |  |

No. : BCTC/RF-EMC-005








ероі



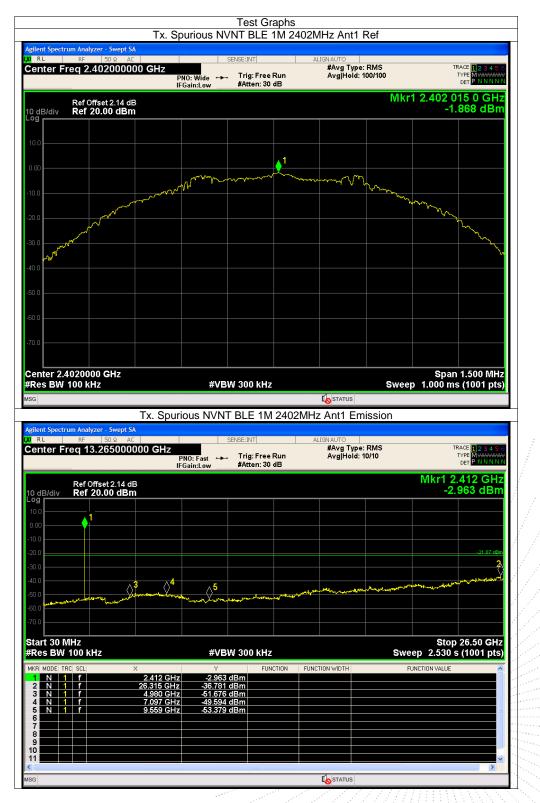




Page: 40 of 53





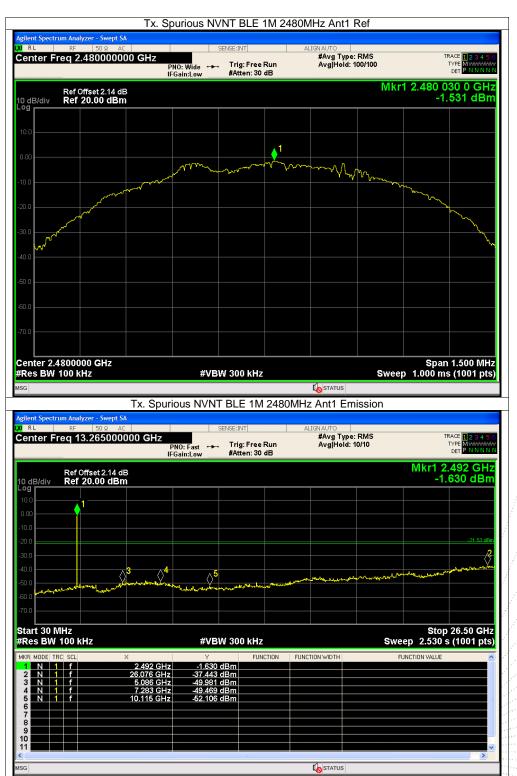





C. CO.,LTA



#### **Conducted Emission Measurement**








| lent Spectrum Analyzer - Swept S<br>RL RF 50 Ω A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .c                                                                                           | SEN                                                                                                         | VSE:INT                                                              | ALIGN AUTO             |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|--------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| enter Freq 2.4400000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00 GHz                                                                                       | NO:Wide 井                                                                                                   | Trig: Free Run<br>#Atten: 30 dB                                      | #Avg Type<br>Avg Hold: | e: RMS<br>100/100              | 1                  | ACE 12345<br>TYPE M<br>DET PNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ref Offset 2.14 d<br>dB/div Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                              |                                                                                                             |                                                                      |                        | Mkr                            | 1 2.440 0:<br>-1.  | 22 5 GF<br>582 dBi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| dB/div Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                             | <b>1</b>                                                             |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              | m                                                                                                           | when                                                                 | man                    | mhomen                         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | www.                                                                                         |                                                                                                             |                                                                      |                        |                                | Manny              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    | www.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ).0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    | ·M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                             |                                                                      |                        |                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| tes BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                             | 300 kHz<br>BLE 1M 2440                                               | DMHz Ant1 Er           |                                | Span<br>p 1.000 ms | 1.500 MH<br>(1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ent Spectrum Analyzer - Swept S<br>RL RF 50 Q A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64<br>C      <br>D000 GHz    <br>P                                                           |                                                                                                             | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | 1.500 MH<br>(1001 pt<br>(1001 |
| tes BW 100 kHz<br>lent Spectrum Analyzer - Swept S<br>RL RF S0Ω A<br>enter Freq 13.265000<br>Ref Offset 2.14 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5A<br>C        <br>D000 GHz<br> P<br> F(                                                     |                                                                                                             | BLE 1M 2440                                                          |                        | nission                        | p 1.000 ms         | ACE 1234<br>TYPE MWWW<br>DET PNNN<br>439 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lent Spectrum Analyzer - Swept S<br>RL RF 500 A<br>enter Freq 13.265000<br>Ref Offset 2.14 d<br>dB/div Ref Offset 0.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5A<br>C        <br>D000 GHz<br> P<br> F(                                                     |                                                                                                             | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | ACE 12345<br>TYPE MWWW<br>DET PNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| lent Spectrum Analyzer - Swept S<br>RL RF 500 A<br>enter Freq 13.265000<br>Ref Offset 2.14 d<br>dB/div Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5A<br>C        <br>D000 GHz<br> P<br> F(                                                     |                                                                                                             | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | ACE 1234<br>TYPE MWWW<br>DET PNNN<br>439 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| lent Spectrum Analyzer - Swept S<br>RL RF 500 A<br>enter Freq 13.265000<br>Ref Offset 2.14 d<br>dB/div Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5A<br>C        <br>D000 GHz<br> P<br> F(                                                     |                                                                                                             | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | ACE 1234<br>TYPE M 439 GH<br>517 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lent Spectrum Analyzer - Swept S<br>RL RF 500 A<br>enter Freq 13.265000<br>Ref Offset 2.14 d<br>dB/div Ref 20.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5A<br>C        <br>D000 GHz<br> P<br> F(                                                     |                                                                                                             | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | ACE 1234<br>TYPE MWWW<br>DET PNNN<br>439 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iB<br>m                                                                                      |                                                                                                             | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | ACE 1234<br>TYPE M 439 GH<br>517 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| lent Spectrum Analyzer - Swept S<br>RL RF 500 A<br>enter Freq 13.265000<br>Ref Offset 2.14 d<br>Ref Offset 2.14 d<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SA<br>DODO GHz<br>P<br>IB<br>m                                                               | OUS NVNT I<br>SEN<br>NO: Fast →→<br>Gain:Low                                                                | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | ACE 1234<br>TYPE M 439 GH<br>517 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Res BW 100 kHz           Ient Spectrum Analyzer - Swept 5           RL         RF         50.0 A           enter Freq 13.265000           Ref Offset 2.14 d           dB/div         Ref 20.00 dBr           1         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1           0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SA<br>DODO GHz<br>P<br>IB<br>m                                                               | OUS NVNT I<br>SEN<br>NO: Fast →→<br>Gain:Low                                                                | BLE 1M 244(<br>vse:INT<br>Trig: Free Run                             |                        | nission                        | p 1.000 ms         | ACE 1234<br>TYPE M 439 GH<br>517 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Res BW 100 kHz           Image: Spectrum Analyzer - Swept S           RL         RF           SOQ           Aenter Freq 13.265000           Berley Soq           Ref Offset 2.14 d           Berley Soq           Berley Soq <t< td=""><td>SA<br/>DODO GHz<br/>P<br/>IB<br/>m</td><td>OUS NVNT I</td><td>BLE 1M 244(<br/>vse:INT<br/>Trig: Free Run<br/>#Atten: 30 dB</td><td></td><td>nission<br/>:: RMS<br/>10/10<br/></td><td>p 1.000 ms</td><td>ACE 12 3 4<br/>YYPE M 1001<br/>YYPE M 100<br/>ACE 12 3 4<br/>YYPE M 100<br/>ACE 12 3 4<br/>ACE 12 3 4<br/>YYPE M 100<br/>ACE 12 3 4<br/>ACE 1</td></t<> | SA<br>DODO GHz<br>P<br>IB<br>m                                                               | OUS NVNT I                                                                                                  | BLE 1M 244(<br>vse:INT<br>Trig: Free Run<br>#Atten: 30 dB            |                        | nission<br>:: RMS<br>10/10<br> | p 1.000 ms         | ACE 12 3 4<br>YYPE M 1001<br>YYPE M 100<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 1                                                                    |
| Res BW 100 kHz           Image: Sector of the secto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                                                                            | OUS NVNT I                                                                                                  | BLE 1M 244( VSE:INT Trig: Free Run #Atten: 30 dB                     |                        | nission<br>: RMS<br>10/10      | p 1.000 ms         | ACE 12 3 4<br>YYPE M 1001<br>YYPE M 100<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 1                                                                    |
| tes BW 100 kHz<br>tent Spectrum Analyzer - Swept S<br>RL RF 50 Q A<br>enter Freq 13.265000<br>Ref Offset 2.14 d<br>dB/div Ref 20.00 dBr<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A<br>0000 GHz<br>P<br>IB<br>m<br>3<br>4<br>2.439 GHz<br>26.209 GHz                           | OUS NVNT I<br>SEN<br>NO: Fast →<br>Gain:Low<br>#VBW<br>2.517 dE<br>37.177 dE                                | BLE 1M 244(<br>vse:INT  <br>Trig: Free Run<br>#Atten: 30 dB          | DMHz Ant1 Er           | nission<br>: RMS<br>10/10      | p 1.000 ms         | ACE 12 3 4<br>YYPE M 1001<br>YYPE M 100<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 1                                                                    |
| Ref Offset 2.14 d<br>Ref Offset 2.14 d<br>Ref 20.00 dBr<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X<br>2.439 GHz                                                                               | OUS NVNT I                                                                                                  | BLE 1M 244(<br>vse:INT  <br>Trig: Free Run<br>#Atten: 30 dB<br>30 dB | DMHz Ant1 Er           | nission<br>: RMS<br>10/10      | p 1.000 ms         | ACE 12 3 4<br>YYPE M 1001<br>YYPE M 100<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 1                                                                    |
| Res BW 100 kHz           Image: Sector of the sect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A<br>0000 GHz<br>P<br>IB<br>m<br>3<br>4<br>2.439 GHz<br>26.209 GHz<br>4.874 GHz<br>7.150 GHz | OUS NVNT I<br>SEN<br>NO: Fast →→→<br>Gain:Low<br>#VBW<br>2.517 dE<br>-37.177 dE<br>-51.075 dE<br>-51.075 dE | BLE 1M 244(<br>vse:INT  <br>Trig: Free Run<br>#Atten: 30 dB<br>30 dB | DMHz Ant1 Er           | nission<br>: RMS<br>10/10      | p 1.000 ms         | ACE 12 3 4<br>YYPE M 1001<br>YYPE M 100<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 12 3 4<br>YYPE M 100<br>ACE 12 3 4<br>ACE 1                                                                    |



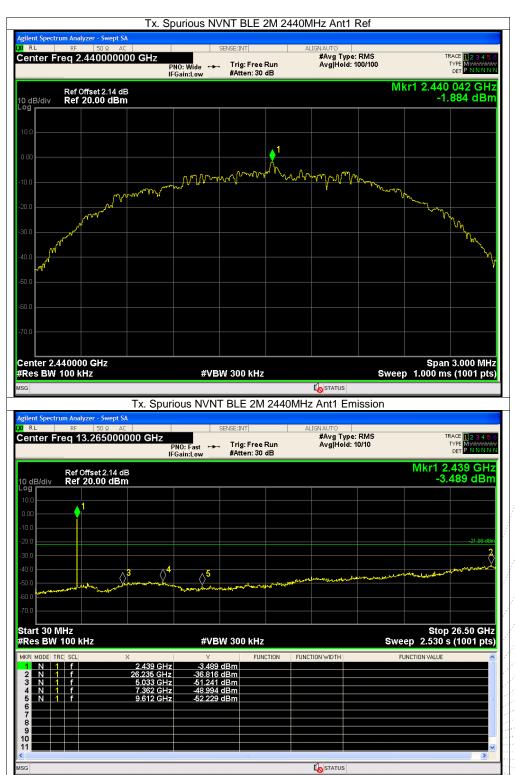


,TC 3C PPR

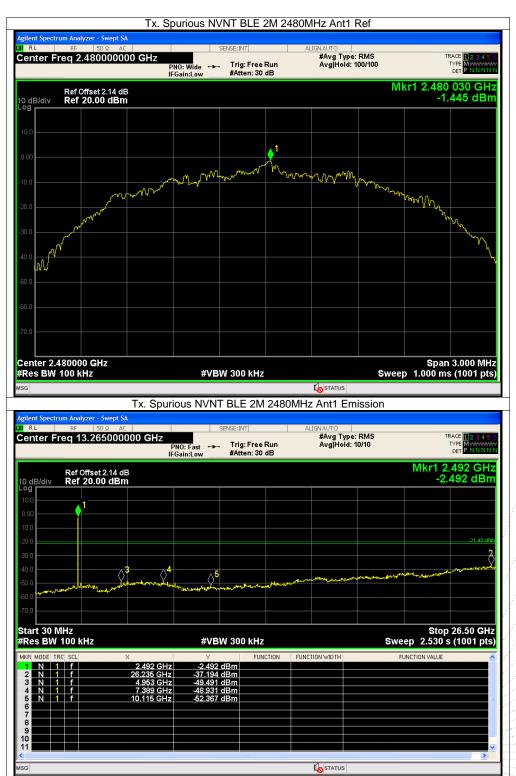
еро

Edition : B.1




Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Ref Swept S/ ctrum Analyze KI RL #Avg Type: RMS Avg|Hold: 100/100 TRACE TYPE DET Center Freq 2.402000000 GHz Trig: Free Run #Atten: 30 dB PNO: Wide 🔸 Mkr1 2.402 036 GHz -2.152 dBm Ref Offset 2.14 dB Ref 20.00 dBm 10 dB/div Log ▲1 WW my m Marr how Monorm www γ. Span 3.000 MHz Sweep 1.000 ms (1001 pts) Center 2.402000 GHz #Res BW 100 kHz #VBW 300 kHz Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Emission KI RI Center Freq 13.265000000 GHz #Avg Type: RMS Avg|Hold: 10/10 TYPE M DET P PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.412 GHz -8.100 dBm Ref Offset 2.14 dB Ref 20.00 dBm 10 dB/div **∆**<sup>3</sup>  $\Diamond^4$  $\Diamond^{\mathbf{5}}$ Stop 26.50 GHz Sweep 2.530 s (1001 pts) Start 30 MHz #Res BW 100 kHz #VBW 300 kHz -8.100 dBm -37.067 dBm -52.272 dBm 
 N
 1
 f

 N
 1
 f


 N
 1
 f

 N
 1
 f
 4.795 GHz 7.097 GHz 9.612 GHz -49.479 dBm -52.107 dBm **STATUS** 



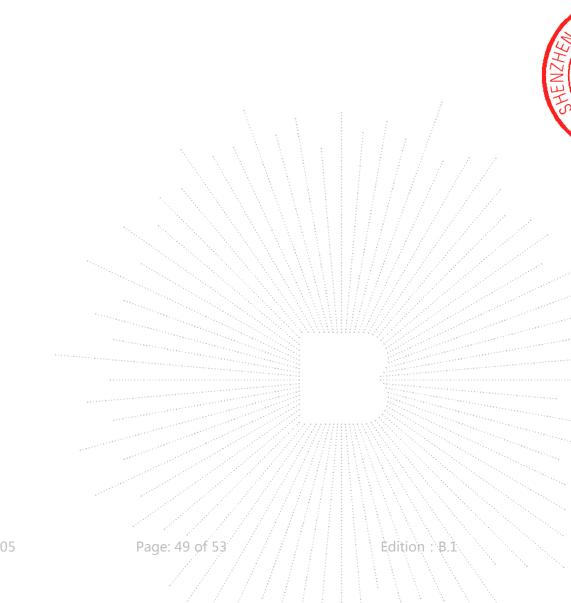






C CO.,LTA




# 13. Antenna Requirement

### 13.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

### 13.2 Test Result

The EUT antenna is FPC antenna, fulfill the requirement of this section.



No.: BCTC/RF-EMC-005



# 14. EUT Photographs

EUT Photo



NOTE: Appendix-Photographs Of EUT Constructional Details

No.: BCTC/RF-EMC-005

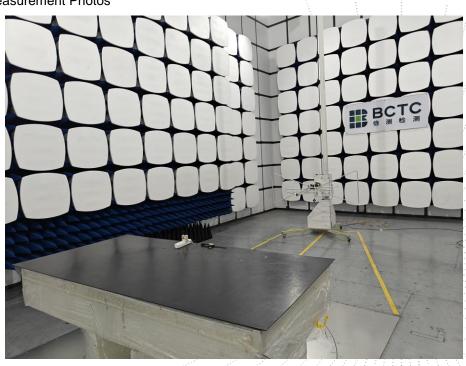
Page: 50 of 53

Edition : B.1

B

API

Re




# 15. EUT Test Setup Photographs

Conducted emissions



Radiated Measurement Photos



Edition : B.1

PRO

bort S







No. : BCTC/RF-EMC-005

Page: 52 of 53

Edition : B.1

C /ED

eal



# STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

\*\*\*\*\* END \*\*\*\*\*

No. : BCTC/RF-EMC-005

Page: 53 of 53

Edition : B.1