

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT

Part 96 LTE

Applicant Name:

FCC ID:

LG Electronics USA, Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 United States

Date of Testing:

1/21 – 4/26/2019 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M1901150005-04-R1.ZNF

ZNFV450VM

APPLICANT:

LG Electronics USA, Inc.

Application Type:	Certification
Model:	LM-V450VM
Additional Model(s):	LMV450VM, V450VM
EUT Type:	Portable Handset
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	96
Test Procedure(s):	ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01, KDB 648474 D03 v01r04, KDB 940660 D01 v01, WINNF-TS-0122 V1.0.0

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M1901150005-04-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 1 of 19	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 1 of 48	
© 2019 PCTEST Engineering Labora	2019 PCTEST Engineering Laboratory, Inc.				

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRO	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Measurement Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEAS	SUREMENT UNCERTAINTY	7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAMF	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	10
	7.2	Occupied Bandwidth	12
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	19
	7.4	Band Edge Emissions at Antenna Terminal	25
	7.5	Radiated Power (EIRP)	32
	7.6	Radiated Spurious Emissions Measurements	35
	7.7	Frequency Stability / Temperature Variation	40
8.0	CON	CLUSION	48

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 2 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

MEASUREMENT REPORT FCC Part 96

Mode	FCC Rule Part	Tx Frequency (MHz)	El Max. Power (W)	RP Max. Power (dBm)	Emission Designator	Modulation
LTE Band 48	96	3552.5 - 3697.5	0.125	20.97	4M52G7D	QPSK
LTE Band 48	96	3552.5 - 3697.5	0.097	19.88	4M50W7D	16QAM
LTE Band 48	96	3552.5 - 3697.5	0.076	18.80	4M52W7D	64QAM
LTE Band 48	96	3555 - 3695	0.114	20.56	9M03G7D	QPSK
LTE Band 48	96	3555 - 3695	0.085	19.31	9M02W7D	16QAM
LTE Band 48	96	3555 - 3695	0.065	18.14	9M02W7D	64QAM
LTE Band 48	96	3557.5 - 3692.5	0.122	20.86	13M5G7D	QPSK
LTE Band 48	96	3557.5 - 3692.5	0.101	20.05	13M5W7D	16QAM
LTE Band 48	96	3557.5 - 3692.5	0.092	19.62	13M6W7D	64QAM
LTE Band 48	96	3560 - 3690	0.114	20.56	17M9G7D	QPSK
LTE Band 48	96	3560 - 3690	0.089	19.51	18M0W7D	16QAM
LTE Band 48	96	3560 - 3690	0.076	18.80	17M9W7D	64QAM

EUT Overview (B48 LTE)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	G	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 40
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 3 of 48
© 2019 PCTEST Engineering Labora	V1 0 12/17/2018			

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST is a CBRS Alliance (OnGo) Approved Test Lab
- PCTEST is a WInnForum Approved Test Lab
- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for CBRS Alliance Certification Test Plan and WInnForum Conformance and Performance Test Technical Standard.
- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 4 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **LG Portable Handset FCC ID: ZNFV450VM**. The test data contained in this report pertains only to the emissions due to the EUT's LTE Band 48 operation in the CBRS band.

Test Device Serial No.: 0358M, 0161M, 0163M, 2149S, 0388M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1900 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n/ac WLAN, 802.11a/n/ac UNII, Bluetooth (1x, EDR, LE), NFC, 5G NR Bands n261/n260

2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT placed on an authorized wireless charging pad (WCP) Model: PWMA-W815A while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 5 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 5 of 48	
© 2019 PCTEST Engineering Laboratory Inc.				

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168 D01 v03r01.

Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss _{[dB]} + antenna gain _{[dBd/dBi]}$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]).

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 474788 D01.

FCC ID: ZNFV450VM				Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage C of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 6 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 7 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 7 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx3	LIcensed Transmitter Cable Set	8/23/2018	Annual	8/23/2019	LTx3
Agilent	N9030A	PXA Signal Analyzer (44GHz)	5/25/2018	Annual	5/25/2019	MY52350166
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	10/10/2017	Biennial	10/10/2019	121034
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
EMCO	3160-09	Small Horn (18 - 26.5GHz)	8/9/2018	Biennial	8/9/2020	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/28/2018	Biennial	3/28/2020	128337
Mini Circuits	TVA-11-422	RF Power Amp	N/A		QA1317001	
Mini Circuits	PWR-SEN-4GHS	USB Power Sensor	3/30/2018	Annual	3/30/2019	11401010036
Mini-Circuits	SSG-4000HP	Synthesized Signal Generator	N/A		11208010032	
Rohde & Schwarz	TC-TA18	Vivaldi Antenna	8/17/2018	Biennial	8/17/2020	101072
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	9/19/2018	Annual	9/19/2019	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/21/2018	Annual	5/21/2019	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/9/2018	Annual	8/9/2019	100348
Rohde & Schwarz	CMW500	Radio Communication Tester	11/14/2018	Annual	11/14/2019	100976
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	6/18/2018	Annual	6/18/2019	102134
Sunol	DRH-118	Horn Antenna (1-18GHz)	8/11/2017	Biennial	8/11/2019	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107

Table 5-1. Test Equipment

Notes:

1. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 49
1M1901150005-04-R1.ZNF	1/21 – 4/26/2019	Portable Handset	Page 8 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analzyer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 0 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 9 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

7.0 TEST RESULTS

7.1 Summary

Company Name:	LG Electronics USA, Inc.
FCC ID:	ZNFV450VM
FCC Classification:	Citizens Band End User Devices (CBE)
Mode(s):	LTE

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A			Section 7.2
2.1051 96.41(e)	Out of Band Emissions	-13 dBm/Mhz at frequencies within 0-10MHz of channel edge -25 dBm/MHz at frequencies greater than 10MHz above and below channel edge -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz			Section 7.3, 7.4
2.1046	Transmitter Conducted Output Power	N/A	CONDUCTED	PASS	See RF Exposure Report
2.1055	Frequency Stability	Fundamental emissions stay within authorized frequency block	CONDUCTED	FAGG	Section 7.7
96.47	End User Device Additional Requirements (CBSD Protocol)	End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.			Section 7.8

Table 7-1. Summary of Conducted Test Results

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 19
1M1901150005-04-R1.ZNF	1/21 – 4/26/2019	Portable Handset		Page 10 of 48
2019 PCTEST Engineering Laboratory. Inc.				V1.0 12/17/2018

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
96.41(b)	Equivalent Isotropic Radiated Power (EIRP)	23 dBm/10MHz	RADIATED	PASS	Section 7.5
2.1053 96.41(e)	Undesirable Emissions	-40 dBm/MHz		17,00	Section 7.6

Table 7-2. Summary of Radiated Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "LTE Automation," Version 4.8.

FCC ID: ZNFV450VM				Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 10
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 11 of 48
© 2019 PCTEST Engineering Labora	atory. Inc.	•		V1.0 12/17/2018

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 12 of 19
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 12 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including plant of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including plant of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including plant of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including plant of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including plant of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including plant of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including plant of this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

🔤 Keysight Spectrum Analyzer -	Occupied BW					
LXI RL RF 50	Ω AC COP		SENSE:INT r Freg: 3.625000000 GHz		2 PM Feb 12, 2019 td: None	Trace/Detector
		⊷ Trig: I	Free Run Avg Hol	ld: 100/100		
	#IF(Gain:Low #Atter	n: 36 dB	Radio D	evice: BTS	
10 dB/div Ref 25	.00 dBm					
15.0			without me			
5.00		1 4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				Clear Write
-5.00						
-15.0	A	<u> </u>		<u>}</u>		
-15.0 -25.0 Mr.A.m.	romalia			hand	Amaralas	Averag
-35.0					My construction	5
-45.0						
-55.0						
-65.0						Max Hol
-05.0						
Center 3.625 GHz					n 12.5 MHz	
Res BW 120 kHz		#	VBW 390 kHz	SI	weep 1ms	Min Hol
Occupied Ban	dwidth		Total Power	29.1 dBm		
Occupied Bail						
	4.51	69 MHz				Detecto Peak
Transmit Freq E	rror	-2.939 kHz	% of OBW Pov	ver 99.00 %		Auto <u>Ma</u>
x dB Bandwidth		4.928 MHz	x dB	-26.00 dB		
		4.920 WITZ	Xub	-20.00 uB		
				OTATUO		
MSG				STATUS		

Plot 7-1. Occupied Bandwidth Plot (Band 48 - 5.0MHz QPSK - Full RB Configuration)

Plot 7-2. Occupied Bandwidth Plot (Band 48 - 5.0MHz 16-QAM - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 13 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

Plot 7-3. Occupied Bandwidth Plot (Band 48 - 5.0MHz 64-QAM - Full RB Configuration)

Plot 7-4. Occupied Bandwidth Plot (Band 48 - 10.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	.G	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 14 of 48	
© 2019 PCTEST Engineering Labora	2019 PCTEST Engineering Laboratory, Inc.				

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including physical in

Keysight Spectrum Analyzer - Occupied BV	V				
LX RF 50 Ω AC	Trig: F	SENSE:INT r Freq: 3.625000000 GHz Free Run Avg Hold: h: 32 dB	03:33:20 PM Feb Radio Std: Nor 100/100 Radio Device: I	ne	Trace/Detector
	#IFGain:Low #Atter	1. 52 00	Radio Device. I	513	
10 dB/div Ref 40.00 dBr	n				
	MARALANA HUMANA	Jacoby Way Wirek Chrywr Dy			Clear Write
-10.0					Average
-20.0 -30.0 m. has flat mont how man	n Wullh		had the month of the	16A 1	, riterage
-40.0 -50.0				Le and Al	Max Hold
Center 3.625 GHz Res BW 240 kHz	#	VBW 750 kHz	Span 25 Sweep		Min Hold
Occupied Bandwidt	th	Total Power	27.9 dBm		
	0171 MHz				Detector Peak▶
Transmit Freq Error	22.514 kHz	% of OBW Powe	r 99.00 %	A	uto <u>Man</u>
x dB Bandwidth	10.27 MHz	x dB	-26.00 dB		
MSG			STATUS		

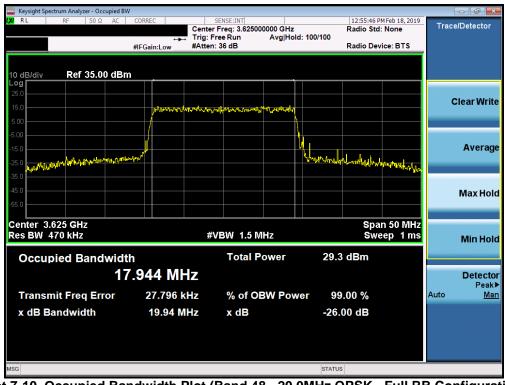
Plot 7-5. Occupied Bandwidth Plot (Band 48 - 10.0MHz 16-QAM - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (Band 48 - 10.0MHz 64-QAM - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dago 15 of 19					
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 15 of 48					
© 2019 PCTEST Engineering Laboratory, Inc. V1.0 12/17/2018								

Plot 7-7. Occupied Bandwidth Plot (Band 48 - 15.0MHz QPSK - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (Band 48 - 15.0MHz 16-QAM - Full RB Configuration)


FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 49					
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 16 of 48					
© 2019 PCTEST Engineering Laboratory, Inc. V1.0								

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including physical in

Keysight Spectrum Analyzer - Occupied BW	1					- r ×
CX RF 50 Ω AC	Center Trig: F	SENSE:INT Freq: 3.625000000 GHz ree Run Avg Hold:	Radio Std: 100/100		Trace/I	Detector
	#IFGain:Low #Atten	: 32 dB	Radio Devi	ce: BTS		
10 dB/div Ref 40.00 dBm	·					
					СІ	ear Write
10.0	what when many a	the wet the way of the second				
-10.0						Average
-20.0 -30.0 -40.0 mysterthougholical resultion -50.0	1		Whentow and Alastown and	unter fallen	1	Max Hold
Center 3.625 GHz Res BW 360 kHz	#	VBW 1.1 MHz		37.5 MHz ep 1 ms		Min Hold
Occupied Bandwidt	h	Total Power	27.1 dBm			
	.551 MHz					Detector Peak▶
Transmit Freq Error	27.848 kHz	% of OBW Powe	er 99.00 %		Auto	<u>Man</u>
x dB Bandwidth	14.70 MHz	x dB	-26.00 dB			
MSG			STATUS			

Plot 7-9. Occupied Bandwidth Plot (Band 48 - 15.0MHz 64-QAM - Full RB Configuration)

Plot 7-10. Occupied Bandwidth Plot (Band 48 - 20.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 49					
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 17 of 48					
© 2019 PCTEST Engineering Laboratory, Inc. V1.0 12/17/20								

Keysight Spectrum Analyzer - Occupied BV					- đ ×
LXURL RF 50ΩAC		SENSE:INT r Freq: 3.625000000 GHz Free Run Avg Hold:	Radio Std:	Feb 18, 2019 None	Amptd/Y Scale
		n: 36 dB	Radio Devio	e: BTS	Ref Value
10 dB/div Ref 38.00 dBr	n				38.00 dBm
					Attenuetion
18.0					Attenuation [36 dB]
8.00	Introduction and the standard stand	with the way way the provide a start of the p			
-2.00					Scale/Div
-22.0 -32.0 -32.0 -32.0	~~~		๛๛๛๚๚๛๛๛๛๛๛๛๛๛๛		10.0 dB
1 T				Mary Martinet Mart	
-42.0					
Center 3.625 GHz			Snan	50 MHz	
Res BW 470 kHz	#	VBW 1.5 MHz	Swee	ep 1 ms	Presel Center
Occupied Bandwidt	h	Total Power	28.4 dBm		
17	7.989 MHz				Presel Adjust
Transmit Freq Error	26.431 kHz	% of OBW Powe	r 99.00 %		0 Hz
x dB Bandwidth	19.26 MHz	x dB	-26.00 dB		
					More 1 of 2
					1012
MSG			STATUS		

Plot 7-11. Occupied Bandwidth Plot (Band 48 - 20.0MHz 16-QAM - Full RB Configuration)

Plot 7-12. Occupied Bandwidth Plot (Band 48 - 20.0MHz 64-QAM - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 49					
1M1901150005-04-R1.ZNF 1/21 – 4/26/2019		Portable Handset	Page 18 of 48					
© 2019 PCTEST Engineering Laboratory, Inc. V1.0 12/17/2018								

7.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051 §96.41(e)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz.

Test Procedure Used

KDB 971168 D01 v03r01 – Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🔁 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 19
1M1901150005-04-R1.ZNF 1/21 – 4/26/2019		Portable Handset	Page 19 of 48	
© 2019 PCTEST Engineering Labora	atory, Inc.	·		V1.0 12/17/2018

RF 50 Ω AC	CORREC	SENSE:INT	#4	05:32:53 PM Feb 28, 2019	Frequency
		ig: Free Run Atten: 20 dB	#Avg Type: RMS	TRACE 123456 TYPE A WWWWW DET ANNNNN	
0 dB/div Ref 10.00 dBm			l	Mkr1 3.529 5 GHz -51.558 dBm	Auto Tur
0.00					Center Fre 1.780000000 GI
0.0					Start Fr 30.000000 M
10.0				DL1 -40.00 dBm	Stop Fr 3.530000000 G
50.0	and a state of the	er tig black der Land der er er er		1 	CF Ste 350.000000 M <u>Auto</u> M
70.0					Freq Offs 0
30.0					Scale Ty
tart 30 MHz Res BW 1.0 MHz	#VBW 3.0	MHz	Sweep	Stop 3.530 GHz 4.693 ms (7041 pts)	Log <u>L</u>

Plot 7-13. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-14. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager						
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 49						
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 20 of 48						
© 2019 PCTEST Engineering Labora	© 2019 PCTEST Engineering Laboratory, Inc.								

V1.0 12/17/2018

🔤 Keysight Sp	ectrum Analy											- 6 ×
L <mark>XI</mark>	RF	50 Ω	DC		SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS		M Apr 26, 2019 E 1 2 3 4 5 6	Fre	quency
				PNO: Fast +++ IFGain:Low	Trig: Free #Atten: 20				TYI Di			
10 dB/div	Ref 10).00 dE	3m					Mkr	1 36.68 -55.8	4 0 GHz 95 dBm		Auto Tune
0.00												enter Frec 000000 GH2
-10.0												Start Fred 000000 GH;
-30.0										DL1 -40.00 dBm	38.000	Stop Fred 000000 GHz
-50.0										1	2.300 <u>Auto</u>	CF Step 000000 GH Mar
-70.0											F	F req Offse 0 H
-80.0												Scale Type
Start 15.0 #Res BW		z		#VBW	3.0 MHz		s	weep 39	Stop 3 87 ms (4	8.00 GHz 6001 pts)	Log	Lir
MSG								STATUS				

Plot 7-15. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

Plot 7-16. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 49
1M1901150005-04-R1.ZNF 1/21 – 4/26/2019		Portable Handset	Page 21 of 48
© 2019 PCTEST Engineering Labora	tory, Inc.		V1.0 12/17/2018

🔤 Keysight Sp	ectrum Analyze												
L <mark>XI</mark>	RF	50 Ω	AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS		45 PM Feb 28, 2019	Fi	requency
				PNO: F IFGain:	ast ⊶⊶ Low	Trig: Free #Atten: 2							
10 dB/div	Ref 10.	.00 dl	Зm						Μ	kr1 14.0 -49	680 1 GHz 608 dBm		Auto Tune
						,							Center Freq
0.00												9.36	0000000 GHz
-10.0													Start Freq
-20.0												3.72	0000000 GHz
-30.0													Stop Freq
-40.0											DL1 -40.00 dBm	15.00	0000000 GHz
-50.0											♦ ¹		CF Step
1		-				(lind the prosterior						1.12 <u>Auto</u>	8000000 GHz Man
-60.0													
-70.0													Freq Offset 0 Hz
-80.0													
													Scale Type
Start 3.72 #Res BW					#VBW	3.0 MHz		s	weep	Stop 22.60 ms	15.000 GHz (22601 pts)	Log	<u>Lin</u>
MSG										TUS			

Plot 7-17. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-18. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	.G	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 22 of 48	
© 2019 PCTEST Engineering Labora	atory, Inc.	·		V1.0 12/17/2018	

🔤 Keysight Sp	ectrum Analyzei	r - Swept SA										
<mark>L)XI</mark>	RF	50 Ω AC	CORREC		SEN	ISE:INT	#Avg Typ	e: RMS		M Feb 28, 2019 DE 1 2 3 4 5 6	Fred	uency
10 dB/div	Ref 10.0	00 dBm	PNO: I IFGain:	Fast ↔ Low	Trig: Free #Atten: 20		0,1		۲۲ ۵ Ikr1 3.26		A	uto Tune
0.00												nter Freq 00000 GHz
-10.0												Start Freq 00000 MHz
-30.0										DL1 -40.00 dBm		Stop Freq 00000 GHz
-50.0									11-19-19-19-19-19-19-19-19-19-19-19-19-1	1	350.0 <u>Auto</u>	CF Step 00000 MHz Man
-60.0											Fr	e q Offset 0 Hz
-80.0												cale Type
Start 30 I #Res BW				#VBW	3.0 MHz			Sweep	Stop 3 4.693 ms (.530 GHz (7041 pts)	LUg	Lin
MSG								STAT				

Plot 7-19. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 7-20. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 49				
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 23 of 48				
© 2019 PCTEST Engineering Labora	© 2019 PCTEST Engineering Laboratory, Inc.						

Keysight Sp		zer - Swept SA								
	RF	50 Ω DC			NSE:INT	#Avg Typ	ALIGN AUTO e: RMS		Apr 26, 2019	Frequency
			PNO: Fast ↔ IFGain:Low	Trig: Free #Atten: 2				TYF DE		
) dB/div	Ref 10	.00 dBm					Mk	r1 36.684 -55.8	40 GHz 95 dBm	Auto Tu
					Í					Center F
.00										26.500000000
).0										
										Start F
0.0										
0.0										Stop F
).0									DL1 -40.00 dBm	38.000000000
										CF S
).0									1	2.30000000 0
0.0								una series		Auto N
-			and the second s		1 Alerth					Freq Off
).0										
0.0										
										Scale Ty
art 15.0	0 GHz 1.0 MHz	,	#\/B)	V 3.0 MHz			ween 9	Stop 3 9.87 ms (4	0.00 0112	Log
	FO WIN2		#VD	- 3.0 WINZ			stati	·	ooo i pisj	

Plot 7-21. Conducted Spurious Plot (Band 48 - 15.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 24 of 48
© 2019 PCTEST Engineering Labora	atory. Inc.	•		V1.0 12/17/2018

7.4 Band Edge Emissions at Antenna Terminal §2.1051 §96.41(e)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any emission shall not exceed -25 dBm/MHz.

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/Mhz.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

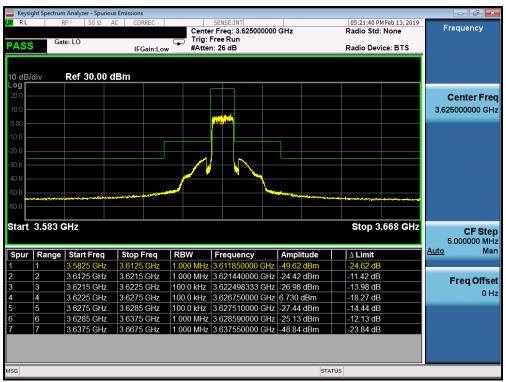
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

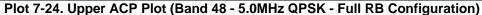
Figure 7-3. Test Instrument & Measurement Setup


Test Notes

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	G	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 49			
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 25 of 48			
© 2019 PCTEST Engineering Labora	2019 PCTEST Engineering Laboratory, Inc.						

ASS		¥F 50 Ω te: LO	AC CORREC	Trig:	SENSE:INT r Freq: 3.552500 Free Run n: 26 dB	0000 GHz	05:22:27 PM Feb 13, 2 Radio Std: None Radio Device: BTS	Frequency
0 dB/	/div	Ref 30.00	dBm					
- og 20.0 10.0								Center Fre 3.552500000 GH
0.00					Marina and Andrews			0.0020000000
10.0								
20.0								
30.0								
40.0				r				
50.0				and the second	<u>``</u>			
50.0	-, ipeningstyre (h-eff						۵ به معرف المراجع ال	••••
-							1999 and a start of the start o	
60.0	3.51 GI	Hz					Stop 3.595 G	5.000000 MH
60.0	3.51 GI		Stop Freq	RBW	Frequency	Amplitude	Stop 3.595 G	5.000000 MH
Start	Range	Start Freq 3.5100 GHz	3.5300 GHz	1.000 MHz	3.529800000	GHz -52.43 dBm	∆ Limit -12.43 dB	5.000000 MH
Start	Range	Start Freq 3.5100 GHz 3.5300 GHz	3.5300 GHz 3.5400 GHz	1.000 MHz 1.000 MHz	3.529800000 (3.539033333 (GHz -52.43 dBm GHz -48.69 dBm	Δ Limit -12.43 dB -23.69 dB	5.00000 MH
Start	Range 1 2 3	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz	1.000 MHz 1.000 MHz 1.000 MHz	3.529800000 (3.539033333 (3.548895000 (GHz -52.43 dBm GHz -48.69 dBm GHz -23.22 dBm	Δ Limit -12.43 dB -23.69 dB -10.22 dB	Auto Ma
50.0 Start Spur 2 3 4	Range 1 2 3 4	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	1.000 MHz 1.000 MHz 1.000 MHz 100.0 kHz	3.529800000 (3.539033333 (3.548895000 (3.549998333 (GHz -52.43 dBm GHz -48.69 dBm GHz -23.22 dBm GHz -26.34 dBm	△ Limit -12.43 dB -23.69 dB -10.22 dB -13.34 dB	5.00000 MH
50.0 Start	Range 1 2 3 4 5	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5550 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 100.0 KHz 100.0 KHz	3.529800000 (3.539033333 (3.548895000 (3.549998333 (3.553283333 (GHz -52.43 dBm GHz -48.69 dBm GHz -23.22 dBm GHz -26.34 dBm GHz 6.795 dBm	Δ Limit -12.43 dB -23.69 dB -10.22 dB -13.34 dB -18.20 dB	Auto Ma
50.0 Start Spur 2 3 4	Range 1 2 3 4 5 6	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5550 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5550 GHz 3.5560 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz 100.0 kHz	3.529800000 (3.539033333 (3.548895000 (3.549998333 (3.553283333 (3.555006667 (GHz -52.43 dBm GHz -48.69 dBm GHz -23.22 dBm GHz -23.42 dBm GHz -26.34 dBm GHz -26.795 dBm GHz -27.41 dBm	△ Limit -12.43 dB -23.69 dB -10.22 dB -13.34 dB -18.20 dB -14.41 dB	Auto Ma
Start Spur S S S S S S S S S S	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5400 GHz 3.5500 GHz 3.5550 GHz 3.5560 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5550 GHz 3.5560 GHz 3.5650 GHz	1.000 MHz 1.000 MHz 1.000 MHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz	3.529800000 (3.539033333 (3.548895000 (3.549998333 (3.553283333 (3.555006667 (3.555006667 (3.556090000 (GHz -52,43 dBm GHz -48,69 dBm GHz -23,22 dBm GHz -26,34 dBm GHz -6,795 dBm GHz -27,41 dBm GHz -23,20 dBm	△ Limit -12.43 dB -23.69 dB -10.22 dB -13.34 dB -18.20 dB -14.41 dB -10.40 dB	Auto Ma
50.0 Start	Range 1 2 3 4 5 6	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5550 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5550 GHz 3.5560 GHz	1.000 MHz 1.000 MHz 1.000 MHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz	3.529800000 (3.539033333 (3.548895000 (3.549998333 (3.553283333 (3.555006667 (3.555006667 (3.556090000 (GHz -52.43 dBm GHz -48.69 dBm GHz -23.22 dBm GHz -23.42 dBm GHz -26.34 dBm GHz -26.795 dBm GHz -27.41 dBm	△ Limit -12.43 dB -23.69 dB -10.22 dB -13.34 dB -18.20 dB -14.41 dB	Auto Ma
Start	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5400 GHz 3.5500 GHz 3.5550 GHz 3.5560 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5550 GHz 3.5560 GHz 3.5650 GHz	1.000 MHz 1.000 MHz 1.000 MHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz 100.0 KHz	3.529800000 (3.539033333 (3.548895000 (3.549998333 (3.553283333 (3.555006667 (3.555006667 (3.556090000 (GHz -52,43 dBm GHz -48,69 dBm GHz -23,22 dBm GHz -26,34 dBm GHz -6,795 dBm GHz -27,41 dBm GHz -23,20 dBm	△ Limit -12.43 dB -23.69 dB -10.22 dB -13.34 dB -18.20 dB -14.41 dB -10.40 dB	Auto Ma

Plot 7-22. Lower ACP Plot (Band 48 - 5.0MHz QPSK - Full RB Configuration)



Plot 7-23. Mid ACP Plot (Band 48 - 5.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	ortable Handset		Page 26 of 48	
© 2019 PCTEST Engineering Labora	itory, Inc.	•		V1.0 12/17/2018	

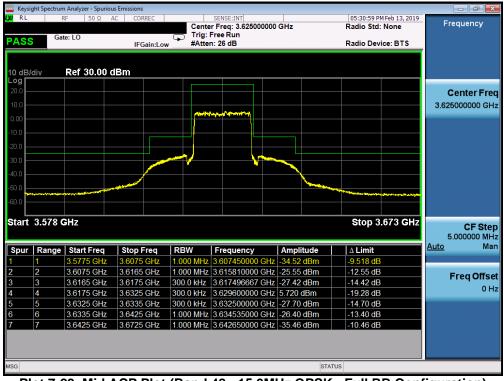
RL		n Analyzer - Spuriou ເF 50 Ω / te: LO	AC CORREC	Trig:	SENSE:INT r Freq: 3.6975000 Free Run	000 GHz	05:26:27 PM Radio Std: 1	None	Frequency
PASS			IFGain:Lov	w #Atte	n: 26 dB		Radio Devic	e: BTS	
		D-6 00 00 -	Date						
0 dB/ ₋og Γ	div	Ref 30.00 c	лыш						
20.0									Center Fre
40.0									
10.0					and the state				3.697500000 GH
0.00					معطم وأحرقي				
10.0									
20.0									
				_					
30.0									
40.0					_ ' ∖ +				
50.0						The second se			
60.0		to and the second statement of the statement	a property and a start of the second s						
0.0									
start	3 655 (H7					Ston 3	74 GH7	
Start	3.655 C	GHz					Stop 3	.74 GHz	CF Stej
Start Spur			Stop Freg	RBW	Frequency	Amplitude	Stop 3	.74 GHz	5.000000 MH
		GHz Start Freq 3.6550 GHz	Stop Freq		Frequency 3.684350000 G		<u> </u>	.74 GHz	5.000000 MH
	Range	Start Freq		1.000 MHz		Hz -49.61 dBm	∆ Limit	.74 GHz	5.000000 MH <u>Auto</u> Ma
Spur	Range	Start Freq 3.6550 GHz	3.6850 GHz	1.000 MHz 1.000 MHz	3.684350000 G	Hz -49.61 dBm Hz -24.93 dBm	∆ Limit -24.61 dB	.74 GHz	5.000000 MH <u>Auto</u> Ma Freq Offse
Spur	Range	Start Freq 3.6550 GHz 3.6850 GHz	3.6850 GHz 3.6940 GHz	1.000 MHz 1.000 MHz 100.0 kHz	3.684350000 G 3.693940000 G	Hz -49.61 dBm Hz -24.93 dBm Hz -26.84 dBm	∆ Limit -24.61 dB -11.93 dB	.74 GHz	5.000000 MH <u>Auto</u> Ma
Spur	Range 1 2 3	Start Freq 3.6550 GHz 3.6850 GHz 3.6940 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz	1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz	3.684350000 G 3.693940000 G 3.694988333 G	Hz -49.61 dBm Hz -24.93 dBm Hz -26.84 dBm Hz 6.344 dBm	Δ Limit -24.61 dB -11.93 dB -13.84 dB	.74 GHz	5.000000 MH <u>Auto</u> Ma Freq Offse
Spur 2 3	Range 1 2 3 4	Start Freq 3.6550 GHz 3.6850 GHz 3.6940 GHz 3.6950 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz	1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz 100.0 kHz	3.684350000 G 3.693940000 G 3.694988333 G 3.699233333 G	Hz -49.61 dBm Hz -24.93 dBm Hz -26.84 dBm Hz 6.344 dBm Hz -27.42 dBm	Δ Limit -24.61 dB -11.93 dB -13.84 dB -18.66 dB	.74 GHz	5.000000 MH <u>Auto</u> Ma Freq Offse
Spur 2 3 4	Range 1 2 3 4 5	Start Freq 3.6550 GHz 3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz	1.000 MHz 1.000 MHz 100.0 KHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz	3.684350000 G 3.693940000 G 3.694988333 G 3.699233333 G 3.700013333 G	Hz -49.61 dBm Hz -24.93 dBm Hz -26.84 dBm Hz 6.344 dBm Hz -27.42 dBm Hz -25.63 dBm	Δ Limit -24.61 dB -11.93 dB -13.84 dB -18.66 dB -14.42 dB	.74 GHz	5.000000 MH <u>Auto</u> Ma Freq Offse
Spur 2 3 4	Range 1 2 3 4 5 6	Start Freq 3.6550 GHz 3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	3.684350000 G 3.693940000 G 3.694988333 G 3.699233333 G 3.700013333 G 3.701045000 G	Hz -49.61 dBm Hz -24.93 dBm Hz -26.84 dBm Hz 6.344 dBm Hz 6.344 dBm Hz -27.42 dBm Hz -25.63 dBm Hz -29.90 dBm	∆ Limit -24.61 dB -11.93 dB -13.84 dB -18.66 dB -14.42 dB -12.63 dB	.74 GHz	5.000000 MH <u>Auto</u> Ma Freq Offse
Spur	Range 1 2 3 4 5 6 7	Start Freq 3.6550 GHz 3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz 3.7200 GHz	1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	3.684350000 G 3.693940000 G 3.694988333 G 3.699233333 G 3.700013333 G 3.701045000 G 3.710483333 G	Hz -49.61 dBm Hz -24.93 dBm Hz -26.84 dBm Hz 6.344 dBm Hz 6.344 dBm Hz -27.42 dBm Hz -25.63 dBm Hz -29.90 dBm	△ Limit -24.61 dB -11.93 dB -13.84 dB -18.66 dB -14.42 dB -12.63 dB -24.29 dB	.74 GHz	5.000000 MH <u>Auto</u> Ma Freq Offs
Spur	Range 1 2 3 4 5 6 7	Start Freq 3.6550 GHz 3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	3.6850 GHz 3.6940 GHz 3.6950 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz 3.7200 GHz	1.000 MHz 1.000 MHz 100.0 kHz 100.0 kHz 100.0 kHz 100.0 kHz 1.000 MHz 1.000 MHz 1.000 MHz	3.684350000 G 3.693940000 G 3.694988333 G 3.699233333 G 3.700013333 G 3.701045000 G 3.710483333 G	Hz -49.61 dBm Hz -24.93 dBm Hz -26.84 dBm Hz 6.344 dBm Hz 6.344 dBm Hz -27.42 dBm Hz -25.63 dBm Hz -29.90 dBm	△ Limit -24.61 dB -11.93 dB -13.84 dB -18.66 dB -14.42 dB -12.63 dB -24.29 dB	.74 GHz	5.000000 Mł <u>Auto</u> Mł Freq Offs

Plot 7-25. Lower ACP Plot (Band 48 - 10.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 27 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 27 of 48	
© 2019 PCTEST Engineering Labora	atory, Inc.	·		V1.0 12/17/2018	

PASS	6-4	F 50 Ω e: LO	AC CORREC	Trig:	SENSE:INT Freq: 3.625000 Free Run n: 26 dB	0000 GHz	Radio St	PM Feb 13, 2019 d: None evice: BTS	Frequency
I0 dB/ ₋og Г	/div	Ref 30.00							
20.0 10.0					9/84/j.e. ² /10/44/j				Center Fre 3.625000000 GH
0.00									
20.0 - 30.0 -				1					
40.0 - 50.0 -	a					And the second designment of the second design			
								apprending the second	
Ľ	3.58 G						Stor	3.67 GHz	
	3.58 GI							5 3.67 GHz	CF Ste 5.000000 MH
Ľ	3.58 G	Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit		
Start	Range	Start Freq 3.5800 GHz	3.6100 GHz	1.000 MHz	3.609950000 0	Hz -46.55 dBm	∆ Limit -21.55 d	B	5.000000 MH
Spur	Range	Start Freq 3.5800 GHz 3.6100 GHz	3.6100 GHz 3.6190 GHz	1.000 MHz 1.000 MHz	3.609950000 G 3.618910000 G	Hz -46.55 dBm Hz -26.09 dBm	△ Limit -21.55 d -13.09 d	B	5.000000 Mł <u>Auto</u> Ma
Start Spur	Range 1 2 3	Start Freq 3.5800 GHz 3.6100 GHz 3.6190 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz	1.000 MHz 1.000 MHz 200.0 kHz	3.609950000 C 3.618910000 C 3.619921667 C	Hz -46.55 dBm GHz -26.09 dBm GHz -29.51 dBm	△ Limit -21.55 d -13.09 d -16.51 d	<mark>B</mark> IB IB	5.000000 Mł <u>Auto</u> Ma Freq Offs
spur	Range 1 2 3 4	Start Freq 3.5800 GHz 3.6100 GHz 3.6190 GHz 3.6200 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz	1.000 MHz 1.000 MHz 200.0 kHz 200.0 kHz	3.609950000 C 3.618910000 C 3.619921667 C 3.629200000 C	GHz -46.55 dBm GHz -26.09 dBm GHz -29.51 dBm GHz 5.657 dBm	Δ Limit -21.55 d -13.09 d -16.51 d -19.34 d	B B B B B	5.000000 Mi <u>Auto</u> Mi Freq Offs
Spur	Range 1 2 3 4 5	Start Freq 3.5800 GHz 3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz	1.000 MHz 1.000 MHz 200.0 kHz 200.0 kHz 200.0 kHz	3.609950000 C 3.618910000 C 3.619921667 C 3.629200000 C 3.630008333 C	Hz -46.55 dBm GHz -26.09 dBm GHz -29.51 dBm GHz 5.657 dBm GHz -29.71 dBm	Δ Limit -21.55 c -13.09 c -16.51 c -19.34 c -16.71 c	IB IB IB IB IB	5.000000 Mł <u>Auto</u> Ma Freq Offs
Start	Range 1 2 3 4 5 6	Start Freq 3.5800 GHz 3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz 3.6400 GHz	1.000 MHz 1.000 MHz 200.0 KHz 200.0 KHz 200.0 KHz 1.000 MHz	3.609950000 C 3.618910000 C 3.619921667 C 3.629200000 C 3.630008333 C 3.631105000 C	GHz -46.55 dBm GHz -26.09 dBm GHz -29.51 dBm GHz 5.657 dBm GHz -29.71 dBm GHz -26.50 dBm	Δ Limit -21.55 c -13.09 c -16.51 c -19.34 c -16.71 c -13.50 c	<mark> 8</mark> 8 8 8 8 8	5.000000 MH
Start	Range 1 2 3 4 5	Start Freq 3.5800 GHz 3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz	3.6100 GHz 3.6190 GHz 3.6200 GHz 3.6300 GHz 3.6310 GHz	1.000 MHz 1.000 MHz 200.0 KHz 200.0 KHz 200.0 KHz 1.000 MHz	3.609950000 C 3.618910000 C 3.619921667 C 3.629200000 C 3.630008333 C 3.631105000 C	Hz -46.55 dBm GHz -26.09 dBm GHz -29.51 dBm GHz 5.657 dBm GHz -29.71 dBm	Δ Limit -21.55 c -13.09 c -16.51 c -19.34 c -16.71 c	<mark> 8</mark> 8 8 8 8 8	5.000000 MH <u>Auto</u> Ma Freq Offs

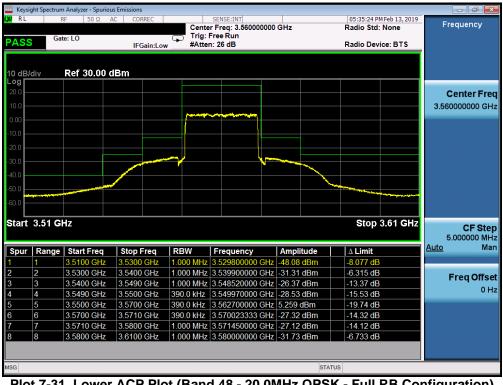
Plot 7-26. Mid ACP Plot (Band 48 - 10.0MHz QPSK - Full RB Configuration)


Plot 7-27. Upper ACP Plot (Band 48 - 10.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 28 of 48	
© 2019 PCTEST Engineering Labora	atory, Inc.	·	V1.0 12/17/2018	

ASS	C.t.	n Analyzer - Spurior F 50 Ω	AC CORREC	Trig:	SENSE:INT r Freq: 3.557500000 Free Run h: 26 dB) GHz	05:31:40 PM Feb 13, 2019 Radio Std: None Radio Device: BTS	Frequency
0 dB/	div	Ref 30.00 (dBm					
.og 20.0 - 10.0 -				nine-app				Center Fre 3.557500000 GH
0.00 10.0 20.0								
30.0 40.0								
50.0 50.0								
	0.54.01			I			Stop 3.605 GHz	
Start	3.51 GI	lz						5.000000 MH
Start Spur	3.51 GI Range		Stop Freq	RBW	Frequency	Amplitude	∆ Limit	Cr Sie
	Range	Start Freq 3.5100 GHz	Stop Freq 3.5300 GHz	1.000 MHz	3.529900000 GHz	-50.26 dBm	∆ Limit -10.26 dB	5.000000 MH
Spur	Range 1 2	Start Freq 3.5100 GHz 3.5300 GHz	3.5300 GHz 3.5400 GHz	1.000 MHz 1.000 MHz	3.529900000 GHz 3.5399666667 GHz	-50.26 dBm -33.60 dBm	-10.26 dB -8.596 dB	5.000000 MH Auto Ma
Spur	Range 1 2 3	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz	1.000 MHz 1.000 MHz 1.000 MHz	3.529900000 GHz 3.539966667 GHz 3.548940000 GHz	-50.26 dBm -33.60 dBm -25.01 dBm	-10.26 dB -8.596 dB -12.01 dB	5.000000 Mi Auto Ma
Spur	Range 1 2 3 4	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	1.000 MHz 1.000 MHz 1.000 MHz	3.529900000 GHz 3.5399666667 GHz	-50.26 dBm -33.60 dBm -25.01 dBm	-10.26 dB -8.596 dB	5.000000 Mi Auto Mi
Spur	Range 1 2 3 4	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz	1.000 MHz 1.000 MHz 1.000 MHz 300.0 kHz	3.529900000 GHz 3.539966667 GHz 3.548940000 GHz	-50.26 dBm -33.60 dBm -25.01 dBm -27.36 dBm	-10.26 dB -8.596 dB -12.01 dB	5.000000 MH Auto Ma
Spur	Range 1 2 3 4 5	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 300.0 KHz 300.0 KHz	3.529900000 GHz 3.539966667 GHz 3.548940000 GHz 3.549961667 GHz	-50.26 dBm -33.60 dBm -25.01 dBm -27.36 dBm 6.086 dBm	-10.26 dB -8.596 dB -12.01 dB -14.36 dB	5.000000 Mi Auto Ma
Spur	Range 1 2 3 4 5 6	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz	1.000 MHz 1.000 MHz 1.000 MHz 300.0 kHz 300.0 kHz 300.0 kHz	3.529900000 GHz 3.539966667 GHz 3.548940000 GHz 3.549961667 GHz 3.553900000 GHz	-50.26 dBm -33.60 dBm -25.01 dBm -27.36 dBm 6.086 dBm -26.96 dBm	-10.26 dB -8.596 dB -12.01 dB -14.36 dB -18.91 dB	5.000000 Mi Auto Ma
Spur	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz 3.5660 GHz	1.000 MHz 1.000 MHz 1.000 MHz 300.0 KHz 300.0 kHz 300.0 kHz 1.000 MHz	3.529900000 GHz 3.539966667 GHz 3.548940000 GHz 3.549961667 GHz 3.553900000 GHz 3.565070000 GHz	-50.26 dBm -33.60 dBm -25.01 dBm -27.36 dBm 6.086 dBm -26.96 dBm -25.49 dBm	-10.26 dB -8.596 dB -12.01 dB -14.36 dB -18.91 dB -13.96 dB	5.000000 Mi Auto Ma
Spur	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5500 GHz 3.5500 GHz 3.5650 GHz 3.5660 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5650 GHz 3.5660 GHz 3.5750 GHz	1.000 MHz 1.000 MHz 1.000 MHz 300.0 KHz 300.0 kHz 300.0 kHz 1.000 MHz	3,529900000 GHz 3,539966667 GHz 3,548940000 GHz 3,549961667 GHz 3,553900000 GHz 3,565070000 GHz 3,566390000 GHz	-50.26 dBm -33.60 dBm -25.01 dBm -27.36 dBm 6.086 dBm -26.96 dBm -25.49 dBm	-10.26 dB -8.596 dB -12.01 dB -14.36 dB -18.91 dB -13.96 dB -12.49 dB	5.000000 Mi Auto Mi

Plot 7-28. Lower ACP Plot (Band 48 - 15.0MHz QPSK - Full RB Configuration)


Plot 7-29. Mid ACP Plot (Band 48 - 15.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 48	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset			
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018				

ASS		F 50 Ω e: LO	AC CORREC	Trig: I	SENSE:INT r Freq: 3.692500 Free Run 1: 26 dB	0000 GHz	05:32:18 P Radio Std: Radio Dev		Frequency
0 dB/		Ref 30.00		w #Atter	1. 20 00		Radio Dev		
. og 20.0									Center Fre 3.692500000 GH
).00 - 10.0 -									
20.0 30.0 40.0				la	- V				
io.o io.o	y-y-s-t-tyty								
⊥ tart	3.645 G	147					Stop	3.74 GHz	CF Ste
	0.010	2112							5.000000 MH
Spur	Range		Stop Freq	RBW	Frequency	Amplitude	∆ Limit		
	Range		Stop Freq 3.6750 GHz			Amplitude GHz -35.32 dBm	△ Limit -10.32 dB		5.000000 MI
	Range	Start Freq		1.000 MHz	3.675000000				5.000000 Mi <u>Auto</u> Mi
Spur	Range	Start Freq 3.6450 GHz	3.6750 GHz	1.000 MHz 1.000 MHz	3.675000000 3.682965000	GHz -35.32 dBm	-10.32 dB		5.000000 Mi <u>Auto</u> M Freq Offs
Spur	Range 1 2 3	Start Freq 3.6450 GHz 3.6750 GHz	3.6750 GHz 3.6840 GHz	1.000 MHz 1.000 MHz 300.0 kHz	3.675000000 3.682965000 3.684823333	GHz -35.32 dBm GHz -26.48 dBm	-10.32 dB -13.48 dB		5.000000 Mi <u>Auto</u> M Freq Offs
Spur	Range 1 2 3 4	Start Freq 3.6450 GHz 3.6750 GHz 3.6840 GHz	3.6750 GHz 3.6840 GHz 3.6850 GHz	1.000 MHz 1.000 MHz 300.0 kHz 300.0 kHz	3.675000000 3.682965000 3.684823333 3.686175000	GHz -35.32 dBm GHz -26.48 dBm GHz -28.90 dBm	-10.32 dB -13.48 dB -15.90 dB		5.000000 Mi <u>Auto</u> M Freq Offs
	Range 1 2 3 4 5	Start Freq 3.6450 GHz 3.6750 GHz 3.6840 GHz 3.6850 GHz	3.6750 GHz 3.6840 GHz 3.6850 GHz 3.7000 GHz	1.000 MHz 1.000 MHz 300.0 kHz 300.0 kHz 300.0 kHz	3.675000000 3.682965000 3.684823333 3.686175000 3.700001667	GHz -35.32 dBm GHz -26.48 dBm GHz -28.90 dBm GHz 5.531 dBm	-10.32 dB -13.48 dB -15.90 dB -19.47 dB		5.000000 Mi <u>Auto</u> Mi Freq Offs
Spur	Range 1 2 3 4 5 6	Start Freq 3.6450 GHz 3.6750 GHz 3.6840 GHz 3.6850 GHz 3.7000 GHz	3.6750 GHz 3.6840 GHz 3.6850 GHz 3.7000 GHz 3.7010 GHz	1.000 MHz 1.000 MHz 300.0 kHz 300.0 kHz 300.0 kHz 1.000 MHz	3.675000000 3.682965000 3.684823333 3.686175000 3.700001667 3.701015000	GHz -35.32 dBm GHz -26.48 dBm GHz -28.90 dBm GHz 5.531 dBm GHz -29.21 dBm	-10.32 dB -13.48 dB -15.90 dB -19.47 dB -16.21 dB		5.000000 Mi <u>Auto</u> M Freq Offs
Spur	Range 1 2 3 4 5 6 7	Start Freq 3.6450 GHz 3.6750 GHz 3.6840 GHz 3.6850 GHz 3.7000 GHz 3.7010 GHz	3.6750 GHz 3.6840 GHz 3.6850 GHz 3.7000 GHz 3.7010 GHz 3.7100 GHz	1.000 MHz 1.000 MHz 300.0 kHz 300.0 kHz 300.0 kHz 1.000 MHz 1.000 MHz	3.675000000 3.682965000 3.684823333 3.686175000 3.700001667 3.701015000 3.710200000	GHz -35.32 dBm GHz -26.48 dBm GHz -28.90 dBm GHz 5.531 dBm GHz -29.21 dBm GHz -27.27 dBm	-10.32 dB -13.48 dB -15.90 dB -19.47 dB -16.21 dB -14.27 dB		5.000000 MI

Plot 7-30. Upper ACP Plot (Band 48 - 15.0MHz QPSK - Full RB Configuration)


Plot 7-31. Lower ACP Plot (Band 48 - 20.0MHz QPSK - Full RB Configuration)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 48	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		
© 2019 PCTEST Engineering Labora	tory, Inc.	·	V1.0 12/17/2018	

RL ASS	F	n Analyzer - Spur F 50 Ω	AC CC	ORREC	T T	enter ig: Fr	ENSE:INT Freq: 3.62500 ee Run	0000	GHz		Ra	idio Std		Fr	equency
455	<u> </u>		IF	Gain:Lo	w #A	tten:	26 dB				Ra	idio Dev	vice: BTS		
0 dB/	(div	Ref 30.00) dBm												
og	rui r	1101 00.00													
20.0														c	enter Fre
10.0															5000000 GH
					1000	an integration of								0.01	
10.0															
20.0															
30 n 🗖					لمسمس			-							
			1						-	-					
40.0										~					
50.0			and the second							~		Construction of the local division of the lo			
60.0 🗋															
Start	3.575 C	Hz										Stop 3	3.675 GHz		CF Ster
														5	000000 MH
C	Denma	Start Freq	C to a	Freq	RBW				Amplit			Limit		Auto	Ma
Spur	1	3.5750 GHz					Frequency 604950000	011-				.657 dl			
2	2	3.6050 GHz		0 GHZ 0 GHZ			614000000					4.12 dE			
<u>²</u> }	3	3.6050 GHz			_		.614966667					4.12 dt 6.15 dt			Freq Offse
) 1	4	3.6140 GHz			_		.625600000					9.86 dE			0 H
• 5	5	3.6350 GHz					.635065000					6.35 dE			
5 6	6	3.6360 GHz					.636135000					5.19 dE			
7	7	3.6450 GHz			_		.645050000					.742 dE			
	/	5.0450 GHz	3.075		1.000 W	112 3	.043030000	Oriz	-55.74 (=0	.742 UI	,		

Plot 7-32. Mid ACP Plot (Band 48 - 20.0MHz QPSK - Full RB Configuration)

PCTEST Approved by: MEASUREMENT REPORT 🕞 LG FCC ID: ZNFV450VM (CERTIFICATION) **Quality Manager** EUT Type: Test Report S/N: Test Dates: Page 31 of 48 1M1901150005-04-R1.ZNF 1/21 - 4/26/2019 Portable Handset © 2019 PCTEST Engineering Laboratory, Inc. V1.0 12/17/2018

7.5 Radiated Power (EIRP) §96.41(b)

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was set equal to 10MHz.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 32 of 48	
© 2019 PCTEST Engineering Labora	atory, Inc.		V1.0 12/17/2018	

The EUT and measurement equipment were set up as shown in the diagram below.

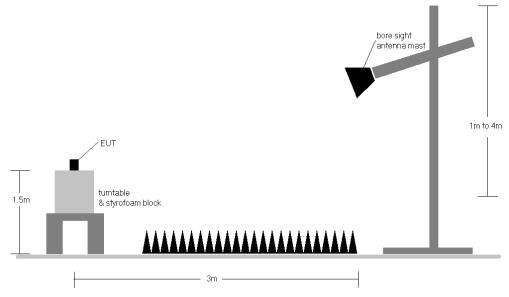


Figure 7-4. Radiated Test Setup >1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) The worst case EIRP shown in this section is found with LTE operating only using 1RB. As such, the EIRP/10MHz and full channel EIRP values will be identical since 1RB is fully contained within all available channel bandwidths for LTE Band 48 (i.e. 5, 10, 15, 20MHz).

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	💽 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 49	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 33 of 48	
© 2019 PCTEST Engineering Labora	atory, Inc.	•		V1.0 12/17/2018	

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	EIRP [dBm/10MHz]	EIRP [Watts]	EIRP Limit [dBm/10MHz]	Margin [dB]
3552.50	5	QPSK	Н	252	320	1/0	11.89	8.79	20.68	0.117	23.00	-2.32
3625.00	5	QPSK	Н	226	217	1/0	9.64	8.38	18.02	0.063	23.00	-4.98
3697.50	5	QPSK	Н	247	326	1/0	12.08	8.89	20.97	0.125	23.00	-2.03
3697.50	5	16-QAM	Н	247	326	1/0	10.99	8.89	19.88	0.097	23.00	-3.12
3697.50	5	64-QAM	н	247	326	1/0	9.91	8.89	18.80	0.076	23.00	-4.20
3555.00	10	QPSK	Н	219	301	1 / 49	10.49	8.77	19.26	0.084	23.00	-3.74
3625.00	10	QPSK	Н	241	326	1 / 49	12.18	8.38	20.56	0.114	23.00	-2.44
3695.00	10	QPSK	Н	253	315	1 / 49	11.09	8.86	19.95	0.099	23.00	-3.05
3625.00	10	16-QAM	Н	241	326	1 / 49	10.93	8.38	19.31	0.085	23.00	-3.69
3625.00	10	64-QAM	Н	241	326	1 / 49	9.76	8.38	18.14	0.065	23.00	-4.86
3557.50	15	QPSK	Н	211	333	1/0	10.43	8.74	19.17	0.083	23.00	-3.83
3625.00	15	QPSK	Н	250	326	1 / 74	11.20	8.38	19.58	0.091	23.00	-3.42
3692.50	15	QPSK	Н	228	325	1/0	12.02	8.84	20.86	0.122	23.00	-2.14
3692.50	15	16-QAM	Н	228	325	1/0	11.21	8.84	20.05	0.101	23.00	-2.95
3692.50	15	64-QAM	Н	228	325	1/0	10.78	8.84	19.62	0.092	23.00	-3.38
3560.00	20	QPSK	Н	221	319	1/0	11.84	8.72	20.56	0.114	23.00	-2.44
3625.00	20	QPSK	Н	209	317	1/0	11.34	8.38	19.72	0.094	23.00	-3.28
3690.00	20	QPSK	Н	219	324	1 / 99	11.55	8.82	20.37	0.109	23.00	-2.63
3560.00	20	16-QAM	Н	221	319	1/0	10.79	8.72	19.51	0.089	23.00	-3.49
3560.00	20	64-QAM	Н	221	319	1/0	10.08	8.72	18.80	0.076	23.00	-4.20
3697.50	5	QPSK	V	253	355	1/0	5.83	8.60	14.43	0.028	23.00	-8.57
3697.50	5 (WCP)	QPSK	Н	135	348	1/0	8.37	8.89	17.26	0.053	23.00	-5.74

6

Table 7-3. EIRP Data (Band 48)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕑 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:			Dage 24 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019			Page 34 of 48
© 2019 PCTEST Engineering Labora	itory, Inc.	•		V1.0 12/17/2018

7.6 Radiated Spurious Emissions Measurements §2.1053 §96.41(e)

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

ANSI/TIA-603-E-2016 - Section 2.2.12

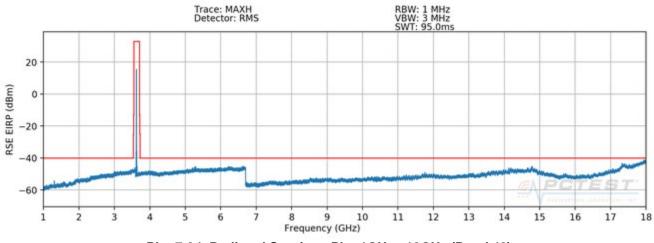
Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points \geq 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

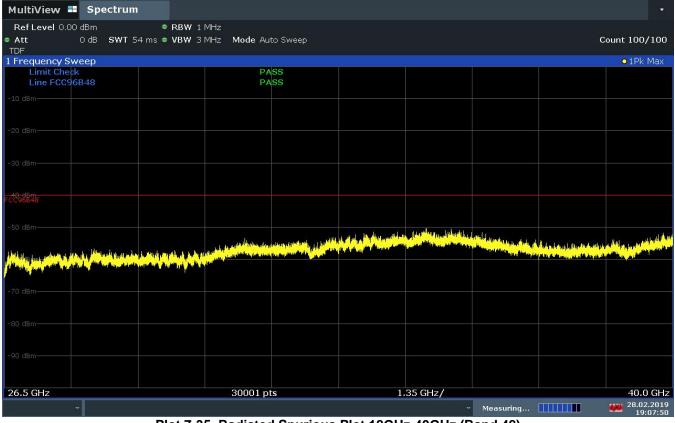
FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 35 of 48
© 2019 PCTEST Engineering Labora	atory, Inc.	·	V1.0 12/17/2018

EUT turntable 8. styrofoam block

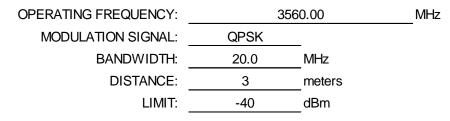
The EUT and measurement equipment were set up as shown in the diagram below.


Figure 7-5. Test Instrument & Measurement Setup

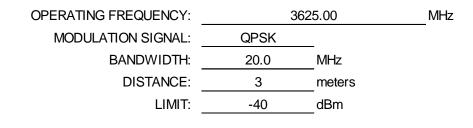
Test Notes


- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.
- 3) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 5) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕕 LG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 48	
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset			
© 2019 PCTEST Engineering Labora	atory. Inc.			V1.0 12/17/2018	



Plot 7-35. Radiated Spurious Plot 18GHz-40GHz (Band 48)


FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	🕒 LG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 37 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
7120.00	Н	208	300	-67.29	11.71	-55.59	-15.6
10680.00	Н	164	319	-64.95	12.55	-52.40	-12.4
14240.00	Н	159	336	-56.88	11.35	-45.53	-5.5
17800.00	Н	-	-	-54.91	10.01	-44.89	-4.9

Table 7-4. Radiated Spurious Data (Band 48 – Low Channel)



Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
7250.00	н	323	342	-67.21	11.32	-55.90	-15.9
10875.00	н	397	333	-64.92	12.71	-52.21	-12.2
14500.00	н	400	8	-58.86	11.61	-47.25	-7.3

Table 7-5. Radiated Spurious Data (Band 48 – Mid Channel)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 28 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 38 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
7380.00	Н	-	-	-67.06	10.96	-56.10	-16.1
11070.00	Н	-	-	-67.13	12.72	-54.40	-14.4
14760.00	Н	-	-	-61.10	12.02	-49.08	-9.1

Table 7-6. Radiated Spurious Data (Band 48 – High Channel)

OPERATING FREQUENCY:	356	60.00	MHz
MODULATION SIGNAL:	QPSK	_	
BANDWIDTH:	20.0	MHz	
DISTANCE:	3	meters	
LIMIT:	-40	dBm	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Margin [dB]
7120.00	Н	-	-	-68.65	11.71	-56.95	-16.9
10680.00	Н	210	151	-58.16	12.55	-45.61	-5.6
14240.00	Н	182	133	-60.04	11.35	-48.69	-8.7
17800.00	Н	-	-	-54.80	10.01	-44.78	-4.8

Table 7-7. Radiated Spurious Data with WCP (Band 48 – Low Channel)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 39 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

7.7 Frequency Stability / Temperature Variation §2.1055

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 96, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI/TIA-603-E-2016

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 40 of 49
1M1901150005-04-R1.ZNF	1/21 – 4/26/2019	Portable Handset		Page 40 of 48
2019 PCTEST Engineering Laboratory. Inc.				V1.0 12/17/2018

Band 48 Frequency Stability Measurements

OPERATING FREQUENCY:	3,625,000,000	Hz
CHANNEL:	55990	_
REFERENCE VOLTAGE:	4.20	VDC

VOLTAGE (%)	POWER (VDC)	ТЕМР (°С)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	4.20	- 30	3,624,999,773	-227	-0.0000063
100 %		- 20	3,624,999,993	-7	-0.0000002
100 %		- 10	3,624,999,782	-218	-0.0000060
100 %		0	3,625,000,138	138	0.000038
100 %		+ 10	3,625,000,058	58	0.0000016
100 %		+ 20	3,624,999,976	-24	-0.0000007
100 %		+ 30	3,625,000,370	370	0.0000102
100 %		+ 40	3,624,999,661	-339	-0.0000094
100 %		+ 50	3,624,999,768	-232	-0.0000064
BATT. ENDPOINT	3.59	+ 20	3,625,000,161	161	0.0000044

Table 7-8. Frequency Stability Data (Band 48)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 40
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 41 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

Band 48 Frequency Stability Measurements

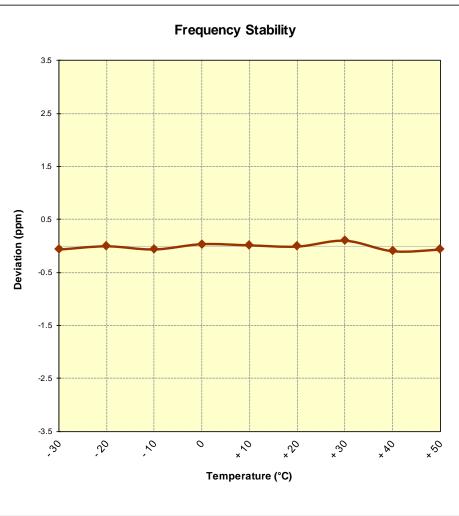


Figure 7-6. Frequency Stability Graph (Band 48)

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Degre 42 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 42 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including part of this report and microfilm, without permission in writing from PCTEST Engineering Laboratory, Inc. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

7.8 End User Device Additional Requirement (CBSD Protocol) §96.47

Test Overview and Limit

End user device additional requirements (CBSD Protocol) are tested per the test procedures listed below. During testing, the EUT is connected to a certified CBSD (Ruckus FCC ID: S9GQ910US00) as a companion device to show compliance with Part 96.47.

End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation.

An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.

Test Procedure Used

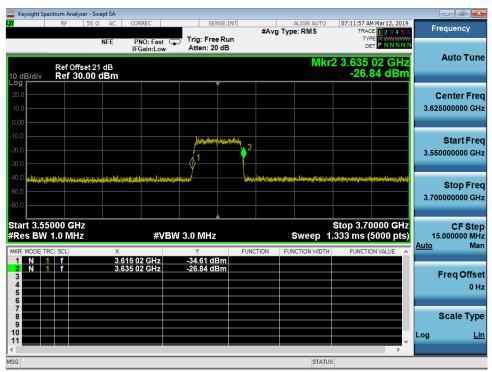
KDB 940660 D01 v01, WINNF-TS-0122 V1.0.0.

Test Setup/Method

The EUT was connected via an RF cable to a certified CBSD and spectrum analyzer. The following procedure is performed by applying WINNF-TS-0122 CBRS CBSD Test Specification.

- 1. Run#1:
 - a. Setup WINNF.PT.C.HBT.1 with 3615MHz 3635MHz and power level at 13 dBm/MHz.
 - b. Enable AP service from Ruckus Cloud management.
 - c. Check EUT Tx frequency and power.
 - d. Disable AP service from Ruckus Cloud management and check EUT stop transmission within 10s.
- 2. Run#2:
 - a. Setup WINNF.PT.C.HBT.1 with 3660MHz 3670MHz and power level at 8 dBm/MHz.
 - b. Enable AP service from Ruckus Cloud management.
 - c. Check EUT Tx frequency and power.
 - d. Disable AP service from Ruckus Cloud management and check EUT stop transmission within 10s.

Test Notes


The EUT is an End User Device.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 43 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		

Run#1:

- Tx frequency set: 3615 3635MHz.
- MaxEIRP set: 13dBm/MHz

Plot 7-36. Run#1 End User Device Frequency of Operations

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 44 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 44 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

🔤 Keysight Spectrum Ana	lyzer - Swept SA								
LXI RF	50 Ω AC COR		g: Free Run	#Avg Ty	ALIGN AUTO pe: RMS	TRAC	Mar 12, 2019 E 1 2 3 4 5 6 E WWWWWWW	Fre	equency
			ten: 20 dB			ΔMkr3	10.00 s 7.04 dB		Auto Tune
20.0 10.0 0.00		<u>2∆</u> 1							enter Freq 5000000 GHz
-10.0 -20.0 -30.0			terry provident and a superference for	nded Rig march march i day, day be	a ditensi sing antimitika	3∆1	nitetrada instantido	3.628	Start Freq
-60.0								3.628	Stop Freq 5000000 GHz
Center 3.625000 Res BW 3.0 MHz		#VBW 50		FUNCTION FI	Sweep	13.00 s (pan 0 Hz 5000 pts)	3 <u>Auto</u>	CF Step .000000 MHz Man
1 N 1 t 2 A1 1 t (A 3 A1 1 t (A 4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	<u>4</u> .	038 s (Δ)	i.86 dBm -0.80 dB 27.04 dB					F	Freq Offset 0 Hz
7 8 9									Scale Type
10 11 <							~	Log	<u>Lin</u>
MSG					STATU	5			

Plot 7-37. Run#1 End User Device Discontinues Operations within 10s

Note:

Marker 1: CBSD sends instructions to discontinue LTE operations.

Marker 2: EUT discontinues operation.

Marker 3: 10 seconds elapsed time from CBSD sending instructions to EUT.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 45 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

Run#2:

- Tx frequency set: 3660–3670MHz.
- MaxEIRP set: 8dBm/MHz

🔤 Keysight Sp	ectrum Ana	lyzer - Swept S	A										
XI	RF	50 Ω A NFE	E PN	O: Fast		SENSE:II		#Avg Ty	ALIGN AUTO pe: RMS	TRAC	M Mar 12, 2019 DE 1 2 3 4 5 (PE MWWWW T P N N N N		requency
10 dB/div		fset 21 dB 0.00 dB	3	Gain:Low	Atten	: 20 dB			Mkr	1 3.660	02 GHz 83 dBm		Auto Tune
20.0 10.0 0.00													Center Freq 5000000 GHz
-10.0 -20.0 -30.0										2		3.55	Start Freq
-40.0 -50.0 -60.0						adirida ana an	el _t editivity;	n angan salah salah	uajingi		ner (freihein)er er sper	3.70	Stop Freq 0000000 GHz
Center 3. #Res BW	1.0 MH		X		BW 3.0 M		FUNC	TION FU	Sweep 1	.333 ms (50.0 MHz 5000 pts)	1 <u>Auto</u>	CF Step 5.000000 MHz Mar
1 N 1 2 N 1 3 4 5 6			3.660 02 3.679 99			dBm dBm							Freq Offse 0 Hz
7 8 9 10													Scale Type
11											> ×	Log	Lin
MSG									STATUS	6			

Plot 7-38. Run#2 End User Device Frequency of Operations

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 49
1M1901150005-04-R1.ZNF	1/21 – 4/26/2019	Portable Handset		Page 46 of 48
© 2019 PCTEST Engineering Labora		V1.0 12/17/2018		

Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω AC	FNO. Fast	SENSE:INT	ALIGN AUTO #Avg Type: RMS	08:03:05 AM Mar 12, 2019 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N	Frequency
Ref Offset 21 dB 10 dB/div Ref 30.00 dBm Logv	IFGain:Low A	tten. 20 dB		ΔMkr3 10.00 s -20.17 dB	Auto Tune
					Center Freq 3.670000000 GHz
-10.0			n palinan com ro dife alda ja rigata bel Medynarc	<u></u> 3∆1	Start Freq 3.670000000 GHz
-40.0					Stop Freq 3.670000000 GHz
Center 3.670000000 GHz Res BW 3.0 MHz	#VBW 50			Span 0 Hz 13.00 s (5000 pts)	CF Step 3.000000 MHz <u>Auto</u> Man
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	897.8 ms -13 4.570 s (Δ)	3.19 dBm -1.00 dB -20.17 dB			Freq Offset 0 Hz
7 8 9 9 10 11					Scale Type Log <u>Lin</u>
« MSG			STATU	5	

Plot 7-39. Run#2 End User Device Discontinues Operations within 10s

Note:

- Marker 1: CBSD sends instructions to discontinue LTE operations.
- Marker 2: EUT discontinues operation.
- Marker 3: 10 seconds elapsed time from CBSD sending instructions to EUT.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 47 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset		Page 47 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018			

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **LG Portable Handset FCC ID: ZNFV450VM** complies with all of the End User Device requirements of Part 96 of the FCC Rules for LTE operation only.

FCC ID: ZNFV450VM		MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 49 of 49
1M1901150005-04-R1.ZNF	1/21 - 4/26/2019	Portable Handset	Page 48 of 48
© 2019 PCTEST Engineering Labora	V1.0 12/17/2018		