

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191205802

FCC REPORT

Applicant: Shenzhen LINGDU Auto Electronics Co., Ltd.

Address of Applicant: 1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua,

Shenzhen, China

Equipment Under Test (EUT)

Product Name: IP CAMERA

Model No.: SWIFI-TRACKCAM, SWIFI-TRACKCM32GB

Trade mark: Swann

FCC ID: 2ASWVSWIFI-TRACKCAM

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 11 Dec., 2019

Date of Test: 11 Dec., to 30 Dec., 2019

Date of report issued: 30 Dec., 2019

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	30 Dec., 2019	Original

Tested by: 30 Dec., 2019 Date:

Winner Thang

Project Engineer Reviewed by: Date: 30 Dec., 2019

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	Ti	EST SUMMARY	4
5			Page
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	5
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6		
	5.7	DESCRIPTION OF CABLE USED	6
	5.8	Additions to, deviations, or exclusions from the method	6
	5.9	LABORATORY FACILITY	6
	5.10	LABORATORY LOCATION	6
	5.11	TEST INSTRUMENTS LIST	7
6	TE	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TE	EST SETUP PHOTO	17
8	FI	UT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	Shenzhen LINGDU Auto Electronics Co., Ltd.	
Address:	1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua, Shenzhen, China	
Manufacturer:	Shenzhen LINGDU Auto Electronics Co., Ltd.	
Address:	1801-1808 Haiyun Building, No. 468 Minzhi Avenue, Longhua, Shenzhen, China	
Factory:	Dongguan KAKA Electronic Technology Co., Ltd	
Address:	No.395, Huanshi East Road, Shitanpu, TangxiaTown, Dongguan, Guangdong, China	

5.2 General Description of E.U.T.

Product Name:	IP CAMERA
Model No.:	SWIFI-TRACKCAM, SWIFI-TRACKCM32GB
AC adapter:	Model No.:ADS-12AE-06 05010E
	Input: AC100-240V, 50/60Hz 0.3A
	Output: DC 5.0V, 2.0A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Model No.: SWIFI-TRACKCAM, SWIFI-TRACKCM32GB were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and SWIFI-TRACKCM 32GB comes with a 32GB card, SWIFI-TRACKCM does not.

5.3 Test Mode

Operating mode	Detail description
Recording mode	Keep the EUT in Recording mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

Report No: CCISE191205802

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

N/A

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

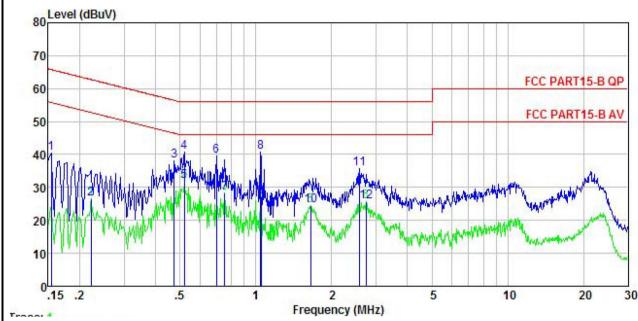
Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2019	11-20-2020
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2019	11-20-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2021	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

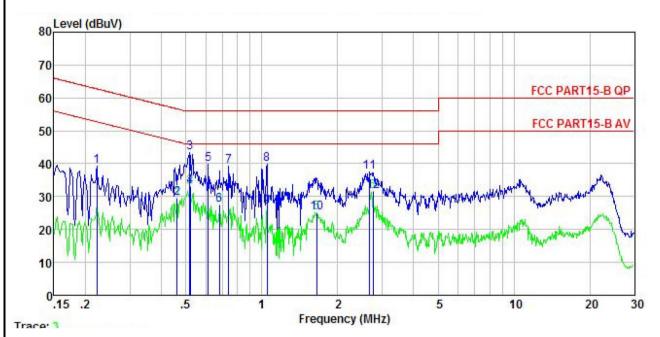
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107		
Test Frequency Range:	150kHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:	Frequency range (MHz)	Limit	(dBµV)
	, , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	0.5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 		
Test Instruments:	Refer to section 5.11 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data:

Product name:	IP CAMERA	Product model:	SWIFI-TRACKCAM
Test by:	Mike	Test mode:	Recording mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
	•		


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>123</u>	MHz	dBu₹	<u>ab</u>	<u>ab</u>	<u>ab</u>	dBu₹	—dBu₹	<u>dB</u>	
1	0.154	30.03	-0.45	-0.06	10.78	40.30	65.78	-25.48	QP
2	0.222	16.40	-0.40	-0.19	10.76	26.57	52.74	-26.17	Average
3	0.474	28.04	-0.39	-0.18	10.75	38.22	56.45	-18.23	QP
4	0.521	30.71	-0.39	-0.36	10.76	40.72	56.00	-15.28	QP
1 2 3 4 5 6 7 8 9	0.521	21.99	-0.39	-0.36	10.76	32.00	46.00	-14.00	Average
6	0.697	29.50	-0.38	-0.40	10.77	39.49	56.00	-16.51	QP
7	0.751	18.15	-0.38	-0.24	10.79	28.32	46.00	-17.68	Average
8	1.043	29.95	-0.38	0.41	10.88	40.86	56.00	-15.14	QP
9	1.049	16.15	-0.38	0.40	10.88	27.05	46.00	-18.95	Average
10	1.654	13.96	-0.40	-0.11	10.94	24.39			Average
11	2.581	25.57	-0.43	-0.25	10.93	35.82	56.00	-20.18	QP
12	2.736	15.55	-0.43	-0.23	10.93	25.82	46.00	-20.18	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level +LISN Factor + Aux Factor + Cable Loss

Product name:	IP CAMERA	Product model:	SWIFI-TRACKCAM
Test by:	Mike	Test mode:	Recording mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

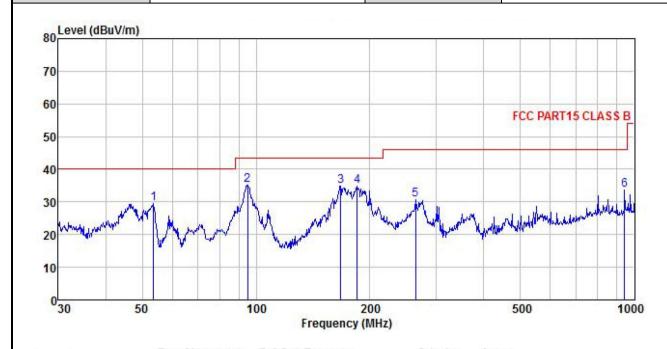
MHz dBuV dB dB dB dB dBuV dBuV dB 1 0.222 29.03 -0.67 0.00 10.76 39.12 62.74 -23.62 QP 2 0.461 19.32 -0.65 0.00 10.74 29.41 46.67 -17.26 Avers 3 0.518 33.32 -0.65 0.03 10.76 43.46 56.00 -12.54 QP 4 0.521 22.80 -0.65 0.03 10.76 32.94 46.00 -13.06 Avers 5 0.614 29.73 -0.64 0.04 10.77 39.90 56.00 -16.10 QP 6 0.679 17.32 -0.64 0.04 10.77 27.49 46.00 -18.51 Avers 7 0.739 29.20 -0.64 0.05 10.79 39.40 56.00 -16.60 QP 8 1.049 29.52 -0.63 0.09 10.88 39.86 56.00 -16.14 QP 9 1.049 16.54 -0.63 0.09 10.88 39.86 56.00 -16.14 QP 9 1.049 16.54 -0.63 0.09 10.88 26.88 46.00 -19.12 Avers 10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avers 11 2.678 26.84 -0.67 0.27 10.93 37.37 56.00 -18.63 QP		Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
2 0.461 19.32 -0.65 0.00 10.74 29.41 46.67 -17.26 Avers 3 0.518 33.32 -0.65 0.03 10.76 43.46 56.00 -12.54 QP 4 0.521 22.80 -0.65 0.03 10.76 32.94 46.00 -13.06 Avers 5 0.614 29.73 -0.64 0.04 10.77 39.90 56.00 -16.10 QP 6 0.679 17.32 -0.64 0.04 10.77 27.49 46.00 -18.51 Avers 7 0.739 29.20 -0.64 0.05 10.79 39.40 56.00 -16.60 QP 8 1.049 29.52 -0.63 0.09 10.88 39.86 56.00 -16.14 QP 9 1.049 16.54 -0.63 0.09 10.88 26.88 46.00 -19.12 Avers 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avers	<u>5.350</u>	MHz	dBu∇	<u>ab</u>	<u>d</u> B	dB	dBu∜	—dBu∇	<u>d</u> B	
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	1	0.222	29.03	-0.67	0.00	10.76	39.12	62.74	-23.62	QP
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	2	0.461	19.32	-0.65	0.00	10.74	29.41	46.67	-17.26	Average
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	3	0.518	33.32	-0.65	0.03	10.76	43.46	56.00	-12.54	QP
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	4	0.521	22.80	-0.65	0.03	10.76	32.94	46.00	-13.06	Average
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	5	0.614	29.73	-0.64	0.04	10.77	39.90	56.00	-16.10	QP
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	6	0.679	17.32	-0.64	0.04	10.77	27.49	46.00	-18.51	Average
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	7	0.739	29.20	-0.64	0.05	10.79	39.40	56.00	-16.60	QP
10 1.654 14.56 -0.66 0.15 10.94 24.99 46.00 -21.01 Avera	8	1.049	29.52	-0.63	0.09	10.88	39.86	56.00	-16.14	QP
	9	1.049	16.54	-0.63	0.09	10.88	26.88	46.00	-19.12	Average
11 2.678 26.84 -0.67 0.27 10.93 37.37 56.00 -18.63 OP	10	1.654	14.56	-0.66	0.15	10.94	24.99	46.00	-21.01	Average
11 L. 0.0 L. 0.0. 0.0. 0.0. 10.00 0.00 10.00 41	11	2.678	26.84	-0.67	0.27	10.93	37.37	56.00	-18.63	QP
12 2.765 20.98 -0.67 0.28 10.93 31.52 46.00 -14.48 Avera	12	2.765	20.98	-0.67	0.28	10.93	31.52	46.00	-14.48	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level +LISN Factor + Aux Factor + Cable Loss

6.2 Radiated Emission

Test Requirement:	FCC Part 15 B Se	ection 15.10	9			
Test Frequency Range:	30MHz to 6000MI	Hz				
Test site:	Measurement Dis	tance: 3m ((Sem	i-Anechoic (Chamber)	
Receiver setup:	Frequency	Detecto	or	RBW	VBW	Remark
, , , , , , , , , , , , , , , , , , ,	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3MHz	Peak Value
	Above 1GHZ	RMS		1MHz	3MHz	Average Value
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark
	30MHz-88N			40.0		Quasi-peak Value
	88MHz-216			43.5		Quasi-peak Value
	216MHz-960			46.0		Quasi-peak Value
	960MHz-1G	ÞΗΖ		54.0 54.0		Quasi-peak Value
	Above 1GI	Hz		74.0		Average Value Peak Value
Test setup:	Below 1GHz 3m	4m	_	RFT	Antenna Tower Search Antenna	
	Turn 7 0.8m A 0.8m A A A A A A A A A A A A A A A A A A A	Im A	////	Rece	iver	
	AE (Turnt	IV V V	3m	Pra	Antenna Tow	er
Test Procedure:	ground at a 3 ndegrees to detect 2. The EUT was swhich was mound 3. The antenna hours ground to detect to detect the street and the street the street and the street the street and the street the street the street and the street the	neter semi- ermine the p set 3 meters unted on the eight is vari rmine the m	aneclositi s awa top ed from	hoic camber on of the hig by from the in of a variable om one mete um value of	The table table the table that the table that the table that the table the table the table the table the table tab	ce-receiving antenna, ntenna tower. meters above the


	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

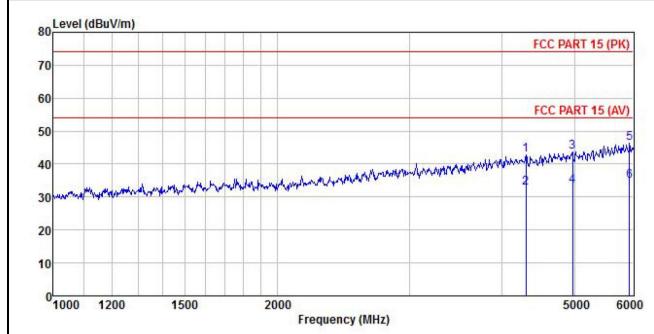
Product Name:	IP CAMERA	Product Model:	SWIFI-TRACKCAM
Test By:	Mike	Test mode:	Recording mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
-	MHz	dBu∜			<u>ab</u>	$\overline{dB} \overline{uV}/\overline{m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	53.505	46.35	11.74	1.32	29.81	29.60	40.00	-10.40	QP
2	95.093	51.26	11.39	2.01	29.55	35.11	43.50	-8.39	QP
2	167.237	51.77	9.54	2.64	29.07	34.88	43.50	-8.62	QP
4	185.138	50.89	10.13	2.77	28.93	34.86	43.50	-8.64	QP
5	263.819	43.28	12.97	2.85	28.51	30.59	46.00	-15.41	QP
6	942.131	34.55							
ь	942.131	34.55	22.01	4.15	21.10	33.00	40.00	-12.40	QP

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Judet	Name:	IP C	CAMERA				Product	Model:		SWIFI-7	RACKC	AM
st By:		Mik	е				Test mo	de:		Recordi	ng mode)
st Fred	quency:	30 [MHz ~ 1 G	SHz			Polariza	rization: Horizontal			tal	
st Volt	age:	AC	120/60Hz	:			Environ	ment:		Temp: 2	24℃	Huni: 57%
80 ^{Le}	evel (dBuV/n	n)										
70												
60										FCC DA	RT15 CI	ASSR
50										10014	in 15 Cl	
40						2		2 4	1.5			6
30				1	10	phor 14	4 10	r Lu	W.		الموالد الديدي	ANAL BL
20				/\ <u>\</u>	Jan Mark		The same of the sa	Vr	Wh	Way Hard	oholak .	17
		1 AM	Mach	1	Laken Rans	P**						
	AND Physial Commencer	Mary Mary	for the truly		Laker Ji Aug	**						
		50	Joseph Markey	100			00 MHz)			500		1000
10 🚧)	50 Read	antenna Factor	Cable	Fre	quency (<mark>MHz)</mark> Limit	Over Limit	Remar			
10 🚧)	50 Read	Factor	Cable	Fre Preamp Factor	quency (<mark>MHz)</mark> Limit	Limit	Remar			


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz:

Product Name:	IP CAMERA	Product Model:	SWIFI-TRACKCAM
Test By:	Mike	Test mode:	Recording mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u> /m	<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	4307.183	47.78	30.36	6.56	41.89	42.81	74.00	-31.19	Peak
2	4307.183	37.79	30.36	6.56	41.89	32.82	54.00	-21.18	Average
3	4971.019	47.34	31.34	6.92	41.87	43.73	74.00	-30.27	Peak
4	4971.019	37.03	31.34	6.92	41.87	33.42	54.00	-20.58	Average
1 2 3 4 5	5925.216	47.65	32.69	7.92	42.04	46.22	74.00	-27.78	Peak
6	5925.216	36.21	32.69	7.92	42.04	34.78	54.00	-19.22	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Name	:	IP CA	MERA			Pro	oduct Mo	del:	SWIFI-TF	RACKO	AM
t By:			Mike				Те	st mode:		Recording	g mode	e
t Fre	quenc	y:	1 GH	1 GHz ~ 6 GHz Polarization: Horizontal					ıl			
t Vol	Itage:		AC 1	20/60Hz			En	vironme	nt:	Temp: 24	${\mathbb C}$	Huni: 57%
	evel (dBuV/m	i)									
80	10.01									FC	C PAR	T 15 (PK)
70												
60												
00										FC	CC PAR	RT 15 (AV)
50											3	5
40		-						a au sand	when he was	VILLAND WAS THE BOOK OF THE PARTY OF THE PAR	www.	Virialization
30	LAND	August Judas	Maria Maria	Harris and haple	way Mystys	white the state of	Marin Mary A.	A.m.A.M.a. d. s		QUANTE PORTE OF THE PORTE OF TH	4	6
30												
20												1. 7
20												
10												
10	1000	1200		1500	2	000 Freq	uency (M	Hz)			500	00 600
10	1000	1200				Freq		3%	0		500	00 600
10	1000		Read	1500 Antenna Factor	Cable	Freq Preamp		Limit	Over Limit	Remark	500	00 600
10	1000		Read	Antenna Factor	Cable	Freq Preamp Factor	Level	Limit		Remark	500	00 600
10	 398I	Freq MHz	Read. Level dBuV 47.08	Antenna Factor dB/m 30.24	Cable Loss ——————————————————————————————————	Freq Preamp Factor dB 41.81	Level dBuV/m 41.62	Limit Line dBuV/m 74.00	Limit	Peak	500	00 600
10	 398(398(Freq MHz 0.656	Read. Level dBuV 47.08 37.51	Antenna Factor ——dB/m 30.24 30.24	Cable Loss ——————————————————————————————————	Freq Preamp Factor ————————————————————————————————————	Level dBuV/m 41.62 32.05	Limit Line dBuV/m 74.00 54.00	Limit 	Peak Average	500	00 600
10 0	3980 3980 4890 4890	Freq MHz 0.656 0.656 1.500	Read. Level dBuV 47.08	Antenna Factor ——dB/m 30.24 30.24	Cable Loss ——————————————————————————————————	Freq Preamp Factor ————————————————————————————————————	Level dBuV/m 41.62 32.05 44.49 33.40	Limit Line dBuV/m 74.00 54.00 74.00 54.00	Limit	Peak Average Peak Average	500	00 600

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.