

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

	800MHz	1900MHz	
Maximum peak output power at antenna input terminal:	37.00	37.00	(dBm)
Maximum peak output power at antenna input terminal:	5011.872	5011.8723	(mW)
Antenna gain(typical):	0	0	(dBi)
Maximum antenna gain:	1	1	(numeric)
Prediction distance:	35	35	(cm)
Prediction frequency:	850	1900	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.533333	1	(mW/cm^2)
Power density at prediction frequency:	0.325577	0.32558	(mW/cm^2)
Multiple transmitter Calculation: (Sum of all fractional Contributions)			
0.61046 + 0.32558	=	0.93603	<1.0