# **Portion** # **TEST REPORT** # No. I16D00249-RFA-01 For Client: Hisense International Co., Ltd. **Production: Smartphone** Model Name: Hisense F102 FCC ID 2ADOBF102 Hardware Version: V1.00 Software Version: L1307.6.01.05.MX06 Issued date: 2017-02-06 #### Note: The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai. #### **Test Laboratory:** ECIT Shanghai, East China Institute of Telecommunications Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn East China Institute of Telecommunications TEL: +86 21 63843300 FAX: +86 21 63843301 Page Number : 1 of 23 Report Issued Date : Feb.06.2017 ### **Revision Version** Report No.: I16D00249-RFA-01 | Report Number | Revision | Date | Memo | |------------------|----------|------------|---------------------------------| | I16D00249-RFA-01 | 00 | 2017-01-03 | Initial creation of test report | | I16D00249-RFA-01 | 01 | 2017-01-17 | Second creation of test report | | I16D00249-RFA-01 | 02 | 2017-01-24 | Third creation of test report | | I16D00249-RFA-01 | 03 | 2017-02-06 | Forth creation of test report | East China Institute of Telecommunications Page Number : 2 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 # **CONTENTS** Report No.: I16D00249-RFA-01 | 1 | TEST LABORATORY | / | |------|---------------------------------------------------------|-----| | | | | | 1.1. | TESTING LOCATION | 4 | | 1.2. | TESTING ENVIRONMENT | 4 | | 1.3. | PROJECT DATA | 4 | | 1.4. | SIGNATURE | 4 | | 2. | CLIENT INFORMATION | 5 | | 2.1. | APPLICANT INFORMATION | 5 | | 2.2. | MANUFACTURER INFORMATION | 5 | | 3. | EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 6 | | 3.1. | ABOUT EUT | е | | 3.2. | INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST | 6 | | 3.3. | INTERNAL IDENTIFICATION OF AE USED DURING THE TEST | 6 | | 3.5. | STATEMENTS | 6 | | 4. | REFERENCE DOCUMENTS | 7 | | 4.5. | REFERENCE DOCUMENTS FOR TESTING | 7 | | 5. | SUMMARY OF TEST RESULTS | 8 | | 6. | TEST EQUIPMENT UTILIZED | 9 | | 7. | TEST ENVIRONMENT | 10 | | ANN | EX A. RADIATED MEASUREMENT RESULTS | .11 | | A.1. | LTE EIRP | .11 | | A.2 | EMISSION LIMIT | 19 | | ANN | EX B. DEVIATIONS FROM PRESCRIBED TEST METHODS | 22 | | ANN | EX C. ACCREDITATION CERTIFICATE | 23 | Page Number : 3 of 23 Report Issued Date : Feb.06.2017 1. Test Laboratory ## 1.1. Testing Location | Company Name: | ECIT Shanghai, East China Institute of Telecommunications | | | | |-----------------------|-------------------------------------------------------------|--|--|--| | Address: | 7-8F, G Area, No. 668, Beijing East Road, Huangpu District, | | | | | | Shanghai, P. R. China | | | | | Postal Code: | 200001 | | | | | Telephone: | (+86)-021-63843300 | | | | | Fax: | (+86)-021-63843301 | | | | | FCC Registration NO.: | 489729 | | | | ## 1.2. Testing Environment | Normal Temperature: | 15-35℃ | |----------------------|----------| | Extreme Temperature: | -10/+55℃ | | Relative Humidity: | 20-75% | ## 1.3. Project data | Project Leader: | Yu Anlu | |---------------------|------------| | Testing Start Date: | 2016-12-10 | | Testing End Date: | 2016-12-30 | # 1.4. Signature Zhang Shiyu (Prepared this test report) Liu Jianquan (Reviewed this test report) Page Number : 4 of 23 Report Issued Date : Feb.06.2017 Report No.: I16D00249-RFA-01 Zheng Zhongbin Director of the laboratory (Approved this test report) ## 2. Client Information ## 2.1. Applicant Information Company Name: Hisense International Co., Ltd. Address: Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China Report No.: I16D00249-RFA-01 Contact: zhangkelin@hisense.com Email: 266010 #### 2.2. Manufacturer Information Company Name: Hisense Communications Co., Ltd. Address: 218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R. China Contact: Xuxin2@hisense.com Email: 266510 East China Institute of Telecommunications Page Number : 5 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 # 3. Equipment Under Test (EUT) and Ancillary Equipment (AE) Report No.: I16D00249-RFA-01 ### 3.1. About EUT | EUT Description | Smartphone | |-----------------------|-------------------------------| | Model name | Hisense F102 | | FCC ID | 2ADOBF102 | | UMTS Frequency Band | Band II/Band V/Band IV | | GSM Frequency Band | GSM900/GSM1800/GSM850/GSM1900 | | E-UTRA Frequency Band | FDD 2/4/5/7 | | Type of modulation | QPSK/16QAM | | Power Class | GSM900:4, DCS1800:1, | | GPRS Multislot Class | 12 | | EGPRS Multislot Class | 12 | | Extreme Temperature | -10/+55℃ | | Nominal Voltage | 3.8V | | Extreme High Voltage | 4.35V | | Extreme Low Voltage | 3.5V | Note: Photographs of EUT are shown in ANNEX A of this test report. ## 3.2. Internal Identification of EUT used during the test | EUT ID* | SN or IMEI | HW Version | SW Version | Date of receipt | |---------|-----------------|------------|--------------------|-----------------| | N09 | 861864030000217 | V1.00 | L1307.6.01.05.MX06 | 2016-12-15 | <sup>\*</sup>EUT ID: is used to identify the test sample in the lab internally. ## 3.3. Internal Identification of AE used during the test | AE ID* | Description | SN | |--------|---------------|----| | AE1 | RF cable | | | AE2 | Dummy Battery | | <sup>\*</sup>AE ID: is used to identify the test sample in the lab internally. #### 3.5. Statements The product name Hisense F102, supporting GSM/GPRS/EDGE/WCDMA/HSDPA/HSUPA/LTE/WLAN/BT/BLE, manufactured by Hisense Communications Co., Ltd. is a new product for testing. ECIT has verified that the compliance of the tested device specified in section 5 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 5 of this test report. East China Institute of Telecommunications Page Number : 6 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 ## 4. Reference Documents ## 4.5. Reference Documents for testing The following documents listed in this section are referred for testing. | Reference | Title | Version | |----------------|--------------------------------------------------------------------------------------------------------------------------------------|---------| | FCC Part 27 | MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES | 2014 | | FCC Part 24 | PERSONAL COMMUNICATIONS SERVICES | 2014 | | FCC Part 22 | PUBLIC MOBILE SERVICES | 2014 | | ANSI-TIA-603-D | Land Mobile FM or PM Communications Equipment Measurement and Performance Standards | 2010 | | ANSI C63.4 | Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz | 2014 | ## 5. SUMMARY OF TEST RESULTS LTE BAND 2 | Item | Test items | FCC rules | result | |------|----------------------------|----------------|--------| | 1 | Output Power | 24.232(c) | Pass | | 2 | Conducted Spurious mission | 24.238, 2.1057 | Pass | Report No.: I16D00249-RFA-01 ### LTE BAND 4 | Item | Test items | FCC rules | result | |------|----------------------------|------------------|--------| | 1 | Output Power | 27.50(d)(4) | Pass | | 2 | Conducted Spurious mission | 27.53(h), 2.1057 | Pass | ### LTE BAND 5 | Item | Test items | FCC rules | result | |------|----------------------------|------------------------|--------| | 1 | Output Power | \$2.1046(a), 22.913(a) | Pass | | 2 | Conducted Spurious mission | 22.917, 2.1057 | Pass | ### LTE BAND 7 | Item | Test items | FCC rules | result | |------|----------------------------|------------------|--------| | 1 | Output Power | 27.50(h)(2) | Pass | | 2 | Conducted Spurious mission | 27.53(m), 2.1057 | Pass | Note: Only the radiated measurement results are in this report. East China Institute of Telecommunications Page Number : 8 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 # 6. Test Equipment Utilized ### Radiated emission test system The test equipment and ancillaries used are as follows. | No. | Equipment | Model | Serial Number | Manufacturer | Calibration<br>Date | Cal.interval | |-----|------------------------------------------------|----------|---------------|--------------|---------------------|--------------| | 1 | Universal<br>Radio<br>Communicatio<br>n tester | CMW500 | 104178 | R&S | 2016-05-12 | 1 | | 2 | Test Receiver | ESU40 | 100307 | R&S | 2016-05-12 | 1 | | 3 | Trilog Antenna | VULB9163 | VULB9163-515 | Schwarzbeck | 2014-11-05 | 3 | | 4 | Double Ridged<br>Guide<br>Antenna | ETS-3117 | 00135885 | ETS | 2014-05-06 | 3 | | 5 | 2-Line<br>V-Network | ENV216 | 101380 | R&S | 2016-05-12 | 1 | Page Number : 9 of 23 Report Issued Date : Feb.06.2017 7. Test Environment Report No.: I16D00249-RFA-01 : 10 of 23 Shielding Room1 (6.0 metersx3.0 metersx2.7 meters) did not exceed following limits along the conducted RF performance testing: | Temperature | Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C | | | |--------------------------|------------------------------------------------|--|--| | Relative humidity | Min. = 25 %, Max. =75 % | | | | Shielding effectiveness | > 110 dB | | | | Ground system resistance | < 0.5 Ω | | | **Control room** did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 35 °C | |--------------------------|----------------------------| | Relative humidity | Min. =30 %, Max. = 60 % | | Shielding effectiveness | > 110 dB | | Electrical insulation | > 10 kΩ | | Ground system resistance | < 0.5 Ω | Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing: | Temperature | Min. = 15 °C, Max. = 35 °C | | | |------------------------------|--------------------------------------------|--|--| | Relative humidity | Min. = 25 %, Max. = 75 % | | | | Shielding effectiveness | > 100 dB | | | | Electrical insulation | > 10 kΩ | | | | Ground system resistance | < 0.5 Ω | | | | VSWR | Between 0 and 6 dB, from 1GHz to 18GHz | | | | Site Attenuation Deviation | Between -4 and 4 dB,30MHz to 1GHz | | | | Uniformity of field strength | Between 0 and 6 dB, from 80MHz to 3000 MHz | | | ### ANNEX A. RADIATED MEASUREMENT RESULTS ### A.1. LTE EIRP ### A.1.1. Description This is the test for the maximum radiated power from the EUT. Rule Part 22.913(a) specifies, "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts." #### A.1.2. Method of Measurement The measurements procedures in TIA-603D-2010 are used. 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from thereceive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUTfor emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUTthrough 360° and adjusting the receiving antenna polarization. The radiated emissionmeasurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. Page Number : 11 of 23 Report Issued Date : Feb.06.2017 In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P<sub>Mea</sub>) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P<sub>r</sub>). The power of signal source (P<sub>Mea</sub>) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. 4. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P<sub>cl</sub>) ,the Substitution Antenna Gain (G<sub>a</sub>) and the Amplifier Gain (P<sub>Ag</sub>) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)=PMea+ PAg -PcI+ Ga - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi. ### A.1.3 LTE Band 5- ERP 22.913(a) #### A.1.3.1 Limit | | Burst Peak ERP (dBm) | |------------|----------------------| | LTE Band 2 | ≤33dBm (2W) | | LTE Band 4 | ≤30dBm (1W) | | LTE Band 5 | ≤38.45dBm (7W) | | LTE Band 7 | ≤33 dBm (2W) | Page Number : 12 of 23 Report Issued Date : Feb.06.2017 ## A.1.3.2 Measurement result ### LTE Band 2\_1.4MHz\_QPSK | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>d</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|---------------------|----------------------|--------------------|---------------|--------------| | 1848.8 | -14.84 | 4.6 | 37.04 | 4.6 | 22.20 | Н | | 1879.9 | -13.25 | 4.6 | 37.08 | 4.6 | 23.83 | Н | | 1906.1 | -14.22 | 4.6 | 36.97 | 4.6 | 22.75 | V | Report No.: I16D00249-RFA-01 Peak EIRP(dBm) = PMea(-14.84dBm) + Ga (4.6dBi) +PAg (37.04dB) - PcI (4.6dB) = 22.20dBm ### LTE Band 2\_3MHz\_QPSK | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>cl</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|----------------------|----------------------|--------------------|---------------|--------------| | 1849.6 | -14.69 | 4.6 | 37.04 | 4.6 | 22.35 | Н | | 1905.7 | -13.18 | 4.6 | 37.08 | 4.6 | 23.90 | Н | | 1905.7 | -13.32 | 4.6 | 36.97 | 4.6 | 23.65 | V | ### LTE Band 2\_5MHz\_QPSK | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>cl</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|----------------------|----------------------|--------------------|---------------|--------------| | 1850.3 | -14.65 | 4.6 | 37.04 | 4.6 | 22.39 | Н | | 1877.7 | -12.8 | 4.6 | 37.08 | 4.6 | 24.28 | Н | | 1904.1 | -13.37 | 4.6 | 36.97 | 4.6 | 23.60 | V | ### LTE Band2\_10MHz\_QPSK | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>cl</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|----------------------|----------------------|--------------------|---------------|--------------| | 1849.8 | -15.42 | 4.6 | 37.04 | 4.6 | 21.62 | Н | | 1876.8 | -13.36 | 4.6 | 37.08 | 4.6 | 23.72 | Н | | 1901.0 | -14.69 | 4.6 | 36.97 | 4.6 | 22.28 | V | ### LTE Band2 15MHz QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1850.4 | -16.08 | 4.6 | 37.04 | 4.6 | 20.96 | Н | | 1873.4 | -12.93 | 4.6 | 37.08 | 4.6 | 24.15 | Н | | 1896.2 | -15.05 | 4.6 | 36.97 | 4.6 | 21.92 | V | ## LTE Band2\_20MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1850.1 | -15.31 | 4.6 | 37.04 | 4.6 | 21.73 | Н | | 1872.9 | -12.47 | 4.6 | 37.08 | 4.6 | 24.61 | Н | | 1888.0 | -14.75 | 4.6 | 36.97 | 4.6 | 22.22 | V | ## LTE Band 2\_1.4MHz\_16QAM | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>cl</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|----------------------|----------------------|--------------------|---------------|--------------| | 1850.3 | -14.52 | 4.6 | 37.04 | 4.6 | 22.52 | V | | 1881.7 | -15.11 | 4.6 | 37.08 | 4.6 | 21.97 | Н | | 1908.9 | -14.4 | 4.6 | 36.97 | 4.6 | 22.57 | Н | East China Institute of Telecommunications Page Number : 13 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 ### LTE Band 2\_3MHz\_16QAM | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>cl</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|----------------------|----------------------|--------------------|---------------|--------------| | 1849.7 | -14.7 | 4.6 | 37.04 | 4.6 | 22.34 | Н | | 1878.7 | -15.37 | 4.6 | 37.08 | 4.6 | 21.71 | Н | | 1905.1 | -14.28 | 4.6 | 36.97 | 4.6 | 22.69 | V | Report No.: I16D00249-RFA-01 ### LTE Band 2\_5MHz\_16QAM | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>cl</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|----------------------|----------------------|--------------------|---------------|--------------| | 1851.8 | -15.15 | 4.6 | 37.04 | 4.6 | 21.89 | V | | 1876.6 | -14.35 | 4.6 | 37.08 | 4.6 | 22.73 | Н | | 1904.1 | -14.28 | 4.6 | 36.97 | 4.6 | 22.69 | V | ### LTE Band 2\_10MHz\_16QAM | Frequency(MHz) | P <sub>Mea</sub> (dBm) | P <sub>d</sub> (dB) | P <sub>Ag</sub> (dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|------------------------|---------------------|----------------------|--------------------|---------------|--------------| | 1849.5 | -15.33 | 4.6 | 37.04 | 4.6 | 21.71 | Н | | 1875.3 | -16.42 | 4.6 | 37.08 | 4.6 | 20.66 | V | | 1901.8 | -14.65 | 4.6 | 36.97 | 4.6 | 22.32 | V | #### LTE Band 2 15MHz 16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1849.8 | -15.22 | 4.6 | 37.04 | 4.6 | 21.82 | Н | | 1873.1 | -16 | 4.6 | 37.08 | 4.6 | 21.08 | V | | 1898.1 | -14.81 | 4.6 | 36.97 | 4.6 | 22.16 | V | ### LTE Band 2\_20MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1850.1 | -15.89 | 4.6 | 37.04 | 4.6 | 21.15 | Н | | 1873.2 | -16.54 | 4.6 | 37.08 | 4.6 | 20.54 | Н | | 1892.1 | -14.01 | 4.6 | 36.97 | 4.6 | 22.96 | V | Peak EIRP(dBm) = $P_{Mea}$ (-15.89dBm) + $G_a$ (4.6dBd) + $P_{Ag}$ (37.04dB) - $P_{cl}$ (4.6dB) = 21.15dBm ## LTE Band4\_1.4MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1709.7 | -15.37 | 4.5 | 36.25 | 4.7 | 21.08 | Н | | 1730.8 | -13.89 | 4.5 | 35.99 | 4.7 | 22.30 | Н | | 1754.1 | -14.96 | 4.5 | 36.42 | 4.7 | 21.66 | Н | ## LTE Band 4\_3MHz\_QPSK | | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |---|----------------|-----------|---------|---------|--------------------|---------------|--------------| | Ī | 1710.9 | -15.55 | 4.5 | 36.25 | 4.7 | 20.90 | Н | | | 1731.0 | -13.94 | 4.5 | 35.99 | 4.7 | 22.25 | Н | East China Institute of Telecommunications Page Number : 14 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 | 1752.0 | -14.69 | 4.5 | 36.42 | 4.7 | 21.93 | Н | |--------|--------|-----|-------|-----|-------|---| Report No.: I16D00249-RFA-01 ### LTE Band 4\_5MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1710.4 | -15.49 | 4.5 | 36.25 | 4.7 | 20.96 | Н | | 1730.4 | -13.85 | 4.5 | 35.99 | 4.7 | 22.34 | Н | | 1750.6 | -14.72 | 4.5 | 36.42 | 4.7 | 21.90 | Н | ## LTE Band 4\_10MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1715.6 | -15.06 | 4.5 | 36.25 | 4.7 | 21.39 | Н | | 1731.3 | -13.63 | 4.5 | 35.99 | 4.7 | 22.56 | Н | | 1751.9 | -14.96 | 4.5 | 36.42 | 4.7 | 21.66 | Н | ## LTE Band 4\_15MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1716.7 | -15.2 | 4.5 | 36.25 | 4.7 | 21.25 | Н | | 1730.6 | -13.93 | 4.5 | 35.99 | 4.7 | 22.26 | Н | | 1747.3 | -15.03 | 4.5 | 36.42 | 4.7 | 21.59 | Н | ### LTE Band 4\_20MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1720.5 | -14.72 | 4.5 | 36.25 | 4.7 | 21.73 | Н | | 1732.9 | -13.8 | 4.5 | 35.99 | 4.7 | 22.39 | Н | | 1744.4 | -14.58 | 4.5 | 36.42 | 4.7 | 22.04 | Н | ## LTE Band 4\_1.4MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1710.9 | -15.33 | 4.5 | 36.25 | 4.7 | 21.12 | Н | | 1732.5 | -13.84 | 4.5 | 35.99 | 4.7 | 22.35 | Н | | 1753.8 | -14.78 | 4.5 | 36.42 | 4.7 | 21.84 | V | ### LTE Band 4\_3MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1710.3 | -15.38 | 4.5 | 36.25 | 4.7 | 21.07 | Н | | 1733.5 | -14.03 | 4.5 | 35.99 | 4.7 | 22.16 | V | | 1753.9 | -14.79 | 4.5 | 36.42 | 4.7 | 21.83 | Н | ### LTE Band 4\_5MHz\_16QAM | | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |---|----------------|-----------|---------|---------|--------------------|---------------|--------------| | | 1710.4 | -15.55 | 4.5 | 36.25 | 4.7 | 20.90 | Н | | Ī | 1731.3 | -13.76 | 4.5 | 35.99 | 4.7 | 22.43 | Н | East China Institute of Telecommunications Page Number : 15 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 | 1751.5 | -14.92 | 4.5 | 36.42 | 4.7 | 21.70 | Н | |--------|--------|-----|-------|-----|-------|---| Report No.: I16D00249-RFA-01 ### LTE Band4\_10MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1716.2 | -15.27 | 4.5 | 36.25 | 4.7 | 21.18 | Н | | 1731.2 | -16.18 | 4.5 | 35.99 | 4.7 | 20.01 | Н | | 1751.5 | -14.89 | 4.5 | 36.42 | 4.7 | 21.73 | Н | ### LTE Band4\_15MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1718.5 | -14.82 | 4.5 | 36.25 | 4.7 | 21.63 | Н | | 1730.5 | -13.93 | 4.5 | 35.99 | 4.7 | 22.26 | Н | | 1748.1 | -14.78 | 4.5 | 36.42 | 4.7 | 21.84 | Н | ### LTE Band 4 20MHz 16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 1720.3 | -15.08 | 4.5 | 36.25 | 4.7 | 21.37 | Н | | 1731.2 | -13.59 | 4.5 | 35.99 | 4.7 | 22.60 | Н | | 1720.3 | -15.25 | 4.5 | 36.42 | 4.7 | 21.37 | Н | ### LTE Band 5\_1.4MHz\_ QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|--------------|--------------| | 823.7 | -12.57 | 3.1 | 36.92 | 3.11 | 24.36 | Н | | 834.2 | -10.43 | 3.1 | 37.00 | 3.11 | 26.58 | Н | | 847.5 | -8.94 | 3.1 | 36.96 | 3.11 | 28.03 | Н | Peak EIRP(dBm) = PMea(-12.57dBm) + Ga (3.11dBi) +PAg (36.92dB) - Pcl (3.1dB) = 24.36dBm ### LTE Band 5 3MHz QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | | | | | |----------------|-----------|---------|---------|--------------------|--------------|--------------|--|--|--|--| | 823.3 | -12.51 | 3.1 | 36.92 | 3.11 | 24.42 | Н | | | | | | 831.9 | -10.63 | 3.1 | 37.07 | 3.11 | 26.45 | Н | | | | | | 844.4 | -8.95 | 3.1 | 37.06 | 3.11 | 28.12 | Н | | | | | ## LTE Band 5\_5MHz\_ QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|--------------|--------------| | 823.8 | -12.62 | 3.1 | 37.00 | 3.11 | 24.39 | Н | | 831.8 | -10.22 | 3.1 | 37.07 | 3.11 | 26.86 | Н | | 844.1 | -8.63 | 3.1 | 36.99 | 3.11 | 28.37 | Н | East China Institute of Telecommunications Page Number : 16 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 ### LTE Band 5\_10MHz\_ QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|--------------|--------------| | 827.2 | -10.73 | 3.1 | 37.12 | 3.11 | 26.40 | Н | | 835.1 | -10.23 | 3.1 | 36.79 | 3.11 | 26.57 | Н | | 840.6 | -8.51 | 3.1 | 36.42 | 3.11 | 27.92 | Н | Report No.: I16D00249-RFA-01 ### LTE Band 5\_1.4MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|--------------|--------------| | 823.8 | -12.98 | 3.1 | 37.00 | 3.11 | 24.03 | Н | | 834.5 | -10.66 | 3.1 | 36.85 | 3.11 | 26.20 | Н | | 847.7 | -9.02 | 3.1 | 36.96 | 3.11 | 27.95 | Н | ### LTE Band5\_3MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|--------------|--------------| | 821.5 | -12.79 | 3.1 | 37.01 | 3.11 | 24.23 | Н | | 833.7 | -10.42 | 3.1 | 36.95 | 3.11 | 26.54 | Н | | 846.3 | -9.13 | 3.1 | 36.93 | 3.11 | 27.81 | Н | ## LTE Band 5\_5MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|--------------|--------------| | 823.8 | -12.54 | 3.1 | 36.92 | 3.11 | 24.39 | Н | | 831.8 | -10.22 | 3.1 | 37.07 | 3.11 | 26.86 | Н | | 844.1 | -8.63 | 3.1 | 36.99 | 3.11 | 28.37 | Н | ### LTE Band 5 10MHz 16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBd) | PeakERP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|--------------|--------------| | 827.2 | -10.82 | 3.1 | 37.21 | 3.11 | 26.40 | Н | | 835.1 | -10.49 | 3.1 | 37.05 | 3.11 | 26.57 | Н | | 840.6 | -8.51 | 3.1 | 36.42 | 3.11 | 27.92 | Н | ## LTE Band 7\_5MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2499.4 | -13.43 | 5.5 | 34.73 | 5.6 | 21.40 | Н | | 2534.9 | -13.58 | 5.5 | 35.00 | 5.6 | 21.52 | V | | 2565.2 | -12.96 | 5.5 | 34.80 | 5.6 | 21.94 | V | Peak EIRP(dBm) = PMea(-13.43dBm) + Ga (5.6dBi) +PAg (34.73dB) - PcI (5.5dB) = 21.40dBm ### LTE Band 7\_5MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2501.3 | -13.23 | 5.5 | 34.73 | 5.6 | 21.60 | V | East China Institute of Telecommunications Page Number : 17 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 | 2533.2 | -13.78 | 5.5 | 35.00 | 5.6 | 21.32 | V | |--------|--------|-----|-------|-----|-------|----------| | 2565.8 | -12.95 | 5.5 | 34.80 | 5.6 | 21.95 | <b>V</b> | Report No.: I16D00249-RFA-01 ### LTE Band 7\_10MHz\_QPSK6 | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2498.2 | -14.2 | 5.5 | 35.16 | 5.6 | 21.06 | Н | | 2531.0 | -14.12 | 5.5 | 35.00 | 5.6 | 20.98 | V | | 2559.5 | -13.28 | 5.5 | 34.80 | 5.6 | 21.62 | V | ### LTE Band 7\_10MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2499.4 | -15.47 | 5.5 | 35.16 | 5.6 | 19.79 | Н | | 2531.2 | -15.28 | 5.5 | 35.00 | 5.6 | 19.82 | V | | 2560.9 | -14.82 | 5.5 | 34.80 | 5.6 | 20.08 | Н | ### LTE Band 7 15MHz QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2500.8 | -13.97 | 5.5 | 35.16 | 5.6 | 21.29 | Н | | 2530.1 | -13.73 | 5.5 | 35.00 | 5.6 | 21.37 | Н | | 2558.2 | -14.03 | 5.5 | 34.80 | 5.6 | 20.87 | Н | ### LTE Band 7\_15MHz\_16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2500.8 | -14.39 | 5.5 | 35.16 | 5.6 | 20.87 | Н | | 2527.8 | -13.43 | 5.5 | 35.00 | 5.6 | 21.67 | Н | | 2555.6 | -13.67 | 5.5 | 34.80 | 5.6 | 21.23 | Н | ### LTE Band 7\_20MHz\_QPSK | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2500.0 | -14.34 | 5.5 | 35.16 | 5.6 | 20.92 | Н | | 2528.3 | -14.05 | 5.5 | 35.00 | 5.6 | 21.05 | H | | 2551.0 | -14.52 | 5.5 | 34.80 | 5.6 | 20.38 | Н | #### LTE Band 7 20MHz 16QAM | Frequency(MHz) | PMea(dBm) | Pcl(dB) | PAg(dB) | GaAntennaGain(dBi) | PeakEIRP(dBm) | Polarization | |----------------|-----------|---------|---------|--------------------|---------------|--------------| | 2500.2 | -14.27 | 5.5 | 35.16 | 5.6 | 20.99 | Н | | 2528.7 | -13.89 | 5.5 | 35.00 | 5.6 | 21.21 | Н | | 2551.6 | -13.92 | 5.5 | 34.80 | 5.6 | 20.98 | Н | ### **ANALYZER SETTINGS:** RBW = VBW = 8MHz for occupied bandwidths equal to or less than 5MHz. RBW = VBW = 20MHz for occupied bandwidths equal to or greater than 10MHz. East China Institute of Telecommunications Page Number : 18 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 ### A.2 EMISSION LIMIT #### Reference FCC: CFR 2.1051, 22.917(a) **A.2.1** Measurement Method The measurements procedures in TIA-603D-2010 are used. This measurement is carried out in fully-anechoic chamber FAC-3. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier. The resolution bandwidth is set 1MHz as outlined in Part 22.917(a). The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the LTE Bands 5. ### The procedure of radiated spurious emissions is as follows: 1. EUT was placed on a 1.5 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.5m. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all non-harmonic and harmonics of the transmit frequency through the 10th harmonic were measured with peak detector. - 2. The EUT is then put into continuously transmitting mode at its maximum power level during the test. And the maximum value of the receiver should be recorded as (Pr). - 3. The EUT shall be replaced by a substitution antenna. The test setup refers to figure below. In the chamber, an substitution antenna for the frequency band of interest is placed at the East China Institute of Telecommunications Page Number : 19 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power ( $P_{Mea}$ ) is applied to the input of the substitution antenna. Adjust the level of the signal generator output until the value of the receiver reaches the previously recorded ( $P_r$ ). The power of signal source ( $P_{Mea}$ ) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. Report No.: I16D00249-RFA-01 - 4. The Path loss (P<sub>pl</sub>) between the Signal Source with the Substitution Antenna and the Substitution Antenna Gain (G<sub>a</sub>) should be recorded after test. - An amplifier should be connected in for the test. - The Path loss (P<sub>pl</sub>) is the summation of the cable loss and the gain of the amplifier. The measurement results are obtained as described below: - Power (EIRP)= $P_{Mea}+P_{pl}+G_a$ - 5. This value is EIRP since the measurement is calibrated using an antenna of known gain (unit: dBi) and known input power. - 6. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dB. #### A.2.2. Measurement Limit Part 22.917(a) all specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out. #### A.2.3. Measurement Results Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the LTE Bands 5. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the LTE Bands 5 into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this. LTE Band 5, 5MHz, QPSK, Channel 20425 | Frequency(MHz) | PMea(dBm) | Path<br>Loss | Antenna<br>Gain | Peak<br>EIRP(dBm) | Limit<br>(dBm) | Margin(dB) | Polarization | |----------------|-----------|--------------|-----------------|-------------------|----------------|------------|--------------| | 1611.269231 | -51.53 | 4.3 | 5 | -50.83 | -13 | 37.83 | Н | | 2472.692308 | -37.12 | 5.3 | 5.6 | -36.82 | -13 | 23.82 | Н | | 3297.2 | -41.85 | 6.2 | 7 | -41.05 | -13 | 28.05 | Н | | 4121.6 | -51.8 | 7 | 8.7 | -50.1 | -13 | 37.1 | V | | 6370 | -50.52 | 8.8 | 10.4 | -48.92 | -13 | 35.92 | V | | 8232.7 | -49.86 | 10.1 | 12.4 | -47.56 | -13 | 34.56 | Н | LTE Band 7, 5MHz, QPSK, Channel 21350 East China Institute of Telecommunications Page Number : 20 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 | Frequency(MHz) | PMea(dBm) | Path<br>Loss | Antenna<br>Gain | Peak<br>EIRP(dBm) | Limit<br>(dBm) | Margin(dB) | Polarization | |----------------|-----------|--------------|-----------------|-------------------|----------------|------------|--------------| | 4098.8 | -48.78 | 7 | 7.3 | -48.48 | -13 | 35.48 | Н | | 5130.4 | -40.43 | 7.9 | 9.5 | -38.83 | -13 | 25.83 | V | | 6099.6 | -47.99 | 8.7 | 10.2 | -46.49 | -13 | 33.49 | Н | | 7696 | -41.85 | 9.8 | 15.3 | -36.35 | -13 | 23.35 | V | | 9038.8 | -49.18 | 10.4 | 18.3 | -41.28 | -13 | 28.28 | Н | | 10886.8 | -42.2 | 11.8 | 17.3 | -36.7 | -13 | 23.7 | Н | Report No.: I16D00249-RFA-01 ## LTE Band 2, 20MHz, QPSK, Channel 18700 | Frequency(MHz) | PMea(dBm) | Path<br>Loss | Antenna<br>Gain | Peak<br>EIRP(dBm) | Limit<br>(dBm) | Margin(dB) | Polarization | |----------------|-----------|--------------|-----------------|-------------------|----------------|------------|--------------| | 3760.000000 | -32.46 | 6.6 | 6.2 | -47.29 | -13 | 34.29 | V | | 5781.600000 | -17.28 | 8.4 | 10.5 | -50.15 | -13 | 37.15 | Н | | 7520.400000 | -41.22 | 9.7 | 14.6 | -44.67 | -13 | 31.67 | V | | 9400.800000 | -42.39 | 10.7 | 18.6 | -45.31 | -13 | 32.31 | <b>V</b> | | 13353.400000 | -47.37 | 13.7 | 21.8 | -38.36 | -13 | 25.36 | V | | 17230.000000 | -39.44 | 16.0 | 19.6 | -34.23 | -13 | 21.23 | V | ### LTE Band 4, 10MHz, QPSK, Channel 20000 | Frequency(MHz) | PMea(dBm) | Path<br>Loss | Antenna<br>Gain | Peak<br>EIRP(dBm) | Limit<br>(dBm) | Margin(dB) | Polarization | |----------------|-----------|--------------|-----------------|-------------------|----------------|------------|--------------| | 3420.800000 | -32.56 | 6.3 | 6 | -49.61 | -13 | 36.61 | Н | | 5131.600000 | -16.08 | 7.9 | 8.8 | -46.50 | -13 | 33.50 | Н | | 6842.400000 | -39.62 | 9.2 | 12.5 | -43.98 | -13 | 30.98 | V | | 8552.800000 | -42.29 | 10.3 | 18.1 | -44.43 | -13 | 31.43 | V | | 11596.400000 | -45.17 | 12.2 | 18.1 | -41.55 | -13 | 28.55 | V | | 14712.800000 | -44.74 | 14.4 | 23.3 | -37.89 | -13 | 24.89 | V | East China Institute of Telecommunications Page Number : 21 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Feb.06.2017 ## **ANNEX B.** Deviations from Prescribed Test Methods Report No.: I16D00249-RFA-01 No deviation from Prescribed Test Methods. East China Institute of Telecommunications Page Number : 22 of 23 TEL: +86 21 63843300 FAX: +86 21 63843301 Report Issued Date : Jan.03.2017 ## **ANNEX C.** Accreditation Certificate # **Accredited Laboratory** A2LA has accredited ### EAST CHINA INSTITUTE OF TELECOMMUNICATIONS Shanghai, People's Republic of China for technical competence in the field of ### **Electrical Testing** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 170252005 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the field of Electrical. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009). Presented this 10% day of December 2014. Page Number : 23 of 23 Report Issued Date : Feb.06.2017 President & CEO For the Accreditation Counc Certificate Number 3∕682.01 Valid to February 28, 2017 For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation. \*\*\*\*\*\*\*\*End The Report\*\*\*\*\*\*\*