

Address:

Prepared By:

Approved By:

RF Test Report

For

Applicant Name: Xwireless LLC

Address: 11565 Old Georgetown Road, Rockville, MD, USA

EUT Name: Mobile Phone

Brand Name: Vortex
Model Number: HD65 Ultra

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF231108R00304 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2ADLJ-HD65ULTRA Test Date: 2023-11-01 to 2023-11-20

Date of Issue: 2023-11-20

Chris Liu / Project Engineer

Date: 2023-11-20

Ryan.CJ / EMC Manager

Date: 2023-11-20

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-11-20	Original	
	revision has been made, then pre-		

Table of Contents

1	INTF	RODUC.	TION	5
	1.1	Identi	ification of Testing Laboratory	5
	1.2		ification of the Responsible Testing Location	
	1.3	Anno	uncement	5
2	PRO	DUCT I	INFORMATION	6
	2.1	Appli	cation Information	6
	2.2		facturer Information	
	2.3	Facto	ory Information	6
	2.4		ral Description of Equipment under Test (EUT)	
	2.5		nical Information	
3	SUM		OF TEST RESULTS	
	3.1		Standards	
	3.2		rtainty of Test	
	3.3		nary of Test Result	
4			FIGURATION	
	4.1 4.2		Equipment List	
	4.2		Auxiliary Equipment	
5			ON RESULTS (EVALUATION)	
5	5.1		nna requirement	
6	• • • •		·	
O	RADIO SPECTRUM MATTER TEST RESULTS (RF)			
	6.1		E.U.T. Operation:	
		6.1.1 6.1.2	Test Setup Diagram:	
		6.1.3	i o	
	6.2		Cycle	
		6.2.1		
		6.2.2	Test Data:	
	6.3	Maxin	num conducted output power	19
		6.3.1	E.U.T. Operation:	20
		6.3.2	Test Data:	20
	6.4	Powe	r spectral density	21
		6.4.1		
	6.5		sion bandwidth and occupied bandwidth	
		6.5.1	E.U.T. Operation:	
		6.5.2	Test Data:	
	6.6		edge emissions (Radiated)	
		6.6.1	E.U.T. Operation:	
		6.6.2 6.6.3	Test Setup Diagram: Test Data:	
	6.7		sirable emission limits (below 1GHz)	
	J.,	6.7.1	E.U.T. Operation:	
		6.7.2	Test Setup Diagram:	
		6.7.3	Test Data:	32
	6.8	Unde	sirable emission limits (above 1GHz)	34
		6.8.1	E.U.T. Operation:	35

	6.8.2	Test Data:	36
7	TEST SETUI	P PHOTOS	38
		RUCTIONAL DETAILS (EUT PHOTOS)	
		· /	

1 Introduction

1.1 Identification of Testing Laboratory

С	ompany Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Λ	ddress:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou
^	duress.	Community, Songgang Street, Bao'an District, Shenzhen, China
Р	hone Number:	+86-0755-23146130
F	ax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.2 Manufacturer Information

Company Name:	Xwireless LLC
Address:	11565 Old Georgetown Road, Rockville, MD, USA

2.3 Factory Information

Company Name:	ZTECH COMMNICATION(SZ) CO LTD
۸ ماماری د.	FL 7 BLOCK D BAO'AN ZHIGU INNOVATION PARK YIN'TIAN ROAD NO.4
Address:	XI'XIANG STR' BAO'AN DISTRICT SZ CHINA

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Mobile Phone
Test Model Number:	HD65 Ultra
Hardware Version:	YT39-MB-V1.1
Software Version:	N/A

2.5 Technical Information

Power Supply:	DC 3.85V form battery
Operation Frequency Range	U-NII Band 1: 5.18~5.24 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz 802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	PIFA Antenna
Antenna Gain:	1.12 dBi

Note

^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Test Configuration

Test Equipment List

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23		
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23		
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23		
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22		
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23		

Duty Cycle						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	1	/	/	
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Maximum conducted output power						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Power spectral density						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Emission bandwidth and occupied bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Channel Availability Check Time						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	

U-NII Detection Bandwidth						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Move Time, Channel Closing Transmission Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		

WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23	
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23	

DFS Detection Thresholds								
Equipment	Manufacturer Model No		Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Undesirable emission limits (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21			
EZ_EMC	Frad	FA-03A2 RE+	/	/	/			
POSITIONAL CONTROLLER	POSITIONAL SKET		1	/	/			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27			

Undesirable emission	limits (above 1GF	z)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	1	/	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	POSITIONAL SKET		1	/	/	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27	

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	--

6 Radio Spectrum Matter Test Results (RF)

6.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
Toot Limit:	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

6.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1500	36.77	10.45	47.22	66.00	-18.78	QP	Р	
2	0.1500	20.25	10.45	30.70	56.00	-25.30	AVG	Р	
3	0.4243	31.35	11.20	42.55	57.36	-14.81	QP	Р	
4	0.4243	27.18	11.20	38.38	47.36	-8.98	AVG	Р	
5	0.6673	29.98	11.07	41.05	56.00	-14.95	QP	Р	
6	0.6673	25.07	11.07	36.14	46.00	-9.86	AVG	Р	
7	0.9102	31.86	10.67	42.53	56.00	-13.47	QP	Р	
8 *	0.9102	28.23	10.67	38.90	46.00	-7.10	AVG	Р	
9	2.2515	23.67	10.67	34.34	46.00	-11.66	AVG	Р	
10	2.2830	30.24	10.67	40.91	56.00	-15.09	QP	Р	
11	23.9771	39.22	11.13	50.35	60.00	-9.65	QP	Р	
12	23.9771	21.35	11.13	32.48	50.00	-17.52	AVG	Р	

TM1 / Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1814	38.81	10.52	49.33	64.42	-15.09	QP	Р	
2	0.1814	18.30	10.52	28.82	54.42	-25.60	AVG	Р	
3 *	0.4243	34.35	11.20	45.55	57.36	-11.81	QP	Р	
4	0.4243	18.65	11.20	29.85	47.36	-17.51	AVG	Р	
5	0.6045	10.91	11.23	22.14	46.00	-23.86	AVG	Р	
6	0.6090	28.54	11.22	39.76	56.00	-16.24	QP	Р	
7	1.0001	28.63	10.66	39.29	56.00	-16.71	QP	Р	
8	1.0001	13.25	10.66	23.91	46.00	-22.09	AVG	Р	
9	2.2110	4.04	10.68	14.72	46.00	-31.28	AVG	Р	
10	2.2155	28.74	10.68	39.42	56.00	-16.58	QP	Р	
11	26.8350	-2.51	11.18	8.67	50.00	-41.33	AVG	Р	
12	26.9250	33.88	11.18	45.06	60.00	-14.94	QP	Р	

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum conducted output power

6.3 Maximum cond	ucted output power
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Total Day Survey	47 CFR Part 15.407(a)(1)(iii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any
	elevation angle above 30 degrees as measured from the horizon must not exceed
	125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	gg
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the
	maximum conducted output power over the frequency band of operation shall not
	exceed 1 W.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to
	23 dBi without any corresponding reduction in the maximum conducted output
	power.
Toot Limits	For fixed point-to-point transmitters that employ a directional antenna gain greater
Test Limit:	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for
	each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output
	power over the frequency band of operation shall not exceed 250 mW provided the
	maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	Firstly 5 05 5 05 011 and 15 47 5 705 011 days 15 4
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output
	power over the frequency bands of operation shall not exceed the lesser of 250
	mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.

	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%
	OBW of the spectrum.
6.3.1 E.U.T. Operation:	

6.3.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

6.4 Power spectral	deficity
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Total Day Survey	47 CFR Part 15.407(a)(1)(iii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
Test Limit:	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter

	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled,
	"Compute
	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,
	add
Due de divine	1 dB to the final result to compensate for the difference between linear averaging
Procedure:	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and
	integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 x RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the
Procedure:	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%

power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

6.6 Band edge em	47 CFR Part 15.407(b)	(1)		
	47 CFR Part 15.407(b)			
Test Requirement:	47 CFR Part 15.407(b)(2)			
	` ,	` '		
Test Method:	47 CFR Part 15.407(b)(10)			
rest ivietnod:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the			
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.			
	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27			
	dBm/MHz at the band of MHz	<u> </u>	MHz	CH-
	···· · -	MHz		GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5
			5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4
	8.37625-8.38675 8.41425-8.41475 12.29-12.293 12.51975-12.52025 12.57675-12.57725 13.36-13.41	156.7-156.9 162.0125-167.17 167.72-173.2 240-285 322-335.4	2690-2900 3260-3267 3332-3339 3345.8-3358 3600-4400	22.01-23.12 23.6-24.0 31.2-31.8 36.43-36.5 (²)
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.			
	² Above 38.6			
	The field strength of en exceed the limits show MHz, compliance with measurement instrume 1000 MHz, compliance based on the average 15.35apply to these measurement in the strength of the str	n in § 15.209. At frequenthe limits in § 15.209shentation employing a Clawith the emission limit value of the measured	encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha	or less than 1000 ated using a detector. Above all be demonstrated
	Except as provided els	ewhere in this subpart,	the emissions fi	rom an intentional

	radiator shall not exceed the	e field strength levels specified	in the following table:
	Frequency (MHz)	Field strength	Measurement
	. , , ,	(microvolts/meter)	distance
		((meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960 Above 1GHz:	500	3
Procedure:	a. For above 1GHz, the EU above the ground at a 3 medegrees to determine the potential by the EUT was set 3 meters was mounted on the top of c. The antenna height is varied determine the maximum varied polarizations of the antenna d. For each suspected emisting antenna was tuned to how the suspected emisting and the antenna was tuned from 0 degrees e. The test-receiver system Bandwidth with Maximum He. If the emission level of the specified, then testing could reported. Otherwise the emire-tested one by one using in a data sheet. In g. Test the EUT in the lower hand the EUT in the EUT in the lower hand the E	T was placed on the top of a rotater fully-anechoic chamber. The osition of the highest radiation. It is away from the interference-real variable-height antenna tower ried from one meter to four metallule of the field strength. Both how are set to make the measurement is sion, the EUT was arranged to eights from 1 meter to 4 meters has awas tuned to heights 1 meter to 360 degrees to find the maximas set to Peak Detect Functional Mode. It is expected and the peak value is sions that did not have 10dB in peak or average method as specific to another than the middle channel, the middle channel, the middle channel, and the X axis positioning which is until all frequencies measured the Loss+ Antenna Factor- Preamed in European the highest emissions constant and been displayed. The amplitude are attenuated more than for frequencies above 1GHz, the industrial and the peak field strength of the peak measurement is shown as GHz were very low and the had when testing, so only the above the peak measurement is shown as GHz were very low and the had when testing, so only the above the peak measurement is shown as the peak measurement is shown as GHz were very low and the had when testing, so only the above the peak measurement is shown as the peak measurement is shown as GHz were very low and the had when testing, so only the above the peak measurement is shown as the peak me	e table was rotated 360 eceiving antenna, which r. ers above the ground to orizontal and vertical nent. its worst case and then r. (for the test frequency r) and the rotatable table mum reading. on and Specified lower than the limit es of the EUT would be margin would be ecified and then reported the Highest channel. its positioning for it is the worst case. was complete. mp Factor GHz was very low. The ould be found when olitude of spurious in 20dB below the limit the field strength limits of any emission shall d above by more than 20 those peak level is lower of in the report. formonics were the

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %

Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11a are in the report

UNII-1 20M 5180MHz Horizontal

	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
'	NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
	1	5117.875	82.16	-31.85	50.31	68.20	-17.89	peak	Р
	2	5150.000	82.76	-31.81	50.95	68.20	-17.25	peak	Р

UNII-1 20M_5180MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5096.786	82.74	-31.93	50.81	68.20	-17.39	peak	P
2	5150.000	83.34	-31.89	51.45	68.20	-16.75	peak	Р

UNII-1 20M_5320MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5350.000	84.44	-31.75	52.69	68.20	-15.51	peak	Р
2	5402.325	82.81	-31.71	51.10	68.20	-17.10	peak	Р

UNII-1 20M_5320MHz_Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
	INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
	1	5350.000	84.86	-31.80	53.06	68.20	-15.14	peak	Р
	2	5435.325	83.23	-31.76	51.47	68.20	-16.73	peak	Р

6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)					
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
Test Limit:	limits set forth in § 15.209 Except as provided elsew	w 1 GHz must comply with there in this subpart, the em he field strength levels spec Field strength (microvolts/meter) 2400/F(kHz)	issions from an intentional			
	0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	24000/F(kHz) 30 100 ** 150 ** 200 **	30 30 3 3 3 3			
Procedure:	above the ground at a 3 m degrees to determine the b. The EUT was set 3 or 1 which was mounted on the c. The antenna height is v determine the maximum v polarizations of the antenned. For each suspected em the antenna was tuned to of below 30MHz, the antenwas turned from 0 degree e. The test-receiver system Bandwidth with Maximum f. If the emission level of the specified, then testing coureported. Otherwise the encetested one by one using data sheet. g. Test the EUT in the low h. The radiation measurer Transmitting mode, and for i. Repeat above procedure Remark: 1. Level= Read Level+ Ca 2. Scan from 9kHz to 30M points marked on above points marked on above points marked on the reported. 3. The disturbance below	neter semi-anechoic chamb position of the highest radia 0 meters away from the interpretation of a variable-height are top of a variable-height are aried from one meter to four alue of the field strength. Be not are set to make the meanission, the EUT was arrang heights from 1 meter to 4 means was tuned to heights 1 s to 360 degrees to find them was set to Peak Detect Found Mode. The EUT in peak mode was all do be stopped and the peak missions that did not have a graph quasi-peak method as specially a set of the peak met	erference-receiving antenna, intenna tower. In meters above the ground to oth horizontal and vertical surement. If yed to its worst case and then interes (for the test frequency meter) and the rotatable table in maximum reading. In the maximum reading. In the Highest channel of the EUT would be secified and then reported in a surnel, the Highest channel. If yet a xis positioning for which it is the worst case. In the worst case of the EUT would be surred was complete. In the Highest channel of yet axis positioning for which it is the worst case. In the worst case was complete. In the Highest channel of yet axis positioning for which it is the worst case. In the worst case was complete. In the Highest channel of yet axis positioning for which it is the worst case. In the worst case was complete. In the Highest channel of yet axis positioning for which it is the worst case. In the worst case was complete. In the Highest channel of yet axis positioning for which it is the worst case. In the worst case was complete. In the Highest channel of yet axis positioning for which it is the worst case. In the worst case was complete.			

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

6.7.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	39.8656	34.22	-18.40	15.82	40.00	-24.18	QP	Р
2	60.9608	29.18	-18.18	11.00	40.00	-29.00	QP	Р
3	135.2353	30.04	-14.26	15.78	43.50	-27.72	QP	Р
4	209.7204	32.08	-17.09	14.99	43.50	-28.51	QP	Р
5	541.0401	37.07	-11.91	25.16	46.00	-20.84	QP	Р
6 *	893.7563	49.02	-22.18	26.84	46.00	-19.16	QP	Р

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	39.7844	39.79	-20.53	19.26	40.00	-20.74	QP	Р
2	75.4464	31.86	-19.90	11.96	40.00	-28.04	QP	Р
3	80.3619	30.77	-19.77	11.00	40.00	-29.00	QP	Р
4	108.2667	26.73	-13.82	12.91	43.50	-30.59	QP	Р
5	136.6993	27.87	-12.10	15.77	43.50	-27.73	QP	Р
6	540.4242	35.56	-11.55	24.01	46.00	-21.99	QP	Р

6.8 Undesirable emission limits (above 1GHz)

	47 CFR Part 15.407(b)	(1)						
Toot Doguiromont:	47 CFR Part 15.407(b)							
Test Requirement:	47 CFR Part 15.407(b)(4)							
	47 CFR Part 15.407(b)							
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6							
		ting in the 5.15-5.25 GH						
		nall not exceed an e.i.r.						
	For transmitters operate	ting in the 5.25-5.35 GH	Iz band: All emis	ssions outside of the				
	5.15-5.35 GHz band sl	nall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.				
	For transmitters operate	ting solely in the 5.725-	5.850 GHz band	d:				
		imited to a level of −27						
	or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above o below the band edge, and from 25 MHz above or below the band edge increas							
		.6 dBm/MHz at 5 MHz						
		elow the band edge inc						
	dBm/MHz at the band		broading intoarry	10 4 10 101 01 21				
	MHz	MHz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5				
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4				
	0.20770 0.20020	100 121.01	2	10.20 10.1				
	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4				
	0.002 0.000	25	2400.0 2000	11.1 21.4				
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	(²)				
	13.36-13.41	322 333. 4	3000 4400					
	111.00 5.1 4.4000	N. distance and state of the control	-11.1 0.400.05	-40 MIL				
	² Above 38.6), this restricted band s	naii be 0.490-0.5	OTU WIHZ.				
	Above 36.6							
	The field strength of or		in these frequency	عمد المطم مام مام م				
		nissions appearing with						
		n in § 15.209. At frequents						
		the limits in § 15.209sh						
		entation employing a CI						
		with the emission limit						
		value of the measured	emissions. The _l	provisions in §				
	15.35apply to these me	easurements.						
	Except as provided els	ewhere in this subpart,	the emissions for	rom an intentional				
		ed the field strength lev						
	Frequency (MHz)	Field strength	•	Measurement				

		(microvolts/meter)	distance
		,	(meters)
	0.000 0.400	2400/E(LU=)	
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
		200 **	
	216-960		3
	Above 960	500	3
	Above 1GHz:		
	a. For above 1GHz, the E	UT was placed on the top	of a rotating table 1.5 meters
			per. The table was rotated 360
		•	
		position of the highest rad	
			ence-receiving antenna, which
	was mounted on the top	of a variable-height antenna	a tower.
	c. The antenna height is	aried from one meter to fo	ur meters above the ground to
			Both horizontal and vertical
		na are set to make the mea	
			ged to its worst case and then
	the antenna was tuned to	heights from 1 meter to 4	meters (for the test frequency
	of below 30MHz, the ante	nna was tuned to heights 1	meter) and the rotatable table
		es to 360 degrees to find th	
		m was set to Peak Detect	
			unction and Specified
	Bandwidth with Maximum		
		the EUT in peak mode was	
	specified, then testing co	uld be stopped and the pea	k values of the EUT would be
	reported. Otherwise the e	missions that did not have	10dB margin would be
			as specified and then reported
Procedure:	in a data sheet.	g peak of average method	as specified and their reported
Flocedule.			and the District district
			annel, the Highest channel.
		ments are performed in X,	
	Transmitting mode, and for	ound the X axis positioning	which it is the worst case.
	i. Repeat above procedur	es until all frequencies me	asured was complete.
	Remark:		
		able Loss+ Antenna Factor	Proamp Factor
			•
			ve 18GHz was very low. The
	points marked on above p	plots are the highest emiss	ions could be found when
	testing, so only above po	ints had been displayed. Th	ne amplitude of spurious
		-	ore than 20dB below the limit
	need not be reported.		
		n for frequencies above 10	CHz the field strength limits
			GHz, the field strength limits
			strength of any emission shall
	not exceed the maximum	permitted average limits sp	pecified above by more than 20
	dB under any condition of	f modulation. For the emiss	sions whose peak level is lower
		ly the peak measurement i	
	and the average mint, on	iy alo pour mousuroment i	o onown in the report.
	4 The disturbance ob acce	18GHz were very low and	

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

highest point could be found when testing, so only the above harmonics had been

displayed.

6.8.2 Test Data:

Not:All of the mode had be tested, only the worse mode of 802.11a are show in the report: UNII-1_20M_5180MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	1356.746	67.32	-30.07	37.25	74.00	-36.75	peak	Р
2	3497.866	78.68	-28.61	50.07	74.00	-23.93	peak	Р
3	5708.535	76.47	-25.99	50.48	74.00	-23.52	peak	Р
4	7713.931	79.32	-24.51	54.81	74.00	-19.19	peak	Р
5	9609.468	81.94	-22.79	59.15	74.00	-14.85	peak	Р
6	13794.714	81.74	-20.52	61.22	74.00	-12.78	peak	Р

UNII-1_20M_5180MHz_Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1547.817	67.35	-30.06	37.29	74.00	-36.71	peak	Р
2	3688.937	78.71	-28.60	50.11	74.00	-23.89	peak	Р
3	5899.606	76.50	-25.98	50.52	74.00	-23.48	peak	Р
4	7905.002	79.35	-24.50	54.85	74.00	-19.15	peak	Р
5	9800.539	81.97	-22.78	59.19	74.00	-14.81	peak	Р
6	13985.785	81.77	-20.51	61.26	74.00	-12.74	peak	Р

UNII-1_20M_5200MHz_Horizontal

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1943.817	67.81	-30.15	37.66	74.00	-36.34	peak	Р
2	4084.937	79.17	-28.69	50.48	74.00	-23.52	peak	Р
3	6295.606	76.96	-26.07	50.89	74.00	-23.11	peak	Р
4	8301.002	79.81	-24.59	55.22	74.00	-18.78	peak	P
5	10196.539	82.43	-22.87	59.56	74.00	-14.44	peak	Р
6	14381.785	82.23	-20.60	61.63	74.00	-12.37	peak	Р

UNII-1 20M 5200MHz Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F	
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)			
1	2043.854	67.94	-30.21	37.73	74.00	-36.27	peak	Р	
2	4184.974	79.30	-28.75	50.55	74.00	-23.45	peak	Р	
3	6395.643	77.09	-26.13	50.96	74.00	-23.04	peak	Р	
4	8401.039	79.94	-24.65	55.29	74.00	-18.71	peak	Ъ	
5	10296.576	82.56	-22.93	59.63	74.00	-14.37	peak	J	
6	14481.822	82.36	-20.66	61.70	74.00	-12.30	peak	Р	

UNII-1_20M_5240MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2143.854	68.15	-30.16	37.99	74.00	-36.01	peak	П
2	4284.974	79.51	-28.70	50.81	74.00	-23.19	peak	J
3	6495.643	77.30	-26.08	51.22	74.00	-22.78	peak	Р
4	8501.039	80.15	-24.60	55.55	74.00	-18.45	peak	Р
5	10396.576	82.77	-22.88	59.89	74.00	-14.11	peak	Р
6	14581.822	82.57	-20.61	61.96	74.00	-12.04	peak	Р

UNII-1_20M_5240MHz_Vertical

	Frequency	Reading	Factor	Level	Limit	Margin	_	P/F
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	
1	2276.706	67.95	-30.05	37.90	74.00	-36.10	peak	Р
2	4417.826	79.31	-28.59	50.72	74.00	-23.28	peak	Р
3	6628.495	77.10	-25.97	51.13	74.00	-22.87	peak	Р
4	8633.891	79.95	-24.49	55.46	74.00	-18.54	peak	Р
5	10529.428	82.57	-22.77	59.80	74.00	-14.20	peak	Р
6	14714.674	82.37	-20.50	61.87	74.00	-12.13	peak	Р

7 **Test Setup Photos**

EUT Constructional Details (EUT Photos)

Please refer to the test report NO. BTF231108R00301

Appendix

1. Duty Cycle

1.1 Ant1

1.1.1 Test Result

					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
Mode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.393	1.428	97.55	0.11	0.03
802.11a	SISO	5200	1.394	1.428	97.62	0.10	0.03
		5240	1.394	1.428	97.62	0.10	0.03
802.11n		5180	1.301	1.335	97.45	0.11	0.03
(HT20)	SISO	5200	1.302	1.336	97.46	0.11	0.03
(11120)		5240	1.302	1.336	97.46	0.11	0.03
802.11n	SISO	5190	0.648	0.683	94.88	0.23	0.03
(HT40)		5230	0.649	0.683	95.02	0.22	0.03
802.11ac		5180	1.301	1.336	97.38	0.12	0.03
(VHT20)	SISO	5200	1.301	1.336	97.38	0.12	0.03
(11120)		5240	1.301	1.335	97.45	0.11	0.03
802.11ac	SISO	5190	0.649	0.683	95.02	0.22	0.03
(VHT40)	SISO	5230	0.648	0.683	94.88	0.23	0.03

1.1.2 Test Graph

2. Bandwidth

2.1 OBW

2.1.1 Test Result

Mode	TX	Frequency	ANT	99% Occupied Ba	Verdict		
	Type	(MHz)	ANI	Result	Limit	verdict	
		5180	1	17.481	/	Pass	
802.11a	SISO	5200	1	17.486	/	Pass	
		5240	1	17.471	/	Pass	
802.11n	SISO	5180	1	18.218	/	Pass	
(HT20)		5200	1	18.151	/	Pass	
(11120)		5240	1	18.164	/	Pass	
802.11n	SISO	5190	1	36.691	/	Pass	
(HT40)		5230	1	36.718	/	Pass	
000 44 00	SISO		5180	1	18.174	/	Pass
802.11ac		5200	1	18.198	/	Pass	
(VHT20)		5240	1	18.173	1	Pass	
802.11ac	SISO	5190	1	36.693	/	Pass	
(VHT40)	3130	5230	1	36.655	/	Pass	

2.1.2 Test Graph

2.2 26dB BW

2.2.1 Test Result

Mode	TX	Frequency	ANIT	26dB Bandw	Manaliat		
	Type	(MHz)	ANT	Result	Limit	Verdict	
		5180	1	19.609	/	Pass	
802.11a	SISO	5200	1	19.574	/	Pass	
		5240	1	19.520	/	Pass	
000 44 =	SISO	5180	1	19.902	/	Pass	
802.11n		5200	1	19.827	/	Pass	
(HT20)		5240	1	20.054	/	Pass	
802.11n	SISO	5190	1	44.354	/	Pass	
(HT40)		5230	1	48.175	/	Pass	
000 1100	SISO	00.44.00	5180	1	19.813	/	Pass
802.11ac (VHT20)		5200	1	19.821	/	Pass	
(11120)		5240	1	19.790	/	Pass	
802.11ac (VHT40)	CISO	5190	1	50.131	/	Pass	
	SISO	5230	1	47.000	/	Pass	

2.2.2 Test Graph

3. Maximum Conducted Output Power

3.1 Power

3.1.1 Test Result

Mode	TX	Frequency	Frequency Maximum Average Conducted Output Power (dBm)			
Mode	Type	(MHz)	ANT1	Limit	Verdict	
	SISO	5180	10.18	<=23.98	Pass	
802.11a		5200	9.66	<=23.98	Pass	
		5240	9.77	<=23.98	Pass	
000 44.5		5180	10.04	<=23.98	Pass	
802.11n	SISO	5200	9.60	<=23.98	Pass	
(HT20)		5240	9.70	<=23.98	Pass	
802.11n	SISO	5190	10.48	<=23.98	Pass	
(HT40)		5230	10.11	<=23.98	Pass	
000 1100	SISO	5180	9.60	<=23.98	Pass	
802.11ac (VHT20)		5200	9.81	<=23.98	Pass	
(VH120)		5240	9.67	<=23.98	Pass	
802.11ac	CICO	5190	10.44	<=23.98	Pass	
(VHT40)	SISO	5230	10.09	<=23.98	Pass	
Note1: Antenn	a Gain: Ant1	: 1.12dBi;				

3.1.2 Test Graph

4. Maximum Power Spectral Density

4.1 PSD

4.1.1 Test Result

Mode	TX	Frequency	Maximum PS	Verdict	
iviode	Type	(MHz)	ANT1	Limit	verdict
		5180	-0.90	<=11	Pass
802.11a	SISO	5200	-0.71	<=11	Pass
		5240	-0.85	<=11	Pass
802.11n		5180	-0.65	<=11	Pass
(HT20)	SISO	5200	-1.13	<=11	Pass
(11120)		5240	-0.97	<=11	Pass
802.11n	SISO	5190	-3.76	<=11	Pass
(HT40)	3130	5230	-4.20	<=11	Pass
002 1100		5180	-0.66	<=11	Pass
802.11ac (VHT20)	SISO	5200	-1.04	<=11	Pass
(VIII20)		5240	-0.66	<=11	Pass
802.11ac	CICO	5190	-3.68	<=11	Pass
(VHT40)	SISO	5230	-4.42	<=11	Pass
Note1: Antenna (Gain: Ant1: 1.12	dBi;			

4.1.2 Test Graph

5. Frequency Stability

5.1 Ant1

5.1.1 Test Result

	TX	Frequency	Temperature	Ant1 Voltage	Measured Frequency	Limit	
Mode	Туре	(MHz)	(°C)	(VAC)	(MHz)	(MHz)	Verdict
	. , p c	(111112)	(3)	102	5179.727	5150 to 5250	Pass
		20	120	5180.356	5150 to 5250	Pass	
			20	138	5179.731	5150 to 5250	Pass
			-30	120	5180.230	5150 to 5250	Pass
		5180	-20	120	5179.731	5150 to 5250	Pass
			-10	120	5180.356	5150 to 5250	Pass
			0	120	5180.356	5150 to 5250	Pass
			10	120	5180.227	5150 to 5250	Pass
			30	120	5179.686	5150 to 5250	Pass
			40	120	5180.353	5150 to 5250	Pass
			50	120	5179.732	5150 to 5250	Pass
				102	5200.353	5150 to 5250	Pass
			20	120	5199.726	5150 to 5250	Pass
				138	5200.231	5150 to 5250	Pass
			-30	120	5199.603	5150 to 5250	Pass
		5200	-20	120	5199.604	5150 to 5250	Pass
Carrier Wave	SISO		-10	120	5199.605	5150 to 5250	Pass
			0	120	5199.730	5150 to 5250	Pass
			10	120	5200.355	5150 to 5250	Pass
			30	120	5199.636	5150 to 5250	Pass
			40	120	5200.233	5150 to 5250	Pass
			50	120	5199.606	5150 to 5250	Pass
		5240	20	102	5240.230	5150 to 5250	Pass
				120	5240.225	5150 to 5250	Pass
				138	5240.230	5150 to 5250	Pass
			-30	120	5240.228	5150 to 5250	Pass
			-20	120	5239.727	5150 to 5250	Pass
			-10	120	5240.226	5150 to 5250	Pass
			0	120	5239.602	5150 to 5250	Pass
			10	120	5240.228	5150 to 5250	Pass
			30	120	5239.734	5150 to 5250	Pass
			40	120	5239.639	5150 to 5250	Pass
			50	120	5240.351	5150 to 5250	Pass
		5190	20	102	5189.975	5150 to 5250	Pass
				120	5189.975	5150 to 5250	Pass
				138	5189.979	5150 to 5250	Pass
			-30	120	5189.979	5150 to 5250	Pass
			-20	120	5189.980	5150 to 5250	Pass
			-10	120	5189.981	5150 to 5250	Pass
			0	120	5189.976	5150 to 5250	Pass
			10	120	5189.980	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 82 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	30	120	5189.980	5150 to 5250	Pass
	40	120	5189.979	5150 to 5250	Pass
	50	120	5189.978	5150 to 5250	Pass
		102	5229.980	5150 to 5250	Pass
	20	120	5229.976	5150 to 5250	Pass
		138	5229.981	5150 to 5250	Pass
	-30	120	5229.978	5150 to 5250	Pass
	-20	120	5229.978	5150 to 5250	Pass
5230	-10	120	5229.979	5150 to 5250	Pass
	0	120	5229.979	5150 to 5250	Pass
	10	120	5229.975	5150 to 5250	Pass
	30	120	5229.977	5150 to 5250	Pass
	40	120	5229.974	5150 to 5250	Pass
	50	120	5229.977	5150 to 5250	Pass

6. Form731

6.1 Form731

6.1.1 Test Result

	Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)	
	5180	5240	0.0104	10.18	
ſ	5190	5230	0.0112	10.48	

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --