

No. DAT-P-114/01-10

TEST REPORT No. <u>SAR2005014</u>

Test name	Electromagnetic Field (Specific Absorption Rate)	
Product	GSM Triple Frequency Mobile Station	
Model	T728	
Client	TCL Mobile Communication Co., Ltd	
Type of test	Entrusted	

Telecommunication Metrology Center of Ministry of Information Industry

GENERAL TERMS

- 1. The test report is invalid if not marked with "exclusive stamp for the test report" or the stamp of the test center.
- 2. Any copy of the test report is invalid if not re-marked with the "exclusive stamp for the test report" or the stamp of the test center.
- 3. The test report is invalid if not marked with the stamps or the signatures of the persons responsible for performing, revising and approving the test report.
- 4. The test report is invalid if there is any evidence of erasure and/or falsification.
- 5. If there is any dissidence for the test report, please file objection to the test center within 15 days from the date of receiving the test report.
- 6. Normally, entrust test is only responsible for the samples that have undergone the test.
- 7. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permissions of the test center.

Address: No. 52, Huayuanbei Road, Beijing, P. R. China

Post code: 100083

Cable: 04282

 Telephone:
 +86 10 62302041
 Fax:
 +86 10 62304793

No. SAR2005014

Page 3 of 86

	QEITER V.E	SUMMARY	
	GSM Triple Frequency	Model	7700
Product	Mobile Station	Trade mark	T728
Client	TCL Mobile Communication Co., Ltd.	Manufacturer	TCL Mobile Communication Co., Ltd.
Type of test	Entrusted Arrival Date of June. 22, 2005		June. 22, 2005
Place of sampling	(Blank)	Carrier of the samples	Luo Jian
Quantity of the samples	One	Date of product	(Blank)
Base of the samples	(Blank)	Items of test	SAR
Series number	355995001000597		
Standard(s)	 EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones. EN 50361–2001: Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones. IEC 62209 Draft: Procedure to Determine the Specific Absorption Rate(SAR) for Hand-hold Mobile Phone (Part 2) ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz OET Bulletin 65 (Edition 97-01) and Supplement C(Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques. 		
Conclusion	Localized Specific Absorption Rate (SAR) of this portable wireless equipment has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this test report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report. General Judgment: Pass Date of issue: July 7 th , 2005		
Comment	TX Freq. Band: 82 Max. Power: Antenna Character: 21mm The test results relate only to t	4-849MHz (GSM) 2 Watt (GSM) the items tested of	1850-1910 MHz (PCS) 1 Watt (PCS) the sample(s).
Approved by	ART Revised by	ZAX	Performed by AR
_	(Lu Minniu)	Wang Hongbo)	(Qi Dianyuan)

GENERAL SUMMARY

No. SAR2005014

Page 4 of 86

TABLE OF CONTENT

1 COMPETENCE AND WARRANTIES	5
2 GENERAL CONDITIONS	5
3 DESCRIPTION OF EUT	
3.1 Addressing Information Related to EUT	5
3.2 Constituents of EUT	6
3.3 General Description	7
4 OPERATIONAL CONDITIONS DURING TEST	7
4.1 Schematic Test Configuration	7
4.2 SAR Measurement Set-up	
4.3 Dasy4 E-field Probe System	8
4.4 E-field Probe Calibration	9
4.5 Other Test Equipment	10
4.5.1 Device Holder for Transmitters	10
4.5.2 Phantom	10
4.6 Equivalent Tissues	
4.7 System Specifications	12
4.7.1 Robotic System Specifications	12
5 CHARACTERISTICS OF THE TEST	
5.1 Applicable Limit Regulations	
5.2 Applicable Measurement Standards	
6 LABORATORY ENVIRONMENT	
7 TEST RESULTS	13
7.1 Dielectric Performance	13
7.2 System Validation	13
7.3 Summary of Measurement Results (Head, GSM 850 MHz Band)	
7.4 Summary of Measurement Results (Body-Worn, GSM 850 MHz Band)	15
7.5 Summary of Measurement Results (Head, PCS 1900 MHz Band)	
7.6 Summary of Measurement Results (Body-Worn, PCS 1900 MHz Band)	17
7.7 Conclusion	17
8 Measurement Uncertainty	
9 MAIN TEST INSTRUMENTS	19
10 TEST PERIOD	-
11 TEST LOCATION	
ANNEX A MEASUREMENT PROCESS	-
ANNEX B TEST LAYOUT	
ANNEX C GRAPH RESULTS	
ANNEX D SYSTEM VALIDATION RESULTS	85

No. SAR2005014

Page 5 of 86

1 COMPETENCE AND WARRANTIES

Telecommunication Metrology Center of Ministry of Information Industry is a test laboratory accredited by DAR (DATech) – Deutschen Akkreditierungs Rat (Deutsche Akkreditierungsstelle Technik) for the tests indicated in the Certificate No. **DAT-P-114/01-10**.

Telecommunication Metrology Center of Ministry of Information Industry is a test laboratory competent to carry out the tests described in this test report.

Telecommunication Metrology Center of Ministry of Information Industry guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at **Telecommunication Metrology Center of Ministry of Information Industry** at the time of execution of the test.

Telecommunication Metrology Center of Ministry of Information Industry is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test.

2 GENERAL CONDITIONS

- 2.1 This report only refers to the item that has undergone the test.
- 2.2 This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.
- 2.3 This document is only valid if complete; no partial reproduction can be made without written approval of Telecommunication Metrology Center of Ministry of Information Industry.
- 2.4 This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of Telecommunication Metrology Center of Ministry of Information Industry and the Accreditation Bodies, if it applies.

3 DESCRIPTION OF EUT

3.1 Addressing Information Related to EUT

Name or Company	TCL Mobile Communication Co., Ltd.	
Address/Post	No.23 Zone, Zhongkai High Technology Development Zone, Huizhou,	
	Guangdong	
City	Hui Zhou	
Postal Code	516006	
Country	China	
Telephone	0752-2636729	
Fax	0752-2636525	

Table 1: Applicant (The Client)

No. SAR2005014

Page 6 of 86

Table 2: Manufacturer

Name or Company	TCL Mobile Communication Co., Ltd.	
Address/Post	No.23 Zone, Zhongkai High Technology Development Zone, Huizhou,	
	Guangdong	
City	Hui Zhou	
Postal Code	516006	
Country	China	
Telephone	0752-2636729	
Fax	0752-2636525	

3.2 Constituents of EUT

Table 3: Constituents of Samples

Description	Model	Serial Number	Manufacturer
Handset	T728	355995001000597	TCL Mobile Communication Co., Ltd.
Lithium Battery	GB02-5LB600	GB02-51232591	TCL Hyper-Power Batteries Inc.
AC/DC Adapter	WYS-036	WYQ5104335648	TCL Mobile Communication Co., Ltd.

No. SAR2005014

Page 7 of 86

Figure 1: Constituents of the sample (Lithium Battery is in the Handset)

3.3 General Description

Equipment Under Test (EUT) is a model of GSM Phase III portable Mobile Station (MS) with non-integrated antenna. It consists of Handset and normal options: Lithium Battery and AC/DC Adapter as Table 1 and Fig. 1. Upon the request of the client, SAR is tested respectively for two bands: GSM 850MHz and PCS1900MHz.

The sample undergoing test was selected by the Client.

Components list please refer to documents of the manufacturer

4 OPERATIONAL CONDITIONS DURING TEST

4.1 Schematic Test Configuration

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128,190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz. The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset. The

No. SAR2005014

Page 8 of 86

signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 30 dB.

4.2 SAR Measurement Set-up

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9m) which positions the probes with a positional repeatability of better than \pm 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit.

A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium III 800 MHz computer with Windows 2000 system and SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

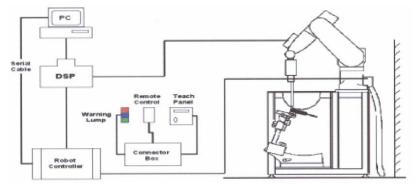


Figure2. SAR Lab Test Measurement Set-up

The DAE3 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

4.3 Dasy4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the standard procedure with an accuracy of better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB.

No. SAR2005014

Page 9 of 86

ET3DV6 Probe Specification

Construction	Symmetrical design with triangular core	
	Built-in optical fiber for surface detection	
	System(ET3DV6 only)	Contraction of the
	Built-in shielding against static charges	
	PEEK enclosure material(resistant to	1
	organic solvents, e.q., glycol)	
Calibration	In air from 10 MHz to 2.5 GHz	9
	In brain and muscle simulating tissue at	
	frequencies of 450MHz, 900MHz and 1.8GHz	9
	(accuracy±8%)	ľ
	Calibration for other liquids and frequencies	1
	upon request	
		F
Frequency	I 0 MHz to > 6 GHz; Linearity: ±0.2 dB	
	(30 MHz to 3 GHz)	
Directivity	$\pm 0.2 \text{ dB}$ in brain tissue (rotation around probe axis)	
	$\pm 0.4~\text{dB}$ in brain tissue (rotation normal probe axis)	
Dynamic Range	5u W/g to > 100mW/g; Linearity: ±0.2dB	
Surface Detection	±0.2 mm repeatability in air and clear liquids	
	over diffuse reflecting surface(ET3DV6 only)	
Dimensions	Overall length: 330mm	
	Tip length: 16mm	
	Body diameter: 12mm	
	Tip diarneter: 6.8mm	
	Distance from probe tip to dipole centers: 2.7mm	
Application	General dosimetry up to 3GHz	
	Compliance tests of mobile phones	
	Fast automatic scanning in arbitrary phantoms	

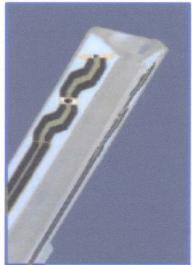


Figure3. ET3DV6 E-field Probe

4.4 E-field Probe Calibration

Figure4. ET3DV6 E-field probe

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate

No. SAR2005014

simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

4.5 Other Test Equipment

4.5.1 Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device (POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeat ably positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

4.5.2 Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat

Figure6. Generic Twin Phantom

phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness 2±0.1 mm Filling Volume Approx. 20 liters Dimensions 810 x 1000 x 500 mm (H x L x W) Available Special

Figure5. Device Holder

Page 10 of 86

No. SAR2005014

Page 11 of 86

4.6 Equivalent Tissues

The liquid used for the frequency range of 800-2000 MHz consisted of water, sugar, salt and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 4 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528.

Table 4. Composition of the Head Tissue Equivalent Matter

-	
MIXTURE %	FREQUENCY 850MHz
Water	41.45
Sugar	56.0
Salt	1.45
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=850MHz ε=41.5 σ=0.90

MIXTURE %	FREQUENCY 1900MHz
Water	55.242
Glycol monobutyl	44.452
Salt	0.306
Dielectric Parameters	f=1900MHz ε=40.0 σ=1.40
Target Value	

Table 5. Composition of the Body Tissue Equivalent Matter

MIXTURE %	FREQUENCY 850MHz
Water	52.4
Sugar	45.0
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target	f=950MUz c=55.2 c=0.07
Value	f=850MHz ε=55.2 σ=0.97

MIXTURE %	FREQUENCY 1900MHz
Water	69.91
Glycol monobutyl	29.96
Salt	0.13
Dielectric Parameters	f=1900MHz ε=53.3 σ=1.52
Target Value	

No. SAR2005014

Page 12 of 86

4.7 System Specifications

4.7.1 Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX90L Repeatability: ±0.02 mm No. of Axis: 6 Data Acquisition Electronic (DAE) System Cell Controller Processor: Pentium III Clock Speed: 800 MHz Operating System: Windows 2000 Data Converter Features:Signal Amplifier, multiplexer, A/D converter, and control logic Software: DASY4 software Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

5 CHARACTERISTICS OF THE TEST

5.1 Applicable Limit Regulations

EN 50360–2001: Product standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

It specifies the maximum exposure limit of **2.0 W/kg** as averaged over any 10 gram of tissue for portable devices being used within 20 mm of the user in the uncontrolled environment.

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 mm of the user in the uncontrolled environment.

5.2 Applicable Measurement Standards

EN 50361–2001: Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones.

IEC 62209 Draft : Procedure to Determine the Specific Absorption Rate(SAR) for Hand-hold Mobile Phone (Part 2)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

OET Bulletin 65 (Edition 97-01) and Supplement C (Edition 01-01): Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits.

They specify the measurement method for demonstration of compliance with the SAR limits for such equipments.

6 LABORATORY ENVIRONMENT

Table 6: The Ambient Conditions during EMF Test

	-
Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω
Ambient noise is checked and found very low and in compliance with requirement of standards.	

Reflection of surrounding objects is minimized and in compliance with requirement of standards.

7 TEST RESULTS

7.1 Dielectric Performance

Table 7: Dielectric Performance of Head Tissue Simulating Liquid

Measurement is made at temperature 22 °C and relative humidity 40%.								
/ Frequency Permittivity ε Conductivity σ (S/m)								
Torretvoluo	850 MHz	41.5	0.90					
Target value	1900 MHz	40.0	1.40					
Measurement value	850 MHz	41.5	0.93					
(Average of 10 tests)	1900 MHz	40.27	1.45					

Table 8: Dielectric Performance of Body Tissue Simulating Liquid

Measurement is made at temperature 22 °C and relative humidity 40%.

/	Frequency	Permittivity ε	Conductivity σ (S/m)
Target value	850 MHz	55.2	0.97
Target value	1900 MHz	53.3	1.52
Measurement value	850 MHz	53.84	1.04
(Average of 10 tests)	1900 MHz	55.85	1.55

7.2 System Validation

Table 9: System Validation

Measurement is made at temperature 23 °C, relative humidity 40%, input power 250 mW.								
Liquid parameters		Frequency		Permittivity ε		Conductivity σ (S/m)		
		850 MHz		41.7		0.88		
		1900 MHz	1900 MHz		39.66		1.46	
Verification	Frequency	Target value (W/kg)		V/kg)	Measurement value (W/kg)			
Verification results	Frequency	10 g Average	1 9	g Average	10 g Ave	rage	1 g Average	
results	850 MHz	1.55		2.375 1.52			2.35	
	1900 MHz	5.125		9.925	4.91		9.8	

No. SAR2005014

Page 14 of 86

7.3 Summary of Measurement Results(HEAD, GSM850 MHz Band)

Table 10: SAR Values (GSM 850 MHz Band)

Temperature: 22 °C, humidity: 50%.					
Liquid temperature during the test: 22.2°C	I				
	10 g	1 g			
Limit of SAR (W/kg)	Average	Average			
	2.0	1.6	Conducted Power before/after each		
	Measurem	ent Result	test		
Tast Case	(W/	kg)	(dBm)		
Test Case	10 g	1 g			
	Average	Average			
Left hand, Touch cheek, Top frequency	0.544	0.004	20.00/20.40		
(See ANNEX C GRAPH RESULTS Fig.1)	0.514	0.804	32.09/32.10		
Left hand, Touch cheek, Mid frequency	0.500	0.704	04 50/04 54		
(See ANNEX C GRAPH RESULTS Fig.3)	0.503	0.781	31.50/31.51		
Left hand, Touch cheek, Bottom frequency	0.540	0.700	04 40/04 00		
(See ANNEX C GRAPH RESULTS Fig.5)	0.510	0.786	31.10/31.08		
Left hand, Tilt 15 Degree, Top frequency	0.450	0.004			
(See ANNEX C GRAPH RESULTS Fig.7)	0.152	0.204	32.08/32.06		
Left hand, Tilt 15 Degree, Mid frequency	0.440	0.400	04.47.404.40		
(See ANNEX C GRAPH RESULTS Fig.9)	0.143	0.190	31.47 /31.48		
Left hand, Tilt 15 Degree, Bottom frequency	0.440	0.400	04.05/04.07		
(See ANNEX C GRAPH RESULTS Fig.11)	0.142	0.188	31.05/31.07		
Right hand, Touch cheek, Top frequency	0.554	0.000			
(See ANNEX C GRAPH RESULTS Fig.13)	0.554	0.860	32.08/32.09		
Right hand, Touch cheek, Mid frequency	0.544	0.704	24 40/24 40		
(See ANNEX C GRAPH RESULTS Fig.15)	0.511	0.791	31.49/31.48		
Right hand, Touch cheek, Bottom frequency	0.400	0.757	04.00/04.07		
(See ANNEX C GRAPH RESULTS Fig.17)	0.493	0.757	31.06/31.07		
Right hand, Tilt 15 Degree, Top frequency	0.400	0.047	20.05/00.00		
(See ANNEX C GRAPH RESULTS Fig.19)	0.182	0.247	32.05/32.06		
Right hand, Tilt 15 Degree, Mid frequency	0.404	0.000	24 50/24 50		
(See ANNEX C GRAPH RESULTS Fig.21)	0.164	0.222	31.50/31.52		
Right hand, Tilt 15 Degree, Bottom frequency	0.400	0.047	24 00/24 44		
(See ANNEX C GRAPH RESULTS Fig.23)	0.160	0.217	31.09/31.11		

No. SAR2005014

Page 15 of 86

7.4 Summary of Measurement Results (Body-Worn, GSM 850 MHz Band)

Table 11: SAR Values (GSM 850 MHz Band, body-worn)

Temperature: 22 °C, humidity: 50%.			
Liquid temperature during the test: 22.2°C			
	10 g Average	1 g Average	
Limit of SAR (W/kg)	2.0	1.6	Conducted Power before/after each
	Measurem		test
Test Case	(W/	kg)	(dBm)
	10 g Average	1 g Average	
Display of EUT towards the ground, Top frequency (See ANNEX C GRAPH RESULTS Fig.25)	0.253	0.404	32.08/32.06
Display of EUT towards the ground, Mid frequency (See ANNEX C GRAPH RESULTS Fig.27)	0.235	0.375	31.49/31.52
Display of EUT towards the ground, Bottom frequency (See ANNEX C GRAPH RESULTS Fig.29)	0.231	0.365	31.08/31.10

No. SAR2005014

Page 16 of 86

7.5 Summary of Measurement Results (Head, PCS 1900 MHz Band)

Table 12: SAR Values (PCS 1900 MHz Band, head)

Temperature: 22 °C, humidity: 50%.				
Liquid temperature during the test: 22.2°C	1			
	10 g	1 g		
Limit of SAR (W/kg)	Average	Average		
	2.0	1.6	Conducted Power before/after each	
	Measurem	ent Result	test	
Tool Coos	(W/	kg)	(dBm)	
Test Case	10 g	1 g		
	Average	Average		
Left hand, Touch cheek, Top frequency				
(See ANNEX C GRAPH RESULTS Fig.31)	0.361	0.627	29.36/29.38	
Left hand, Touch cheek, Mid frequency				
(See ANNEX C GRAPH RESULTS Fig.33)	0.471	0.792	29.82/29.79	
Left hand, Touch cheek, Bottom frequency				
(See ANNEX C GRAPH RESULTS Fig.35)	0.557 0.940		29.95/29.90	
Left hand, Tilt 15 Degree, Top frequency				
(See ANNEX C GRAPH RESULTS Fig.37)	0.056	0.087	29.38/29.41	
Left hand, Tilt 15 Degree, Mid frequency	0.000	0.405		
(See ANNEX C GRAPH RESULTS Fig.39)	0.068	0.105	29.84/29.87	
Left hand, Tilt 15 Degree, Bottom frequency	0.070	0.445		
(See ANNEX C GRAPH RESULTS Fig.41)	0.073	0.115	29.97/29.94	
Right hand, Touch cheek, Top frequency	0.404	0.705		
(See ANNEX C GRAPH RESULTS Fig.43)	0.484	0.795	29.38/29.41	
Right hand, Touch cheek, Mid frequency	0.550	0.000	00.00/00.00	
(See ANNEX C GRAPH RESULTS Fig.45)	0.553	0.903	29.80/29.83	
Right hand, Touch cheek, Bottom frequency	0.024	1.00	00.00/00.00	
(See ANNEX C GRAPH RESULTS Fig.47)	0.634	1.03	29.96/29.99	
Right hand, Tilt 15 Degree, Top frequency	0.077	0.404	00.04/00.00	
(See ANNEX C GRAPH RESULTS Fig.49)	0.077	0.121	29.34/29.33	
Right hand, Tilt 15 Degree, Mid frequency	0.007	0.400	00.05/00.00	
(See ANNEX C GRAPH RESULTS Fig.51)	0.087	0.136	29.85/29.88	
Right hand, Tilt 15 Degree, Bottom frequency	0.075	0.440	20.08/20.05	
(See ANNEX C GRAPH RESULTS Fig.53)	0.075	0.118	29.98/29.95	

No. SAR2005014

Page 17 of 86

7.6 Summary of Measurement Results (Body-Worn, PCS 1900 MHz Band)

Table 13: SAR Values (PCS 1900 MHz Band, body-worn)							
Temperature: 22 °C, humidity: 50%.							
Liquid temperature during the test: 22.2°C							
	10 g	1 g					
Limit of SAR (W/kg)	Average	Average					
	2.0	1.6	Conducted Power before/after each				
	Measurem	ent Result	test				
Test Case	(W/	kg)	(dBm)				
	10 g	1 g					
	Average	Average					
Display of EUT towards the ground, Top frequency (See ANNEX C GRAPH RESULTS Fig.55)	0.210	0.319	29.36/29.39				
Display of EUT towards the ground, Mid frequency (See ANNEX C GRAPH RESULTS Fig.57)	0.234	0.354	29.82/29.84				
Display of EUT towards the ground, Bottom frequency (See ANNEX C GRAPH RESULTS Fig.59)	0.247	0.372	29.95/29.99				

7.7 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

8 Measurement Uncertainty

SN	а	Туре	С	d	e = f(d,k)	f	h = c x f / e	k
	Uncertainty Component		Tol. (± %)	Prob. Dist.	Div.	<i>c_i</i> (1 g)	1 g <i>u_i</i> (±%)	Vi
1	System repetivity	А	0.5	Ν	1	1	0.5	9
	Measurement System							
2	Probe Calibration	В	5	Ν	2	1	2.5	∞

No. SAR2005014

Page 18 of 86

3	Axial Isotropy	В	4.7	R	$\sqrt{3}$	(1-cp) ^{1/2}	4.0	∞
4	Hemispherical Isotropy	В	9.4	R	$\sqrt{3}$	$\sqrt{c_p}$	4.3	8
5	Boundary Effect	В	0.4	R	$\sqrt{3}$	1	0.23	8
6	Linearity	В	4.7	R	$\sqrt{3}$	1	2.7	8
7	System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.6	8
8	Readout Electronics	В	1.0	Ν	1	1	1.0	8
9	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	8
10	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8
11	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8
12	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	8
	Test sample Related			Γ			Γ	
13	Test Sample Positioning	А	4.9	Ν	1	1	4.9	<i>N</i> -1
14	Device Holder Uncertainty	А	6.1	Ν	1	1	6.1	<i>N</i> -1
15	Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	8
	Phantom and Tissue Parameters		1	L		1	L	
16	Phantom Uncertainty (shape and thickness tolerances)	В	1.0	R	$\sqrt{3}$	1	0.6	×
17	Liquid Conductivity - deviation from target values	В	5.0	R	$\sqrt{3}$	0.64	1.7	×
18	Liquid Conductivity - measurement uncertainty	В	5.0	N	1	0.64	1.7	М
19	Liquid Permittivity - deviation from target values	В	5.0	R	$\sqrt{3}$	0.6	1.7	8
20	Liquid Permittivity - measurement uncertainty	В	5.0	N	1	0.6	1.7	М
	1		1	l	1	1	1	

No. SAR2005014

Page 19 of 86

Combined Standard Uncertainty	RSS	11.2 5
Expanded Uncertainty (95% CONFIDENCE INTERVAL)	K=2	22.5

9 MAIN TEST INSTRUMENTS

Table 14: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid
					Period
01	Network analyzer	Agilent 8753E	US38433212	September 1, 2004	One year
02	Dielectric Probe Kit	Agilent 85070C	US99360113	No Calibration Requested	
03	Power meter	HP 436A	2101A11858	September 12, 2004	One year
04	Power sensor	HP 8481H	2349A07289		
05	Signal Generator	MG 3633A	M73386	No Calibration Requested	
06	Amplifier	AT 50S1G4A	26549	No Calibration Requested	
07	Validation Kit 900MHz	SPEAG D 900V2	125	September 2, 2003	Two years
08	Validation Kit 1900MHz	SPEAG D 1900V2	2d010	September 2, 2003	Two years
09	BTS	CMU 200	100680	September 13, 2004	One year
10	E-field Probe	SPEAG ET3DV6	1600	January 20, 2005	One year
11	DAE	SPEAG DAE3	589	October 21, 2004	One year

10 TEST PERIOD

The test is performed from June 29, 2005 to June 30, 2005

11 TEST LOCATION

The test is performed at Radio Communication & Electromagnetic Compatibility Laboratory of Telecommunication Metrology Center

END OF REPORT BODY

No. SAR2005014

Page 20 of 86

ANNEX A MEASUREMENT PROCESS

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point was measured and was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 3.9 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

a. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot"-condition (in $x \sim y$ and z-directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation is repeated.

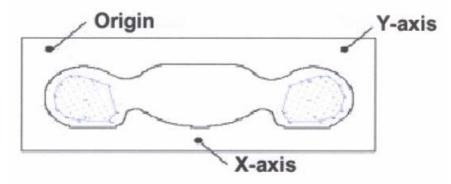


Figure 1 SAR Measurement Points in Area Scan

No. SAR2005014

Page 21 of 86

ANNEX B TEST LAYOUT

Picture 1 Specific Absorption Rate Test Layout

No. SAR2005014

Page 22 of 86

Picture 2 Left Hand Touch Cheek Position

Picture 3 Left Hand Tilt 15° Position

No. SAR2005014

Page 23 of 86

Picture 4 Right Hand Touch Cheek Position

Picture 5 Right Hand Tilt 15° Position

No. SAR2005014

Page 24 of 86

Picture 6 Flat Phantom -- Body-worn Position (towards ground, the distance from handset to the bottom of the Phantom is 1.5cm)

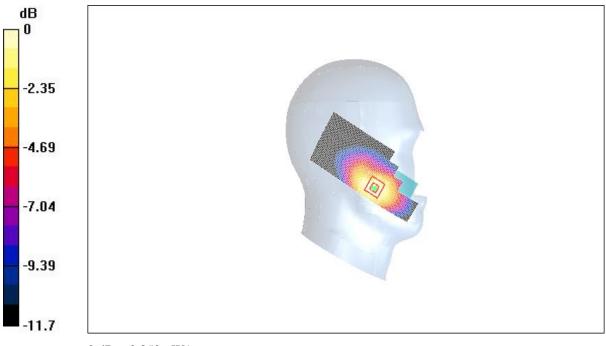
No. SAR2005014

Page 25 of 86

ANNEX C GRAPH RESULTS

850 Left Cheek High

Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)


Cheek High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 8.02 V/m; Power Drift = 0.0 dBMaximum value of SAR (interpolated) = 0.856 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.02 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 0.852 mW/g Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.804 mW/g; SAR(10 g) = 0.514 mW/g

 $0 \; dB = 0.852 mW/g$

No. SAR2005014

Page 26 of 86

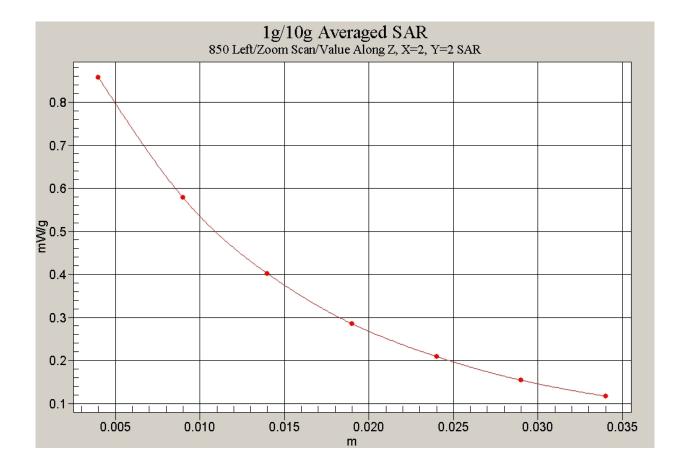
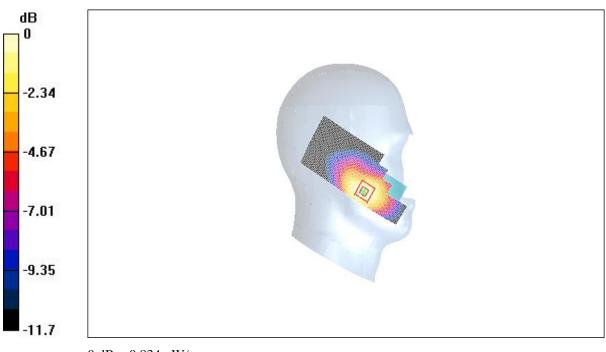


Fig. 2 Z-Scan at power reference point (Left Hand Touch Cheek 850MHz CH251)

No. SAR2005014

Page 27 of 86

850 Left Cheek Middle


Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)

Cheek Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 7.9 V/m; Power Drift = -0.2 dBMaximum value of SAR (interpolated) = 0.832 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.9 V/m; Power Drift = -0.2 dBMaximum value of SAR (measured) = 0.834 mW/gPeak SAR (extrapolated) = 1.17 W/kgSAR(1 g) = 0.781 mW/g; SAR(10 g) = 0.503 mW/g

 $0 \; dB = 0.834 mW/g$

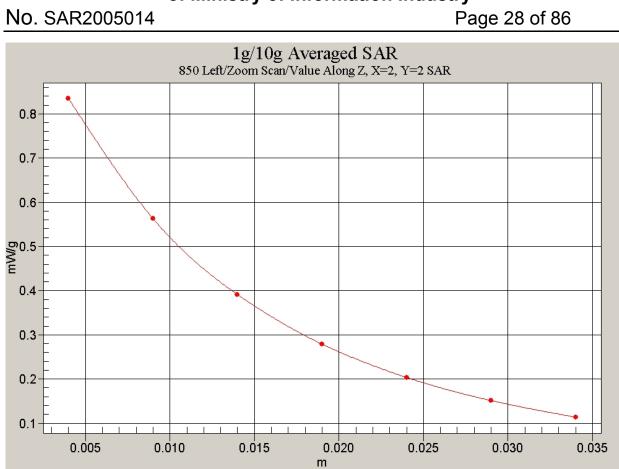
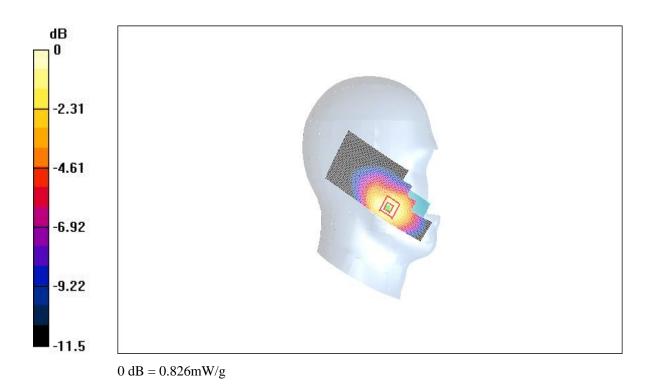


Fig. 4 Z-Scan at power reference point (Left Hand Touch Cheek 850MHz CH190)

No. SAR2005014

Page 29 of 86

850 Left Cheek Low


Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)

Cheek Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 8.43 V/m; Power Drift = -0.2 dBMaximum value of SAR (interpolated) = 0.837 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.43 V/m; Power Drift = -0.2 dB Maximum value of SAR (measured) = 0.826 mW/g Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.786 mW/g; SAR(10 g) = 0.510 mW/g

Fig. 5 Left Hand Touch Cheek 850MHz CH128

Page 30 of 86

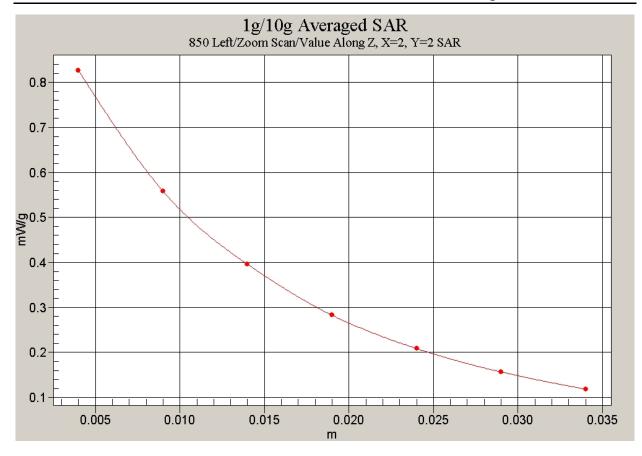
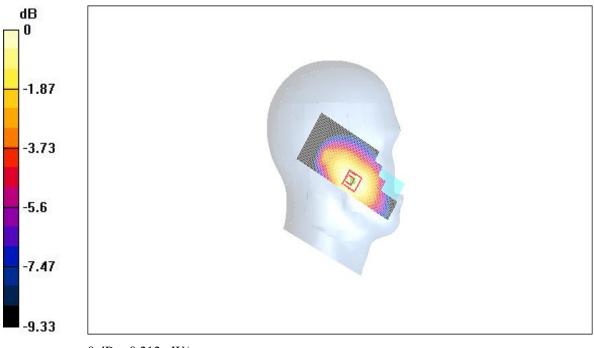


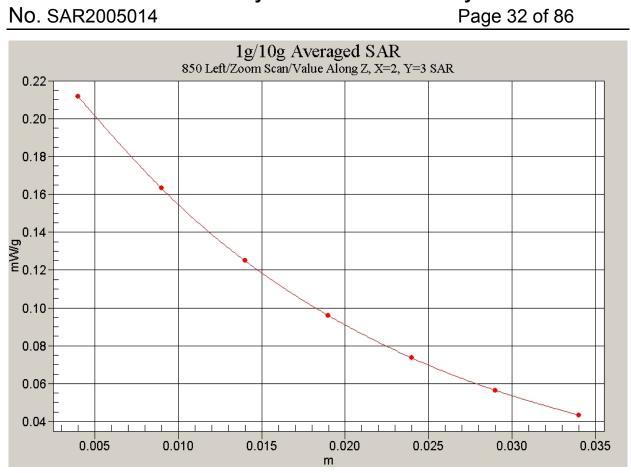
Fig. 6 Z-Scan at power reference point (Left Hand Touch Cheek 850MHz CH128)

No. SAR2005014

Page 31 of 86


850 Left Tilt High

Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)


Tilt High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 9.34 V/m; Power Drift = 0.2 dB

Maximum value of SAR (interpolated) = 0.214 mW/g

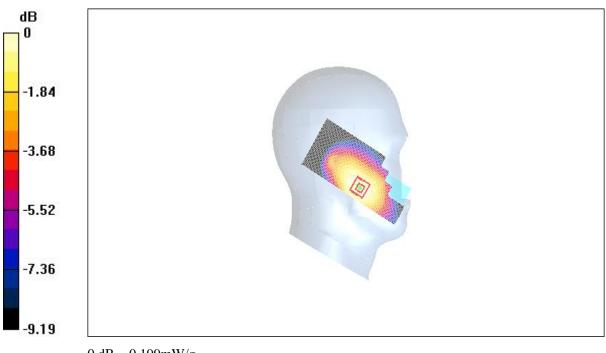
Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 9.34 V/m; Power Drift = 0.2 dB Maximum value of SAR (measured) = 0.212 mW/g Peak SAR (extrapolated) = 0.255 W/kg SAR(1 g) = 0.204 mW/g; SAR(10 g) = 0.152 mW/g

 $0 \, dB = 0.212 mW/g$

No. SAR2005014

Page 33 of 86

850 Left Tilt Middle


Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)

Tilt Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 9.19 V/m; Power Drift = -0.2 dBMaximum value of SAR (interpolated) = 0.200 mW/g

Tilt Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.19 V/m; Power Drift = -0.2 dBMaximum value of SAR (measured) = 0.199 mW/gPeak SAR (extrapolated) = 0.240 W/kgSAR(1 g) = 0.190 mW/g; SAR(10 g) = 0.143 mW/g

 $0 \ dB = 0.199 mW/g$

Fig. 9 Left Hand Tilt 15° 850MHz CH190

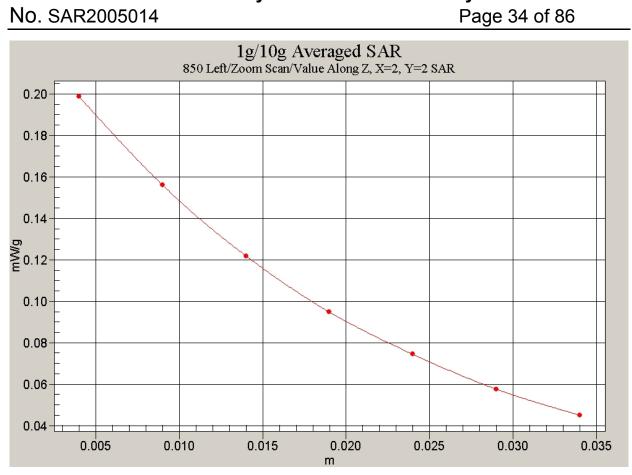
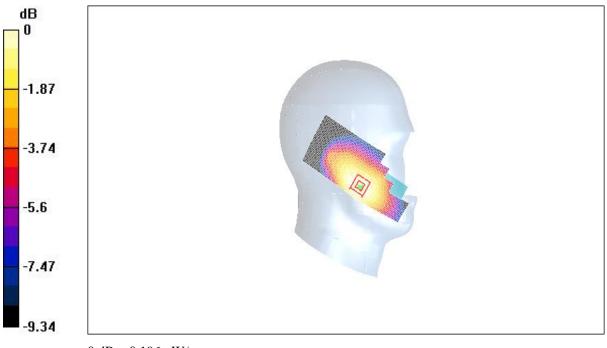


Fig. 10 Z-Scan at power reference point (Left Hand Tilt 15° 850MHz CH190)

No. SAR2005014


Page 35 of 86

850 Left Tilt Low

Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)

Tilt Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 8.88 V/m; Power Drift = -0.003 dB Maximum value of SAR (interpolated) = 0.199 mW/g

Tilt Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.88 V/m; Power Drift = -0.003 dB Maximum value of SAR (measured) = 0.196 mW/g Peak SAR (extrapolated) = 0.237 W/kg SAR(1 g) = 0.188 mW/g; SAR(10 g) = 0.142 mW/g

 $0 \ dB = 0.196 mW/g$

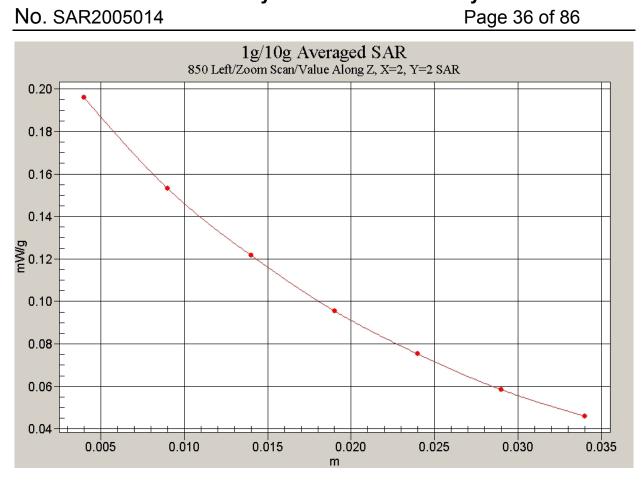
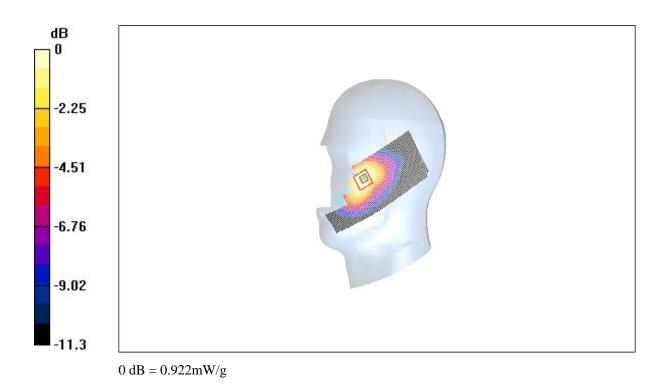


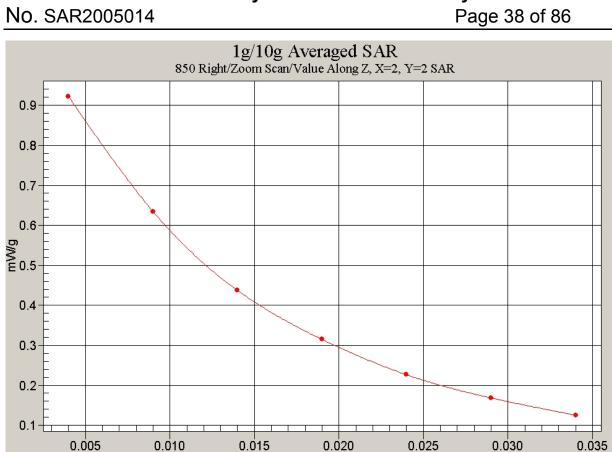
Fig. 12 Z-Scan at power reference point (Left Hand Tilt 15° 850MHz CH128)

No. SAR2005014

Page 37 of 86

850 Right Cheek High


Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)


Cheek High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 8.58 V/m; Power Drift = 0.002 dBMaximum value of SAR (interpolated) = 0.926 mW/g

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.58 V/m; Power Drift = 0.002 dB Maximum value of SAR (measured) = 0.922 mW/g Peak SAR (extrapolated) = 1.28 W/kg SAR(1 g) = 0.860 mW/g; SAR(10 g) = 0.554 mW/g

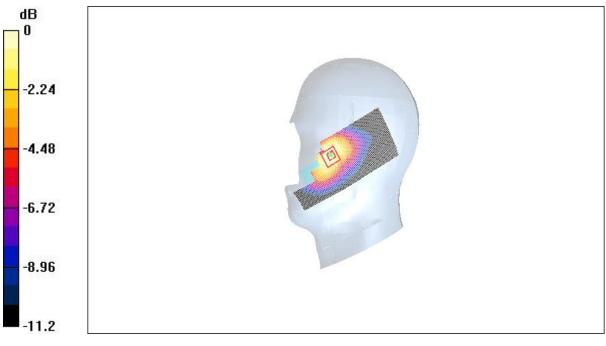
m

Fig. 14 Z-Scan at power reference point (Right Hand Touch Cheek 850MHz CH251)

No. SAR2005014

Page 39 of 86

850 Right Cheek Middle


Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 836.6 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)

Cheek Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 7.89 V/m; Power Drift = -0.0 dBMaximum value of SAR (interpolated) = 0.843 mW/g

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.89 V/m; Power Drift = -0.0 dBMaximum value of SAR (measured) = 0.854 mW/gPeak SAR (extrapolated) = 1.19 W/kgSAR(1 g) = 0.791 mW/g; SAR(10 g) = 0.511 mW/g

 $0 \ dB = 0.854 mW/g$

Fig.15 Right Hand Touch Cheek 850MHz CH190

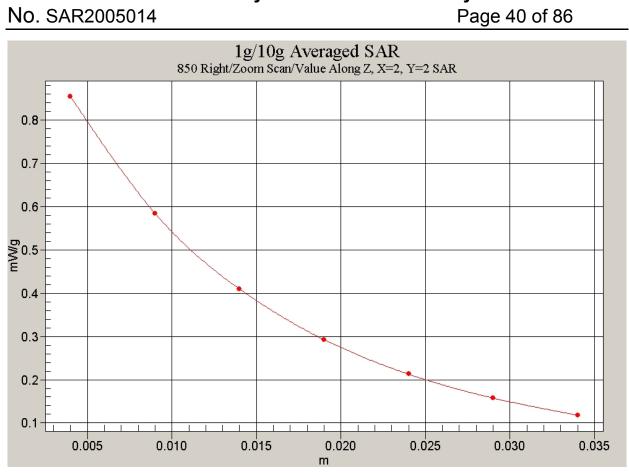
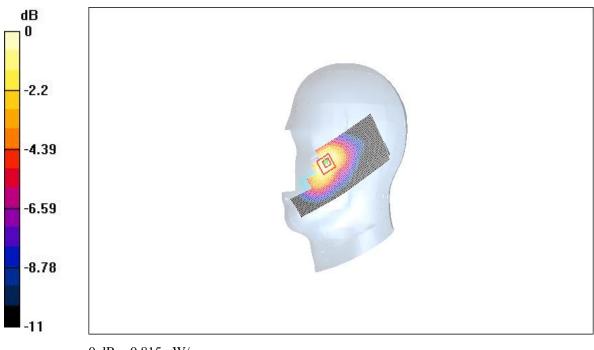


Fig. 16 Z-Scan at power reference point (Right Hand Touch Cheek 850MHz CH190)

No. SAR2005014

Page 41 of 86

850 Right Cheek Low


Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 824.2 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)

Cheek Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 7.85 V/m; Power Drift = -0.2 dB Maximum value of SAR (interpolated) = 0.799 mW/g

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.85 V/m; Power Drift = -0.2 dB Maximum value of SAR (measured) = 0.815 mW/g Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.757 mW/g; SAR(10 g) = 0.493 mW/g

0 dB = 0.815 mW/g

Fig. 17 Right Hand Touch Cheek 850MHz CH128

Page 42 of 86

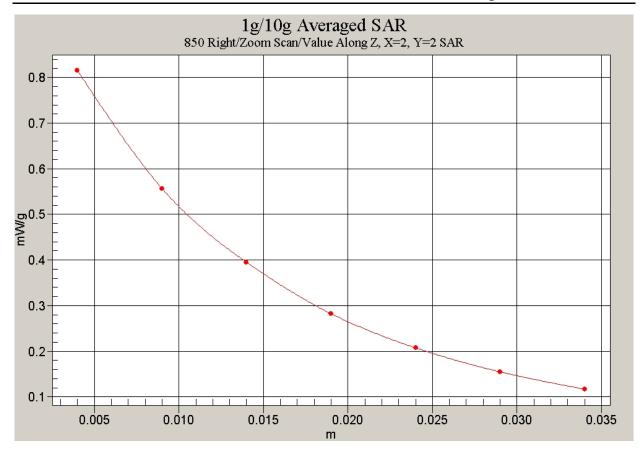
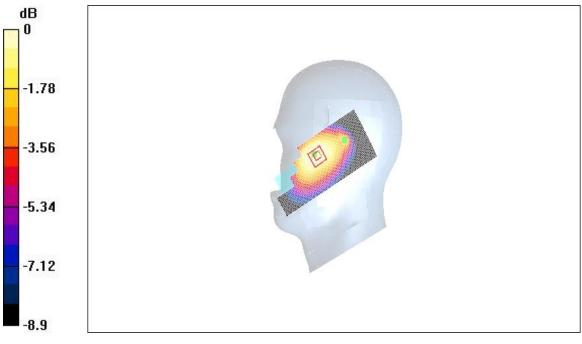


Fig. 18 Z-Scan at power reference point (Right Hand Touch Cheek 850MHz CH128)

No. SAR2005014

Page 43 of 86


850 Right Tilt High

Electronics: DAE3 Sn589 Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ET3DV6 - SN1600 ConvF(6.68, 6.68, 6.68)

Tilt High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 10.2 V/m; Power Drift = 0.1 dB

Maximum value of SAR (interpolated) = 0.264 mW/g

Tilt High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 10.2 V/m; Power Drift = 0.1 dB Maximum value of SAR (measured) = 0.259 mW/g Peak SAR (extrapolated) = 0.316 W/kg SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.182 mW/g

 $0 \ dB = 0.259 mW/g$

Fig. 19 Right Hand Tilt 15°850MHz CH251