

Engineering Test Report No. 2402726-04						
Report Date	January 7, 2025					
Manufacturer Name	Elkay Manufacturing Company					
Manufacturer Address	2222 Camden Ct Oak Brook, IL 60523					
Product Name Model No.	ezH20 Floor-Standing Bottle Filling Stat	tion – DSSBF8SP-W1				
Date Received	December 18, 2024					
Test Dates	December 18, 2024 – December 30, 20)24				
Specifications	FCC "Code of Federal Regulations" Titl Innovation, Science, and Economic Dev					
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107				
Signature	Nathaniel Bouchie					
Tested by	Nathaniel Bouchie					
Signature	Raymond J Klouda					
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894					
PO Number	1075956					

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C and Innovation, Science, and Economic Development Canada, RSS-210 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.

Table of Contents

1.	Report Revision History	3
2.	Introduction	
3.	Power Input	4
4.	Grounding	
5.	Support Equipment	4
6.	Interconnect Leads	4
7.	Modifications Made to the EUT	4
8.	Modes of Operation	4
8.1.	Tx @ 903MHz	4
9.	Test Specifications	5
10.	Test Plan	5
11.	Deviation, Additions to, or Exclusions from Test Specifications	5
12.	Laboratory Conditions	5
13.	Summary	
14.	Sample Calculations	6
15.	Statement of Conformity	6
16.	Certification	
17.	Photographs of EUT	7
18.	Equipment List	9
19.	Block Diagram of Test Setup	
20.	Module Integration – Emissions Test1	
21.	Scope of Accreditation1	

1. Report Revision History

Revision	Date	Description
-	14 JAN 2025	Initial Release of Engineering Test Report No. 2402726-04

2. Introduction

This document presents the results of a series of electromagnetic compatibility (EMC) tests that were performed on one (1) ezH20 Floor-Standing Bottle Filling Station (hereinafter referred to as the Equipment Under Test (EUT)).

The EUT was identified as follows:

EUT Identification					
Description	ezH20 Floor-Standing Bottle Filling Station				
Model/Part No.	DSSBF8SP-W1				
Serial No.	Sample 1				
Size of EUT	47.5 in x 21.5 in x 14.5 in				
Highest Internal Freq.	903MHz				

The EUT listed above was used throughout the test series.

3. Power Input

The EUT obtained 120VAC 60Hz power via a 3-wire power cord.

4. Grounding

The EUT was connected to ground through the third wire of its input power cord.

5. Support Equipment

No support equipment was used during the tests.

6. Interconnect Leads

No interconnect leads were used during the tests.

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

The EMC tests were performed with the EUT operating in the test mode described below.

8.1. Tx @ 903MHz

This mode was achieved by applying power to the device and pressing the button on the LoRa PCB. The EUT transmitted at 903MHz, 3 times for 350ms each, before returning to normal operations.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with the following test specifications:

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C
- RSS-210, Issue 10, December 2019, "Licence-Exempt Radio Apparatus: Category I Equipment"
- RSS-Gen, Issue 5, February 2021, Amendment 2, "General Requirements for Compliance of Radio Apparatus"
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from Elkay Manufacturing Company and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C and Innovation, Science, and Economic Development Canada, RSS-210, and ANSI C63.4-2014 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The following were the laboratory conditions while the EMC tests were performed:

Ambient Parameters	Value
Temperature	23.9°C
Relative Humidity	32%
Atmospheric Pressure	1023mb

13. Summary

The following EMC test was performed, and the results are shown below:

Test Description	Test Requirements	Test Method	Equipment Class	Result
Module Integration – Emissions Test	FCC 15C ISED RSS-210	ANSI C63.10: 2013	Sample 1	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

Formula 1: VL ($dB\mu V$) = MTR ($dB\mu V$) + CF (dB).

For Radiated Emissions:

The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

Formula 1: FS $(dB\mu V/m) = MTR (dB\mu V) + AF (dB/m) + CF (dB) + (-PA (dB)) + DC (dB)$

To convert the Field Strength dB μ V/m term to μ V/m, the dB μ V/m is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in μ V/m terms.

Formula 2: FS (µV/m) = AntiLog [(FS (dBµV/m))/20]

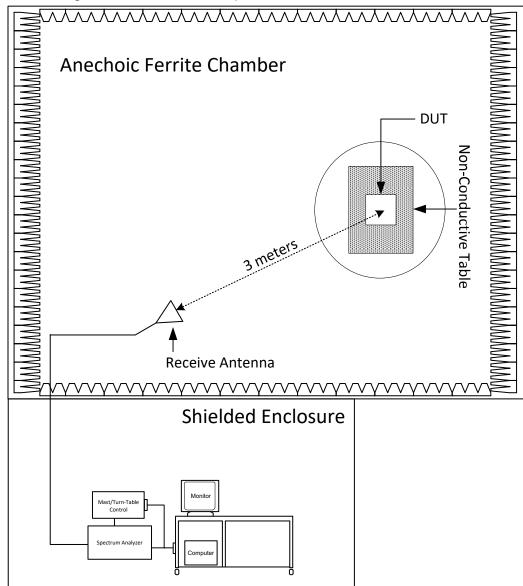
15. Statement of Conformity

The Elkay Manufacturing Company ezH20 Floor-Standing Bottle Filling Station, Model No. DSSBF8SP-W1, Serial No. Sample 1, did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C and Innovation, Science, and Economic Development Canada, RSS-210.

16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C and Innovation, Science, and Economic Development Canada, RSS-210 test specifications. The data presented in this test report pertains to the EUT as received by the customer on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT


18. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW10	PREAMPLIFIER	PLANAR ELECTRONICS	PE2-35-120-5R0- 10-12-SFF	PL11685/1241	1GHZ-20GHZ	3/20/2024	3/20/2025
CDZ3	LAB WORKSTATION	ELITE	LWS-10		WINDOWS 10	CNR	
NTA2	BILOG ANTENNA	TESEQ	6112D	28040	25-2000MHz	6/21/2024	6/21/2026
NWQ0	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66657	1GHZ-18GHZ	6/24/2024	6/24/2026
R29F	3M ANECHOIC CHAMBER NSA	EMC TEST SYSTEMS	3M ANECHOIC		30MHZ-18GHZ	6/12/2023	6/12/2025
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	6/16/2024	6/16/2025
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
VBR8	COMMERCIAL CONDUCTED EMISSIONS.EXE	ELITE				N/A	
VBV2	COMMERCIAL RADIATED EMISSIONS.EXE	ELITE				N/A	

N/A: Not Applicable I/O: Initial Only CNR: Calibration Not Required NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Module Integration – Emissions Test

EUT Information					
Manufacturer	Elkay Manufacturing Company				
Product	ezH20 Floor-Standing Bottle Filling Station				
Model No.	DSSBF8SP-W1				
Serial No.	Sample 1				
Mode	Tx @ 903MHz				

Test Site Information				
Setup Format Floor Standing				
Height of Support 0cm				
Type of Test Site Semi-Anechoic Chamber				
Test Site Used R29F				
Antenna Types Used	Below 1GHz: Bilog (or equivalent)			
Antenna Types Osed	Above 1GHz: Double-ridged waveguide (or equivalent)			
Notes	The cables were manually maximized during the preliminary emissions sweeps.			
NULES	The cable arrangement which resulted in the worst-case emissions was utilized.			

Measurement Uncertainty					
	Expanded Measurement				
Measurement Type					
	Uncertainty				
Radiated disturbance (electric field strength on an open area test site or alternative test	4.3				
site) (30 MHz – 1000 MHz)	4.5				
Radiated disturbance (electric field strength on an open area test site or alternative test	3.1				
site) (1 GHz – 6 GHz)	J. I				

Requirements

Per 996369 D04 Module Integration Guide v01:

Testing of the host product with all the transmitters installed is recommended, to verify that the host product meets all the applicable FCC rules. The radio spectrum is to be investigated with all the transmitters in the final host product functioning to determine that no emissions exceed the highest limit permitted for any one individual transmitter as required by Section 2.947(f).

The testing shall also check for emissions that may occur due to the intermixing of emissions with the other transmitters, digital circuitry, or due to physical properties of the host product (enclosure). This investigation is especially important when integrating multiple modular transmitters where the certification is based on testing each of them in a stand-alone configuration. No emissions exceed the highest limit permitted for any one individual transmitter as required by Section 2.947(f).

FCC 15.247:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

RSS-247:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30dB instead of 20dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

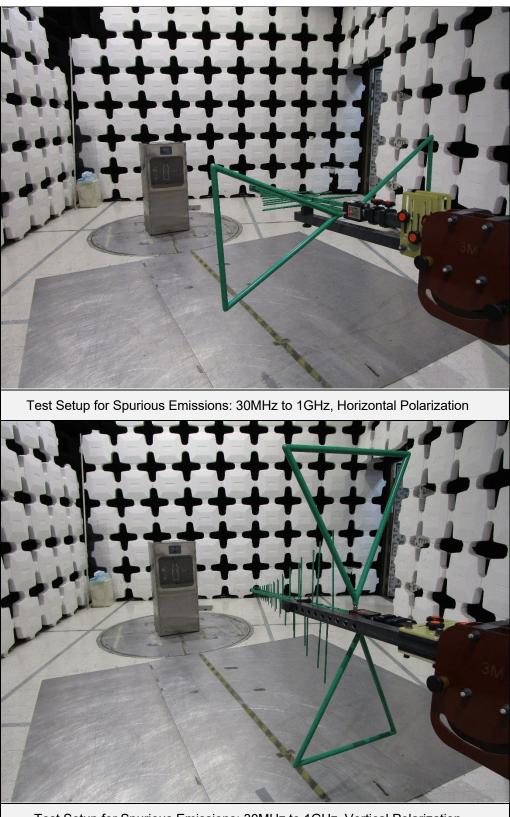
Procedures

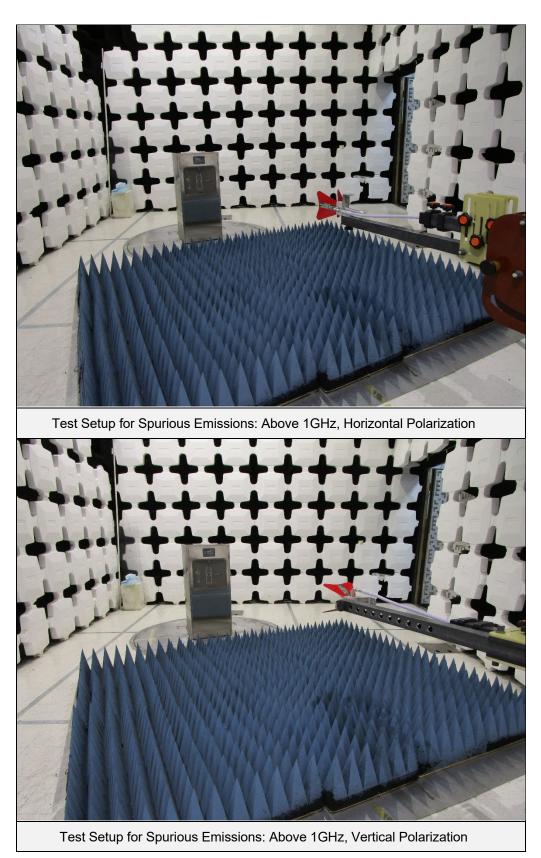
Radiated measurements were performed in a 32ft. x 20ft. x 18ft. hybrid ferrite-tile/anechoic absorber lined test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles and anechoic absorber material is installed over the ferrite tiles. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2014 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3 meter distance from the EUT. The entire frequency range from 30MHz to 5GHz was investigated using a peak detector function.

The final open field emission tests were then manually performed over the frequency range of 30MHz to 5GHz.


- 1) For all harmonics not in the restricted bands, the following procedure was used:
 - a) The field strength of the fundamental was measured using a bilog antenna. The bilog antenna was positioned at a 3 meter distance from the EUT. The EUT was centered on the turntable. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was centered on the turntable. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
 - c) To ensure that maximum or worst case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i. The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii. Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii. The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.
- 2) For all emissions in the restricted bands, the following procedure was used:
 - a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bilog antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
 - b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3 meter distance from the EUT. The EUT was placed on a 1.5 meter high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
 - c) To ensure that maximum (or worst case) emission levels were measured, the following steps were taken when taking all measurements:
 - i. The EUT was rotated so that all of its sides were exposed to the receiving antenna.


- ii. Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
- iii. The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
- d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in §15.209(a), no further measurements are required. If, however, the peak readings exceed the limits listed in 15.209(a), then the emissions are remeasured using a quasi-peak detector.
- e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).
- f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector and an average reading was taken.

Test Setup for Spurious Emissions: 30MHz to 1GHz, Vertical Polarization

	Test Details					
Manufacturer	Elkay Manufacturing Company					
Model No.	DSSBF8SP-W1					
Serial No.	Sample 1					
Test	Host Product Testing – Case Spurious Emissions					
Mode	Tx @ 903MHz					
Frequency Tested	903MHz					
Notes	Peak Measurements in the Restricted Bands					

		Meter		Cable	Antenna	Pre	Peak Total	Peak Total	Peak Limit	
Freq (MHz)	Ant Pol	Reading (dBµV)	Ambient	Factor (dB)	Factor (dB/m)	Amp (dB)	at 3m (dBµV/m)	at 3m (µV/m)	at 3m (µV/m)	Margin (dB)
	H	<u>(ubµv)</u> 39.7	*	(ub) 3.2	33.2	-39.2	36.9	(μν/m) 69.9	(μν/π) 5000.0	-37.1
3612.00	V	39.9	*	3.2	33.2	-39.2	37.1	71.8	5000.0	-36.9
4515.00	Н	38.9	*	3.6	34.2	-39.2	37.5	75.1	5000.0	-36.5
4515.00	V	39.5	*	3.6	34.2	-39.2	38.1	80.0	5000.0	-35.9

	Test Details
Manufacturer	Elkay Manufacturing Company
Model No.	DSSBF8SP-W1
Serial No.	Sample 1
Test	Host Product Testing – Case Spurious Emissions
Mode	Tx @ 903MHz
Frequency Tested	903MHz
Notes	Average Measurements in the Restricted Bands

Freq (MHz)	Ant Pol	Meter Reading (dBµV)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dBµV/m)	Average Total at 3m (μV/m)	Average Limit at 3m (μV/m)	Margin (dB)
3612.00	Н	34.63	*	3.2	33.2	-39.2	0.0	31.9	39.2	500.0	-22.1
3012.00	V	34.62	*	3.2	33.2	-39.2	0.0	31.9	39.1	500.0	-22.1
4515.00	Н	35.00	*	3.6	34.2	-39.2	0.0	33.6	47.7	500.0	-20.4
4515.00	V	34.95	*	3.6	34.2	-39.2	0.0	33.5	47.5	500.0	-20.5

	Test Details			
Manufacturer	Elkay Manufacturing Company			
Model No.	DSSBF8SP-W1			
Serial No.	Sample 1			
Test	Host Product Testing – Case Spurious Emissions			
Mode	Tx @ 903MHz			
Frequency Tested	903MHz			
Notes	Peak Measurements in the Non-Restricted Bands			

		Matan		Cabla	Antonno	Dre	Peak	Peak	Peak	
F	A 4	Meter		Cable	Antenna	Pre	Total	Total	Limit	N 4
Freq	Ant	Reading		Factor	Factor	Amp	at 3m	at 3m	at 3m	Margin
(MHz)	Pol	(dBµV)	Ambient	(dB)	(dB/m)	(dB)	(dBµV/m)	(µV/m)	(µV/m)	(dB)
903.00	Н	80.22		1.6	26.7	0.0	108.5	265778.8	NA	NA
903.00	V	81.68		1.6	26.7	0.0	110.0	314427.3	NA	NA
1806.00	Н	23.46	*	2.2	29.3	0.0	55.0	563.4	31442.7	-34.9
1000.00	V	22.31	*	2.2	29.3	0.0	53.9	493.5	31442.7	-36.1

21. Scope of Accreditation

Valid To: June 30, 2025

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC. 1516 Centre Circle Downers Grove, IL 60515 Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168 Email: rbugielski@elitetest.com Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112 Email: cfanning@elitetest.com Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163 Email: blugo@elitetest.com Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123 Email: reking@elitetest.com Website: www.elitetest.com

ELECTRICAL

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following <u>automotive electromagnetic</u> <u>compatibility and other electrical tests</u>:

<u>Test Technology:</u>	Test Method(s) ¹ :
Transient Immunity (Max Voltage 60V/Max current 100A)	ISO 7637-2 (including emissions); ISO 7637-3; ISO 16750-2:2012, Sections 4.6.3 and 4.6.4; CS-11979, Section 6.4; CS.00054, Section 5.9; EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222); GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12; ECE Regulation 10.06 Annex 10
Electrostatic Discharge (ESD) (Up to +/-25kV)	ISO 10605 (2001, 2008); CS-11979 Section 7.0; CS.00054, Section 5.10; EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13; GMW 3097 Section 3.6
Conducted Emissions	CISPR 25 (2002, 2008), Sections 6.2 and 6.3; CISPR 25 (2016), Sections 6.3 and 6.4; CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2; GMW 3097, Section 3.3.2; EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421, CE 430, CE440)

(A2LA Cert. No. 1786.01) 08/15/2023

Page 1 of 9

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u>	Test Method(s) ¹ :
Radiated Emissions Anechoic (Up to 6GHz)	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310, RE320);
Vehicle Radiated Emissions	CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BC1) (1 to 400MHz 500mA)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Radiated Immunity Anechoic (Up to 6GHz and 200V/m) (Including Radar Pulse 600V/m)	ISO 11452-2; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8; FMC 1278 (RI140)
Radiated Immunity Reverb (360MHz to 6GHz and 100V/m)	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity (Portable Transmitters) (Up to 6GHz and 20W)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115); GMW 3097, Sec 3.4.4
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Vehicle Product Specific EMC Standards	EN 14982; EN ISO 13309; ISO 13766; EN 50498; EC Regulation No. 2015/208; EN 55012
Electrical Loads	ISO 16750-2
Stripline	ISO 11452-5
Transverse Electromagnetic (IEM) Cell	ISO 11452-3

M Page 2 of 9

Test Technology:

Test Method(s)¹:

Emissions Radiated and Conducted	47 CFR, FCC Part 15 B (using ANSI C63.4:2014);
(3m Semi-anechoic chamber, up to 40 GHz)	 47 CFR, FCC Part 18 (using FCC MP-5:1986); ICES-001; ICES-003; ICES-005; IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004); IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010); KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003); CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1; CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1; IEC/CISPR 22 (1997); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000); EN 55022 (1998) + A1(2000); AS/NZS CISPR 22 (2006); IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004); AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz); CISPR 32; EN 55032; KS C 9832; KN 32; ECE Regulation 10.06 Annex 7 (Broadband); ECE Regulation 10.06 Annex 14 (Conducted)
Cellular Radiated Spurious Emissions	ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12; ETSI TS 134 124 UMTS; 3GPP TS 34.124;
	ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124
Current Harmonics	IEC 61000-3-2; IEC 61000-3-12; EN 61000-3-2; KN 61000-3-2; KS C 9610-3-2; ECE Regulation 10.06 Annex 11
Flicker and Fluctuations	IEC 61000-3-3; IEC 61000-3-11; EN 61000-3-3; KN 61000-3-3; KS C 9610-3-3; ECE Regulation 10.06 Annex 12
Immunity	
Electrostatic Discharge	IEC 61000-4-2, Ed. 1.2 (2001); IEC 61000-4-2 (1995) + A1(1998) + A2(2000); EN 61000-4-2 (1995); EN 61000-4-2 (2009-05); KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2; KS C 9610-4-2; IEEE C37.90.3 2001
Radiated Immunity	IEC 61000-4-3 (1995) + A1(1998) + A2(2000); IEC 61000-4-3, Ed. 3.0 (2006-02); IEC 61000-4-3, Ed. 3.2 (2010); KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3; KS C 9610-4-3; IEEE C37.90.2 2004
	Λ

Page 3 of 9

<u>Test Technology:</u>	Test Method(s) ¹ :
Immunity (cont'd) Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16
Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6
Power Frequency Magnetic Field Immunity (<i>Down to 3 A/m</i>)	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11; KS C 9610-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002

M Page 4 of 9

<u>Test Technology:</u>	Test Method(s) ¹ :
Generic and Product Specific EMC Standards	IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1; KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2; KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3; AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3; IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4; KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2; EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3; EN 55015; EN 60730-1; EN 60945; IEC 60533; EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2; AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2; IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24; IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35; KS C 9835; IEC 60601-1-2; JIS T0601-1-2
TxRx EMC Requirements	EN 301 489-1; EN 301 489-3; EN 301 489-9; EN 301 489-17; EN 301 489-19; EN 301 489-20
European Radio Test Standards	ETSI EN 300 086-1; ETSI EN 300 086-2; ETSI EN 300 113-1; ETSI EN 300 113-2; ETSI EN 300 220-1; ETSI EN 300 220-2; ETSI EN 300 220-3-1; ETSI EN 300 220-3-2; ETSI EN 300 330-1; ETSI EN 300 330-2; ETSI EN 300 440-1; ETSI EN 300 440-2; ETSI EN 300 422-1; ETSI EN 300 422-2; ETSI EN 300 328; ETSI EN 301 493; ETSI EN 301 511; ETSI EN 301 908-1; ETSI EN 908-2; ETSI EN 908-13; ETSI EN 303 413; ETSI EN 302 502; EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4
Canadian Radio Tests	RSS-102 measurement (RF Exposure Evaluation); RSS-102 measurement (Nerve Stimulation); SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123; RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133; RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141; RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192; RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210; RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222; RSS-236; RSS-238; RSS-243; RSS-244; RSS-310; RSS-248; RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN
Mexico Radio Tests	IFT-008-2015; NOM-208-SCFI-2016
Japan Radio Tests	Radio Law No. 131, Ordinance of MPT No. 37, 1981, MIC Notification No. 88:2004, Table No. 22-11; ARIB STD-T66, Regulation 18
Taiwan Radio Tests	LP-0002 (July 15, 2020)
	Λ

Page 5 of 9

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Australia/New Zealand Radio Tests	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
Hong Kong Radio Tests	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1068; HKCA 1043; HKCA 1057; HKCA 1073
Korean Radio Test Standards	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125; KS X 3130; KS X 3126; KS X 3129
Vietnam Radio Test Standards	QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT; QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020//BTTTT
Vietnam EMC Test Standards	QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT; QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT
Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
Licensed Radio Service Equipment	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)
OIA (Over the Air) Performance GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/a	CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

Page 6 of 9

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Electrical Measurements and	
Simulation	
AC Voltage / Current	FAA AC 150/5345-10H;
(1mV to 5kV) 60 Hz	FAA AC 150/5345-43J;
(0.1V to 250V) up to 500 MHz	FAA AC 150/5345-44K;
(1µA to 150A) 60 Hz	FAA AC 150/5345-46E;
	FAA AC 150/5345-47C;
DC Voltage / Current	FAA EB 67D
(1mV to 15 kV) / (1µA to 10A)	
Power Factor / Efficiency / Crest Factor (Power to 30kW)	
Resistance	

 $(1m\Omega to 4000M\Omega)$

Surge (Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA *R101 - General Requirements-Accreditation of ISO-IEC 17025 Laboratories.*

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
Industrial, Scientific, and Medical Equipment Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u> Part 15C	ANSI C63.10:2013	40000
(A2LA Cert. No. 1786.01) 08/15/2023	hu	Page 7 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A 1^2

Rule Subpart/Technology	Test Method	Maximum Frequency (MH2)
Unlicensed Personal Communication		57
<u>Systems Devices</u> Part 15D	ANSI C63.17:2013	40000
<u>U-NII without DFS Intentional Radiators</u> Part 15E	ANSI C63.10:2013	40000
<u>U-NII with DFS Intentional Radiators</u> Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u> Part 15F	ANSI C63.10:2013	40000
BPL Intentional Radiators Part 15G	ANSI C63.10:2013	40000
White Space Device Intentional Radiators Part 15H	ANSI C63.10:2013	40000
Commercial Mobile Services (FCC Licensed Radio Service Equipment) Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>General Mobile Radio Services (FCC</u> <u>Licensed Radio Service Equipment</u>) Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC</u> <u>Licensed Radio Service Equipment)</u> Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
Maritime and Aviation Radio Services Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
<u>Microwave and Millimeter Bands Radio</u> <u>Services</u> Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
A2LA Cert. No. 1786.01) 08/15/2023	Mu	Page 8 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A 1^2

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
Broadcast Radio Services Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Signal Boosters</u> Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

² Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (https://apps.fcc.gov/oetcf/eas/) for a listing of FCC approved laboratories.

Page 9 of 9

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of August 2023.

Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 1786.01 Valid to June 30, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.