STATEMENT OF CERTIFICATION

The technical data supplied with this application, having been taken under my supervision is hereby duly certified. The following is a statement of my qualifications:

College Degree:	BSEE, V	E, Valparaiso University, Valparaiso, Indiana, USA		
MSEE,		llinois Institute of Technology, Chicago, Illinois, USA		
years of D	esign and	Development experience in the field of two-way radio communication.		
NAM	IE:	Ken Weiss		
SIGNATURE				
OIONATORE				
DAT	F.	May 15, 2002		
		,,		
POS	ITION:	Lead Flectrical Engineer		

I hereby certify that the above application was prepared under my direction and that to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct:

NAME:	Steve Noskowicz
SIGNATURE:	
DATE:	May 15, 2002
POSITION:	Engineering Manager

SUBMITTED MEASURED DATA -- INDEX

<u>EXHIBIT</u>	DESCRIPTION
11A	RF Output-Data
11B	Occupied Bandwidth - Power Output at 40 Watts
11C	Conducted Spurious Emissions: Setup, Specifications, and Index
11C-1	Conducted Spurious Emissions, Harmonics, Power Output at 40 Watts
11C-2	Conducted Spurious Emissions, Harmonics, Power Output at 5 Watts
11C-3	Conducted Spurious Emissions, Close-In, Power Output at 40 Watts
11D	Radiated Spurious Emissions: Setup, Specifications, and Index
11D-1	Radiated Spurious Emissions, Power Output at 40 Watts
11D-2	Radiated Spurious Emissions, Power Output at 5 Watts
11E	Frequency Stability: Setup, Specifications, and Index
11E-1	Frequency Stability Vs Temperature
11E-2	Frequency Stability Vs Voltage

RF POWER OUTPUT DATA

The RF power output was measured with the indicated voltage applied to and current into the final RF amplifying device. The DC current indicated is the total for the final RF amplifier stage, consisting of six parallel modules, or twelve parallel power transistors.

Measured RF output	<u>40</u>	Watts, Average		
DC Voltage	<u>28.6</u>	Volts		
DC Current	<u>7.5</u>	Amperes		
Input power for final RF amplifying device(s)	<u>215</u>	Watts		
Primary Supply Voltage	<u>48</u>	Volts DC		
Minimum Measured RF output	<u>5</u>	Watts, Average		
Normal DC Voltage	<u>28.6</u>	Volts		
Normal DC Current	<u>2.5</u>	Amperes		
Input power for final RF amplifying device(s)	<u>72</u>	Watts		
Primary Supply Voltage	48	Volts DC		

OCCUPIED BANDWIDTH

Modulation Type: Quad-QAM – 64 kbps Random Data Per Channel – Single Carrier

Emission Designator: 17K7D7W

Channelization: 25 kHz per channel Power Setting: 40-Watts Average

SPECIFICATION REQUIREMENT:

§ 90.691 Emission Mask Requirements for EA-Based Systems:

- (a) Out of band emission requirements apply only to the 'outer' channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
- (1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P), in Watts, by at least $116*log_{10}(F/6.1)$ dB or 50 plus 10 $log_{10}(P)$ dB or 80 dB, whichever is the lesser attenuation, where F is the frequency removed from the center of the outer channel in the block, in kiloHertz, and where F is greater than 12.5 kHz.
- (2) For any frequency removed from the EA licensee's frequency block by greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P), in Watts, by at least 43 plus 10 log₁₀(P) dB or 80 dB, whichever is the lesser attenuation, where F is the frequency removed from the center of the outer channel in the block, in kiloHertz, and where F is greater than 37.5 kHz.
- (b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

Necessary Bandwidth Calculation:

The necessary bandwidth of the modulation signal is not calculable per the formulas defined in 47 CFR 2.202 (b). Specifically, although the modulation for this emission is a composite modulation, the equations given in the composite tables in 2.202 are not applicable since none of them adequately approximate the form of digital modulation used. The necessary bandwidth of 17.7 kHz per carrier is based upon a 99% power measurement of the transmitter spectrum, per 2.202 (a).

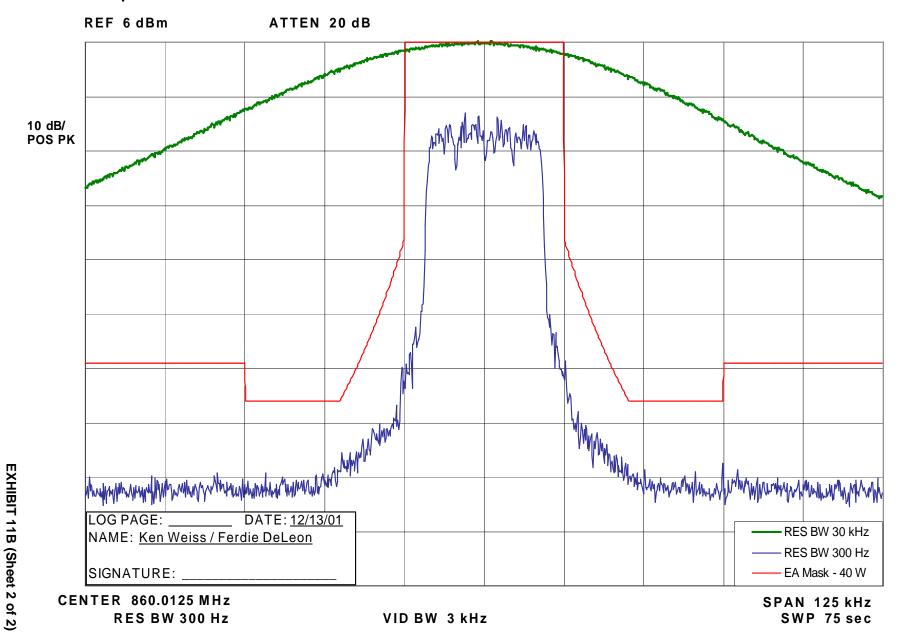
Measurement Procedure and Instrument Settings:

Reference Calibration Analyzer Settings:

Horizontal:12.5 kHz per DivisionResolution Bandwidth:30 kHzVertical:10 dB per DivisionVideo Bandwidth:100 kHzSweep Time:75 Seconds (<2000 Hz / Second)</td>Span:125 kHz

Detector Mode: Positive Peak

Emission Measurement Analyzer Settings:


Horizontal:12.5 kHz per DivisionResolution Bandwidth:300 HzVertical:10 dB per DivisionVideo Bandwidth:3 kHzSweep Time:75 Seconds (<2000 Hz / Second)</td>Span:125 kHz

Detector Mode: Positive Peak

Test Procedure:

- 1) Adjust the spectrum analyzer per the values specified in the Reference Calibration Analyzer Settings.
- 2) Modulate the transmitter with the appropriate signaling pattern, (psuedorandom data) and key the transmitter at the full carrier power rating. Use the analyzer controls to set this signal to the full-scale reference line. Allow the analyzer to sweep fully and store the sweep.
- 3) Adjust the analyzer per the Emission Measurement Analyzer Settings.
- 4) Allow the analyzer to sweep, and record the resultant emission levels.
- 5) Plot the resulting analyzer trace and the emission mask limit, add text and labeling as appropriate.

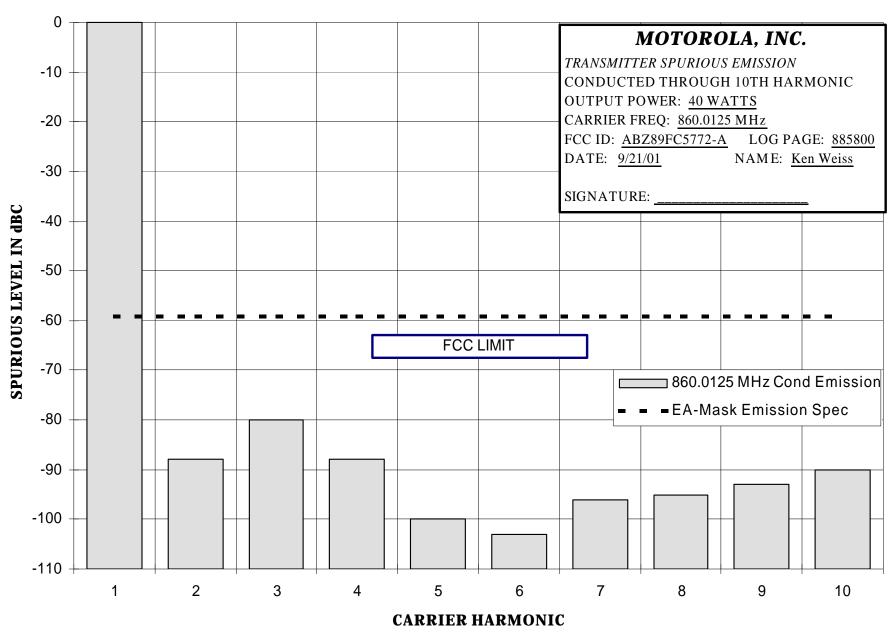
Occupied Bandwidth -- EBRC / LNODCT - 40 Watts

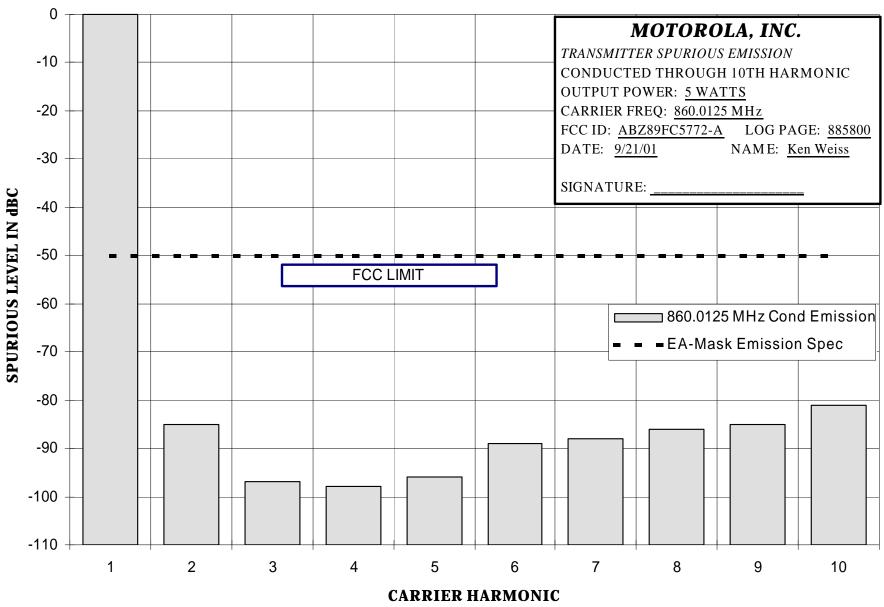
CONDUCTED SPURIOUS EMISSIONS

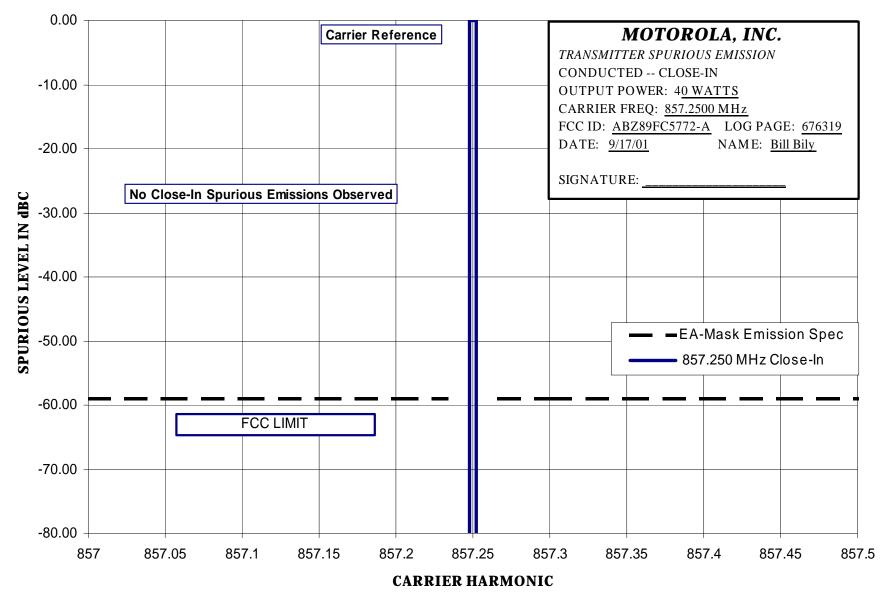
SPECIFICATION REQUIREMENT:

Reference: Part 90.691 (Emission Mask EA)

On any frequency displacement of greater than 37.5 kHz removed from the authorized frequency block, the power of any emission shall be attenuated below the transmitter power (P), in Watts, by at least 43 plus 10 $\log_{10}(P)$ dB or 80 dB, whichever is the lesser attenuation.


Modulation: Psuedorandom data


Carrier Frequency: A carrier at 860.0125 MHz was measured. This frequency is near the center of the


operating band 851-870 MHz.

SPURIOUS EMISSION PLOTS:

<u>EXHIBIT</u>	DESCRIPTION
11C-1	Conducted Spurious Emissions, Harmonics, Power Output at 40 Watts
	The specification limit is -59.0 dBC
11C-2	Conducted Spurious Emissions, Harmonics, Power Output at 5 Watts
	The specification limit is -50.0 dBC
11C-3	Conducted Spurious Emissions, Close-In, Power Output at 40 Watts
	The specification limit is -59.0 dBC

RADIATED SPURIOUS EMISSIONS

SPECIFICATION REQUIREMENT:

Reference: Part 90.691 (Emission Mask EA)

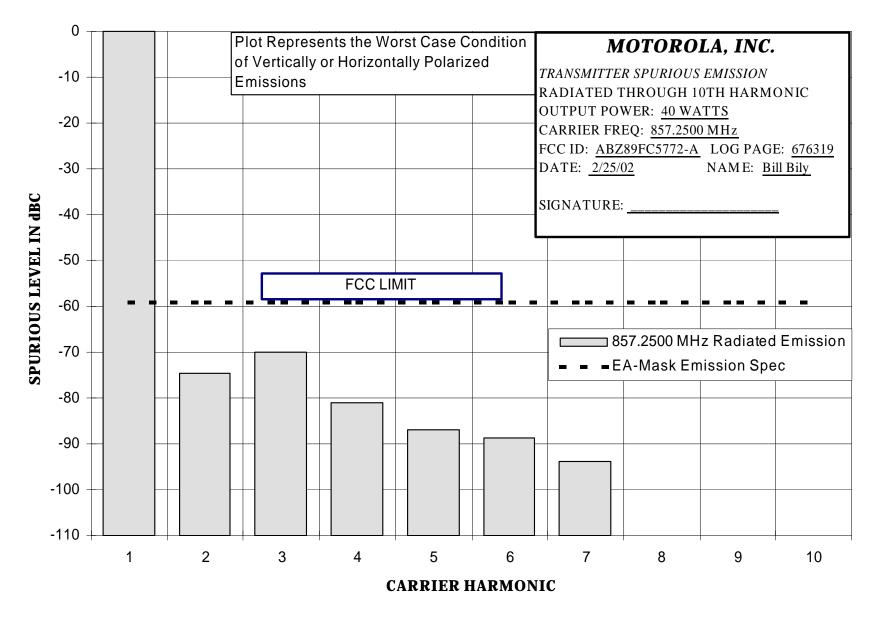
On any frequency displacement of greater than 37.5 kHz removed from the authorized frequency block, the power of any emission shall be attenuated below the transmitter power (P), in Watts, by at least 43 plus 10 $log_{10}(P)$ dB or 80 dB, whichever is the lesser attenuation.

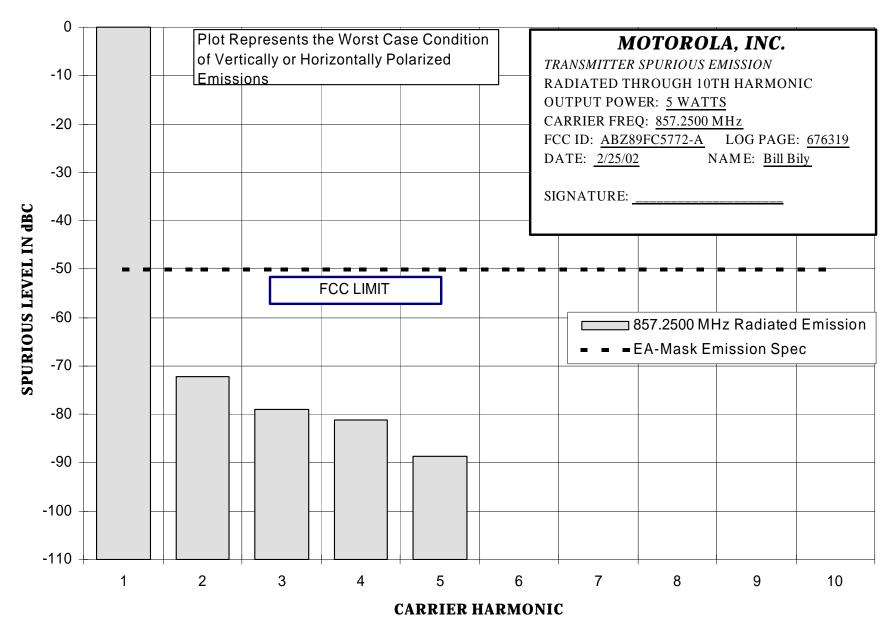
Modulation: Psuedorandom data

Carrier Frequency: A carrier centered at 857.25 MHz was measured. This frequency is near the center of the

operating band 851-870 MHz.

SPURIOUS EMISSION PLOTS:


EXHIBIT DESCRIPTION


11D-1 Radiated Spurious Emissions, Power Output at 40 Watts

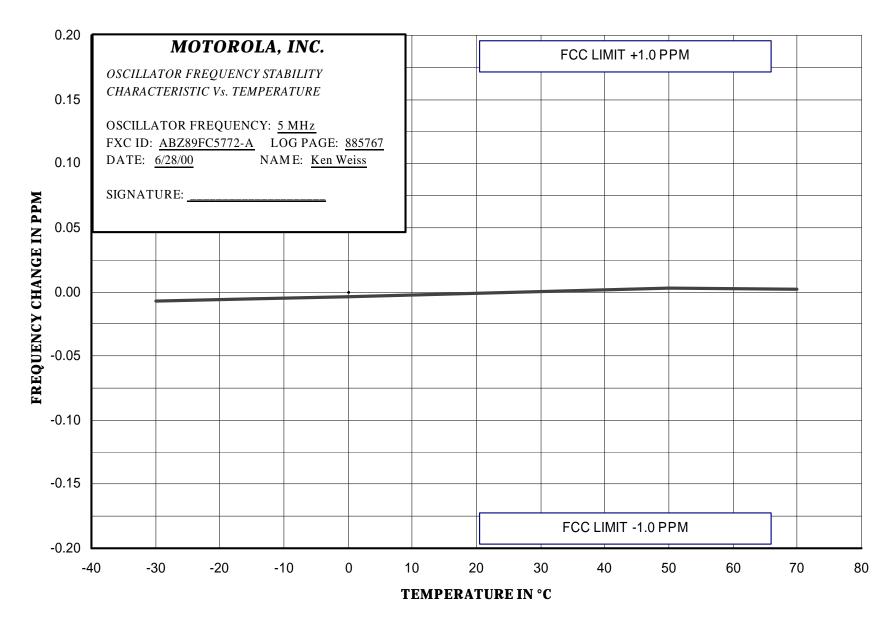
The specification limit is -59.0 dBC

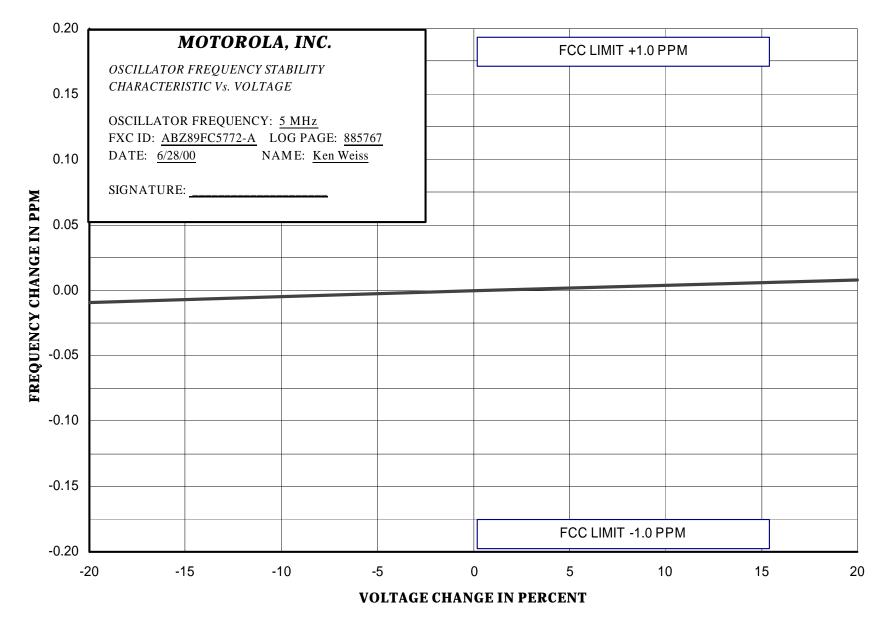
11D-2 Radiated Spurious Emissions, Power Output at 5 Watts

The specification limit is -50.0 dBC

OSCILLATOR FREQUENCY STABILITY

SPECIFICATION REQUIREMENT:


Reference: Part 90.213


Fixed and Base stations, operating at 851-866 MHz, must have a frequency stability of better than 1.5 PPM. Fixed and Base stations, operating at 866-869 MHz, must have a frequency stability of better than 1.0 PPM.

Manufacturer data for the system site frequency standard was used in generation of the following frequency stability exhibits.

FREQUENCY STABILITY PLOTS:

<u>EXHIBIT</u>	DESCRIPTION
11E-1	Frequency Stability Vs Temperature
11E-2	Frequency Stability Vs Voltage

TEST EQUIPMENT LIST

MODEL	MANUFACTURER	DESCRIPTION	Serial No.	Last Cal	Next Cal
438A	Hewlett Packard	RF Power Meter	3513U06093	11/05/99	11/05/02
8481A	Hewlett Packard	RF Power Sensor	2702A78679	12/02/98	12/02/01
8568B	Hewlett Packard	Spectrum Analyzer	2841A04405	06/18/00	06/18/03
7475A	Hewlett Packard	Plotter	2807F99291	no calibration required	
6071A	Fluke	Signal Generator	3005007	no calibration required	
83712A	Hewlett Packard	Signal Generator	3429A00455	no calibrat	ion required
85460A	Hewlett Packard	EMI Analyzer, Filter	3704A00467	10/12/99	10/12/02
85462A	Hewlett Packard	EMI Analyzer, RF/Display	3906A00500	10/12/99	10/12/02
(Various)	Weinschel, Kathrein, Bird	RF Loads	Various	no calibrat	ion required
3020A, etc.	Narda	Directional Coupler	Various	no calibrat	ion required