

3216 Chip antenna

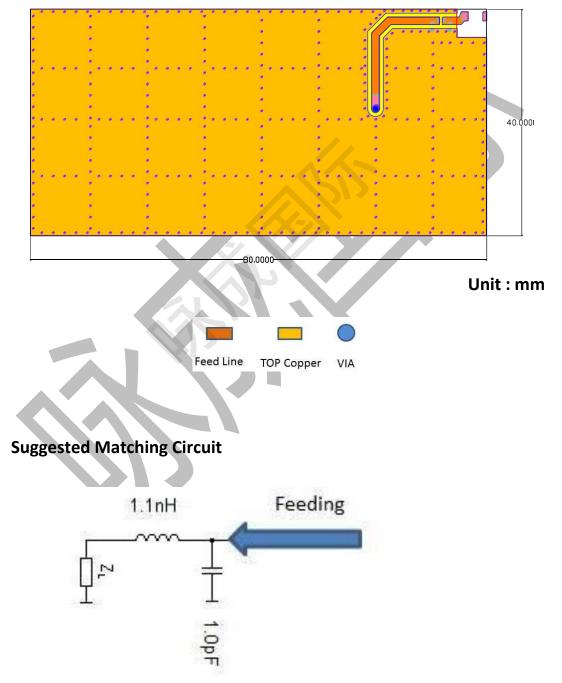
For Bluetooth / WLAN Applicationsd

咏成國際科技有限公司 電話: 13530576606 RAIN International Technology Co., Ltd. TEL: 13530576606 709, Building F, Yuxing Science and Technology Industrial Park, Nanchang Third Industrial Zone, Nanchang Community, Xixiang Street, Baoan District, Shenzhen, China

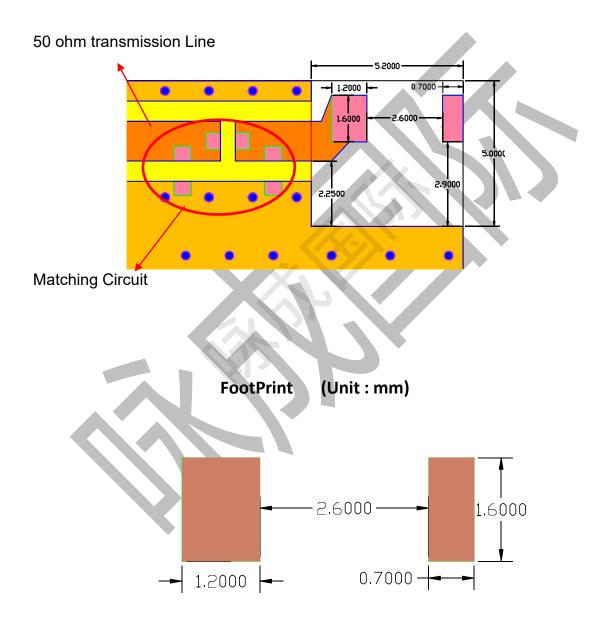
Part Number Information

RAI	NT <u>3216</u>	E	<u>245</u>	M	<u>02</u>	
Α	В	С	D	Е	F	
Α	Product Ser		Antenna			
B	Dimension L x W		3.2X1.6mm (+-0.2mm)			
С	Material		High K material			
D	Working Frequency		cy 2.4 ~ 2.5GHz			
E	Feeding mode		Monopol	Aonopole & Single Feeding		
F	Antenna type			Type=02		

1. Electrical Specification


Specification					
Part Number	RANT3216F245M02				
Central Frequency	2450	MHz			
Bandwidth	100 (Min.)	MHz			
Return Loss	-6.5 (Max)	dB			
Peak Gain	3	dBi			
Impedance	50	Ohm			
Operating Temperature	-40 ~ +85	°C			
Maximum Power	4	W			
Resistance to Soldering Heats	10 (@ 260°C)	sec.			
Polarization	Linear				
Azimuth Beamwidth	Omni-directional				
Termination	Cu / Sn (Leadless)				

Remark : Bandwidth & Peak Gain was measured under evaluation board of next page



2. Recommended PCB Pattern

Evaluation Board Dimension

Layout Dimensions in Clearance area(Size=5.2*5.0mm)

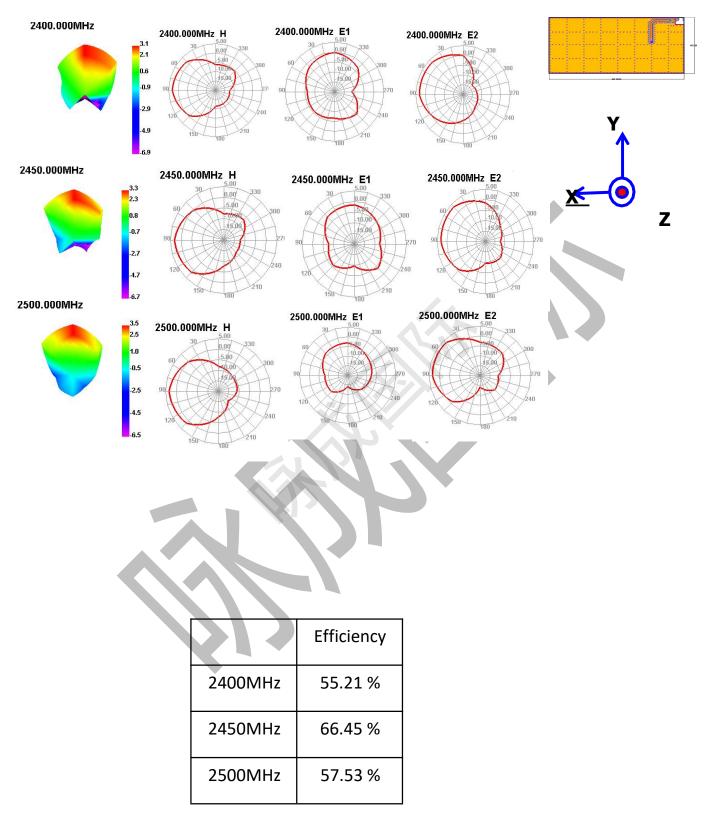
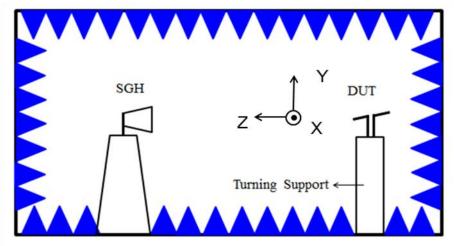
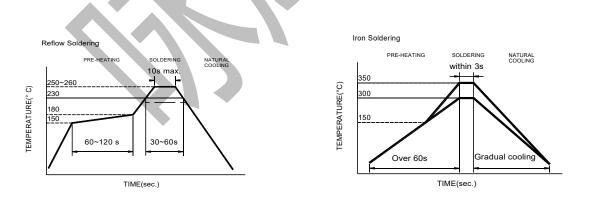

3. Measurement Results

Image: Note of the second se Cal 1 2.40000 GHz 2.45000 GHz 2.50000 GHz -10.070 dB -20.267 dB <mark>S22</mark> 1 •3 - 20--11.039 dB 10-- 0-- 10-2 -20-- -30--40--50 -60-Pwr -10 dBm Start 2 GHz Stop 3 GHz Ch1


Return Loss

Radiation Pattern

4. Reliability and Test Condictions

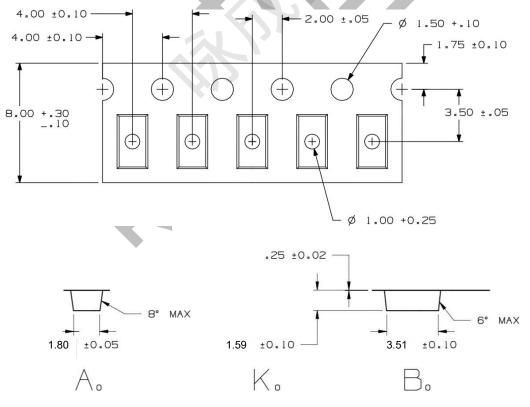

ITEM	REQUIREMENTS	TEST CONDITION	
Solderability	1. Wetting shall exceed 90% coverage 2. No visible mechanical damage TEMP (°C) 230°C 150°C 4±1 sec. 150°C	Pre-heating temperature:150°C/60sec. Solder temperature:230±5°C Duration:4±1sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin	
Solder heat Resistance	1. No visible mechanical damage 2. Central Freq. change :within $\pm 6\%$ TEMP (°C) 260°C 150°C 150°C 60sec	Pre-heating temperature:150°C/60sec. Solder temperature:260±5°C Duration:10±0.5sec. Solder:Sn-Ag3.0-Cu0.5 Flux for lead free: rosin	
Component Adhesion (Push test)	1. No visible mechanical damage	The device should be reflow soldered(230±5°C for 10sec.) to a tinned copper substrate A dynometer force gauge should be applied the side of the component. The device must with-ST-F 0.5 Kg without failure of the termination attached to component.	
Component Adhesion (Pull test)	1. No visible mechanical damage	Insert 10cm wire into the remaining open eye bend ,the ends of even wire lengths upward and wind together. Terminal shall not be remarkably damaged.	

Thermal shock	1. No visible mechanical damag		+85°C=>30±3min -40°C=>30±3min	RAIN	
	PhaseTemperature($^{\circ}$ C)1+85±5°C22Room12Temperature23-40±2°C24Room1	Time(min) 30±3 Within 3sec 30±3 Within 3sec	Test cycle:10 cycles The chip shall be stabilized at normal condition for 2~3 hours before measuring.		
Resistance to High Temperature	 No visible mechanical damag Central Freq. change :within : No disconnection or short circ 	±6%	Temperature: 85±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.		
Resistance to Low Temperature	 No visible mechanical damag Central Freq. change :within : No disconnection or short circ 	±6%	Temperature:-40±5°C Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.		
Humidity	 No visible mechanical damag Central Freq. change :within : No disconnection or short circ 	±6%	Temperature: 40±2°C Humidity: 90% to 95% RH Duration: 1000±12hrs The chip shall be stabilized at normal condition for 2~3 hours before measuring.		

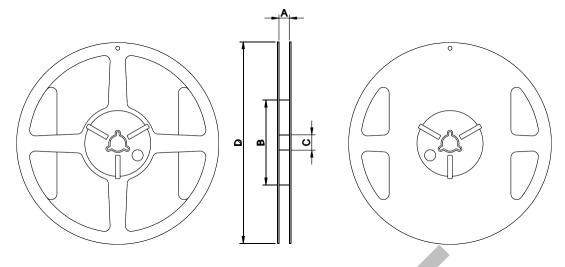
2

5. Soldering and Mounting

Mildly activated rosin fluxes are preferred. The minimum amount of solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. The terminations are suitable for all wave and re-flow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.


Recommended temperature profiles for re-flow soldering in Figure 1.

Products attachment with a soldering iron is discouraged due to the inherent process control limitations. In the event that a soldering iron must be employed the following precautions are recommended.


- Preheat circuit and products to 150°C
- Never contact the ceramic with the iron tip
- Use a 20 watt soldering iron with tip diameter of 1.0mm
- 280°C tip temperature (max)
- 1.0mm tip diameter (max)
- Limit soldering time to 3 sec.

6. Packaging Information

Tape Specification:

• Reel Specification: (7" Φ180 mm)

7" x 8 mm

Tape Width(mm)	A(mm)	B(mm)	C(mm)	D(mm)	Chip/Reel(pcs)
8	9.0±0.5	60±2	13.5±0.5	178±2	3000

7. Storage and Transportation Information

Storage Conditions

To maintain the solderability of terminal electrodes:

- 1. Temperature and humidity conditions: -10~ 40°C and 30~70% RH.
- 2. Recommended products should be used within 6 months from the time of delivery.
- 3. The packaging material should be kept where no chlorine or sulfur exists in the air.

Transportation Conditions

- 1. Products should be handled with care to avoid damage or contamination from perspiration and skin oils.
- 2. The use of tweezers or vacuum pick up is strongly recommended for individual components.
- 3. Bulk handling should ensure that abrasion and mechanical shock are minimized