Report No.: FG920117A # FCC RADIO TEST REPORT FCC ID **J9CQGM8180X** **Equipment** : Module **Model Name** : QGM8180X **Applicant** : Qualcomm Inc 5775 Morehouse Dr.San Diego, CA 92121-1714 (USA) Manufacturer : Universal Scientific Industrial (Shanghai) Co., Ltd. No. 1558, Zhang Dong Road, Zhangjiang Hi-Tech Park, Shanghai, P.R. China 201203 **Standard** : 47 CFR Part 2, 22(H), 24(E), 27(L) The product was received on Feb. 01, 2019 and testing was started from Feb. 27, 2019 and completed on Mar. 08, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Approved by: Jones Tsai TEL: 886-3-327-3456 SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) Page Number : 1 of 21 FAX: 886-3-328-4978 : Jul. 15, 2019 Issued Date : 01 ## **Table of Contents** Report No.: FG920117A | His | tory o | f this test reportf | 3 | |-----|--------|---|----| | Su | mmary | of Test Result | 4 | | 1 | Gene | ral Description | 5 | | | 1.1 | Product Feature of Equipment Under Test | 5 | | | 1.2 | Modification of EUT | 5 | | | 1.3 | Testing Location | 5 | | | 1.4 | Applicable Standards | 6 | | 2 | Test (| Configuration of Equipment Under Test | 7 | | | 2.1 | Test Mode | 7 | | | 2.2 | Connection Diagram of Test System | 7 | | | 2.3 | Support Unit used in test configuration | 8 | | | 2.4 | Measurement Results Explanation Example | 8 | | | 2.5 | Frequency List of Low/Middle/High Channels | 8 | | 3 | Cond | ucted Test Result | 9 | | | 3.1 | Measuring Instruments | 9 | | | 3.2 | Conducted Output Power and ERP/EIRP | 10 | | | 3.3 | Peak-to-Average Ratio | | | | 3.4 | 99% Occupied Bandwidth and 26dB Bandwidth Measurement | 12 | | | 3.5 | Conducted Band Edge | 13 | | | 3.6 | Conducted Spurious Emission | 14 | | | 3.7 | Frequency Stability | 15 | | 4 | Radia | ted Test Items | 16 | | | 4.1 | Measuring Instruments | 16 | | | 4.2 | Test Setup | 16 | | | 4.3 | Test Result of Radiated Test | | | | 4.4 | Field Strength of Spurious Radiation Measurement | | | 5 | | f Measuring Equipment | | | 6 | Unce | rtainty of Evaluation | 21 | | Ap | pendix | A. Test Results of Conducted Test | | | Api | pendix | B. Test Results of ERP/EIRP and Radiated Test | | | | | C. Test Setup Photographs | | TEL: 886-3-327-3456 Page Number : 2 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 : 01 ## History of this test report Report No.: FG920117A | Report No. | Version | Description | Issued Date | |------------|---------|-------------------------|---------------| | FG920117A | 01 | Initial issue of report | Jul. 15, 2019 | TEL: 886-3-327-3456 Page Number : 3 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## **Summary of Test Result** Report No.: FG920117A | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |----------------------------------|---|---|-----------------------|--| | | §2.1046 | Conducted Output Power | | | | | §22.913 (a)(2) | Effective Radiated Power | | | | 3.2 | §24.232 (c) | Equivalent Isotropic Radiated Power | Pass | - | | | §27.50 (d)(4) | Equivalent Isotropic Radiated Power | | | | 3.3 | §24.232 (d) | Peak-to-Average Ratio | Pass | - | | 3.4 | §2.1049
§22.917 (b)
§24.238 (b)
§27.53 (g) | Occupied Bandwidth | Pass | - | | 3.5 | §2.1051
§22.917 (a)
§24.238 (a)
§27.53 (g) | Band Edge Measurement | Pass | - | | 3.6 | §2.1051
§22.917 (a)
§24.238 (a)
§27.53 (g) | Conducted Emission | Pass | - | | | §2.1055 | | | - | | 3.7 §2.1055
§24.235
§27.54 | | Frequency Stability Temperature & Voltage | Pass | - | | 4.4 | §2.1053
§22.917 (a)
§24.238 (a)
§27.53 (h) | Field Strength of Spurious Radiation | Pass | Under limit
39.24 dB at
4128.000 MHz | #### **Declaration of Conformity:** The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. #### **Comments and Explanations:** The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. Reviewed by: Wii Chang Report Producer: Elise Chang TEL: 886-3-327-3456 Page Number : 4 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## 1 General Description ## 1.1 Product Feature of Equipment Under Test WCDMA/LTE and GNSS | Product Specification subjective to this standard | | | | | |---|---|--|--|--| | Antenna Type | WWAN: Dipole Antenna GPS/Glonass/BDS/Galileo/SBAS: Dipole Antenna | | | | | | GP5/Gioriass/BD5/Gailleo/SBA5. Dipole Antenna | | | | Report No.: FG920117A #### 1.2 Modification of EUT No modifications are made to the EUT during all test items. ## 1.3 Testing Location | Test Site | SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory | |--------------------|---| | Test Site Location | No.52, Huaya 1st Rd., Guishan Dist.,
Taoyuan City, Taiwan (R.O.C.)
TEL: +886-3-327-3456
FAX: +886-3-328-4978 | | Test Site No. | Sporton Site No. | | rest site No. | TH03-HY | | Test Engineer | George Chen | | Temperature | 21~24℃ | | Relative Humidity | 51~54% | Note: The test site complies with ANSI C63.4 2014 requirement. | Test Site | SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory | |--------------------|---| | Test Site Location | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,
Taoyuan City, Taiwan (R.O.C.)
TEL: +886-3-327-0868
FAX: +886-3-327-0855 | | Test Site No. | Sporton Site No. | | rest site No. | 03CH12-HY | | Test Engineer | Jack Cheng, Lance Chiang and Chuan Chul | | Temperature | 23~24℃ | | Relative Humidity | 63~66% | Note: The test site complies with ANSI C63.4 2014 requirement. FCC Designation No.: TW1190 and TW0007 TEL: 886-3-327-3456 Page Number : 5 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## 1.4 Applicable Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: Report No.: FG920117A - + ANSI C63.26-2015 - ANSI / TIA-603-E - 47 CFR Part 2, 22(H), 24(E), 27(L) - FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01 - FCC KDB 412172 D01 Determining ERP and EIRP v01r01 #### Remark: - **1.** All test items were verified and recorded according to the standards and without any deviation during the test. - 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report. TEL: 886-3-327-3456 Page Number : 6 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## 2 Test Configuration of Equipment Under Test #### 2.1 Test Mode Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power. Report No.: FG920117A Radiated emissions were investigated as following frequency range: - 30 MHz to 9000 MHz for WCDMA Band V. - 2. 30 MHz to 18000 MHz for WCDMA Band IV. - 3. 30 MHz to 19100 MHz for WCDMA Band II. All modes and data rates and positions were investigated. Test modes are chosen to be reported as the worst case configuration below: | Test Modes | | | | | | | | |---------------|---------------------|---------------------|--|--|--|--|--| | Band | Radiated TCs | Conducted TCs | | | | | | | WCDMA Band V | ■ RMC 12.2Kbps Link | ■ RMC 12.2Kbps Link | | | | | | | WCDMA Band II | ■ RMC 12.2Kbps Link | ■ RMC 12.2Kbps Link | | | | | | | WCDMA Band IV | ■ RMC 12.2Kbps Link | ■ RMC 12.2Kbps Link | | | | | | ## 2.2 Connection Diagram of Test System TEL: 886-3-327-3456 Page Number : 7 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 2.3 Support Unit used in test configuration | Item | Equipment | Trade Name | Model No. | FCC ID | Data Cable | Power Cord | |------|------------------|------------|-----------|--------|------------|-------------------| | 1. | System Simulator | R&S | CMU 200 | N/A | N/A | Unshielded, 1.8 m | | 2. | System Simulator | Anritsu | MT8820C | N/A | N/A | Unshielded, 1.8 m | Report No.: FG920117A ## 2.4 Measurement Results Explanation Example #### For all conducted test items: The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level. The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor. The following shows an offset computation example with RF cable loss 4.2 dB and a 10dB attenuator. Example: Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 4.2 + 10 = 14.2 (dB) ### 2.5 Frequency List of Low/Middle/High Channels | Frequency List | | | | | | | | |--|-----------|--------|--------|--------|--|--|--| | Band Channel/Frequency(MHz) Lowest Middle High | | | | | | | | | WCDMA | Channel | 4132 | 4182 | 4233 | | | | | Band V | Frequency | 826.4 | 836.4 | 846.6 | | | | | WCDMA | Channel | 9262 | 9400 | 9538 | | | | | Band II | Frequency | 1852.4 | 1880.0 | 1907.6 | | | | | WCDMA | Channel | 1312 | 1413 | 1513 | | | | | Band IV | Frequency | 1712.4 | 1732.6 | 1752.6 | | | | TEL: 886-3-327-3456 Page Number : 8 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 3 Conducted Test Result ## 3.1 Measuring Instruments See list of measuring instruments of this test report. #### 3.1.1 Test Setup #### 3.1.2 Conducted Output Power Report No.: FG920117A # 3.1.3 Peak-to-Average Ratio, Occupied Bandwidth, Conducted Band-Edge and Conducted Spurious Emission #### 3.1.4 Frequency Stability #### 3.1.5 Test Result of Conducted Test Please refer to Appendix A. TEL: 886-3-327-3456 Page Number : 9 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 3.2 Conducted Output Power and ERP/EIRP #### 3.2.1 Description of the Conducted Output Power and ERP/EIRP A system simulator was used to establish communication with the EUT. Its parameters were set to enforce EUT transmitting at the maximum power. The measured power in the radio frequency on the transmitter output terminals shall be reported. Report No.: FG920117A The ERP of mobile transmitters must not exceed 7 Watts for WCDMA Band V. The EIRP of mobile transmitters must not exceed 2 Watts for and WCDMA Band II. The EIRP of mobile transmitters must not exceed 1 Watts for WCDMA Band IV. According to KDB 412172 D01 Power Approach, $EIRP = P_T + G_T - L_C$, ERP = EIRP - 2.15, where P_T = transmitter output power in dBm G_T = gain of the transmitting antenna in dBi L_C = signal attenuation in the connecting cable between the transmitter and antenna in dB #### 3.2.2 Test Procedures - 1. The transmitter output port was connected to the system simulator. - 2. Set EUT at maximum power through system simulator. - 3. Select lowest, middle, and highest channels for each band and different modulation. - 4. Measure the maximum burst average power for maximum average power for other modulation signal. TEL: 886-3-327-3456 Page Number : 10 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## 3.3 Peak-to-Average Ratio #### 3.3.1 Description of the PAR Measurement The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB. #### 3.3.2 Test Procedures The testing follows FCC KDB 971168 D01 v03r01 Section 5.7.1 - 1. The EUT was connected to spectrum analyzer and system simulator via a power divider. - 2. Set EUT to transmit at maximum output power. - 3. When the duty cycle is less than 98%, then signal gating will be implemented on the spectrum analyzer by triggering from the system simulator. Report No.: FG920117A - 4. Set the CCDF (Complementary Cumulative Distribution Function) option of the spectrum analyzer. - 5. Record the maximum PAPR level associated with a probability of 0.1%. TEL: 886-3-327-3456 Page Number : 11 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 3.4 99% Occupied Bandwidth and 26dB Bandwidth Measurement #### 3.4.1 Description of 99% Occupied Bandwidth and 26dB Bandwidth Measurement The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power. Report No.: FG920117A The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth. #### 3.4.2 Test Procedures The testing follows FCC KDB 971168 D01 v03r01 Section 4.2 - 1. The EUT was connected to spectrum analyzer and system simulator via a power divider. - The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW. - 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW. - 4. Set the detection mode to peak, and the trace mode to max hold. - 5. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value) - 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X). - 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "–X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers. - 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth. TEL: 886-3-327-3456 Page Number : 12 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 3.5 Conducted Band Edge #### 3.5.1 Description of Conducted Band Edge Measurement The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. Report No.: FG920117A #### 3.5.2 Test Procedures The testing follows FCC KDB 971168 D01 v03r01 Section 6.0. - 1. The EUT was connected to the spectrum analyzer and system simulator via a power divider. - 2. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. The band edges of low and high channels for the highest RF powers were measured. - 4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 5. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) TEL: 886-3-327-3456 Page Number : 13 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 3.6 Conducted Spurious Emission #### 3.6.1 Description of Conducted Spurious Emission Measurement The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. Report No.: FG920117A It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic. #### 3.6.2 Test Procedures The testing follows FCC KDB 971168 D01 v03r01 Section 6.0. - 1. The EUT was connected to the spectrum analyzer and system simulator via a power divider. - The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator.The path loss was compensated to the results for each measurement. - 3. The middle channel for the highest RF power within the transmitting frequency was measured. - 4. The conducted spurious emission for the whole frequency range was taken. - 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 6. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) TEL: 886-3-327-3456 Page Number : 14 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 3.7 Frequency Stability #### 3.7.1 Description of Frequency Stability Measurement 22.355 The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within ±0.00025% (±2.5ppm) of the center frequency. Report No.: FG920117A 24.235 & 27.54 The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. #### 3.7.2 Test Procedures for Temperature Variation The testing follows FCC KDB 971168 D01 v03r01 Section 9.0. - 1. The EUT was set up in the thermal chamber and connected with the system simulator. - With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute. - 3. With power OFF, the temperature was raised in 10°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute. #### 3.7.3 Test Procedures for Voltage Variation The testing follows FCC KDB 971168 D01 v03r01 Section 9.0. - 1. The EUT was placed in a temperature chamber at 20±5° C and connected with the system simulator. - 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT. - 3. The variation in frequency was measured for the worst case. TEL: 886-3-327-3456 Page Number : 15 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 4 Radiated Test Items ## 4.1 Measuring Instruments See list of measuring instruments of this test report. ## 4.2 Test Setup #### For radiated test from 30MHz to 1GHz Report No.: FG920117A #### For radiated test from 1GHz to 18GHz TEL: 886-3-327-3456 Page Number : 16 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 #### For radiated test above 18GHz Report No.: FG920117A ## 4.3 Test Result of Radiated Test Please refer to Appendix B. TEL: 886-3-327-3456 Page Number : 17 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ### 4.4 Field Strength of Spurious Radiation Measurement #### 4.4.1 Description of Field Strength of Spurious Radiated Measurement The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic. Report No.: FG920117A #### 4.4.2 Test Procedures The testing follows FCC KDB 971168 D01 v03r01 Section 5.8 and ANSI / TIA-603-E Section 2.2.12. - 1. The EUT was placed on a rotatable wooden table 0.8 meters for frequency below 1GHz and 1.5 meter for frequency above 1GHz above the ground. - 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower. - 3. The table was rotated 360 degrees to determine the position of the highest spurious emission. - 4. The height of the receiving antenna is varied between one meter and four meters to search for the maximum spurious emission for both horizontal and vertical polarizations. - 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking record of maximum spurious emission. - 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator. - 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission. - 8. Taking the record of output power at antenna port. - 9. Repeat step 7 to step 8 for another polarization. - 10. EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain - 11. ERP (dBm) = EIRP 2.15 - 12. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. - 13. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) TEL: 886-3-327-3456 Page Number : 18 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## 5 List of Measuring Equipment | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |-------------------------|--------------------|--------------------------------------|----------------------|---------------------|---------------------|---------------------------------|---------------|--------------------------| | Loop Antenna | TESEQ | HLA 6120 | 31244 | 9 kHz~30 MHz | Mar. 29, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Mar. 28, 2019 | Radiation
(03CH12-HY) | | Bilog Antenna | TESEQ | CBL
6111D&00800
N1D01N-06 | 37059&01 | 30MHz~1GHz | Oct. 13, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Oct. 12, 2019 | Radiation
(03CH12-HY) | | Horn Antenna | SCHWARZBE
CK | BBHA 9120D | 9120D-132
8 | 1GHz ~ 18GHz | Oct. 19, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Oct. 18, 2019 | Radiation
(03CH12-HY) | | SHF-EHF Horn
Antenna | SCHWARZBE
CK | BBHA 9170 | BBHA9170
576 | 18GHz ~ 40GHz | May 08, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | May 07, 2019 | Radiation
(03CH12-HY) | | Preamplifier | COM-POWER | PA-103 | 161075 | 10MHz~1GHz | Mar. 26, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Mar. 25, 2019 | Radiation
(03CH12-HY) | | Preamplifier | Jet-Power | JPA0118-55-3
03K | 171000180
0054002 | 1GHz~18GHz | Apr. 17, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Apr. 16, 2019 | Radiation
(03CH12-HY) | | Preamplifier | EMEC | EM18G40G | 060715 | 18GHz ~ 40GHz | Dec. 06, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Dec. 05, 2019 | Radiation
(03CH12-HY) | | EMI Test Receiver | Rohde &
Schwarz | ESU26 | 100390 | 20Hz~26.5GHz | Dec. 26, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Dec. 25, 2019 | Radiation
(03CH12-HY) | | Signal Generator | Rohde &
Schwarz | SMF100A | 101107 | 100kHz~40GHz | May 21, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | May 20, 2019 | Radiation
(03CH12-HY) | | Filter | Wainwright | WLJ4-1000-15
30-6000-40ST | SN3 | 1.53 GHz
Lowpass | Mar. 21, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Mar. 20, 2019 | Radiation
(03CH12-HY) | | Filter | Wainwright | WHKX12-108
0-1200-1500-6
0SS | SN2 | 1.2G High Pass | Sep. 16, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Sep. 15, 2019 | Radiation
(03CH12-HY) | | Filter | Wainwright | WHKX12-270
0-3000-18000-
60ST | SN2 | 3GHz High Pass | Mar. 21, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Mar. 20, 2019 | Radiation
(03CH12-HY) | | Filter | Woken | WHKX8-5272.
5-6750-18000-
40ST | SN2 | 6.75G Highpass | Mar.21, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Mar .20, 2019 | Radiation
(03CH12-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
126E | 0058/126E | 30M-18G | Mar. 14, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Mar. 13, 2019 | Radiation
(03CH12-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | 505134/2 | 30M~40GHz | Oct. 16, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Oct. 15, 2019 | Radiation
(03CH12-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | 800740/2 | 30M~40GHz | Oct. 16, 2018 | Mar. 01, 2019~
Mar. 08, 2019 | Oct. 15, 2019 | Radiation (03CH12-HY) | | Antenna Mast | EMEC | AM-BS-4500-
B | N/A | 1m~4m | N/A | Mar. 01, 2019~
Mar. 08, 2019 | N/A | Radiation (03CH12-HY) | | Turn Table | EMEC | TT2000 | N/A | 0~360 Degree | N/A | Mar. 01, 2019~
Mar. 08, 2019 | N/A | Radiation (03CH12-HY) | | Software | Audix | E3
6.2009-8-24 | RK-000989 | N/A | N/A | Mar. 01, 2019~
Mar. 08, 2019 | N/A | Radiation (03CH12-HY) | Report No.: FG920117A TEL: 886-3-327-3456 Page Number : 19 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |---------------------------|--------------------|-----------|------------|--------------------------------|---------------------|---------------|---------------|------------------------| | Spectrum
Analyzer | Rohde &
Schwarz | FSP30 | 101329 | 9kHz~30GHz | Jun. 29, 2018 | Feb. 27, 2019 | Jun. 28, 2019 | Conducted
(TH03-HY) | | Temperature
Chamber | ESPEC | SU-641 | 92013721 | -30℃ ~70℃ | Dec. 06, 2017 | Feb. 27, 2019 | Dec. 05, 2019 | Conducted
(TH03-HY) | | Programmable Power Supply | GW Instek | PSS-2005 | EL883644 | Voltage:0~20V;C
urrent:0~5A | Dec. 06, 2017 | Feb. 27, 2019 | Dec. 05, 2019 | Conducted
(TH03-HY) | | Base Station
(Measure) | Rohde &
Schwarz | CMU200 | 117995 | GSM / GPRS /
WCDMA / CDMA | Aug. 10, 2018 | Feb. 27, 2019 | Aug. 09, 2019 | Conducted
(TH03-HY) | Report No.: FG920117A TEL: 886-3-327-3456 Page Number : 20 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## 6 Uncertainty of Evaluation #### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz) | Measuring Uncertainty for a Level of | 5.10 | |--------------------------------------|------| | Confidence of 95% (U = 2Uc(y)) | 3.10 | Report No.: FG920117A #### Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz) | Measuring Uncertainty for a Level of | 5.20 | |--------------------------------------|------| | Confidence of 95% (U = 2Uc(y)) | | #### <u>Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)</u> | Measuring Uncertainty for a Level of | 4.70 | |--------------------------------------|------| | Confidence of 95% (U = 2Uc(y)) | 4.70 | TEL: 886-3-327-3456 Page Number : 21 of 21 FAX: 886-3-328-4978 Issued Date : Jul. 15, 2019 ## **Appendix A. Test Results of Conducted Test** ## Conducted Output Power(Average power) | | Conducted Power (*Unit: dBm) | | | | | | | | |-----------------|------------------------------|------------|-------|---------------|-------|--------|--|--| | Band | V | VCDMA Band | V | WCDMA Band II | | | | | | Channel | 4132 | 4182 | 4233 | 9262 | 9400 | 9538 | | | | Frequency | 826.4 | 836.4 | 846.6 | 1852.4 | 1880 | 1907.6 | | | | RMC 12.2K | 23.61 | 23.73 | 23.88 | 23.52 | 23.42 | 23.82 | | | | HSDPA Subtest-1 | 23.53 | 23.65 | 23.45 | 23.37 | 23.47 | 23.43 | | | | HSDPA Subtest-2 | 23.53 | 23.63 | 23.53 | 23.37 | 23.31 | 23.59 | | | | HSDPA Subtest-3 | 23.01 | 23.07 | 23.01 | 22.82 | 22.87 | 22.97 | | | | HSDPA Subtest-4 | 22.94 | 22.96 | 22.98 | 22.84 | 22.77 | 23.05 | | | | HSUPA Subtest-1 | 23.00 | 23.08 | 22.93 | 22.85 | 22.83 | 23.04 | | | | HSUPA Subtest-2 | 20.94 | 20.99 | 20.93 | 20.79 | 20.98 | 21.14 | | | | HSUPA Subtest-3 | 21.83 | 21.90 | 21.85 | 21.76 | 21.91 | 22.07 | | | | HSUPA Subtest-4 | 20.89 | 20.92 | 20.88 | 20.65 | 20.88 | 21.01 | | | | HSUPA Subtest-5 | 22.80 | 22.92 | 22.82 | 22.66 | 22.65 | 23.02 | | | Report No. : FG920117A | SPORTON LAB. FCC RAD | DIO TEST REPORT | | Report No. : FG920117A | |----------------------|-----------------|--------------------|------------------------| | | Conducted | Power (*Unit: dBm) | | | Band | | WCDMA Band IV | | | Channel | 1312 | 1413 | 1513 | | Frequency | 1712.4 | 1732.6 | 1752.6 | | RMC 12.2K | 23.55 | 23.58 | 23.72 | | HSDPA Subtest-1 | 23.43 | 23.40 | 23.49 | | HSDPA Subtest-2 | 23.40 | 23.28 | 23.51 | | HSDPA Subtest-3 | 22.82 | 22.97 | 23.10 | | HSDPA Subtest-4 | 22.87 | 22.77 | 22.98 | | HSUPA Subtest-1 | 22.92 | 22.86 | 23.05 | | HSUPA Subtest-2 | 20.95 | 20.90 | 20.95 | | HSUPA Subtest-3 | 21.77 | 21.89 | 22.07 | | HSUPA Subtest-4 | 20.84 | 20.84 | 21.04 | | HSUPA Subtest-5 | 22.73 | 22.84 | 22.99 | ## A2. WCDMA # Peak-to-Average Ratio | Mode | WCDMA Band V | WCDMA Band II | WCDMA Band IV | Limit: 13dB | |------------|--------------|---------------|---------------|-------------| | Mod. | RMC 12.2Kbps | RMC 12.2Kbps | RMC 12.2Kbps | Result | | Lowest CH | 3.44 | 3.40 | 3.44 | | | Middle CH | 3.44 | 3.32 | 3.40 | PASS | | Highest CH | 3.60 | 3.48 | 3.40 | | Report No. : FG920117A TEL: 886-3-327-3456 Page Number : A2-1 of 15 Report No.: FG920117A WCDMA Band V (RMC 12.2Kbps) WCDMA Band II (RMC 12.2Kbps) **Lowest Channel Lowest Channel** * * Trace 1 22.35 dBm 26.23 dBm 3.88 dB Peak Crest Crest 10 % 1 % .1 % Date: 26.FEB.2019 10:49:14 Date: 26.FEB.2019 10:33:02 **Middle Channel Middle Channel** * * Trace 1 22.62 dBm 26.30 dBm 3.68 dB 1.84 dB 2.84 dB 3.44 dB 3.72 dB 10 % 1 % .1 % **Highest Channel Highest Channel** TEL: 886-3-327-3456 Page Number: A2-2 of 15 WCDMA Band IV (RMC 12.2Kbps) **Lowest Channel** * Trace 1 22.19 dBm 26.09 dBm 3.90 dB Mean Peak Crest Date: 27.FEB.2019 14:21:04 **Middle Channel** 1.84 dB 2.80 dB 3.40 dB 3.60 dB **Highest Channel** * Report No.: FG920117A TEL: 886-3-327-3456 Page Number : A2-3 of 15 # 26dB Bandwidth | Mode | de WCDMA Band V WCDMA Band II | | WCDMA Band IV | |------------|--------------------------------|------|---------------| | Mod. | lod. RMC 12.2Kbps RMC 12.2Kbps | | RMC 12.2Kbps | | Lowest CH | 4.70 | 4.72 | 4.73 | | Middle CH | 4.72 | 4.72 | 4.72 | | Highest CH | 4.69 | 4.72 | 4.72 | Report No. : FG920117A TEL: 886-3-327-3456 Page Number : A2-4 of 15 WCDMA Band V (RMC 12.2Kbps) WCDMA Band II (RMC 12.2Kbps) **Lowest Channel Lowest Channel** * * Date: 26.FEB.2019 10:34:56 Date: 26.FEB.2019 10:19:07 **Middle Channel Middle Channel Highest Channel Highest Channel** Report No.: FG920117A TEL: 886-3-327-3456 Page Number : A2-5 of 15 TEL: 886-3-327-3456 Page Number: A2-6 of 15 # Occupied Bandwidth | Mode | lode WCDMA Band V WCDMA Band II | | WCDMA Band IV | |------------|---------------------------------|------|---------------| | Mod. | od. RMC 12.2Kbps RMC 12.2Kbps | | RMC 12.2Kbps | | Lowest CH | 4.14 | 4.14 | 4.16 | | Middle CH | 4.13 | 4.16 | 4.15 | | Highest CH | 4.14 | 4.15 | 4.15 | Report No. : FG920117A TEL: 886-3-327-3456 Page Number : A2-7 of 15 WCDMA Band V (RMC 12.2Kbps) WCDMA Band II (RMC 12.2Kbps) **Lowest Channel Lowest Channel** * * Date: 26.FEB.2019 10:37:42 Date: 26.FEB.2019 10:21:41 **Middle Channel Middle Channel Highest Channel Highest Channel** Report No.: FG920117A TEL: 886-3-327-3456 Page Number : A2-8 of 15 TEL: 886-3-327-3456 Page Number : A2-9 of 15 ## **Conducted Band Edge** Report No.: FG920117A TEL: 886-3-327-3456 Page Number : A2-10 of 15 Report No.: FG920117A TEL: 886-3-327-3456 Page Number: A2-11 of 15 ## **Conducted Spurious Emission** Report No.: FG920117A TEL: 886-3-327-3456 Page Number: A2-12 of 15 Report No.: FG920117A TEL: 886-3-327-3456 Page Number: A2-13 of 15 # Frequency Stability | Test Conditions | Middle Channel | WCDMA Band V
(RMC 12.2Kbps) | Limit
2.5ppm | |------------------|-------------------|--------------------------------|-----------------| | Temperature (°C) | Voltage (Volt) | Deviation (ppm) | Result | | 50 | Normal Voltage | 0.0012 | | | 40 | Normal Voltage | 0.0036 | | | 30 | Normal Voltage | 0.0024 | | | 20(Ref.) | Normal Voltage | 0.0000 | | | 10 | Normal Voltage | 0.0000 | | | 0 | Normal Voltage | 0.0012 | | | -10 | Normal Voltage | 0.0012 | PASS | | -20 | Normal Voltage | 0.0036 | | | -30 | Normal Voltage | 0.0024 | | | 20 | Maximum Voltage | 0.0012 | | | 20 | Normal Voltage | 0.0000 | | | 20 | Battery End Point | 0.0000 | | Report No. : FG920117A | Test Conditions | Middle Channel | WCDMA Band II
(RMC 12.2Kbps) | Limit
Note 2. | |------------------|-------------------|---------------------------------|------------------| | Temperature (°C) | Voltage (Volt) | Deviation (ppm) | Result | | 50 | Normal Voltage | 0.0005 | | | 40 | Normal Voltage | 0.0011 | | | 30 | Normal Voltage | 0.0027 | | | 20(Ref.) | Normal Voltage | 0.0000 | | | 10 | Normal Voltage | 0.0005 | | | 0 | Normal Voltage | 0.0005 | | | -10 | Normal Voltage | 0.0005 | PASS | | -20 | Normal Voltage | 0.0011 | | | -30 | Normal Voltage | 0.0016 | | | 20 | Maximum Voltage | 0.0011 | | | 20 | Normal Voltage | 0.0000 | | | 20 | Battery End Point | 0.0000 | | TEL: 886-3-327-3456 Page Number : A2-14 of 15 | Test Conditions | Middle Channel | WCDMA Band IV
(RMC 12.2Kbps) | Limit
Note 2. | |------------------|-------------------|---------------------------------|------------------| | Temperature (°C) | Voltage (Volt) | Deviation (ppm) | Result | | 50 | Normal Voltage | 0.0023 | | | 40 | Normal Voltage | 0.0012 | | | 30 | Normal Voltage | 0.0006 | | | 20(Ref.) | Normal Voltage | 0.0000 | | | 10 | Normal Voltage | 0.0006 | | | 0 | Normal Voltage | 0.0012 | | | -10 | Normal Voltage | 0.0012 | PASS | | -20 | Normal Voltage | 0.0023 | | | -30 | Normal Voltage | 0.0012 | | | 20 | Maximum Voltage | 0.0006 | | | 20 | Normal Voltage | 0.0000 | | | 20 | Battery End Point | 0.0006 | | Report No.: FG920117A #### Note: - 1. Normal Voltage = 3.8V. ; Battery End Point (BEP) = 3.6 V.; Maximum Voltage =4.2 V - **2.** The frequency fundamental emissions stay within the authorized frequency block. TEL: 886-3-327-3456 Page Number : A2-15 of 15 ## **Appendix B. Test Results of ERP/EIRP and Radiated Test** Report No. : FG920117A ## **ERP/EIRP** | Channel Mode | | Conducted | | ERP | | |--------------|--------------------|-----------|---------------|----------|--------| | Chamilei | Chamiei Wode | | Power (Watts) | ERP(dBm) | ERP(W) | | Lowest | WCDMA Band V | 23.61 | 0.2296 | 23.56 | 0.2270 | | Middle | RMC 12.2Kbps | 23.73 | 0.2360 | 23.68 | 0.2333 | | Highest | (GT - LC = 2.1 dB) | 23.88 | 0.2443 | 23.83 | 0.2415 | | Limit | ERP < 7W | Result | | PA | SS | | Channel Mode | | Conducted | | EIRP | | |--------------|------------------|-----------|---------------|-----------|---------| | Chamilei | Chaine | | Power (Watts) | EIRP(dBm) | EIRP(W) | | Lowest | WCDMA Band II | 23.52 | 0.2249 | 28.52 | 0.7112 | | Middle | RMC 12.2Kbps | 23.42 | 0.2198 | 28.42 | 0.6950 | | Highest | (GT - LC = 5 dB) | 23.82 | 0.2410 | 28.82 | 0.7621 | | Limit | EIRP < 2W | Result | | PA | SS | | Channel | Mode | Cond | ucted | EIRP | | | |---------|--------------------|-------------|---------------|-----------|---------|--| | | Wiode | Power (dBm) | Power (Watts) | EIRP(dBm) | EIRP(W) | | | Lowest | WCDMA Band IV | 23.55 | 0.2265 | 29.35 | 0.8610 | | | Middle | RMC 12.2Kbps | 23.58 | 0.2280 | 29.38 | 0.8670 | | | Highest | (GT - LC = 5.8 dB) | 23.72 | 0.2355 | 29.52 | 0.8954 | | | Limit | EIRP < 1W | Re | sult | PASS | | | # **Radiated Spurious Emission** ## **WCDMA 850** Report No.: FG920117A | WCDMA 850 | | | | | | | | | | |---------------|----------------------|--------------|------------------|-------------------------|-------------------------|--------------------------|----------------------------|-----------------------------|-----------------------| | Channel | Frequency
(MHz) | ERP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable
loss
(dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | 1648 | -70.16 | -13 | -57.16 | -52.54 | -75.75 | 0.92 | 8.66 | Н | | | 2480 | -69.35 | -13 | -56.35 | -57.09 | -76.73 | 1.15 | 10.67 | Н | | | 3304 | -63.34 | -13 | -50.34 | -53.66 | -71.89 | 1.32 | 12.03 | Н | | | 4128 | -52.24 | -13 | -39.24 | -47.12 | -61.39 | 1.47 | 12.77 | Н | | | | | | | | | | | Н | | Lowest | | | | | | | | | Н | | Lowest | 1648 | -65.10 | -13 | -52.10 | -46.94 | -70.69 | 0.92 | 8.66 | V | | | 2480 | -66.48 | -13 | -53.48 | -54.4 | -73.86 | 1.15 | 10.67 | V | | | 3304 | -65.73 | -13 | -52.73 | -56.52 | -74.28 | 1.32 | 12.03 | V | | | 4128 | -60.33 | -13 | -47.33 | -55.28 | -69.48 | 1.47 | 12.77 | V | | | | | | | | | | | V | | | | | | | | | | | V | | | 1672 | -70.26 | -13 | -57.26 | -52.7 | -75.73 | 1.24 | 8.85 | Н | | | 2509 | -68.66 | -13 | -55.66 | -56.46 | -75.58 | 1.44 | 10.51 | Н | | | 3344 | -61.23 | -13 | -48.23 | -51.52 | -69.27 | 1.74 | 11.93 | Н | | | 4176 | -52.96 | -13 | -39.96 | -47.97 | -60.84 | 2.07 | 12.10 | Н | | | | | | | | | | | Н | | N 4: el ell e | | | | | | | | | Н | | Middle | 1672 | -65.28 | -13 | -52.28 | -47.06 | -70.75 | 1.24 | 8.85 | V | | | 2509 | -65.68 | -13 | -52.68 | -53.66 | -72.60 | 1.44 | 10.51 | V | | | 3344 | -64.37 | -13 | -51.37 | -55.11 | -72.41 | 1.74 | 11.93 | V | | | 4176 | -59.73 | -13 | -46.73 | -54.87 | -67.61 | 2.07 | 12.10 | V | | | | | | | | | | | V | | | | | | | | | | | V | TEL: 886-3-327-3456 Page Number: B2-1 of 6 1696 -68.59 -13 -55.59 -51.08 -74.35 0.94 8.84 Н 2536 -68.35 -13 -55.35 -56.18 -75.78 1.16 10.74 Н 3392 -56.21 -13 -43.21 -46.42 -64.96 1.34 12.24 Η 4240 -53.92 -13 -40.92 -49.29 -63.07 1.45 12.75 Η Н Н Н Highest V 1696 -63.96 -13 -50.96 -45.71 -69.72 0.94 8.84 -13 10.74 ٧ 2536 -65.87 -52.87 -53.83 -73.30 1.16 3392 -60.11 -13 -47.11 -50.75 -68.86 1.34 12.24 V 4240 -61.74 -13 -48.74 -57.17 -70.89 1.45 12.75 ٧ V ٧ V Report No.: FG920117A Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line. TEL: 886-3-327-3456 Page Number : B2-2 of 6 ## **WCDMA 1900** Report No. : FG920117A | WCDMA 1900 | | | | | | | | | | |------------|--------------------|---------------|------------------|-------------------------|-------------------------|--------------------------|----------------------|-----------------------------|-----------------------| | Channel | Frequency
(MHz) | EIRP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable loss (dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | 3707 | -64.12 | -13 | -51.12 | -57.56 | -75.33 | 1.41 | 12.62 | Н | | | 5555 | -63.84 | -13 | -50.84 | -63.59 | -75.40 | 1.74 | 13.30 | Н | | | 7410 | -60.13 | -13 | -47.13 | -64.74 | -69.43 | 1.94 | 11.24 | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | Lowest | | | | | | | | | Н | | Lowest | 3707 | -60.70 | -13 | -47.70 | -54.28 | -71.91 | 1.41 | 12.62 | V | | | 5555 | -64.89 | -13 | -51.89 | -64.16 | -76.45 | 1.74 | 13.30 | V | | | 7410 | -60.17 | -13 | -47.17 | -64.64 | -69.47 | 1.94 | 11.24 | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | | | 3763 | -62.95 | -13 | -49.95 | -56.76 | -73.19 | 2.01 | 12.24 | Н | | | 5640 | -63.74 | -13 | -50.74 | -63.55 | -74.01 | 2.12 | 12.40 | Н | | | 7520 | -61.58 | -13 | -48.58 | -65.84 | -69.54 | 2.11 | 10.07 | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | Middle | | | | | | | | | Н | | ivildale | 3763 | -60.48 | -13 | -47.48 | -54.51 | -70.72 | 2.01 | 12.24 | V | | | 5640 | -64.90 | -13 | -51.90 | -64.31 | -75.17 | 2.12 | 12.40 | V | | | 7520 | -61.37 | -13 | -48.37 | -65.59 | -69.33 | 2.11 | 10.07 | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | TEL: 886-3-327-3456 Page Number : B2-3 of 6 -57.42 3812 -63.39 -13 -50.39 -74.64 1.44 12.69 Н 5723 -63.28 -13 -50.28 -63.54 -74.85 1.73 13.30 Н -13 -70.54 7630 -61.42 -48.42 -65.26 2.01 11.13 Η Η Н Н Н Highest -57.96 V 3812 -13 -44.96 -52.26 -69.21 1.44 12.69 7523 -13 -64.27 -73.76 11.10 ٧ -64.65 -51.65 1.99 7630 -61.59 -13 -48.59 -65.34 -70.71 2.01 11.13 V ٧ ٧ ٧ ٧ Report No.: FG920117A **Remark:** Spurious emissions within 30-1000MHz were found more than 20dB below limit line. TEL: 886-3-327-3456 Page Number : B2-4 of 6 ## **WCDMA 1700** Report No. : FG920117A | WCDMA 1700 | | | | | | | | | | |------------|--------------------|---------------|------------------|-------------------------|-------------------------|--------------------------|----------------------|-----------------------------|-----------------------| | Channel | Frequency
(MHz) | EIRP
(dBm) | Limit
(dBm) | Over
Limit
(dB) | SPA
Reading
(dBm) | S.G.
Power
(dBm) | TX Cable loss (dB) | TX Antenna
Gain
(dBi) | Polarization
(H/V) | | | 3427 | -64.85 | -13 | -51.85 | -56.03 | -75.83 | 1.35 | 12.32 | Н | | | 5137 | -64.09 | -13 | -51.09 | -62.71 | -75.23 | 1.65 | 12.79 | Н | | | 6850 | -62.78 | -13 | -49.78 | -65.31 | -73.15 | 1.74 | 12.11 | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | Lowest | | | | | | | | | Н | | Lowest | 3427 | -63.80 | -13 | -50.80 | -55.39 | -74.78 | 1.35 | 12.32 | V | | | 5137 | -64.28 | -13 | -51.28 | -62.65 | -75.43 | 1.65 | 12.79 | V | | | 6850 | -62.65 | -13 | -49.65 | -64.77 | -73.02 | 1.74 | 12.11 | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | | | 3462 | -64.74 | -13 | -51.74 | -56.27 | -75.80 | 1.35 | 12.41 | Н | | | 5197 | -63.58 | -13 | -50.58 | -62.19 | -74.79 | 1.66 | 12.88 | Н | | | 6930 | -61.70 | -13 | -48.70 | -64.72 | -71.97 | 1.73 | 12.00 | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | | | | | | | | | | Н | | Middle | | | | | | | | | Н | | Middle | 3462 | -63.89 | -13 | -50.89 | -55.8 | -74.95 | 1.35 | 12.41 | V | | | 5198 | -63.58 | -13 | -50.58 | -62.03 | -74.80 | 1.66 | 12.88 | V | | | 6927 | -62.19 | -13 | -49.19 | -64.75 | -72.46 | 1.73 | 12.00 | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | | | | | | | | | | | V | TEL: 886-3-327-3456 Page Number: B2-5 of 6 -63.23 -55.11 3504 -13 -50.23 -74.37 1.36 12.50 Н 5254 -63.44 -13 -50.44 -62.2 -74.72 1.68 12.96 Н 7011 -13 1.73 11.88 -61.76 -48.76 -65.24 -71.92 Η Н Н Н Н Highest V 3504 -63.43 -13 -50.43 -55.67 -74.57 1.36 12.50 5254 -61.82 -13 -60.35 -73.10 12.96 ٧ -48.82 1.68 7011 -61.99 -13 -48.99 -64.99 -72.15 1.73 11.88 V ٧ ٧ ٧ ٧ Report No.: FG920117A **Remark:** Spurious emissions within 30-1000MHz were found more than 20dB below limit line. TEL: 886-3-327-3456 Page Number : B2-6 of 6