Customer: KINEXON Inc. 25 Broadway, Floor 9 New York, NY 10004 RF test report 190123-AU01+W02 **KINEXON Sports & Media GmbH** Tag KNX-T4.1-1.2-2:C

The test result refers exclusively to the model tested. This test report may not be copied or published in extracts without the written authorization of the accreditation agency and/or EMV TESTHAUS GmbH

EMV TESTHAUS GmbH

Gustav-Hertz-Straße 35 94315 Straubing Tel.: +49 9421 56868-0 Fax: +49 9421 56868-100 Email: info@emv-testhaus.com

Accreditation:

Test Firm Type "accredited": Valid until 2019-06-05 MRA US-EU, FCC designation number: DE0010 BnetzA-CAB-02/21-02/5 Valid until 2023-11-26

Recognized on March 14th, 2019 by the Department of Innovation, Science and Economic Development (ISED) Canada as a wireless testing laboratory CAB identifier: DE0011

Location of Testing:

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing

The technical accuracy is guaranteed through the quality management of the EMV **TESTHAUS** GmbH.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 2 of 47

Table of contents

1	Su	mmary of test results4				
2	Referenced publications6					
3	Equ	uipment under test (EUT)7				
	3.1	General remark7				
	3.2	General information7				
	3.3	Radio specifications				
	3.4	Photo documentation8				
4	Tes	st configuration and mode of operation9				
	4.1	Test configuration9				
	4.2	Mode of operation10				
5	Tes	st procedures10				
	5.1	General specifications10				
	5.2	AC power-line conducted emissions11				
	5.3	Radiated emissions below 30 MHz13				
	5.4	Radiated emissions from 30 MHz to 1 GHz15				
	5.5	Radiated emissions above 1 GHz17				
	5.6	UWB Bandwidth measurement18				
6	Tes	st results19				
	6.1	Antenna requirement20				
	6.2	Frequency error21				
	6.3	UWB bandwidth23				
	6.4	Radiated emissions in GPS bands26				
	6.5	Peak emissions in a 50 MHz bandwidth				
	6.6	Radiated emissions 9 kHz to 40 GHz33				
7	Equ	uipment calibration status45				
8	Me	asurement uncertainties				
9	9 Revision history					

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

List of figures

Figure 1: Setup for AC power-line conducted emissions test from 150 kHz to 30 MHz Figure 2: Setup for radiated emissions test below 30 MHz Figure 3: Setup for radiated emissions test from 30 MHz to 1 GHz Figure 4: Chart of UWB bandwidth on channel 5 Figure 5: Chart of measurement 1164 MHz to 1240 MHz on channel 5 Figure 6: Chart of measurement 1559 MHz to 1610 MHz on channel 5	15 17 24 28 29
Figure 7: Chart of Peak emission measurement on channel 5 Figure 8: Chart of emissions test below 30 MHz on channel 5 in position X	
Figure 9: Chart of emissions test from 30 MHz to 1 GHz on channel 5 in position X measurer	nent
antenna vertical 38	
Figure 10: Chart of emissions test from 960 MHz to 10.6 GHz on channel 5	
Figure 11: Chart of emissions test from 10.6 GHz to 17 GHz on channel 5	43
List of tables	
Table 1: Devices used for testing	9
Table 2: Ports of EUT and appropriate cables	
Table 3: Bandwidth and detector type for AC power-line conducted emissions test	
Table 4: Recalculation factors for extrapolation	13
Table 5: Bandwidth and detector type for radiated emissions test below 30 MHz	14
Table 6: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz	
Table 7: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz	
Table 8: Results of UWB bandwidth measurement	
Table 9: Results of UWB bandwidth with calculated frequency error	
Table 10: General radiated emission limits up to 30 MHz	
Table 11: General radiated emission limits ≥ 30 MHz to 960 MHz	
Table 12: Radiated emission limits above 960 MHz to 40 GHz	40
Table 13: Chart of emissions test from 17 GHz to 40 GHz on channel 5, pre-measurement at	
measurement distance 15 cm	44

1 Summary of test results

System type: UWB device

47 CFR part and section	Test	Page	Result	Note(s)
15.207a)	AC power line conducted emissions 150 kHz to 30 MHz		Not applicable	1,2
15.203	Antenna requirement		Passed	
15.250(a)	Frequency error		Passed	
15.250(a)/(b)	UWB bandwidth	23	Passed	
15.250(d)(2) Radiated emissions in GPS bands			Passed	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 4 of 47

47 CFR part and section	Test	Page	Result	Note(s)
15.250(d)(3)	Peak emissions in a 50 MHz bandwidth	30	Passed	
15.209	Radiated emissions 9 kHz to 40 GHz	33		
15.250(d)(1,4)	Emissions below 30 MHz	33	Passed	
	Emissions from 30 MHz to 960 MHz	36	Passed	
	Emissions from 960 MHz to 40 GHz	39	Passed	

Notes (for information about EUT see clause 3):

- 1 Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.
- 2 EUT is battery-powered.

Straubing, September 4, 2019

Lonnad Ingl

Konrad Graßl Head of radio department EMV **TESTHAUS** GmbH

Christian Kiermeier Technical executive EMV TESTHAUS GmbH

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 5 of 47

Referenced publications

Publication	Title
CFR 47 Part 2 October 2018	Code of Federal Regulations, Title 47 (Telecommunication), Part 2 (Frequency allocation and radio treaty matters; General rules and regulations) of the Federal Communication Commission (FCC)
CFR 47 Part 15 October 2018	Code of Federal Regulations, Title 47 (Telecommunication), Part 15 (Radio Frequency Devices) of the Federal Communication Commission (FCC)
ANSI C63.10 June 2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 6 of 47

2

Equipment under test (EUT)

All Information in this clause is declared by customer.

3.1 General remark

3

The EUT has a passive NFC tag and UWB integrated. In this test report only UWB is in consideration.

3.2 General information

Product type:		Tag			
	Model name:	KNX-T4.1-1.2-2:C			
	Serial number(s):	40776			
Applicant:		KINEXON Inc.			
	Manufacturer:	KINEXON Sports & Me	dia GmbH		
	Version:	Hardware:	TATS-01-04B		
		Software:	TATS-01-04B		
	Additional modifications:	None			
	FCC ID:	2ALC5-KNX-ATO1			
	Power supply:	DC supply			
		Nominal voltage:	3 V		
	Device type:	⊠ Portable	□ Mobile	□ Fixed	

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 7 of 47

3.3 Radio specifications

System type	UWB device		
Application frequency band:	5925 MHz – 7250 MHz		
Number of channels:	1		
Modulation:	BPM/BPSK (Burst Posit	ion Modulation/Binary Pl	nase Shift Keying)
Operating frequency:	6490 MHz (channel 5)		
Emission designator:	500MM0DWT		
Short description:	Ultra-Wideband (UWB) people or objects. The s Receivers, and a Kinexe small, transceiving device	a Real-Time Location Sy technology. Its primary u system operates using ac on Sensor Network Appli ce with an integrated ante s, temperature) and trans	se is for the tracking of ctive Tags, a network of cation. The Tag is a enna. It senses different
Antenna:	Type: Gain: Connector:	Dielectric chip antenna Peak 4.16 dBi at 6200 M c external temporary	

3.4 Photo documentation

For external photos of the EUT see annex B, for internal ones see annex C. Photos taken during testing including EUT positions can be found in annex A.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

Test configuration and mode of operation

4.1 Test configuration

4

UWB Tag CH 5 None <i>Port</i> None <i>Notes:</i> 1 Ports of EUT are cla	Table 1: De Classification (see note 1) Table 2: Ports of E	Cable	ed for testing e <i>type</i>	Fixed	Kinexon Cabl used	e length maximum	Note
None <i>Port</i> None Notes: 1 Ports of EUT are cla	Sup Table 1: De Classification (see note 1) Table 2: Ports of E	evices use	ipment ed for testing e type	Fixed	Cabl	-	Note
<i>Port</i> None Notes: 1 Ports of EUT are cla	Table 1: De Classification (see note 1) Table 2: Ports of E	evices use	ed for testing e <i>type</i>	Fixed		-	Note
Port None Votes:	Classification (see note 1) Table 2: Ports of E	Cable	e type	Fixed		-	Note
None Votes: I Ports of EUT are cla	Classification (see note 1) Table 2: Ports of E	Cable	e type	Fixed		-	Note
None Notes: 1 Ports of EUT are cla	Classification (see note 1) Table 2: Ports of E	Cable	e type	Fixed		-	Note
None Notes: 1 Ports of EUT are cla	(see note 1) Table 2: Ports of E					-	Note
None Notes: 1 Ports of EUT are cla	(see note 1) Table 2: Ports of E					-	NOTE
<i>Notes:</i> 1 Ports of EUT are cla	Table 2: Ports of E	EUT and	appropriate o		usea	maximum	
<i>Notes:</i> 1 Ports of EUT are cla		EUT and	appropriate o	rahles ¹			1
1 Ports of EUT are cla		EUT and	appropriate o	-ahles ¹			
2 The serial port is us As specified by manufa							

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

EMV

TESTHAUS

Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 9 of 47

4.2 Mode of operation

The EUT is working only on one channel (channel 5) on a fixed frequency without any frequency hop or step function. All tests were performed with the modulated signal with the exception of the "Frequency error" test, which was performed with a cw signal.

4.2.1 Test software used for emission tests

None

5 Test procedures

5.1 General specifications

5.1.1 Test setups

Tabletop devices are placed on a non-conductive table with a height of 0.8 m. In case of AC power-line conducted emissions test, the rear of the EUT is located 40 cm to the vertical wall of the RF-shielded (screened) room which is used as vertical conducting plane. For radiated emission measurements above 1 GHz, tabletop devices are placed at a height of 1.5 m above the floor using a support made of styrene placed on top of the non-conductive table.

Floor-standing devices are placed either directly on the reference ground-plane or on insulating material (see clause 6.3.3 of ANSI C63.4-2014 for more details).

All other surfaces of tabletop or floor-standing EUTs are at least 80 cm from any other grounded conducting surface. This includes the case or cases of one or more LISNs when performing an AC power-line conducted emissions test.

Radiated emission measurements of equipment that can be used in multiple orientations (e.g. portable or handheld devices) are performed with the EUT in each of three orthogonal axis positions.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

5.2 AC power-line conducted emissions

AC power-line conducted emissions are measured according to clause 6.2 of ANSI C63.10 over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network. The tests are performed in a shielded room.

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements are made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter is used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

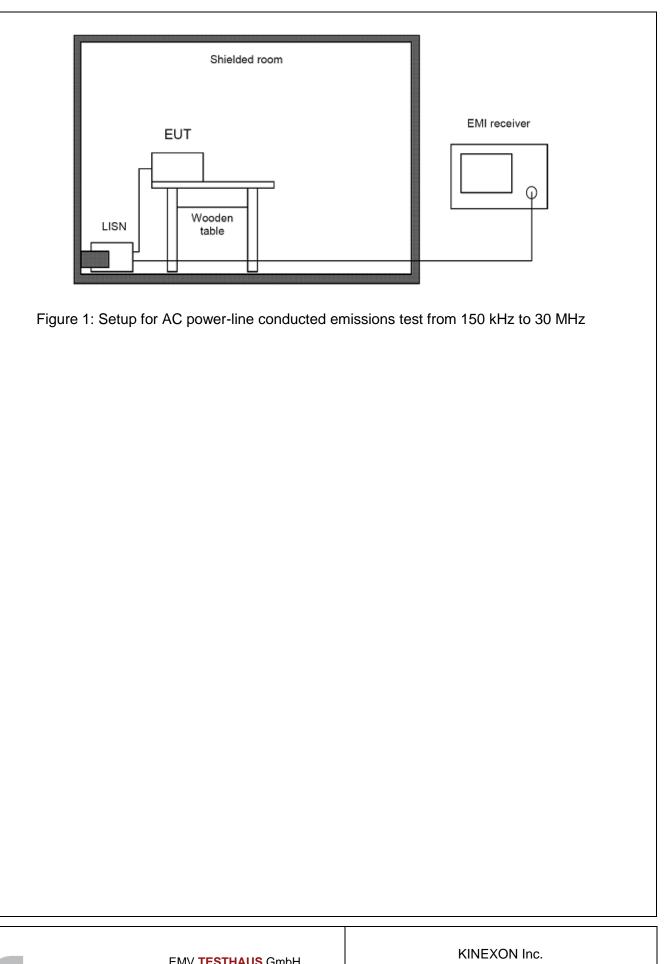

Frequency (f)	Measurement	Step size			
	receiver bandwidth		Prescan	Prescan with FFT	Final scan
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Quasi-peak, Average	Quasi-peak, Average

Table 3: Bandwidth and detector type for AC power-line conducted emissions test

The AC power-line conducted emissions test is performed in the following steps:

- a) The EUT is arranged as tabletop or floor-standing equipment, as applicable, and connected to a line impedance stabilization network (LISN) with 50 μ H / 50 Ω . If required, a second LISN of the same type and terminated by 50 Ω is used for peripheral devices. The EUT is switched on.
- b) The measurement equipment is connected to the LISN for the EUT and set-up according to the specifications of the test (see table 3). At the LISN, the neutral line is selected to be tested.
- c) The prescan is performed with both detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescan, but not for final scan.
- d) When the prescan is completed, maximum levels with less margin than 10 dB or exceeding the limit are determined and collected in a list.
- e) With the first frequency of the list selected, a frequency zoom over a range of ten times of the measurement receiver bandwidth around this frequency is performed. If the EUT has no significant drift in frequency, the frequency zoom can be skipped.
- f) For final scan, the emission level is measured and the maximum is recorded.
- g) Steps e) to f) are repeated for all other frequencies in the list. At least the six highest EUT emissions relative to the limit have to be recorded.
- h) Steps c) to g) are repeated for all current-carrying conductors of all of the power cords of EUT, i.e. all phase and (if used) neutral line(s).

EMV TESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 12 of 47

5.3 Radiated emissions below 30 MHz

Radiated emissions below 30 MHz are measured according to clause 6.4 of ANSI C63.10 using an inductive shielded loop antenna. As this antenna measures the magnetic field only, its antenna factors are converted to electric field strength values assuming a free space impedance of 377 Ω as described in clause 4.3.1 of ANSI C63.10. This results in an additional correction of 51.53 dB.

According to clause 6.4.3 of ANSI C63.10, at frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the requirements. In this case, the results are extrapolated to the specified distance by using a recalculation factor determined according to one of the methods described in clause 6.4.4 of ANSI C63.10, provided that the maximum dimension of the device is equal to or less than 0.625 times the wavelength at the frequency being measured. As the minimum wavelength is 10 meters corresponding to the maximum frequency of 30 MHz, this requirement is fulfilled if the maximum dimension of the device is equal to or less than 6.25 meters.

Unless otherwise stated, the recalculation factor is determined according to clause 6.4.4.2 "Extrapolation from the measurement of a single point" of ANSI C63.10:

d _{near field}	$= 47.77 / f_{MHz}$, or
f _{MHz}	= 47.77 / d _{near field}

The frequency f_{MHz} at which the near field distance is equal to the limit and/or test distance is important for selection of the right formula to determine the recalculation factor:

<i>f_{мнz}</i> (300 m)	≈ 0.159 MHz
f _{MHz} (30 m)	≈ 1.592 MHz
<i>f_{MHz}</i> (3 m)	≈ 15.923 MHz

Based on the test distances for the general radiated emission limits as specified in §15.209 of 47 CFR Part 15, the following formulas are used to determine the recalculation factor:

Frequency (f)	d _{limit}	<i>d_{measure}</i>	Formula for recalculation factor
9 kHz ≤ f ≤ 159 kHz 490 kHz < f ≤ 1.592 MHz	300 m 30 m	3 m	-40 log(d _{limit} / d _{measure})
159 kHz < f ≤ 490 kHz 1.592 MHz < f ≤ 15.923 MHz	300 m 30 m	3 m	-40 log(d _{near field} / d _{measure}) - 20 log(d _{limit} / d _{near field})
f > 15.923 MHz	30 m	3 m	-20 log(d _{limit} / d _{measure})

Table 4: Recalculation factors for extrapolation

Prescans for radiated measurements below 30 MHz are performed in a fully anechoic room (called "CDC"). The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 5.

EMV	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany		ON Inc. ^{ag} 1-1.2-2:C
TESTRAUS		190123-AU01+W02	Page 13 of 47

Frequency (f)	Measurement	Step size		Detector type	
	receiver bandwidth		Prescan	Prescan with FFT	Final scan
9 kHz ≤ f < 150 kHz	200 Hz	≤ 100 Hz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average
150 kHz ≤ f < 30 MHz	9 kHz	≤ 4.5 kHz	Peak, Average	Peak Quasi-peak, Average	Peak Quasi-peak, Average

Table 5: Bandwidth and detector type for radiated emissions test below 30 MHz

Sample calculation:

Frequency	Reading value	Antenna	Cable attenuation	Correction factor	Level
		correction		(Corr.)	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB/m)	(dBµV/m)
10	20.00	19.59	0.33	19.92	39.92

Correction factor = Antenna correction + Cable attenuation

Level = Reading value + Correction factor = 20 dBµV + 19.92 dB/m = 39.92 dBµV/m

Prescans are performed with all detectors activated at the same time. If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans. If no limit is specified for certain detectors, final scan measurement with these detectors may be omitted.

The radiated emissions test below 30 MHz is performed in the following steps:

- a) The loop antenna is positioned with its plane perpendicular to the ground with the lowest height of the antenna 1 m above the ground.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the loop antenna and set-up according to the specifications of the test (see table 5).
- d) The EUT is turned to a position likely to get the maximum and the test antenna is rotated to detect the maximum of the fundamental in this EUT position.
- e) Then the EUT is rotated in a horizontal plane through 360° in steps of 45°. Starting at 0°, at each table position the spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the current table position is noted as the maximum position.
- f) After the last prescan, the significant maximum emissions and their table positions are determined and collected in a list.
- g) With the test receiver set to the first frequency of the list, the EUT is rotated by ±45° around the table position found during prescans while measuring the emission level continuously. For final scan, the worst-case table position is set and the maximum emission level is recorded.
- h) Step g) is repeated for all other frequencies in the list.
- i) Finally, for frequencies with critical emissions the loop antenna is rotated again to find the maximum of emission. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

EMV	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany	KINEXOI Tag KNX-T4.1-	-
		190123-AU01+W02	Page 14 of 47

If the EUT may be used in various positions, steps a) to i) are repeated in two other orthogonal positions. If the EUT may be used in one position only, steps a) to i) are repeated in one orthogonal position.

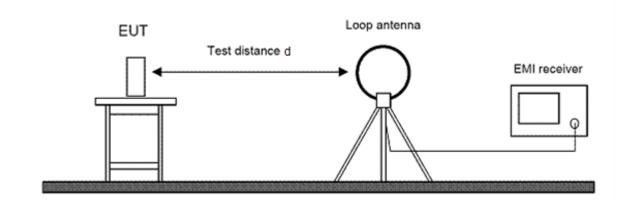


Figure 2: Setup for radiated emissions test below 30 MHz

5.4 Radiated emissions from 30 MHz to 1 GHz

Radiated emissions in the frequency range 30 MHz to 1 GHz are measured according to clause 6.5 of ANSI C63.10 using a semi-anechoic chamber (SAC) with a ground plane on the floor. The measurement distance is 3 meters. The emissions of the EUT are recorded with an EMI test receiver configured as described in table 6.

Frequency (f)	Measurement Step size		Detector type		
	receiver bandwidth		Prescan	Prescan with FFT	Final scan
30 MHz ≤ f ≤ 1 GHz	120 kHz	≤ 60 kHz	Peak	Quasi-peak	Quasi-peak

Table 6: Bandwidth and detector type for radiated emissions test from 30 MHz to 1 GHz

Sample calculation:

Frequency	Reading value	Antenna	Cable attenuation	Correction factor	Level
	-	correction		(Corr.)	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB/m)	(dBµV/m)
100	30.00	11.71	1.06	12.77	42.77

Correction factor = Antenna correction + Cable attenuation

Level = Reading value + Correction factor = 30 dB μ V + 12.77 dB/m = 42.77 dB μ V/m

The measurement antenna is a combination of a biconical antenna and a logarithmic-periodic dipole array antenna. It is mounted on a support capable of allowing the antenna to be used in

EMV	EMV TESTHAUS GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany	Та	ON Inc. ^{ag} 1-1.2-2:C
TESTRAUS		190123-AU01+W02	Page 15 of 47

either horizontal or vertical polarization and in a height between 1 m and 4 m above the ground plane.

If the test receiver is capable of FFT analysis, it is used for prescans, but not for final scans.

The radiated emissions test from 30 MHz to 1 GHz is performed in the following steps:

- a) The measurement antenna is oriented initially for vertical polarization.
- b) The EUT is placed in its standard position on a turntable capable of rotation through 360° in the horizontal plane and arranged as tabletop or floor-standing equipment, as applicable. The EUT is switched on.
- c) The measurement equipment is connected to the measurement antenna and set-up according to the specifications of the test (see table 6).
- d) The table position is set to 0°.
- e) The antenna height is set to 1 m.
- f) The spectrum for the full frequency range is recorded. If the emission at a certain frequency is higher than the levels already recorded, the polarization and height of the measurement antenna as well as the current table position are noted as the maximum position.
- g) The antenna height is increased to 4 m in steps of 50 cm. At each height, step f) is repeated.
- h) The polarization of the measurement antenna is changed to horizontal.
- i) The antenna height is decreased from 4 m to 1 m in steps of 50 cm. At each height, step f) is repeated.
- j) The EUT is rotated in a horizontal plane through 360° in steps of 60°. At each table position, steps e) to i) are repeated.
- k) After the last prescan, the significant maximum emissions with their polarizations and heights of the measurement antenna as well as their table positions are determined and collected in a list.
- I) With the test receiver set to the first frequency of the list, the measurement antenna is set to the polarization and height and the table is moved to the position as determined during prescans.
- m) The antenna is moved by ± 50 cm around this height and the EUT is rotated by $\pm 60^{\circ}$ around this table position while measuring the emission level continuously.
- n) For final scan, the worst-case positions of antenna and table are set and the maximum emission level is recorded.
- o) Steps I) to n) are repeated for all other frequencies in the list. At least, frequency and level of the six highest emissions relative to the limit have to be recorded. However, emissions more than 20 dB below the limit do not need to be reported.

If the EUT may be used in various positions, steps a) to o) are repeated in two other orthogonal positions.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

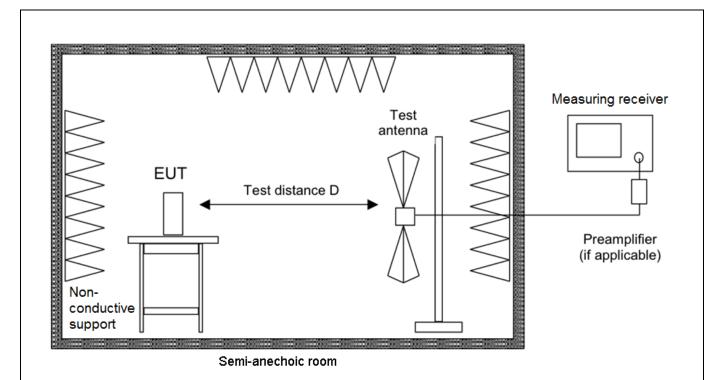


Figure 3: Setup for radiated emissions test from 30 MHz to 1 GHz

5.5 Radiated emissions above 1 GHz

Radiated emissions above 1 GHz are measured according to clause 6.6 of ANSI C63.10 by conducting exploratory and final radiated emission tests. According to clause 6.6.4.1 of ANSI C63.10, measurements may be performed at a distance closer than that specified in the requirements. However, an attempt shall be made to avoid making final measurements in the near field of both the measurement antenna and the EUT.

For measurement of radiated emissions above 1 GHz, horn antennas are used.

Sample calculation:

Frequency	Reading value	Antenna correction	Correction pre- amplifier	Cable attenuation	Correction factor (Corr.)	Level
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dB/m)	(dBµV/m)
2400	50.00	27.76	-34.57	3.51	-3.30	46.70

Correction factor = Antenna correction + Correction pre-amplifier + Cable attenuation

Level = Reading value + Correction factor = 50.00 dB μ V - 3.30 dB/m = 46.70 dB μ V/m

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany

KINEXON Inc.
Tag
KNX-T4.1-1.2-2:C

5.5.1 Exploratory radiated emissions measurements

Exploratory radiated emissions above 1 GHz are measured in a semi-anechoic chamber with RF absorbing material on the floor or a fully anechoic room. They are performed by moving the receiving antenna over all sides of the EUT at a closer distance (e.g. 0.5 or 1 m) while observing the display of the test receiver to find the emissions to be re-tested during final radiated emission measurements.

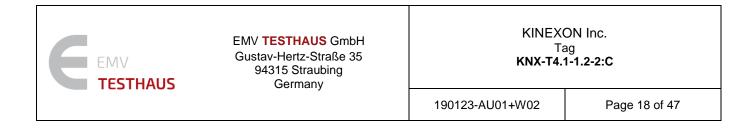
According to clause 5.3.3 of ANSI C63.10, when performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements). To simplify testing and documentation, the limits are increased accordingly instead of decreasing the results.

The emissions of the EUT are displayed and recorded with an EMI test receiver operating in the spectrum analyzer mode using the settings as described in table 7.

Frequency (f)	Resolution bandwidth	Video bandwidth	Sweep time	Trace detector(s)	Trace mode(s)
f ≥ 1 GHz	1 MHz	3 MHz	AUTO	RMS	Max Hold

Table 7: Bandwidth and trace settings for exploratory radiated emissions test above 1 GHz

If during exploratory radiated emissions measurements no levels to be re-tested are found, the final radiated emissions measurement may be omitted. In this case, the chart of the exploratory radiated emissions measurements has to be reported.


5.5.2 Final radiated emissions measurements

Final radiated emissions above 1 GHz are measured in a semi-anechoic chamber (SAC) with RF absorbing material on the floor between measurement antenna and EUT. The measurement distance is shown in the appropriate tests. The emissions of the EUT are recorded with an EMI test receiver.

The horn antenna is mounted on a support capable of allowing the antenna to be used in either horizontal or vertical polarization For UWB the measurement procedure according clause 6.6.5 of ANSI C63.10-2013 is used, specified in clause 6.6.5.4 of ANSI C63.10-2013.

5.6 UWB Bandwidth measurement

The test is performed according the procedure described in clause 10.1 of ANSI C63.10.2013.

6 Test results

This clause gives details about the test results as collected in the summary of test results on page 4.

The climatic conditions are recorded during the tests. It is ensured that the climatic conditions are within the following ranges:

Ambient temperature	Ambient humidity	Ambient pressure
15°C to 35°C	30 % to 75 %	86 kPa to 106 kPa

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 19 of 47

6.1	Antenna requirement
5.1	Antenna requirement
	antonna roquinonioni

Section(s) in 47 CFR F	Part 15:	Requirement(s Reference(s):):	15.203	
Result	⊠ Test pa	assed		t not passed	

6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.Test procedure

6.1.2 Result

Performed by:	Konrad Graßl	Date(s) of test:	April 17, 2019	

The EUT has an integrated antenna, therefore the antenna cannot be changed by the user.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.2 Frequency error

Section(s) in 47 CFR Pa	art 15:	Requirement(s Reference(s):):	15.250(a) ANSI C63.10, clause 6.8
Result ² :	⊠ Test pa	assed		t not passed

6.2.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
Climatic chamber 990 I	VC4100	Vötsch Industrietechnik	C00014
☑ Climatic chamber 340 I	VC ³ 4034	Vötsch Industrietechnik	C00015
EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Field probe	RF-R 400-1	Langer EMV-Technik	E00270

6.2.2 Limits

According 15.250(a):

The -10 dB bandwidth of a device operating under the provisions of this section must be contained within the 5925-7250 MHz band under all conditions of operation including the effects from stepped frequency, frequency hopping or other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

6.2.3 Test procedure

The test is performed according the procedure described in clause 6.8 of ANSI C63.10.2013.

² For information about measurement uncertainties see page 76.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.2.4 Test results

Performed	by:
-----------	-----

Konrad Graßl

Date(s) of test:

May 14, 2019

Temperature	Voltage	Center frequency	Deviation	Result
(° C)	(V)	(GHz)	(MHz)	
60	3	6.489615049	-0.384951	passed
50	3	6.489604013	-0.395987	passed
40	3	6.48960694	-0.39306	passed
30	3	6.48961974	-0.38026	passed
20	3	6.48963068	-0.36932	passed
20	2	6.489630546	-0.369454	passed
10	3	6.489651719	-0.348281	passed
0	3	6.489666475	-0.333525	passed
-10	3	6.489679364	-0.320636	passed
-20	3	6.489682622	-0.317378	passed
-30	3	6.489674663	-0.325337	passed

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 22 of 47

6.3 UWB bandwidth

Section(s) in 47 CFR Part 15:	Requirement(s): Reference(s):	15.250(a)/(b) ANSI C63.10, clause 10.1

Result³:

☑ Test passed

 \Box Test not passed

6.3.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
 Free space semi-anechoic chamber (FS-SAC) 	FS-SAC	EMV TESTHAUS	E00100
EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
Preamplifier (1 GHz - 18 GHz)	BBV9718B	Schwarzbeck	W01325
☑ Horn antenna	BBHA 9120D	Schwarzbeck	W00052
□ Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
☑ Cable set FS-SAC	RF cable(s)	EMCO ELEKTRONIK Huber + Suhner	W00096 E01032

³ For information about measurement uncertainties see page 76.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.3.2 Limits

According 15.250(a):

The -10 dB bandwidth of a device operating under the provisions of this section must be contained within the 5925-7250 MHz band under all conditions of operation including the effects from stepped frequency, frequency hopping or other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

According 15.250(b):

The -10 dB bandwidth of the fundamental emission shall be at least 50 MHz. For transmitters that employ frequency hopping, stepped frequency or similar modulation types, measurement of the -10 dB minimum bandwidth specified in this paragraph shall be made with the frequency hop or step function disabled and with the transmitter operating continuously at a fundamental frequency following the provisions of §15.31(m).

6.3.3 Test procedure

The UWB bandwidth is measured using the test procedure as described in clause 5.6

6.3.4 Test results

Test distance: \Box 3 m \Box 1.5 m \boxtimes 0.	75 m

Channel	UWB ban		fL		fH		Result
	Value	Limit	Frequency	Limit	Frequency	Limit	
F	<u>(MHz)</u>	(MHz)	(MHz)	(MHz)	(MHz)	<u>(MHz)</u>	Deserved
5	566.0	≥ 50	6233.50	>5925	6799.50	<7250	Passed
Table 8: Results of UWB bandwidth measurement							
Channel	UWB ban	dwidth	fL		fH		Result
	Value	Limit	Frequency	Limit	Frequency	Limit	
	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	
5	566.0	≥ 50	6233.896	>5925	6799.896	<7250	Passed
EMV	ΓHAUS	Gusta	ESTHAUS GmbH v-Hertz-Straße 35 315 Straubing Germany			KINEXON Tag (NX-T4.1-1	

190123-AU01+W02

Page 25 of 47

6.4 Radiated emissions in GPS bands

Section(s) in 47 CFR Part 15: Requirement(s): 15.250(d)(2) Reference(s):

Result⁴:

⊠ Test passed

Test not passed

6.4.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
□ Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
 Free space semi-anechoic chamber (FS-SAC) 	FS-SAC	EMV TESTHAUS	E00100
EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
Preamplifier (1 GHz - 18 GHz)	BBV9718B	Schwarzbeck	W01325
☑ Horn antenna	BBHA 9120D	Schwarzbeck	W00052
□ Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
☑ Cable set FS-SAC	RF cable(s)	EMCO ELEKTRONIK Huber + Suhner	W00096 E01032

⁴ For information about measurement uncertainties see page 48.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.4.2 Limits

According 15.250(d)(2):

In addition to the radiated emission limits specified in the table in paragraph (d)(1) of this section, transmitters operating under the provisions of this section shall not exceed the following RMS average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency	EIRP	calculated Fieldstrength at 3 m
(MHz)	(dBm)	(dBμV/m)
1164-1240	-85.3	10
1559-1610	-85.3	10

6.4.3 Test procedure

The radiated emissions in GPS bands are measured using the test procedure as described in clause 5.5.2.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.4.4 Test results

Performed by:	Konrad Graßl	Date(s) of test:	March 25, 2019
Test distance:	🗆 3 m	🗆 1.5 m	🛛 0.75 m
EUT elevation:	See notes		

RBW	10 kHz
Detector	RMS
Measurement distance	0.75 m

TESTHAUS

Note: With the reference level offset of -12 dB the measurement is referenced to the calculated limit at 3m.

MultiView	8 Spectrum	🔌 🖾 🕻 Sp	ectrum 2	🔆 🖾 Spect	rum 3 🛛 🛛	Z			
Ref Level 32 Att Input	2.00 dBµV/m Of 0 dB = SV 1 AC PS		 RBW 10 kHz VBW 30 kHz Notch Off 	Mode Auto S	weep		F	requency 1.	2020000 GHz
TDF 1 Frequency S	Sweep								●1Rm Max
30 dBµV/m								M1[1]	-5.77 dBμV/m 1.17939500 GHz
20 dBµV/m									
20 0000/11									
10 dBµV/m	H1 10.000 dBµV/m								
0 dBµV/m	P	11							
4. 10 dBμV/m					an when here being the start in	a harden in a stadio a stadio a		alles filmed and the strengthere	teri di lan ya dikeranta kumera ku ileda di kale
-10 ubpv/m							and the second se		
-20 dBµV/m									
-30 dBµV/m									
-40 dBµV/m									
-50 dBµV/m									
-50 aBhA/w									
-60 dBµV/m									
1.164 GHz				s	7	7.6 MHz/			1.24 GHz
2 Marker Tab Type Re		X-Value	1	Y-Value		Function		Function	Decult
M1		179395 GI	1z -5.	.77 dBµV/m		rancion		rancion	Result
	Υ				Aborte	ed	25.03	.2019 Ref Lev 33:09	vel RBW
15:33:10 25	07 2010						101		
15:33:10 25	.03.2019								
	— :					- 4040 M	I		
	Figur	e 5: Chart	of measu	rement 1	64 MHZ (5 1240 IVI	Tz on cha	nnei 5	
Note: Wo	rst case el	evation: 3	0 °. measi	irement a	ntenna ho	rizontal			
		0.000000000	,						
							KINEX	ON Inc	
			/\∨ TESTHA					ON Inc.	
EM	///		//V TESTHA ustav-Hertz- 94315 Stra	Straße 35			Т	ON Inc. ag 1-1.2-2:C	

Germany

190123-AU01+W02

Page 28 of 47

MultiView						_			
Ref Level 32	(·	≱⊠ Sp fset -12.00 dB ●	ectrum 2	🔆 🖾 Spectru	um 3 🛛 🗵				
Att Input	0 dBµv/m ОГ 0 dB = SV 1 AC PS	VT 5.1 s 🕯	VBW 30 kHz Notch Off	Mode Auto Swe	eep		Fr	equency 1	5845000 G
TDF I Frequency : 30 dBµV/m	Sweep						M	1[1]	©1Rm Ma -6.26 dBμV
30 UBDV/III									1.60897500 0
20 dBµV/m									
10 dBµV/m	H1 10.000 dBµV/m-								
0 dBµV/m									N
TU GBUV/M	and a stand and the stand of the standard of		inter i de la litera	en alf in an an air mail y faith is an an aig a	ndnin Josha "Jungat Jita Mini Vinturk	analysi ari ne berlegi kang sing si di di sebena	the flight freed to a sector filler, and the filler, all of	, and the state of the second s	na ina da na ana kalangakan pana kalakat
-20 dBµV/m									
-30 dBµV/m									
-40 dBµV/m									
-50 dBµV/m									
-60 dBµV/m									
1.559 GHz 2 Marker Tab			5100 pt:	is	5	.1 MHz/			1.61 G
Type Re M1	ef Trc	X-Value .608975 GH	z -6.	Y-Value .26 dBµV/m		Function		Function	n Result
			IV TESTHA				KINEX	ag	
	¶√ ESTHAUS		IV TESTHA Istav-Hertz- 94315 Stra Germa	Straße 35 aubing		90123-AU0	Τε ΚΝΧ-Τ4 .΄	ag 1-1.2-2:C	age 29 of 47

6.5 Peak emissions in a 50 MHz bandwidth

Section(s) in 47 CFR Part 15: Requirement(s): 15.250(d)(3) Reference(s):

Result⁵:

⊠ Test passed

Test not passed

6.5.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
□ Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
 Free space semi-anechoic chamber (FS-SAC) 	FS-SAC	EMV TESTHAUS	E00100
EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
Preamplifier (1 GHz - 18 GHz)	BBV9718B	Schwarzbeck	W01325
☑ Horn antenna	BBHA 9120D	Schwarzbeck	W00052
□ Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
☑ Cable set FS-SAC	RF cable(s)	EMCO ELEKTRONIK Huber + Suhner	W00096 E01032

 $^{\rm 5}$ For information about measurement uncertainties see page 52.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.5.2 Limits

According 15.250(d)(3):

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs and this 50 MHz bandwidth must be contained within the 5925-7250 MHz band. The peak EIRP limit is 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed by the measurement instrument. RBW shall not be lower than 1 MHz or greater than 50 MHz. The video bandwidth of the measurement instrument shall not be less than RBW. If RBW is greater than 3 MHz, the application for certification filed with the Commission shall contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

Frequency	EIRP (within 50 MHz)	calculated Fieldstrength at 3 m
(MHz)	(dBm)	(dBμV/m)
5925 - 7250	0	95.3

6.5.3 Test procedure

The Peak emissions measurements are performed using the test procedure for radiated measurements as described in clause 5.5.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.5.4 Test results

Performed by:	Konrad Graßl	Date(s) of test:	September 4, 2019
Test distance:	🗆 3 m	🗆 1.5 m	🛛 0.75 m
EUT elevation:	See notes		

RBW	50 MHz
Detector	Peak

Note: With the reference level offset of -12 dB the measurement is referenced to the calculated limit at 3m.

Frequency Sweep 30 dBµV/m 40 dBµV/m 30 dBµV/m 40 dBµV/m 30 dBµV/m 20 dBµV/m 20 dBµV/m 20 dBµV/m 21 dBµV/m 22 dBµV/m 33 dBµV/m 40 dBµV/m 22 dBµV/m 23 dBµV/m 24 dBµV/m 25 GArker Table Type Ref Tr M1 1 35 GAt:12 04.09.2015 Aote: Worst ca	200 diguy/mi	,	500 pts	Y-Value		WMM			●1Pk Max 91.52 dBµV/n 6.49300 GH:
30 dBµV/m 70 dBµV/m 50 dBµV/m 50 dBµV/m 50 dBµV/m 50 dBµV/m 50 dBµV/m 40 dBµV/m 50 dBµV/m 51 dBµV/m 52 dBµV/m 53 dBµV/m 53 dBµV/m 53 dBµV/m 54 dBµV/m 55 dBµV/m 56 dBµV/m 57 dBµV/m 58 dBµV/m 58 dBµV/m 59 dBµV/m 50 dBµV/m 50 dBµV/m 51 dBµV/m 52 dBµV/m 53 dBµV/m 54 dBµV/m 55 dBµV/m 56 dBµV/m 57 dBµV/m 58 dBµV/m 50 dBµV/m	rc	,		Y-Value			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
10 dBµV/m 10 dBµV/m 11 1 13:34:12 04.09.2015	rc	5.493 GHz		Y-Value			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 1 F 6.5 GHz Marker Table Type Ref Tr M1 1 1 3:34:12 04.09.2015	rc	X-Value 6.493 GHz		Y-Value	10	0.0 MHz/			
о dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 10 dBµV/m 10 dBµV/m 10 dBµV/m 11 1 13:34:12 04.09.2015	rc	X-Value 6.493 GHz		Y-Value	10	00.0 MHz/			
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m F 6.5 GHz Marker Table Type Ref Tr M1 1 1 S:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	00.0 MHz/			
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 1 F 6.5 GHz Marker Table Type Ref Tr M1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	00.0 MHz/			
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m F 6.5 GHz Marker Table Type Ref Tr M1 1 1 S:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	0.0 MHz/			
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m F 6.5 GHz Marker Table Type Ref Tr M1 1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	0.0 MHz/			
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 1 6.5 GHz Мarker Table Туре Ref Tr M1 1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	0.0 MHz/			
0 dBµV/m 0 dBµV/m 0 dBµV/m 0 dBµV/m 1 6.5 GHz Мarker Table Туре Ref Tr M1 1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10)0.0 MHz/			
0 dBµV/m 0 dBµV/m F 6.5 GHz Marker Table Type Ref Tr M1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10)0.0 MHz/			
0 dBµV/m 0 dBµV/m F 6.5 GHz Marker Table Type Ref Tr M1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	0.0 MHz/			
0 dBµV/m F 6.5 GHz Marker Table Type Ref Tr M1 1 3:34:12 04.09.2019		X-Value 6.493 GHz		Y-Value	10	00.0 MHz/			
F 6.5 GHz Marker Table Type Ref Tr M1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	00.0 MHz/			
F 6.5 GHz Marker Table Type Ref Tr M1 1 3:34:12 04.09.2015		X-Value 6.493 GHz		Y-Value	10	00.0 MHz/			
Marker Table Type Ref Tr M1 1		X-Value 6.493 GHz		Y-Value	10)0.0 MHz/			
Marker Table Type Ref Tr M1 1		X-Value 6.493 GHz		Y-Value	1				Span 1.0 GHz
M1 1 3:34:12 04.09.2015		X-Value 6.493 GHz	91						
3:34:12 04.09.2019				.52 dBµV/m		Function		Function Re	esult
					Aborted	d (00000000)	()() 04.09.1	2019 Ref Level 4:12	RBW
				eak emission urement ante			channel	5	
EMV TESTH			IV TESTHA Jstav-Hertz- 94315 Stra	Straße 35			Та	ON Inc. ag 1-1.2-2:C	

Channel	measured fieldstrength RBW 50 MHz (dBµV/m at 3 m)	Limit RBW 50 MHz (dBµV/m at 3 m)	Margin (dB)	Result
5	91.52	95.30	3.78	passed

6.6 Radiated emissions 9 kHz to 40 GHz

6.6.1 Emissions below 30 MHz

Section(s) in 47 CFR Part 15:

Requirement(s): Reference(s): 15.209, 15.250(d)(4)

Result⁶:

⊠ Test passed

Test not passed

6.6.1.1Test equipment

Туре	Designation	Manufacturer	Inventory no.
☑ Compact Diagnostic Chamber (CDC)	VK041.0174	Albatross Projects	E00026
Open area test site (OATS)		EMV TESTHAUS	E00354
EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
□ Field probe	RF-R 400-1	Langer EMV-Technik	E00270
☑ Loop antenna	HFH2-Z2	Rohde & Schwarz	E00060
⊠ Cable set CDC	RF cable(s)	Huber + Suhner AME HF-Technik AME HF-Technik Stabo	E00446 E00920 E00921 E01215
Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁶ For information about measurement uncertainties see page 55.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 33 of 47

6.6.1.2 Limits

According 15.250(d)(4):

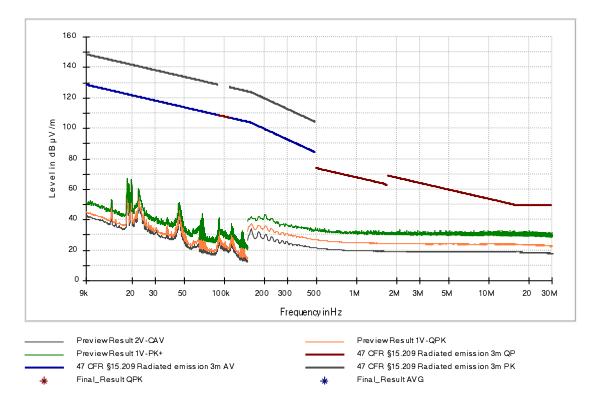
Radiated emissions at or below 960 MHz shall not exceed the emission levels in §15.209.

Frequency	Field s	Measurement distance	
(MHz)	(µV/m)	(dBµV/m)	(m)
0.009 – 0.490	2400/F(kHz) (266.67 – 4.90)	48.52 – 13.80	300
0.490 – 1.705	24000/F(kHz) (48.98 – 14.08)	33.80 – 22.97	30
1.705 – 30	30	29.54	30

Table 10: General radiated emission limits up to 30 MHz

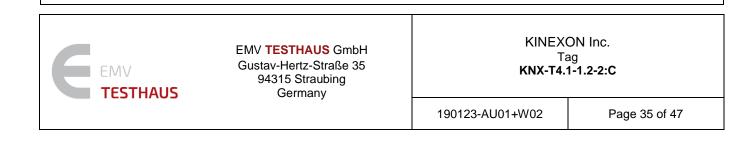
6.6.1.3 Test procedure

The emissions below 30 MHz are measured using the test procedure for radiated measurements as described in clause 5.3.


EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.6.1.4 Test results

Performed by:	Konrad Graßl	Date(s) of test:	March 28, 2019
Test distance:	⊠ 3 m	🗆 10 m	□ m
Antenna alignment:	oxtimes in parallel	\Box in line	□ angle °
EUT position:	☑ Position X	☑ Position Y	☑ Position Z


Frequency range	Step size	IF	Detector		Measure	ment Time	Preamplifier
		Bandwidth	Prescan	Final scan	Prescan	Final scan	
9 kHz – 150 kHz	70.5 Hz	200 Hz	PK	PK,	2 s	1 s	Off
150 kHz – 30 MHz	7.462 kHz	9 kHz	PK	PK	2 s	1 s	Off

Note: Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show only the worst case position.

Note: No assessable values could be detected.

6.6.2 Emissions from 30 MHz to 960 MHz

Section(s) in 47 CFR Part 15:

Requirement(s): Reference(s): 15.209, 15.250(d)(4)

Result⁷:

 \boxtimes Test passed

 $\hfill\square$ Test not passed

6.6.2.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
 Free space semi-anechoic chamber (FS-SAC) 	FS-SAC	EMV TESTHAUS	E00100
EMI test receiver (CDC)	ESCI 3	Rohde & Schwarz	E00552
EMI test receiver (OATS)	ESCI 3	Rohde & Schwarz	E00001
EMI test receiver	ESR 7	Rohde & Schwarz	E00739
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
□ TRILOG broadband antenna (CDC)	VULB 9160	Schwarzbeck	E00011
□ TRILOG broadband antenna (OATS)	VULB 9163	Schwarzbeck	E00013
☑ TRILOG broadband antenna (SAC)	VULB 9162	Schwarzbeck	E00643
☑ Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
□ Cable set FS-SAC	RF cable(s)	Teledyne Reynolds Huber + Suhner Teledyne Reynolds	E00435 E00307 E00433
☑ Test software	EMC32-EB (V10.35)	Rohde & Schwarz	E00777
Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E00778
Test software	EMC32-MEB (V10.35)	Rohde & Schwarz	E01073

⁷ For information about measurement uncertainties see page 54.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 36 of 47

6.6.2.2 Limits

According 15.250(d)(4):

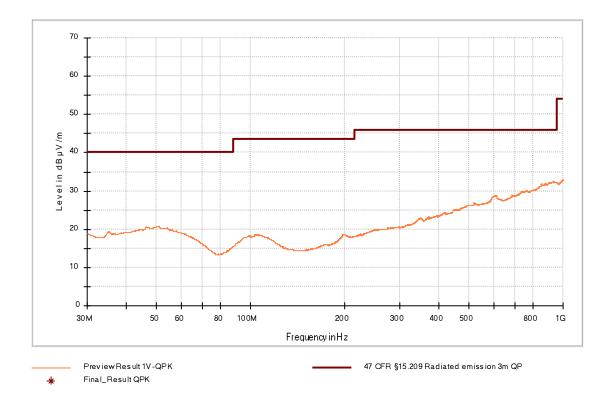
Radiated emissions at or below 960 MHz shall not exceed the emission levels in §15.209.

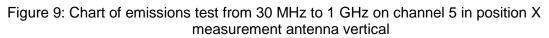
Frequency	Field s	Measurement distance	
(MHz)	(µV/m)	(dBµV/m)	(<i>m</i>)
30 – 88	100	40.00	3
88 – 216	150	43.52	3
216 - 960	200	46.02	3

Table 11: General radiated emission limits ≥ 30 MHz to 960 MHz

6.6.2.3 Test procedure

The emissions from 30 MHz to 1 GHz are measured using the test procedure for radiated measurements as described in clause 5.4.


EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C


6.6.2.4 Test results

Performed by:	Konrad Graßl	Date(s) of test:	March 29, 2019
Test distance:	🛛 3 m	🗆 10 m	□ m
EUT position ⁸ :	☑ Position X	□ Position Y	Position Z

Frequency range	Step	IF	Detector		Measure	ment Time	Preamplifier
	size	Bandwidth	Prescan	Final scan	Prescan	Final scan	
30 MHz – 1 GHz	30 kHz	120 kHz	QP	QP	1 s	1 s	20 dB

Note: Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show only the worst case position.

Note: No assessable values could be detected.

⁸ Exploratory measurements are performed in all positions as indicated. However, the figures and result tables within this test report show the worst case position, only.

6.6.3 Emissions from 960 MHz to 40 GHz

Section(s) in 47 CFR Part 15: Requirement(s): 15.250(d)(1) Reference(s):

Result⁹:

⊠ Test passed

Test not passed

6.6.3.1 Test equipment

Туре	Designation	Manufacturer	Inventory no.
□ Semi-anechoic chamber (SAC)	SAC3	Albatross Projects	E00716
 Free space semi-anechoic chamber (FS-SAC) 	FS-SAC	EMV TESTHAUS	E00100
EMI test receiver	ESU 26	Rohde & Schwarz	W00002
EMI test receiver	ESW 44	Rohde & Schwarz	E00895
Preamplifier (1 GHz - 18 GHz)	ALS05749	Aldetec	W01007
Preamplifier (1 GHz - 18 GHz)	BBV9718B	Schwarzbeck	W01325
Preamplifier (16 GHz - 40 GHz)	BBV9721	Schwarzbeck	W01350
☑ Horn antenna	BBHA 9120D	Schwarzbeck	W00052
☑ Horn antenna	BBHA 9170	Schwarzbeck	W00054
□ Cable set SAC	RF cable(s)	Huber + Suhner	E00755 E01033 E01034
☑ Cable set FS-SAC	RF cable(s)	EMCO ELEKTRONIK Huber + Suhner	W00096 E01032

⁹ For information about measurement uncertainties see page 52.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.6.3.2 Limits

According 15.250(d)(1):

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following RMS average limits based on measurements using a 1 MHz resolution bandwidth:

Frequency (MHz)	EIRP (dBm)	calculated Fieldstrength at 3 m (dBμV/m)
960-1610	-75.3	20
1610-1990	-63.3	32
1990-3100	-61.3	34
3100-5925	-51.3	44
5925-7250	-41.3	54
7250-10600	-51.3	44
Above 10600	-61.3	34

Table 12: Radiated emission limits above 960 MHz to 40 GHz

6.6.3.3 Test procedure

The emissions from 30 MHz to 1 GHz are measured using the test procedure for radiated measurements as described in clause 5.5.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

6.6.3.4 Test results

Performed by:	Konrad Graßl	Date(s) of test:	March 25, 2019
			April 8, 2019
Test distance:	960 MHz to 17 GHz:	🗆 1 m	🛛 0.75 m
	17 GHz to 40 GHz :	🗆 3 m	🛛 0.30 m
EUT elevation:	See notes		

Measurement 960 MHz to 17 GHz:

RBW	1 MHz
Detector	RMS
Measurement distance	0.75 m

Note: With the reference level offset of -12 dB the measurement is referenced to the calculated limit at 3m.

Measurement 17 GHz to 40 GHz RBW 1 MHz

Pre-measurement:	
Detector	Peak
Measurement distance	0.15 m

Note: With the reference level offset of -26 dB the measurement is referenced to the calculated limit at 3m.

Final measurement:DetectorRMSMeasurement distance0.3 m

Note: With the reference level offset of -20 dB the measurement is referenced to the calculated limit at 3m.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 41 of 47

Ref Level 67. Att	😁 Spectrum			pectrum 3 🛛 🔌	X			
Input	00 dBµV/m 01 0 dB = SV 1 AC PS		BW 3 MHz Mode Au	uto Sweep		Fr	equency 5.7	/800000 GH
TDÊ		, Oli N	oten on					o t Dues Mary
L Frequency S	eck		PASS				M1[1]	● 1Rm Max 51.44 dBµV/
60 dBµV7m	50		PASS				<u> </u>	6.489500 GH
50 dBµV/m				M1 Y				
				/ //				
40 dBµV/m								
30 dBµV/m				/ //////				
5250 L								
	μ							
) dBµV/m								
10 dBµV/m								
20 dBµV/m								
-30 dBµV/m								
960.0 MHz Markar Tabl			9640 pts	ġ	964.0 MHz/	l		10.6 GH
Marker Tabl Type Ret	f Trc	X-Value	Y-Value	2	Function		Function F	Result
M1	1	6.4895 GHz	51.44 dBµ	Abor	rted and and and and and and and and and and 	25.03.2	2019 Ref Leve	el RBW
			TESTHAUS Gm			KINEX		
EM		Gust	av-Hertz-Straße			Та	ON Inc. ag 1-1.2-2:C	
	₩ STHAUS	Gust				Та	ag	

MultiView B Ref Level 53.0 Att Input TDF I Frequency Sw 50 dBplyjmit Check	Spectrum	🖾 Spect	'um 2 🛛 💥 🗵	Spectrum 3	X			
TDF Frequency Sw	iO dBµV/m Offs O dB ● SW 1 AC PS	et -12.00 dB • R	BW 1 MHz BW 3 MHz M4	ode Auto Sweep		Frequen	cy 13.8	00000 GH
	veep	011 1	oton on					●1Rm Max
Line15250	k		PASS PASS					31.06 dBµV/ı 12.979500 G⊦
0 dBµV/m								
5250 0 dBµV/m			M1					
0 dBµV/m								
0 dBµV/m								
I dBµV/m								
10 dBµV/m								
20 dBµV/m								
30 dBµV/m								
40 dBµV/m								
10.6 GHz			6400 pts		640.0 MHz/			17.0 GH
Marker Table Type Ref		X-Value	Y-	Value dBµV/m	Function	F	unction Re	esult
M1	1 12	2.9795 GHz	31.06	dBµV/m	Aborted	25.03.2019	Ref Level	RBW
						KINEXON		

TESTHAUS

Germany

190123-AU01+W02

Page 43 of 47

0 dBuV/m 0 dBuV/m 10 dBuV/m 0 dBuV/m <tr< th=""><th>TDF Frequency Sy</th><th></th><th></th><th>DAG</th><th>c</th><th></th><th></th><th></th><th>M1[1]</th><th>●1Pk Ma</th></tr<>	TDF Frequency Sy			DAG	c				M1[1]	●1Pk Ma
10 dbuv/m 10 dbuv/m 10 dbuv/m 10 dbuv/m		0							willi	39.812500 (
280 and a set of a s) dBuV/m									
JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBuV/m JdBu										
dBju//m dBju//m	250 dBµV/m				40		i ku i	n to de la car	and the state of the terms of the state of the state	
dBuV/m dBuV/m dBuV/m dBuV/m <td< td=""><td>والمسروقة والمتعلق وقراط</td><td>and the state of the state of</td><td></td><td></td><td></td><td>land the distance of the billing of the state of the stat</td><td></td><td></td><td>a salah da bila sala salah sala salah sala sa</td><td></td></td<>	والمسروقة والمتعلق وقراط	and the state of the state of				land the distance of the billing of the state of the stat			a salah da bila sala salah sala salah sala sa	
18µV/m	(<u>4 4 6 6 6</u>	Contraction of the local data								
0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 1 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 3000 pts 2.3 GHz/ 4 7.0 GHz 23000 pts 2.3 GHz/ 4 1 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 3000 pts 2.3 GHz/ 4 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 3000 pts 2.3 GHz/ 4 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 1 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 3 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m	I dBµV/m									
0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 1 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 3000 pts 2.3 GHz/ 4 7.0 GHz 23000 pts 2.3 GHz/ 4 1 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 3000 pts 2.3 GHz/ 4 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 3000 pts 2.3 GHz/ 4 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 1 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 2 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m 3 dbjuV/m 0 dbjuV/m 0 dbjuV/m 0 dbjuV/m										
o dBµV/m o dBµV/m o dBµV/m 7.0 GHz 7.0 GHz	dBµV/m									
o dBµV/m o dBµV/m o dBµV/m 7.0 GHz 7.0 GHz	0 - 40 - 42 (
o dBµV/m o dBµV/m 7.0 GHz 7.0 GHz 7.0 GHz 23000 pts 2.3 GHz/ Aborted 06.04.2019 Croo:55 08.04.2019 Table 13: Chart of emissions test from 17 GHz to 40 GHz on channel 5, pre-measurement measurement distance 15 cm ote: Pre-measurements have shown that there is no assessable emission caused by the EL	о аврулі									
0 dBµV/m 23000 pts 2.3 GHz/ 4 7.0 GHz 23000 pts 2.3 GHz/ 4 Aborted 08.04.2019 8ef Level 18:00:54 Ref Level :00:55 08.04.2019 Table 13: Chart of emissions test from 17 GHz to 40 GHz on channel 5, pre-measurement measurement distance 15 cm ote: Pre-measurements have shown that there is no assessable emission caused by the EL	0 dBµV/m									
0 dBµV/m 23000 pts 2.3 GHz/ 4 7.0 GHz 23000 pts 2.3 GHz/ 4 Aborted 08.04.2019 8ef Level 18:00:54 Ref Level :00:55 08.04.2019 Table 13: Chart of emissions test from 17 GHz to 40 GHz on channel 5, pre-measurement measurement distance 15 cm ote: Pre-measurements have shown that there is no assessable emission caused by the EL										
7.0 GHz 23000 pts 2.3 GHz/ 4 Aborted Aborted Control	0 dBµV/m									
7.0 GHz 23000 pts 2.3 GHz/ 4 Aborted Aborted Control	0 dBuV/m									
Aborted Aborte										
Table 13: Chart of emissions test from 17 GHz to 40 GHz on channel 5, pre-measurement measurement distance 15 cm ote: Pre-measurements have shown that there is no assessable emission caused by the EL	7.0 GHZ	Υ		23000 pt	.S					40.0 G
			f emissio					nel 5, pre	-measure	ment at
is frequency range. Representative the measurement with elevation 0°, measurement anter	Table 1									
prizontal is shown.	ote: Pre-									

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

Equipment calibration status

Description	Modell number	Serial number	Inventory number(s)	Last calibration	Next calibration
EMI test receiver	ESW44	101538	E00895	2019-07	2020-07
EMI test receiver	ESR7	101059	E00739	2018-05	2019-05
EMI test receiver	ESU26	100026	W00002	2018-06	2020-06
Preamplifier (1 GHz - 18 GHz)	ALS05749	001	W01007	2019-01	2020-01
Loop antenna	HFH2-Z2	871398/0050	E00060	2018-10	2020-10
TRILOG broadband antenna (SAC3)	VULB 9162	9162-041	E00643	2018-03	2021-03
Horn antenna	BBHA 9120D	9120D-592	W00052	2017-04	2020-04
Horn antenna	BBHA 9170	9170-332	W00054	2017-04	2020-04
Measuring antenna set			A00088	N	$/A^3$
Shielded room	P92007	B 83117 C 1109 T 211	E00107	N	I/A
Compact diagnostic chamber (CDC)	VK041.0174	D62128-A502- A69-2-0006	E00026	N	I/A
Semi-anechoic chamber (SAC) with floor absorbers	FS-SAC		E00100	2018-03	2021-03
Semi-anechoic chamber (SAC)	SAC3	C62128-A520- A643-x-0006	E00716	2018-03	2021-03
Cable set CDC	RG214/U		E00446	2018-04	2019-04
	LCF12-50J		E01215	2018-04	2019-04
	LMR400	1718020006	E00920	2019-01	2020-01
	RG214 Hiflex	171802007	E00921	2019-01	2020-01
Cable set anechoic chamber	262-0942-1500	005	E00435	2018-10	2019-10
	SF104EA/2x11PC 35-42/5m	11144/4EA	E00307	2018-12	2019-12
	262-0942-1500	003	E00433	2018-10	2019-10
Cable set of semi-anechoic chamber SAC3	SF104EA/11PC35 /11PC35/10000M M	501347/4EA	E00755	2018-12	2019-12
	SF104E/11PC35/1 1PC35/2000MM	507410/4E	E01033	2018-12	2019-12
	SF104E/11PC35/1 1PC35/2000MM	507411/4E	E01034	2018-09	2019-09

Note 1:	Industry Canada (test sites number 3472A-1 and 3472A-2):	2019-03
Note 2:	Expiration date of test firm accreditation for SAC:	
	FCC test firm type "accredited":	2019-05

EMV TESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 45 of 47

7

Measurement uncertainties

8

Description	Uncertainty	k=
AC power line conducted emission	± 4.1 dB	2
Carrier frequency separation Number of hopping frequencies Time of occupancy (dwell time)	± 5.0 %	2
Bandwidth tests	± 2.0 %	
Maximum conducted output power (conducted)	± 1.5 dB	
Power spectral density (conducted)	± 2.9 dB	
Conducted spurious emissions	± 2.9 dB	
Radiated emissions in semi-anechoic chamber		
9 kHz to 30 MHz	± 4.8 dB	2
30 MHz to 300 MHz	± 5.4 dB	2
300MHz to 1 GHz	± 4.7 dB	2
Radiated emissions in semi-anechoic chamber with RF absorbing material on the floor or fully anechoic room		
1 GHz to 40 GHz	± 4.5 dB	2

Comment: The uncertainty stated is the expanded uncertainty obtained by multiplying the standard uncertainty by the coverage factor k. For a confidence level of 95 % the coverage factor k is 2.

Test related measurement uncertainties have to be taken into consideration when evaluating the test results. All used test instrument as well as the test accessories are calibrated at regular intervals.

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

9

Revision	Date	Issued by	Description of modifications
0	2019-09-04	Konrad Graßl	First edition

EMV
TESTHAUS

EMV **TESTHAUS** GmbH Gustav-Hertz-Straße 35 94315 Straubing Germany KINEXON Inc. Tag KNX-T4.1-1.2-2:C

190123-AU01+W02

Page 47 of 47