
GTS Global United Technology Services Co., Ltd.

Report No.: GTS202206000036F01

TEST REPORT

Applicant:	Wyrestorm Technologies LLC	
Address of Applicant:	23 Wood Rd, Round Lake, New York 12151, United States	
Manufacturer/Factory:	Shen Zhen Proitav Technology Co.,Ltd	
Address of Manufacturer/Factory:	301-401, Building 16, Hejing Industrial Park, No.87, Hexiu West Road, Zhancheng Community, Fuhai St., Baoan District, Shenzhen, China	
Equipment Under Test (E	EUT)	
Product Name:	Video Bar	
Model No.:	APO-VX20-UC(VB10-A00)	
Trade Mark:	WyreStorm	
FCC ID:	2A2CW-APO-VX20	
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247	
Date of sample receipt:	June 06, 2022	
Date of Test:	June 07, 2022-August 29, 2022	
Date of report issued:	August 29, 2022	
Test Result :	PASS *	

* In the configuration tested, the EUT complied with the standards specified above.

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 53

2 Version

Version No.	Date	Description		
00	August 29, 2022	Original		

Prepared By: Date: August 29, 2022 smillu **Project Engineer** son lund August 29, 2022 Check By: Date: abolia Reviewer

Report No.: GTS202206000036F01

3 Contents

			Page
1	CO	/ER PAGE	1
2	VER	SION	2
3	COL	NTENTS	3
3	001		
4	TES	T SUMMARY	
	60 M		
5	GEN	NERAL INFORMATION	
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	Теят моде	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	the second se
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	15
	7.5	Power Spectral Density	
	7.6	SPURIOUS EMISSION SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.6.	1 Conducted Emission Method	17
	7.6.	2 Radiated Emission Method	
8	TES	T SETUP PHOTO	
9	EUT	CONSTRUCTIONAL DETAILS	53

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10 and RSS-Gen Test according: KDB 662911 D01 Multiple Transmitter Output v02r01 Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes	
9kHz-30MHz	3.1dB	(1)	
30MHz-200MHz	3.8039dB	(1)	
200MHz-1GHz	3.9679dB	(1)	
1GHz-18GHz	4.29dB	(1)	
18GHz-40GHz	3.30dB	(1)	
0.15MHz ~ 30MHz	3.44dB	(1)	
	9kHz-30MHz 30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	9kHz-30MHz 3.1dB 30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB	

5 General Information

5.1 General Description of EUT

Product Name:	Video Bar
Model No.:	APO-VX20-UC(VB10-A00)
Serial No.:	WS1635000001
Test sample(s) ID:	GTS202206000036-1
Sample(s) Status	Engineer sample
Operation Frequency:	802.11n(HT20): 2412MHz~2462MHz
Channel numbers:	802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11n(HT20) :
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral Antenna
Antenna gain:	ANT 1: 2.88dBi
Antenna gan.	ANT 2: 1.25dBi
Power supply:	Switch mode power supply:
	Model: S120-1A240500M2
	Input: AC 100-240V, 50/60Hz, 2.0A
	Output: DC 24.0V, 5.0A, 120.0W

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
Test channel	802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.2 Test mode

0.2				
	Transmitting mode	ransmitting mode Keep the EUT in continuously transmitting mode		
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:			
	Pre-scan all kind of data	ate in lowest channel, and	d found the follow list which it was worst case.	
	Mode 802.11n(HT20)			
	Data rate 6.5Mbps			
S. 199			경험 같은 것은 것을 가지 않는 것을 수 있다.	

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Lenovo	Notebook PC	E40-80	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:
Global United Technology Services Co., Ltd.
Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang
Road, Baoan District, Shenzhen, Guangdong, China 518102
Tel: 0755-27798480
Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:						
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023	
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023	
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023	
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023	
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023	
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023	
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023	
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023	
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023	
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023	
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022	
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023	
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023	
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023	

Cor	nducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May 14, 2022	May 13, 2025
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 24, 2022	April 23, 2023
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 23, 2022	June 22, 2023
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	April 22, 2022	April 21, 2023
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	JINCHUANG	GSP-8A	GTS639	April 28, 2022	April 27, 2023
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	April 15, 2022	April 14, 2023
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	April 22, 2022	April 21, 2023
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	April 22, 2022	April 21, 2023

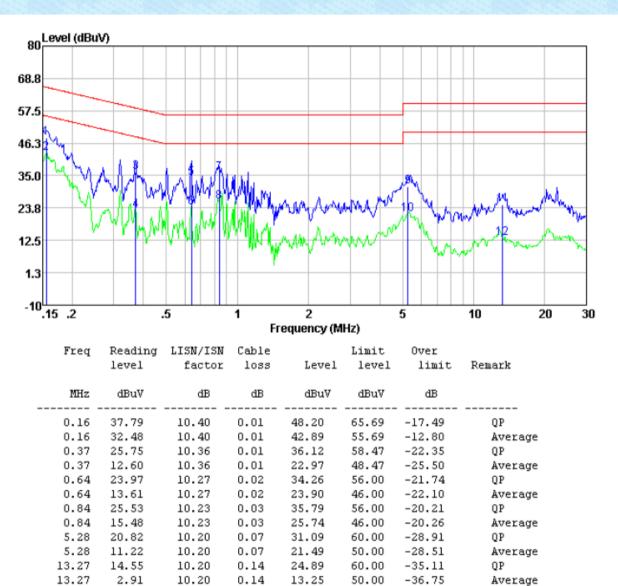
RF C	onducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023

Ger	neral used equipment:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023
2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023

7 Test results and Measurement Data

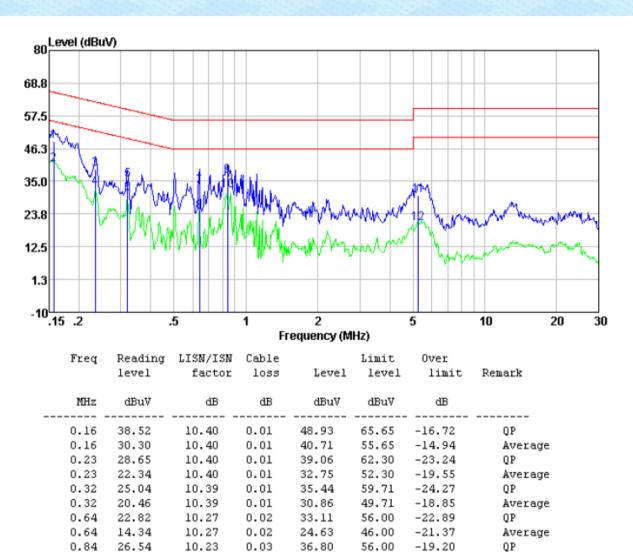
7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
15.203 requirement:	
responsible party shall be us antenna that uses a unique	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited.
15.247(c) (1)(i) requiremen	t:
operations may employ trans	2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point smitting antennas with directional gain greater than 6dBi provided the power of the intentional radiator is reduced by 1 dB for every 3 dB that the na exceeds 6dBi.
EUT Antenna:	
The antenna is integral antenna	, reference to the appendix II for details.


7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10		
Test Frequency Range:	150KHz to 30MHz		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto	
Limit:		Limit	(dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Testesture	* Decreases with the logarithn	n of the frequency.	
Test setup:	Reference Plane		
	LISN 40cm 80cm AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	EMI Receiver	
Test procedure:	1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe	n network (L.I.S.N.).	This provides a
	 The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find 	n/50uH coupling impo o the block diagram o checked for maximur d the maximum emise	edance with 50ohm of the test setup and n conducted sion, the relative
	positions of equipment and according to ANSI C63.10	on conducted measu	
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.: 1012mbar
Test voltage:	AC 120V, 60Hz		
Test results:	Pass		

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.


Measurement data

All antennas have test, only the worst case ANT 1 report. Line:

Neutral:

Report No.: GTS202206000036F01

Notes:

0.84

5.28

5.28

21.46

19.96

10.17

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.03

0.07

0.07

- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

10.23

10.20

10.20

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

31.72

30.23

20.44

46.00

60.00

50.00

-14.28

-29.77

-29.56

Average

Average

QP

7.3 Conducted Peak Output Power

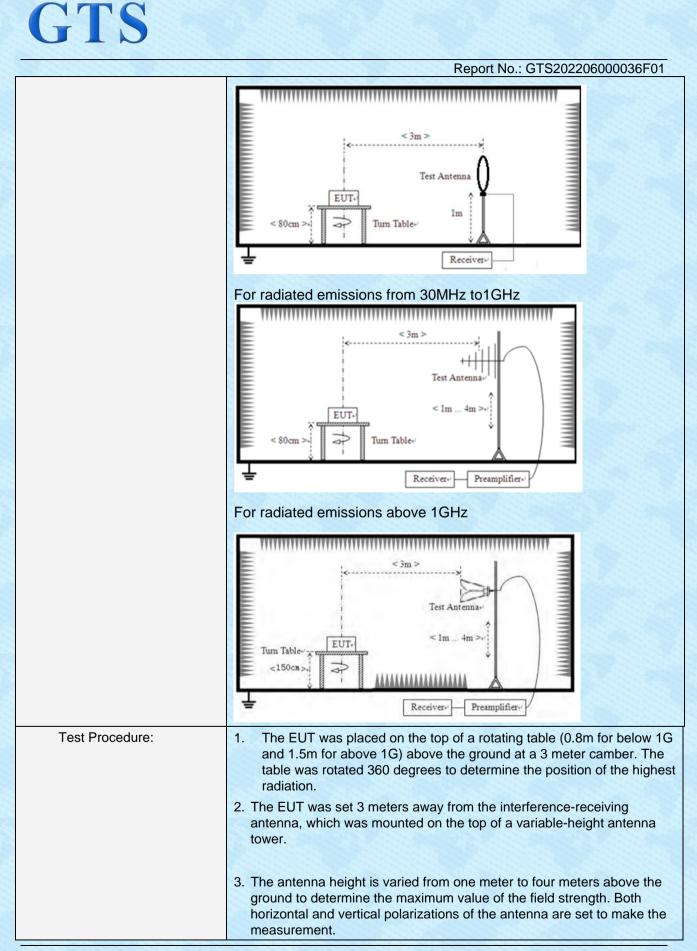
Test Requirement :	FCC Part15 C Section 15.247 (b)(3)
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	30dBm
	36dBm(4W for e.i.r.p)
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement :	FCC Part15 C Section 15.247 (a)(2)
Test Method :	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	8dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


7.6 Spurious Emission Spurious Emission in Non-restricted & restricted Bands

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.6.1 Conducted Emission Method

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C See	ction 15.209			
Test Method:	ANSI C63.10 & R	SS-Gen			
Test Frequency Range:	9kHz to 25GHz			in the second	
Test site:	Measurement Dist	tance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak
		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
FCC Limit:	0.009-0.4902400.490-1.7052401.705-30.03030-8810088-216150216-960200Above 960500The emission limmeasurements ethe frequency baseRadiated emissionmeasurements emeasurements e	o** o** o o o o o o nits shown in the employing a CISI ands 9-90 kHz, 1 on limits in these employing an ave	above table PR quasi-pe 10-490 kHz three band erage detec	eak detect and above ls are base tor.	and an arrow of the second sec
IC Limit:	Table 5 – Ger	neral field strength lii	mits at frequen	cies above 30	
		Frequency (MHz)	Field stren	gth	0 MHz
			(uV/m at 3		0 MHz
	S	30 - 88	(μV/m at 3 100) MHz
					0 MHz
		30 - 88 88 - 216 216 - 960	100 150 200		0 MHz
		30 - 88 88 - 216	100 150		0 MHz
	Table 6 – Ger	30 - 88 88 - 216 216 - 960	100 150 200 500	m)	
	Table 6 – Ger Frequen	30 - 88 88 - 216 216 - 960 960 Above 960 Magnetic file Magnetic file	100 150 200 500	m)) MHz ement ice
		30 – 88 88 – 216 216 – 960 Above 960 neral field strength lin cy F (µ	100 150 200 500 mits at frequen- eld strength (H- Field)	m) cies below 30) MHz ement ice
	Frequen	30 - 88 88 - 216 216 - 960 Above 960 neral field strength lin ccy Hagnetic field Hz ¹ 6.37/F	100 150 200 500 mits at frequent eld strength (H- Field) tA/m)	m) cies below 30 - Measure distan (m)) MHz ement ice
	Frequen 9 - 490 kF 490 - 1705 1.705 - 30 I Note 1: The en	30 - 88 88 - 216 216 - 960 4000000000000000000000000000000000000	100 150 200 500 mits at frequent eld strength (H- Field) (A/m) (F in kHz) (F in kHz) (F in kHz) 0.08 mages 9-90 kHz a	m) cies below 3(- Measure distan (m) 300 300 300 and 110-490 1	0 MHz ement ice)) kHz are

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

				Report No.: (GTS2022060	000036F01
	and then and the r	the antenna	emission, the was tuned to s turned from	heights from	n 1 meter to	4 meters
			tem was set t with Maximur			and
	limit spec EUT wou 10dB ma	cified, then te uld be reporte argin would b	of the EUT in esting could b ed. Otherwise e re-tested of pecified and t	e stopped an the emission ne by one usi	nd the peak with the peak with the peak with the peak, quith the peak, quith the peak, quith the peak with the peak withe peak w	values of the ot have asi-peak or
Test Instruments:	Refer to see	ction 6.0 for o	details			
Test mode:	Refer to see	ction 5.2 for o	details			
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Remarks:

1. Only the worst case Main Antenna test data.

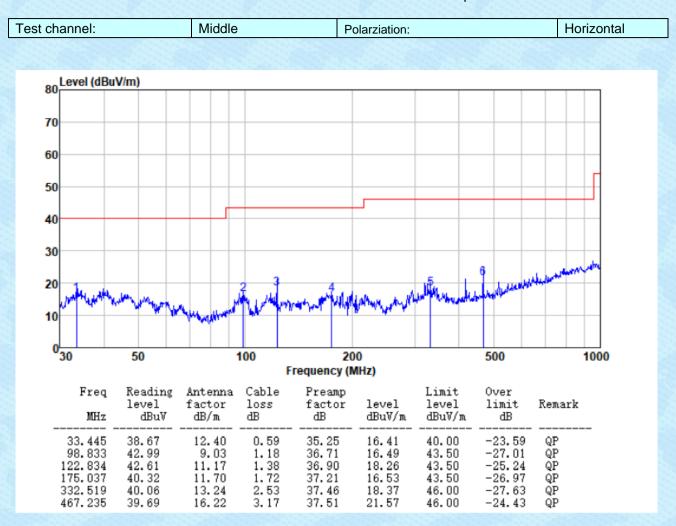
2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:

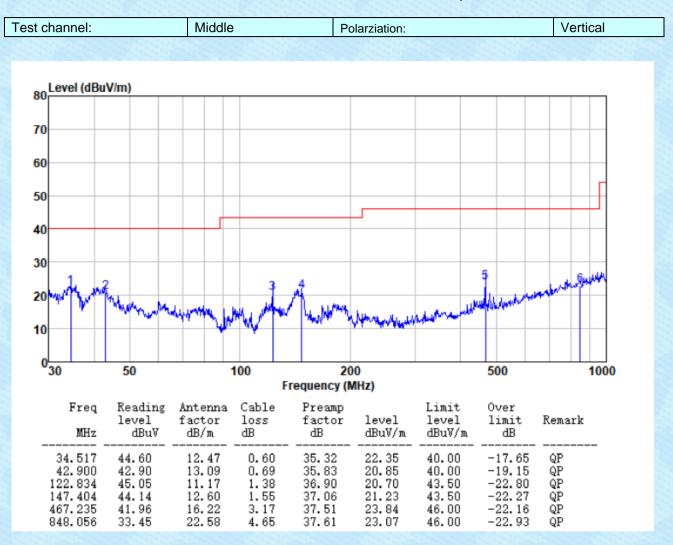
■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

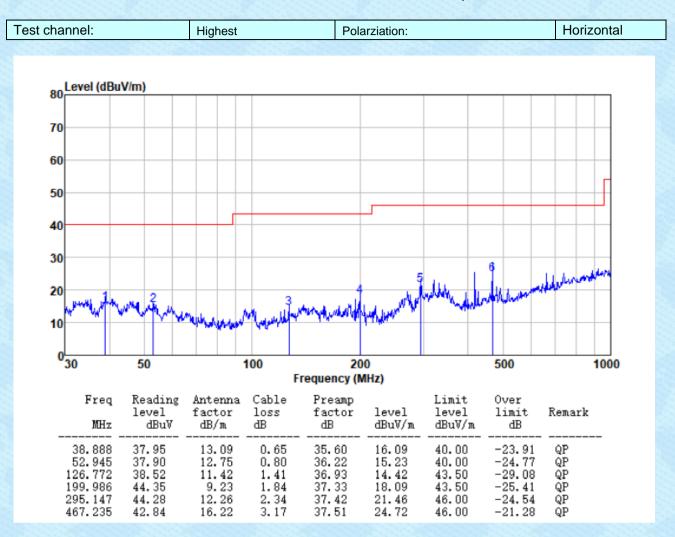
ANT 1:

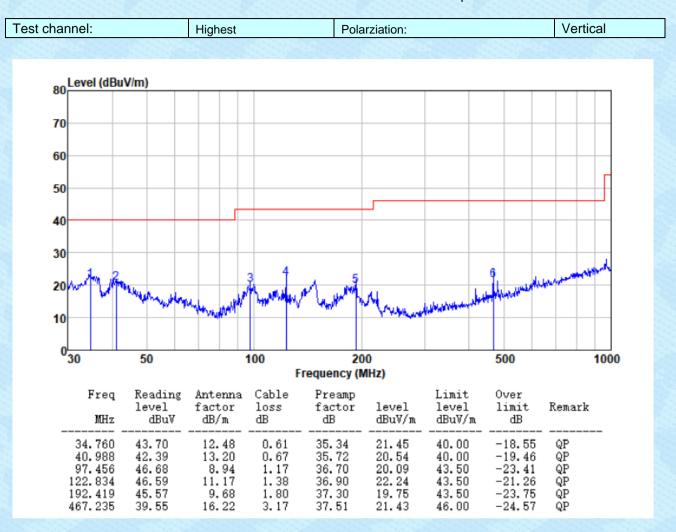

Report No.: GTS202206000036F01

Below 1GHz Test channel: Lowest Horizontal Polarziation: 80 Level (dBuV/m) 70 60 50 40 30 Mannanda 20 10 0^{___}30 50 100 200 500 1000 Frequency (MHz) Reading Cable Freq Antenna Preamp Limit Over level factor loss factor level level limit Remark MHz dBu∛ dB/m dB dBu∛/m dBuV/m dB dB 13.22 9.08 12.97 40.702 37.96 35.70 16.15 40.00 -23.85 0.67QP QP QP 221.392 45.82 1.97 37.35 19.52 -26.4846.00 2.47 2.60 3.17 -22.18 -22.37 -17.12 319.937 37.44 23.82 45.82 46.00344.386 467.235 13.45 16.22 37.47 37.51 QP QP 45.05 23.63 46.00 47.00 28.88 46.00 37.60 26.82 QΡ 887.610 36.76 22.86 4.80 46.00 -19.18

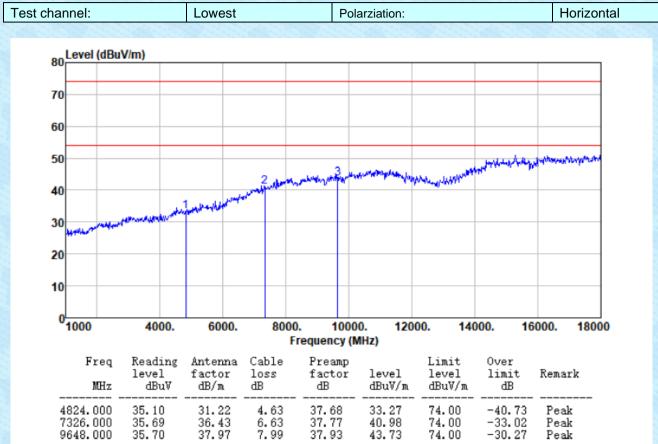

Report No.: GTS202206000036F01

st channel:		Lowest		Pola	rziation:			Vertical
80 Level (dBu	V/m)							
70								
60								
50								
40								
40								
30			3				5	1. martinet da
	Martin Martin	An 1 d	م م الملاطور ب	hubo the)a	and an and the second second		And the second second
30	Were and the second	norman singht	M Wanter Hall	hurth	Monan	wenterward	5 Allylukiumium	And and a second second
30 20 20 20 10		norman singled	Marchield of	Lupet y	Marone and	we have been		
30 20	50	Marray March	100 Fre	20 equency (M		we have been	5 	1000
30 20 20 20 10		Antenna factor dB/m	Fre Cable			Limit level dBuV/m		1000 Remark

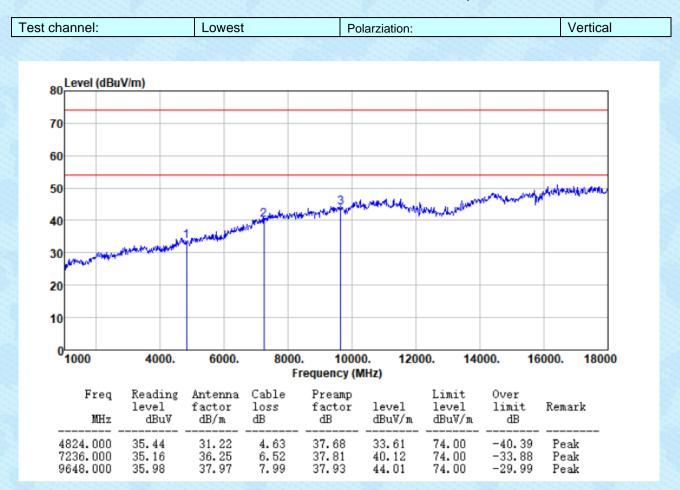

Report No.: GTS202206000036F01

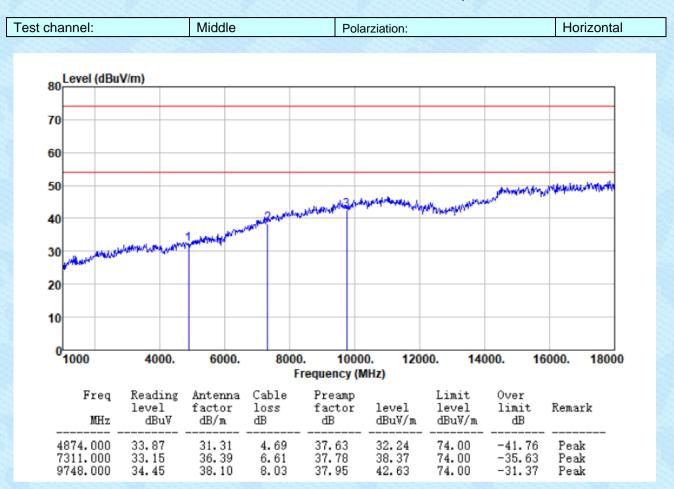

Report No.: GTS202206000036F01

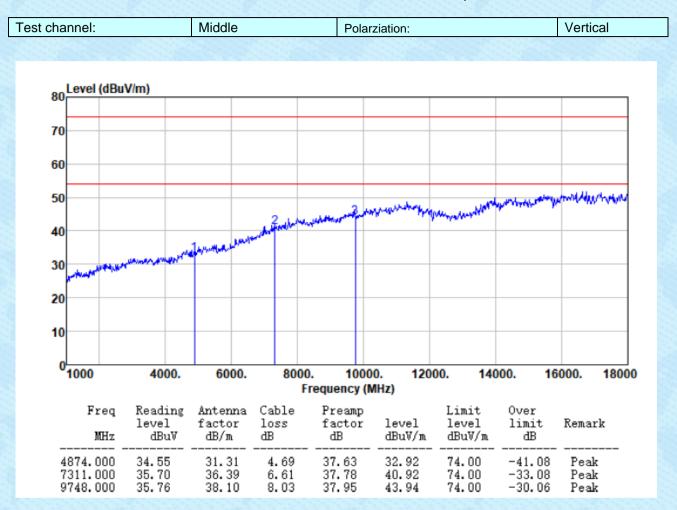
Report No.: GTS202206000036F01

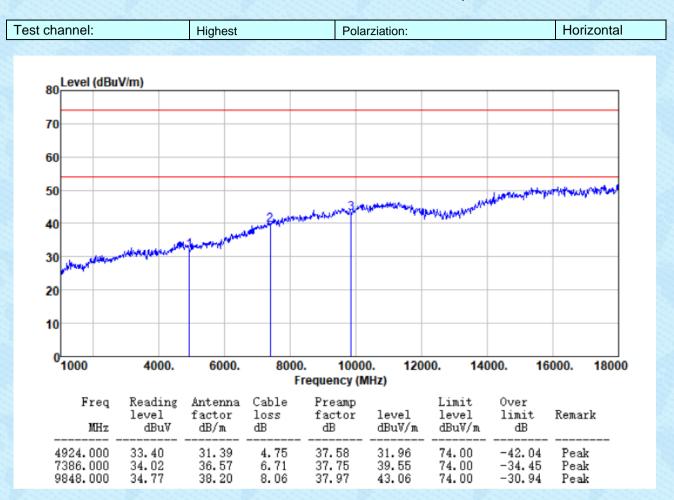


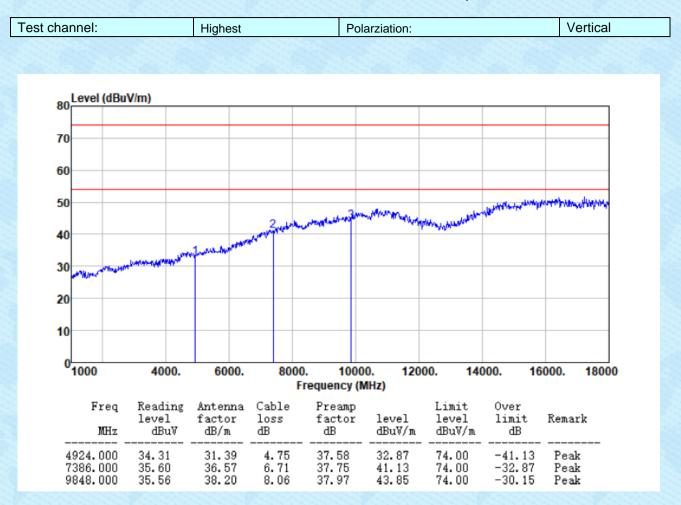
Report No.: GTS202206000036F01




Above 1GHz

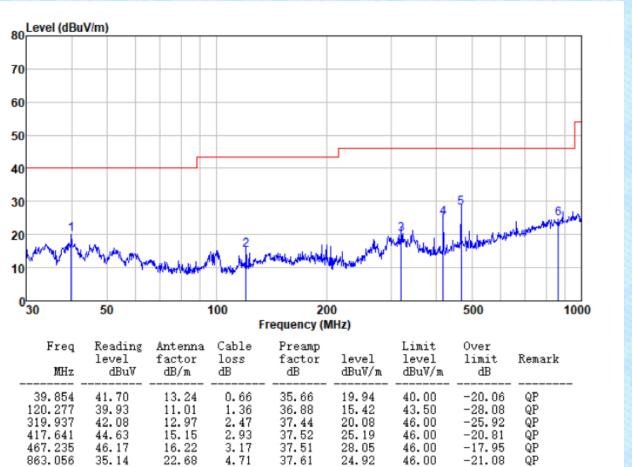

Report No.: GTS202206000036F01


Report No.: GTS202206000036F01

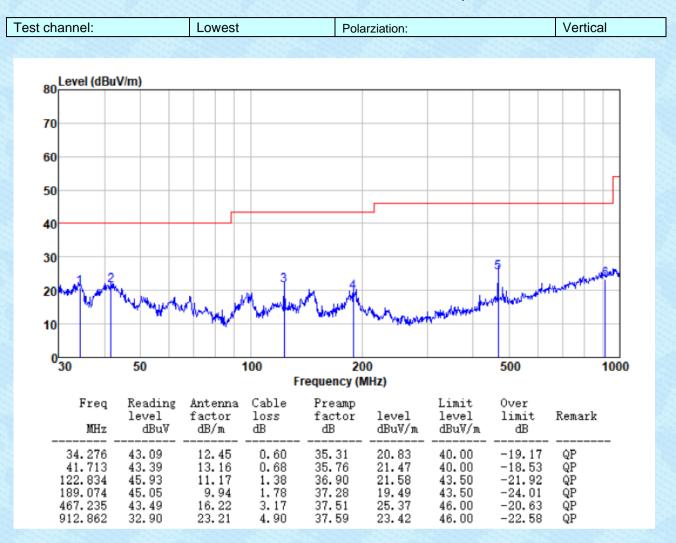

Report No.: GTS202206000036F01

Report No.: GTS202206000036F01

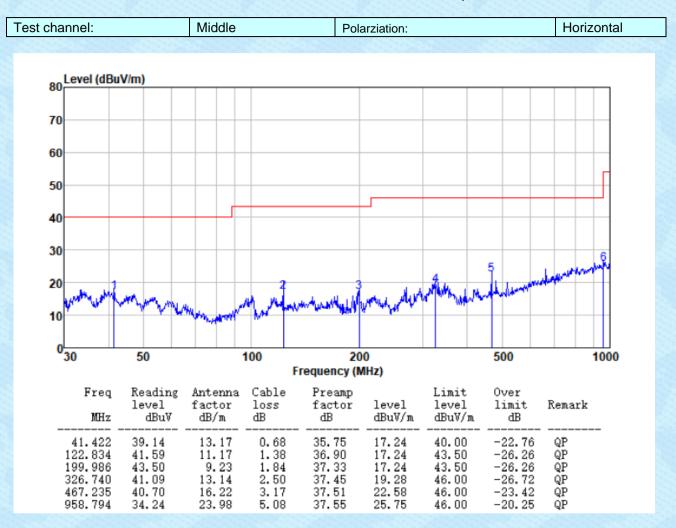
Report No.: GTS202206000036F01

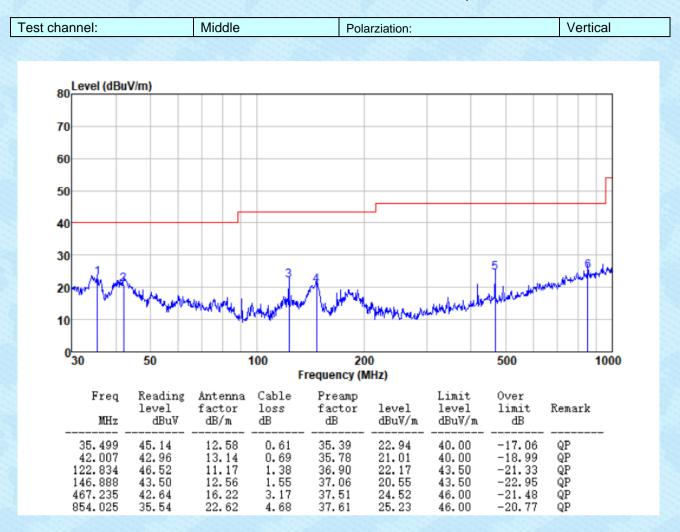


Report No.: GTS202206000036F01

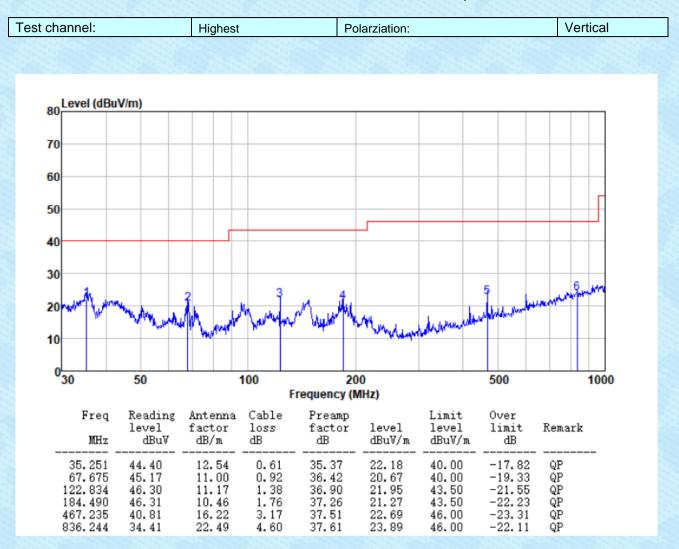

ANT 2:

Below 1GHz

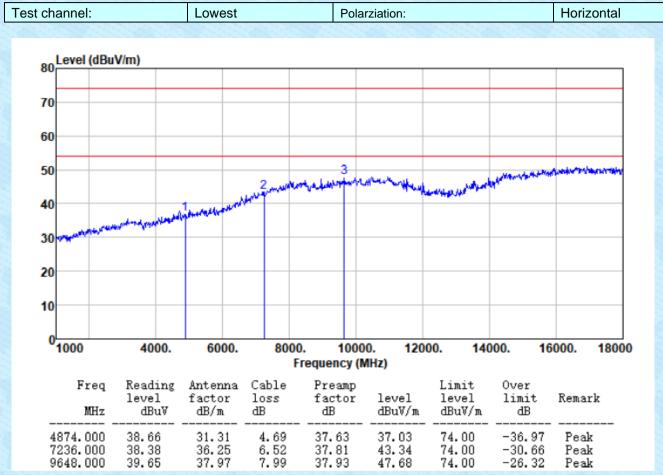

Test channel:	Lowest	Polarziation:	Horizontal


Report No.: GTS202206000036F01

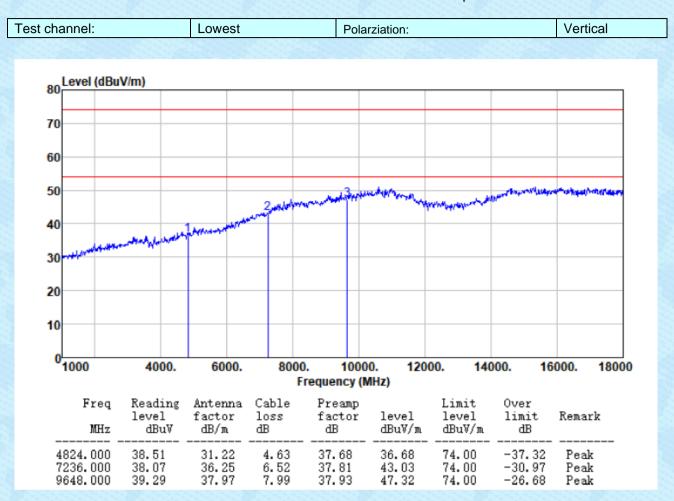
Report No.: GTS202206000036F01


Report No.: GTS202206000036F01

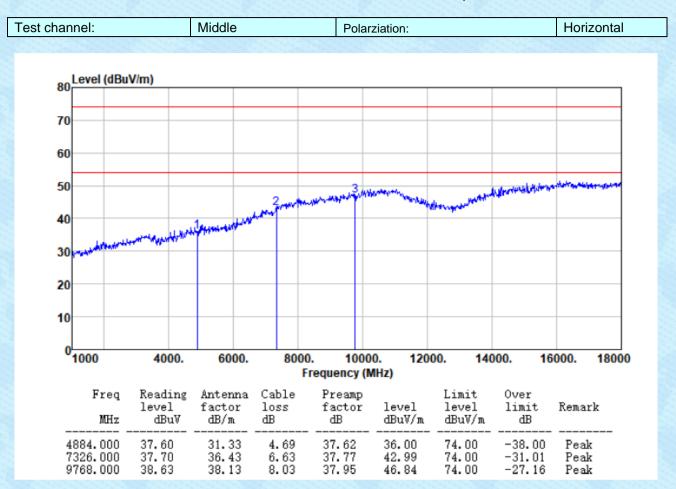
Report No.: GTS202206000036F01

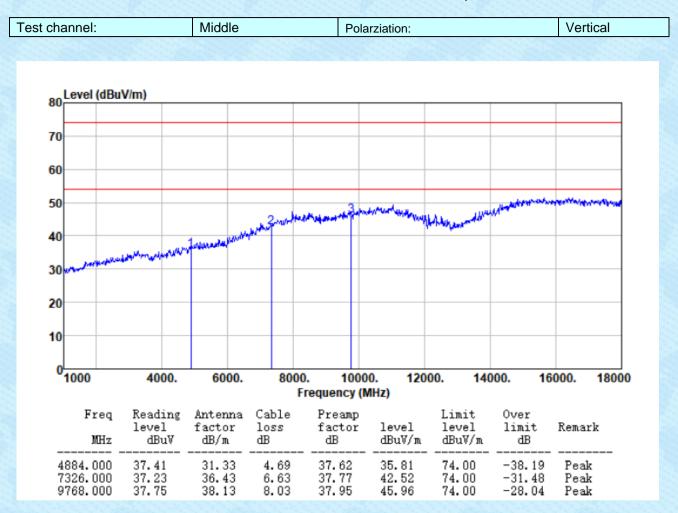

st channel:		Highest		Pola	arziation:			Horizontal	
Level (dBu	V/m)								
80									
70									
60									
50									
40									
30									
			2	3		4 	5	Hatter and Harrison	
	mun	A	AL ALAMA	3 Hypery July 10.44	all and a start	4 Martingen partition	5	Harman Harri Bala	
20 10	mu	Weedow	2 Minternet	3 HAMAN HAMAN	Maplewark	y and a start and a start a st	5 International	Hart man Her Die	
	50		2 M-1/	3 ////////////////////////////////////		4 Mithedigues, sealthe	5 	1000)
20 10				20 requency (N Preamp factor dB		4 Limit level dBuV/m	5 500 Over limit dB)

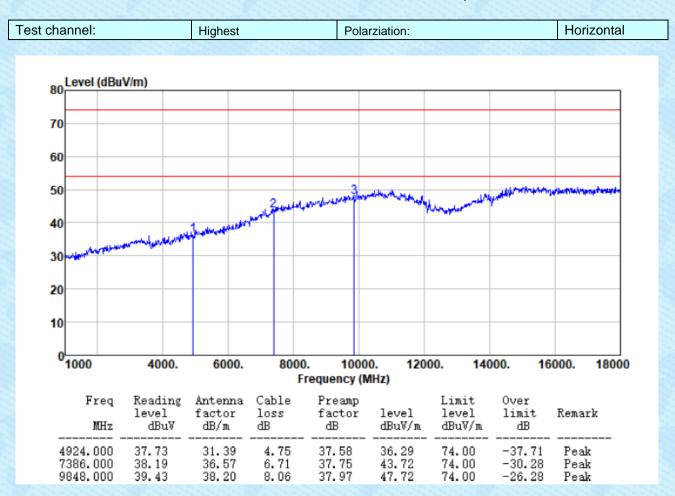
Report No.: GTS202206000036F01

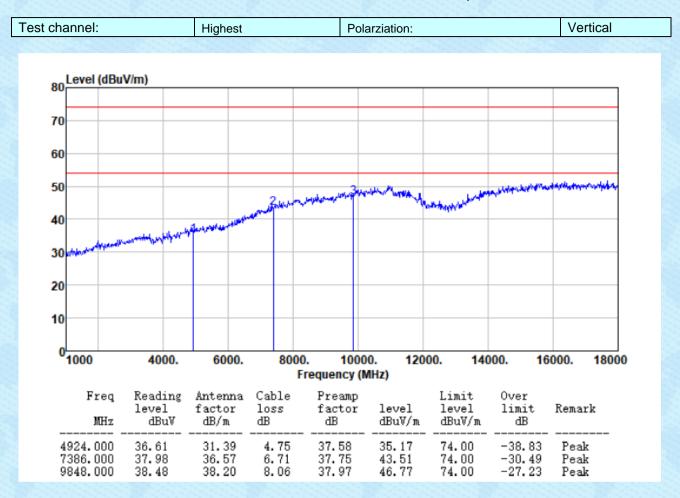


Report No.: GTS202206000036F01


Above 1GHz


Report No.: GTS202206000036F01

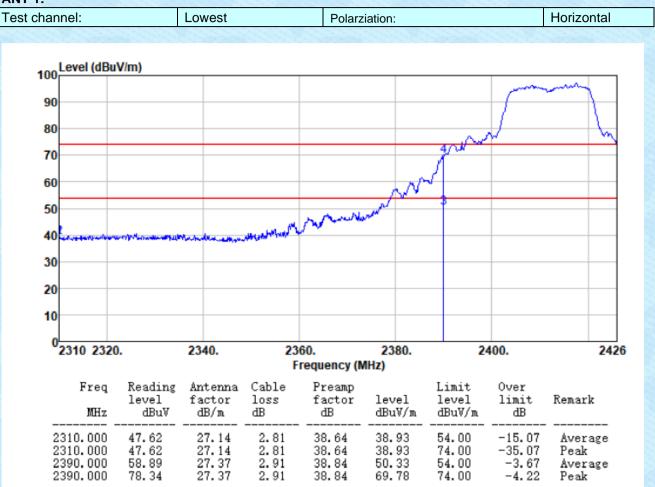

Report No.: GTS202206000036F01

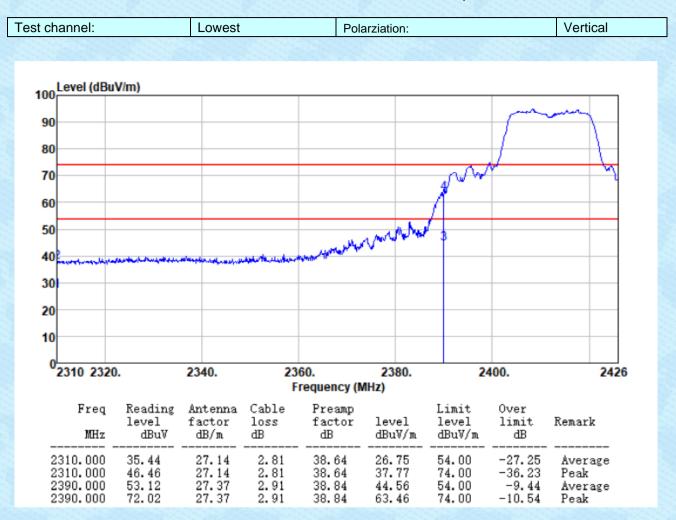

Report No.: GTS202206000036F01

Report No.: GTS202206000036F01

Report No.: GTS202206000036F01

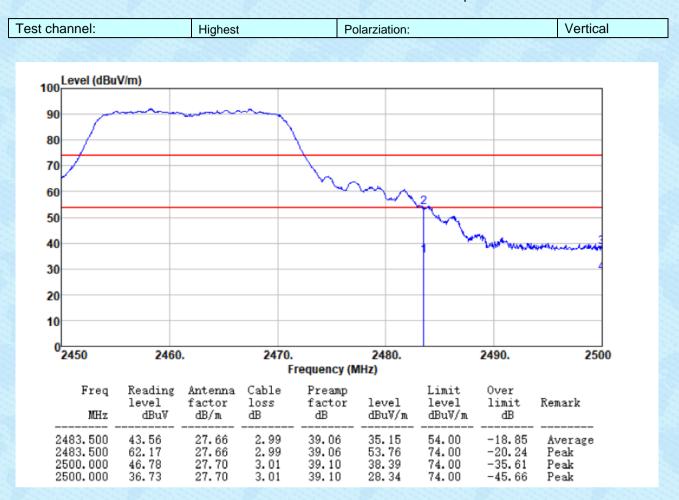
Remark:

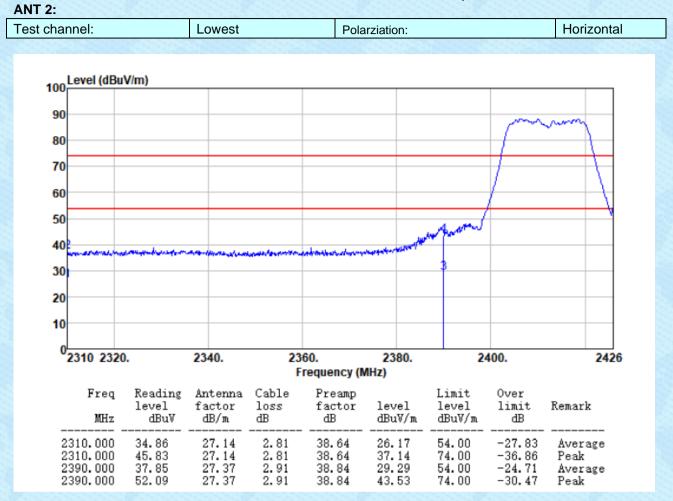

- 1 Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2 "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.


Report No.: GTS202206000036F01

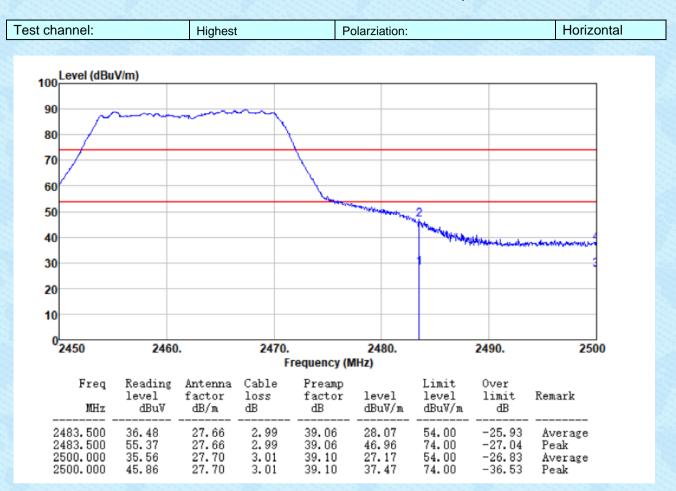
Unwanted Emissions in restricted Frequency Bands

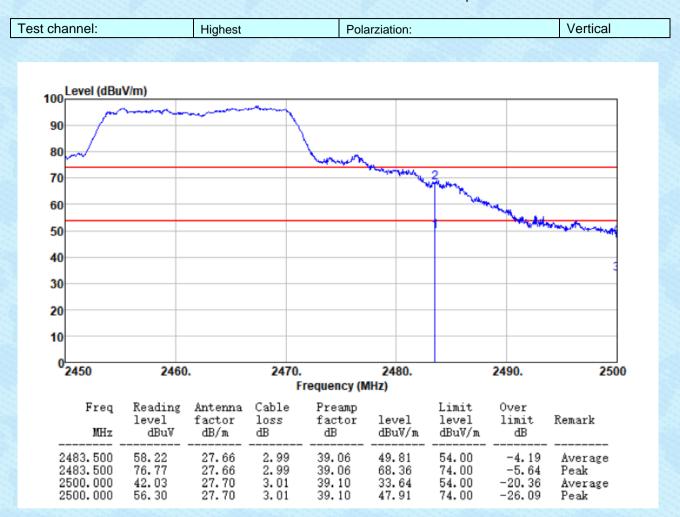
ANT 1:


Report No.: GTS202206000036F01


Report No.: GTS202206000036F01

Report No.: GTS202206000036F01


Report No.: GTS202206000036F01


Report No.: GTS202206000036F01

channel:		Lowest		Pola	rziation:			Vertical
100 Level (dBu	V/m)							
							m	m
90							1	
80							had a second	h
70						4		
60						٣		
					man and			
50				a salar		1		
				1 m m				
40	abarraryand	~	Acres and a					
40 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	antere antique and	andrean producting descen	Angenter an and the ball	104-				
30	almorene i _{eller} a ded	n den en den En den en den	Alexandron and a first	,				
30 20	alaan aha	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	steps to prove a second public					
30	an franser och star an skale		Shereberger and all all					
30 20 10	adaaraadiiwaadd						400.	2426
30 20 10	ndraannod gegen alde D.	2340.	236		2380.	2	400.	2426
30 20 10	Reading	2340. Antenna	236 Fre Cable	0. equency (M Preamp	2380. IHZ)	Limit	Over	
30 20 10 0 2310 2320		2340. Antenna factor	236 Fre	0. equency (N	2380. IHZ) level	Limit level		2426 Remark
30 20 10 0 2310 2320 Freq MHz	Reading level dBuV	2340. Antenna factor dB/m	236 Fre Cable loss dB	0. equency (M Preamp factor dB	2380. IHZ) level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
30 20 10 0 2310 2320 Freq	Reading level	2340. Antenna factor	236 Fre Cable loss	0. equency (M Preamp factor	2380. IHZ) level	Limit level	Over limit	

Report No.: GTS202206000036F01

Report No.: GTS202206000036F01

Remarks:

1. Only the worst case Main Antenna test data.

- 2. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 3. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.

Report No.: GTS202206000036F01

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----