

FCC PART 15.247

TEST REPORT

For

SDI Technologies Inc.

1299 Main St. Rahway NJ 07065, United States

FCC ID: EMO553N

Report Type: Product Type:

Original Report BLUETOOTH MP3 KARAOKE

WITH LIGHT SHOW

Namy Wang

Report Number: RSZ190909K52-00A

Report Date: 2019-09-29

Nancy Wang

Reviewed By: RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone,

Shenzhen, Guangdong, China

Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity.

TABLE OF CONTENTS

GENERAL INFORMATION	2
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	2
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	7
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	(
-	
FCC §15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	.11
FCC §15.203 – ANTENNA REQUIREMENT	.12
APPLICABLE STANDARD	.12
ANTENNA CONNECTOR CONSTRUCTION	.12
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	.13
APPLICABLE STANDARD	.13
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
Test Data	.19
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	.25
APPLICABLE STANDARD	
TEST PROCEDURE	.25

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	32
APPLICABLE STANDARD	32
TEST PROCEDURE	32
TEST DATA	32
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	38
APPLICABLE STANDARD	38
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	41
APPLICABLE STANDARD	41
TEST PROCEDURE	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	70
APPLICABLE STANDARD	70
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	71
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	BLUETOOTH MP3 KARAOKE WITH LIGHT SHOW
Tested Model	TR-553
Multiple Model [#]	DE-553, DG-553, FR-553, JJ-553, XX-553 (XX denotes the color and brand)
Frequency Range	Bluetooth: 2402~2480MHz
Conducted Peak Output Power	Bluetooth: -1.8dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification	PCB Antenna: 0dBi
Voltage Range	DC 3.7 V from battery or DC 5V from USB port
Date of Test	2019/09/24~2019/09/26
Sample serial number	190909K52
Received date	2019/09/09
Sample/EUT Status	Good Condition

Report No.: RSZ190909K52-00A

Notes: This series products model: DE-553, DG-553, FR-553, JJ-553, XX-553 (XX denotes the color and brand) and TR-553 are electrically identical, model TR-553 was selected for fully testing, the detailed information can be referred to the attached declaration letter which was stated and guaranteed by the applicant.

Objective

This test report is prepared on behalf of *SDI Technologies Inc.* in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS submissions with FCC ID: EMO553N.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

For Radiated Emissions testing, please refer to DA 00-705 Released March 30, 2000, Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 77

Parameter		Uncertainty
Occupied Cha	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.5dB
RF conducted test with spectrum		±1.5dB
AC Power Lines Conducted Emissions		±1.95dB
Radiated	Below 1GHz	±4.75dB
Emissions	Above 1GHz	±4.88dB
Temperature		±3°C
Humidity		±6%
Supply	voltages	±0.4%

Report No.: RSZ190909K52-00A

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

FCC Part 15.247 Page 5 of 77

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"BT FCC TOOL V2.21" exercise software was used, and the power level is 3.

Special Accessories

No special accessory.

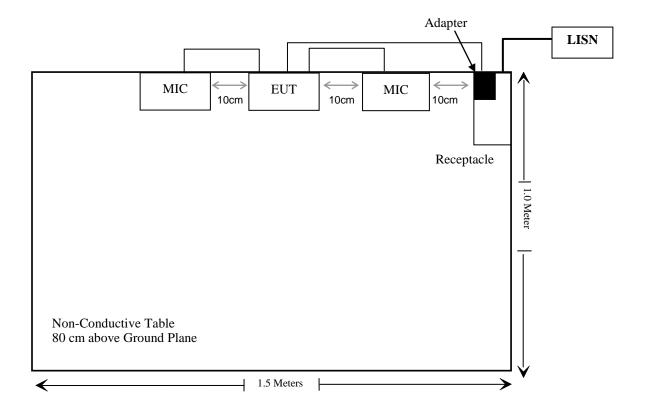
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
TP-LINK	Adapter	A8-501000	/
SDI Technologies Inc.	MIC	/	/

Report No.: RSZ190909K52-00A


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	0.5	EUT	Adapter

FCC Part 15.247 Page 6 of 77

Block Diagram of Test Setup

For conducted emission:

FCC Part 15.247 Page 7 of 77

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliance
§15.247(a)(1)	20 dB Emission Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band edges	Compliance

FCC Part 15.247 Page 8 of 77

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emissions Test						
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2019-07-11	2020-07-11	
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2019-01-25	2020-01-25	
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2019-03-02	2020-03-02	
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR	
Un-known	Conducted Emission Cable	78652	UF A210B-1- 0720-504504	2018-11-12	2019-11-12	
	Radi	ated Emission T	est			
A.H. System	Horn Antenna	SAS-200/571	135	2018-09-01	2021-08-31	
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40-N	102259	2019-07-22	2020-07-21	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017-12-22	2020-12-21	
COM-POWER	Pre-amplifier	PA-122	181919	2018-11-12	2019-11-12	
Sonoma Instrument	Amplifier	310N	186238	2018-11-12	2019-11-12	
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2019-07-09	2020-07-08	
Ducommun technologies	RF Cable	UFA147A- 2362-100100	MFR64639 231029-003	2018-11-12	2019-11-12	
Ducommun technologies	RF Cable	104PEA	218124002	2018-11-12	2019-11-12	
Ducommun technologies	RF Cable	RG-214	1	2018-11-12	2019-11-12	
Ducommun technologies	RF Cable	RG-214	2	2018-11-12	2019-11-12	
Ducommun Technologies	Horn Antenna	ARH-4223- 02	1007726-04	2017-12-29	2020-12-28	
Heatsink Required	Amplifier	QLW- 18405536-J0	15964001002	2018-11-12	2019-11-12	
Sinoscite	Notch Filter	BSF2402- 2480MN- 0898-001	99632	2018-11-12	2019-11-12	
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR	

Report No.: RSZ190909K52-00A

FCC Part 15.247 Page 9 of 77

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	RF	Conducted Tes	t		
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2019-07-22	2020-07-21
Tonscend Corporation	SRD/BT/WIFI Test System	JS0806-2	19D8060154	NCR	NCR
Ducommun technologies	RF Cable	RG-214	3	Each Time	
TIMESMICROWAve. E SYSTEMS	RF Cable	SFT205- NMSWSM- 1.50M	454575-0008	Each Time	

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 10 of 77

FCC §15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: RSZ190909K52-00A

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

For worst case:

Frequency	Maximum Tune-up power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2480	-1.5	0.71	5	0.22	3.0	Yes

Result: No Standalone SAR test is required

FCC Part 15.247 Page 11 of 77

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

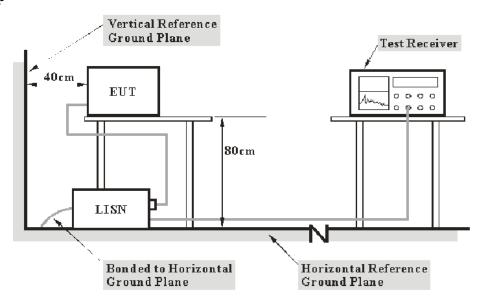
According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: RSZ190909K52-00A

Antenna Connector Construction

The EUT has one PCB antenna arrangement for bluetooth which was permanently attached and the antenna gain is 0dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


FCC Part 15.247 Page 12 of 77

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 13 of 77

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Report No.: RSZ190909K52-00A

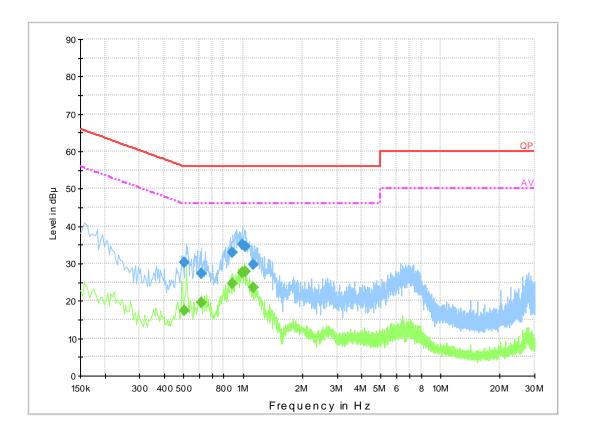
Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207,

Test Data

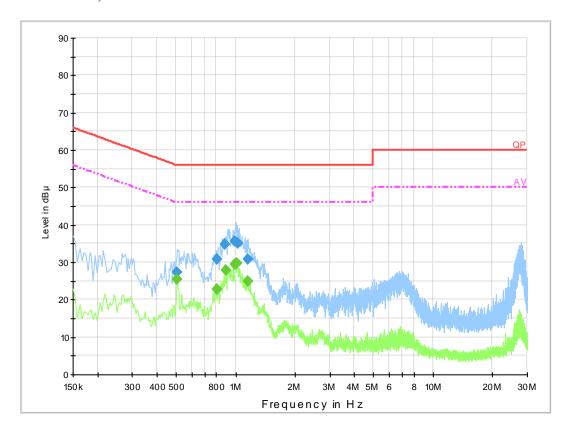
Environmental Conditions


Temperature:	25 °C
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Kiki Geng on 2019-09-25.

EUT operation mode: Transmitting & Charging (the worst case is GFSK Mode, High channel)

FCC Part 15.247 Page 14 of 77


AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.506290	30.3	19.8	56.0	25.7	QP
0.612790	27.3	19.8	56.0	28.7	QP
0.888710	32.9	19.8	56.0	23.1	QP
0.991150	35.0	19.9	56.0	21.0	QP
1.026670	34.6	19.9	56.0	21.4	QP
1.128870	29.8	19.8	56.0	26.2	QP
0.506290	17.3	19.8	46.0	28.7	Ave.
0.612790	19.5	19.8	46.0	26.5	Ave.
0.888710	24.5	19.8	46.0	21.5	Ave.
0.991150	27.5	19.9	46.0	18.5	Ave.
1.026670	27.9	19.9	46.0	18.1	Ave.
1.128870	23.7	19.8	46.0	22.3	Ave.

FCC Part 15.247 Page 15 of 77

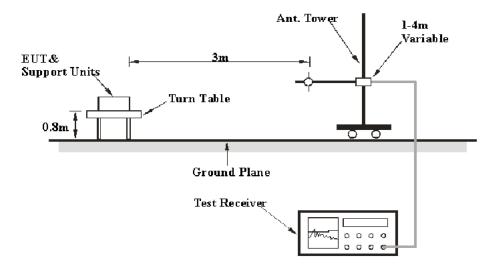
AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.502410	27.4	19.8	56.0	28.6	QP
0.805790	30.7	19.8	56.0	25.3	QP
0.884650	34.9	19.7	56.0	21.1	QP
0.994970	35.6	19.8	56.0	20.4	QP
1.026730	35.2	19.8	56.0	20.8	QP
1.152750	30.9	19.8	56.0	25.1	QP
0.506000	25.4	19.8	46.0	20.6	Ave.
0.806000	22.7	19.8	46.0	23.3	Ave.
0.894000	27.8	19.7	46.0	18.2	Ave.
0.998000	29.4	19.8	46.0	16.6	Ave.
1.022000	29.8	19.8	46.0	16.2	Ave.
1.150000	25.0	19.8	46.0	21.0	Ave.

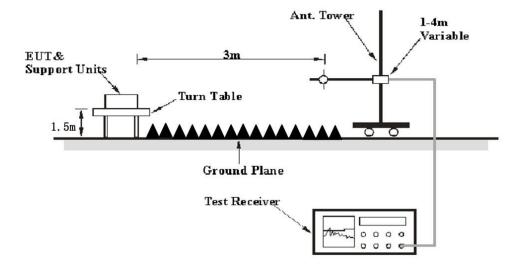
Note:

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
- 2) Corrected Amplitude = Reading + Correction Factor
- 3) Margin = Limit Corrected Amplitude

FCC Part 15.247 Page 16 of 77


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

FCC Part 15.247 Page 17 of 77

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, according to the DA 00-705 Released March 30, 2000, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Average

Report No.: RSZ190909K52-00A

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

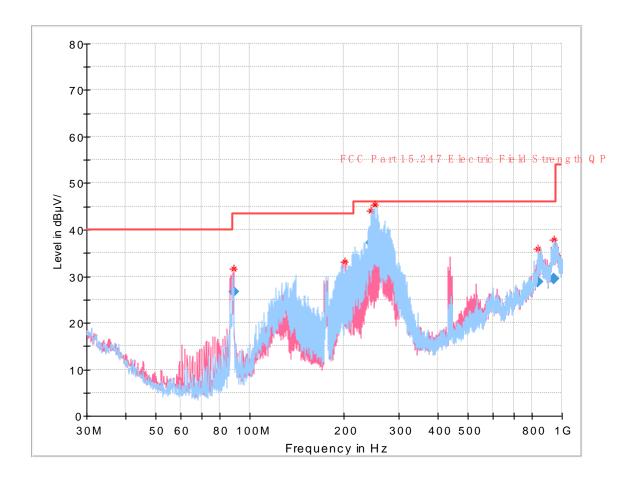
Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C, section 15.205, 15.209</u> and 15.247.

FCC Part 15.247 Page 18 of 77

Test Data


Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	52 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Alan He and Zero Yan on 2019-09-25.

EUT operation mode: Transmitting (Scan with GFSK, $\pi/4$ -DQPSK mode, the worst case is GFSK Mode)

30 MHz~1 GHz: (the worst case is GFSK Mode, High channel)

Report No.: RSZ190909K52-00A

FCC Part 15.247 Page 19 of 77

Frequency (MHz)	Corrected Amplitude (dBµV/m)	Antenna height (cm)	Antenna Polarity	Turntable position (degree)	Correction Factor (dB/m)	Limit (dBμV/m)	Margin (dB)
88.538500	26.70	123.0	V	259.0	-19.2	43.50	16.80
202.103125	26.25	102.0	V	286.0	-13.8	43.50	17.25
244.287750	37.17	119.0	Н	213.0	-14.1	46.00	8.83
250.923250	37.55	111.0	Н	221.0	-14.1	46.00	8.45
838.936250	28.75	321.0	V	41.0	5.8	46.00	17.25
941.096000	29.50	138.0	V	138.0	8.9	46.00	16.50

1 GHz - 25 GHz:

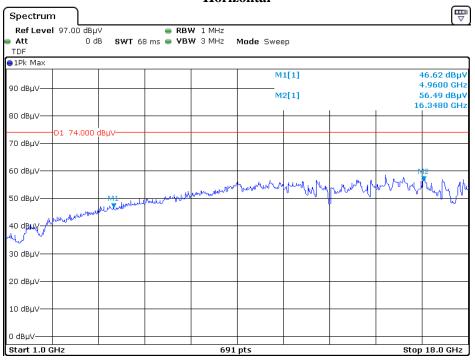
	Re	eceiver	Rx Antenna (Corrected Corrected		T		
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)		Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	Low Channel (2402 MHz)								
2328.12	28.39	PK	139	2.4	Н	31.64	60.03	74	13.97
2328.12	13.64	Ave.	139	2.4	Н	31.64	45.28	54	8.72
2494.45	28.56	PK	170	1.8	Н	32.13	60.69	74	13.31
2494.45	13.72	Ave.	170	1.8	Н	32.13	45.85	54	8.15
4804.00	43.34	PK	225	1.5	Н	6.28	49.62	74	24.38
4804.00	28.45	Ave.	225	1.5	Н	6.28	34.73	54	19.27
			Middle C	hannel	(2441 N	(Hz)			
4882.00	43.07	PK	86	1.1	Н	6.76	49.83	74	24.17
4882.00	28.37	Ave.	86	1.1	Н	6.76	35.13	54	18.87
			High Ch	nannel (2	2480 M	Hz)			
2341.32	28.43	PK	297	1.3	Н	31.64	60.07	74	13.93
2341.32	13.68	Ave.	297	1.3	Н	31.64	45.32	54	8.68
2496.76	28.37	PK	304	1.6	Н	32.13	60.50	74	13.50
2496.76	13.74	Ave.	304	1.6	Н	32.13	45.87	54	8.13
4960.00	43.86	PK	165	2.2	Н	6.80	50.66	74	23.34
4960.00	28.49	Ave.	165	2.2	Н	6.80	35.29	54	18.71

Note:

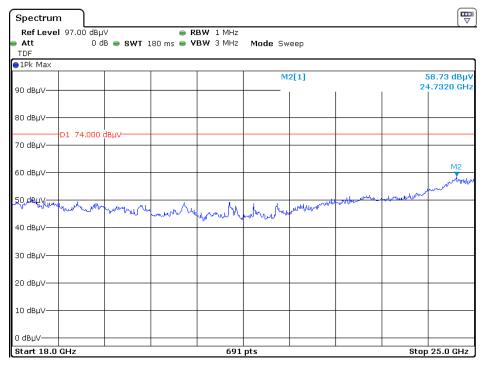
 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

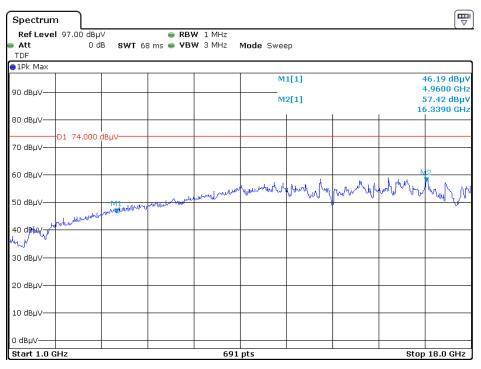

The other spurious emission which is 20dB to the limit was not recorded.

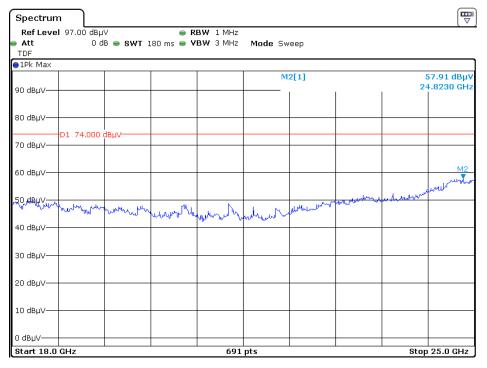
And for the pre-scan is performed with the 2400-2483.5MHz band filter.


FCC Part 15.247 Page 20 of 77

Report No.: RSZ190909K52-00A

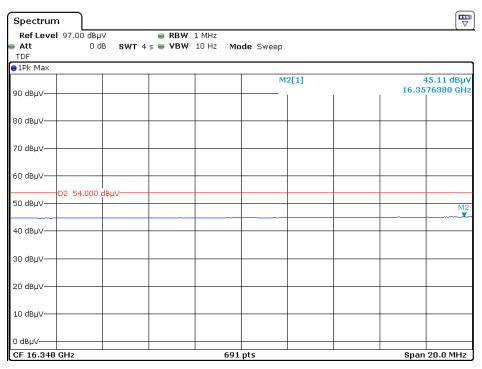
Pre-scan with High channel Peak Horizontal

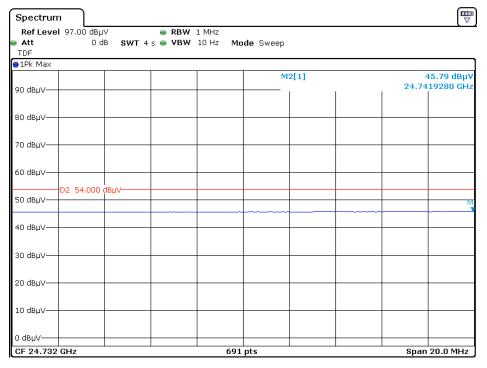

Date: 25.SEP.2019 13:07:46


Date: 25.SEP.2019 13:45:07

FCC Part 15.247 Page 21 of 77

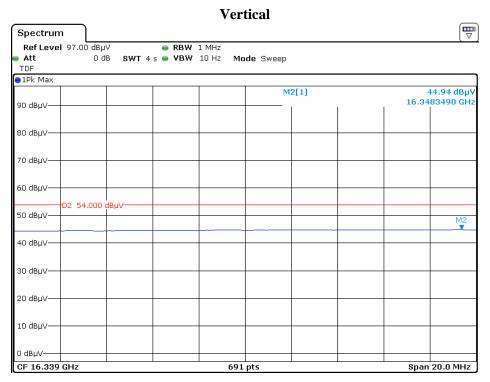
Vertical


Date: 25.SEP.2019 14:55:58


Date: 25.SEP.2019 13:58:43

FCC Part 15.247 Page 22 of 77

Pre-scan for Average Horizontal



Date: 25.SEP.2019 13:13:17

Date: 25.SEP.2019 13:52:51

FCC Part 15.247 Page 23 of 77

Date: 25.SEP.2019 13:02:48

Date: 25.SEP.2019 14:05:50

FCC Part 15.247 Page 24 of 77

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: RSZ190909K52-00A

Test Procedure

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

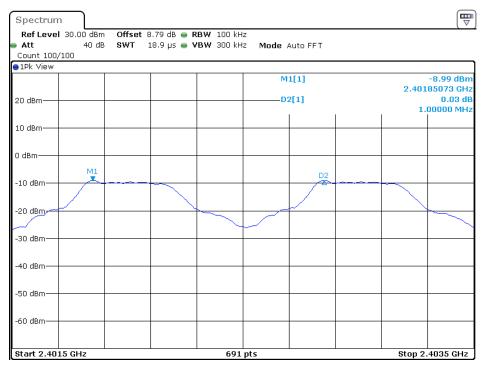
Temperature:	25 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by George Zhong on 2019-09-24.

EUT operation mode: Transmitting

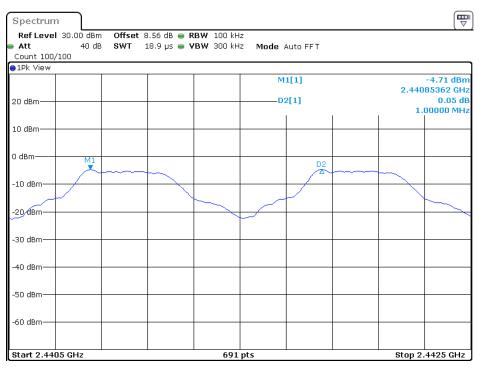
Test Result: Compliance. Please refer to following table and plots.

FCC Part 15.247 Page 25 of 77


Channel	Channel Separation (MHz)	20 dBc BW (MHz)	Two-thirds of the 20 dB bandwidth (MHz)	Channel Separation Limit	Result				
	BDR(GFSK)								
Low	1.000	0.846	0.564	> two-thirds of the 20 dB bandwidth	Compliance				
Middle	1.000	0.843	0.562	> two-thirds of the 20 dB bandwidth	Compliance				
High	1.003	0.846	0.564	> two-thirds of the 20 dB bandwidth	Compliance				
	$EDR(\pi/4-DQPSK)$								
Low	1.000	1.284	0.856	> two-thirds of the 20 dB bandwidth	Compliance				
Middle	1.000	1.278	0.852	> two-thirds of the 20 dB bandwidth	Compliance				
High	1.000	1.308	0.872	> two-thirds of the 20 dB bandwidth	Compliance				
			EDR(8DQPSK)						
Low	1.003	1.254	0.836	> two-thirds of the 20 dB bandwidth	Compliance				
Middle	1.003	1.251	0.834	> two-thirds of the 20 dB bandwidth	Compliance				
High	1.003	1.251	0.834	> two-thirds of the 20 dB bandwidth	Compliance				

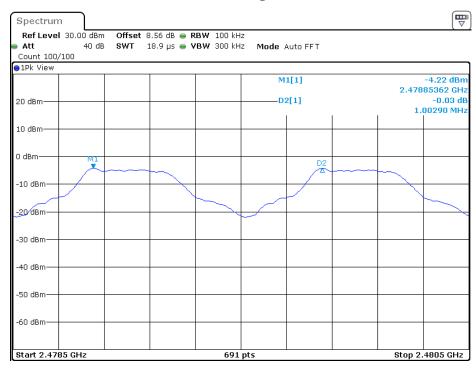
Please refer to the following plots.

FCC Part 15.247 Page 26 of 77

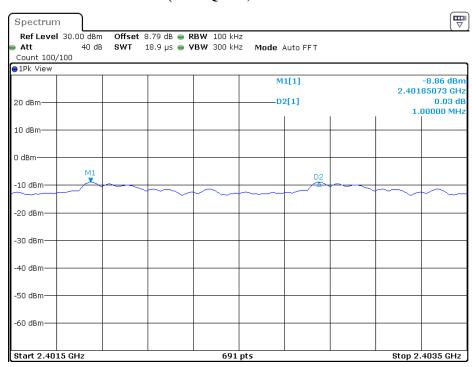

Report No.: RSZ190909K52-00A

BDR (GFSK): Low Channel

Date: 24.SEP.2019 21:17:49

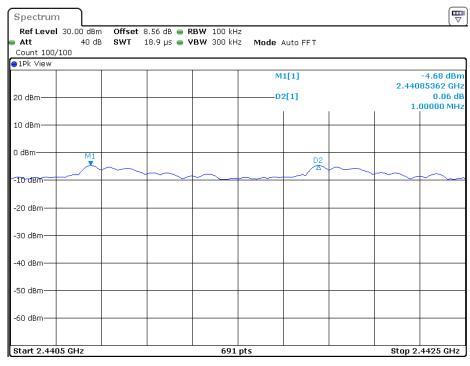

BDR (GFSK): Middle Channel

Date: 24.SEP.2019 21:47:52

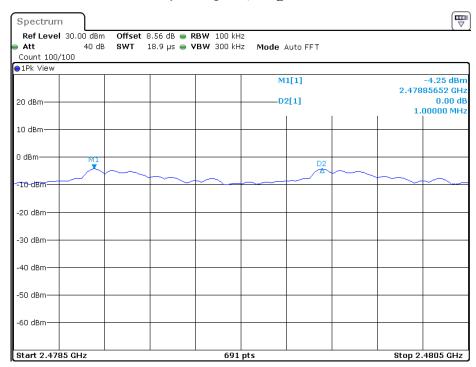

FCC Part 15.247 Page 27 of 77

BDR (GFSK): High Channel

Date: 24.SEP.2019 21:50:03

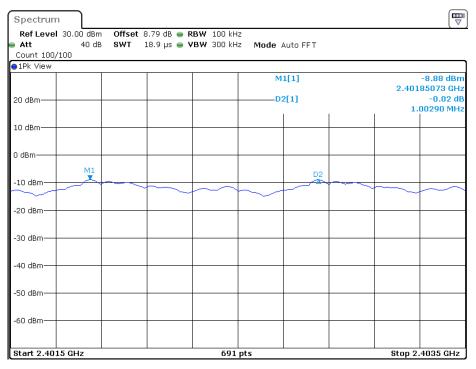

EDR ($\pi/4$ -DQPSK): Low Channel

Date: 24.SEP.2019 21:52:53

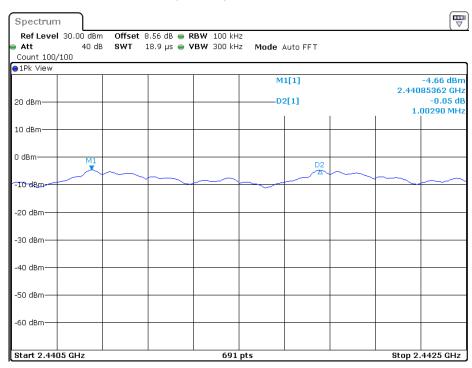

FCC Part 15.247 Page 28 of 77

EDR ($\pi/4$ -DQPSK): Middle Channel

Date: 24.SEP.2019 21:54:55

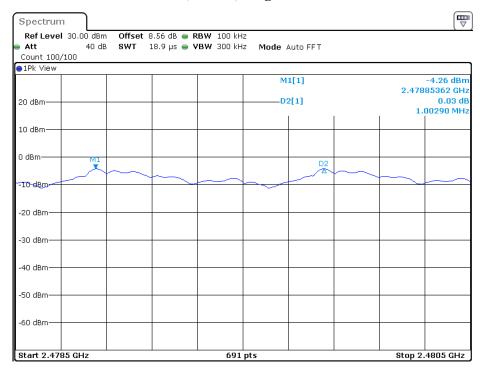

EDR ($\pi/4$ -DQPSK): High Channel

Date: 24.SEP.2019 21:56:58


FCC Part 15.247 Page 29 of 77

EDR (8DPSK): Low Channel

Date: 24.SEP.2019 21:58:47


EDR (8DPSK): Middle Channel

Date: 24.SEP.2019 22:00:18

FCC Part 15.247 Page 30 of 77

EDR (8DPSK): High Channel

Date: 24.SEP.2019 22:02:42

FCC Part 15.247 Page 31 of 77

FCC $\S15.247(a)$ (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: RSZ190909K52-00A

Test Procedure

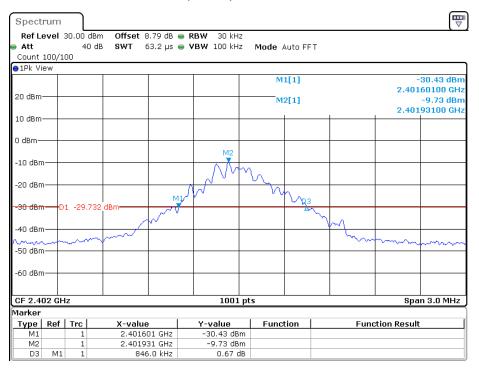
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	53 %	
ATM Pressure:	101.0 kPa	

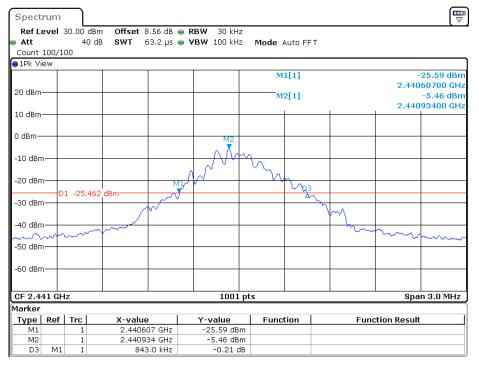
The testing was performed by George Zhong on 2019-09-24.


EUT operation mode: Transmitting

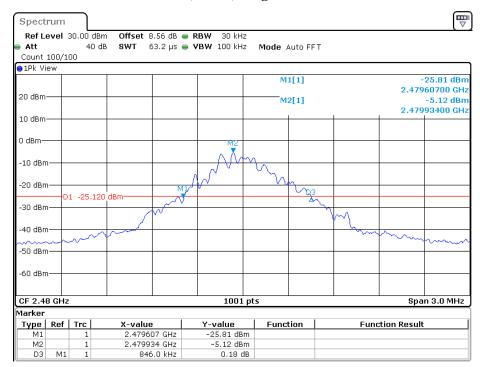
Test Result: Compliance. Please refer to following table and plots.

FCC Part 15.247 Page 32 of 77

Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)	
	Low	2402	0.846	
BDR (GFSK)	Middle	2441	0.843	
(GI SIL)	High	2480	0.846	
	Low	2402	1.284	
EDR (π/4-DQPSK)	Middle	2441	1.278	
	High	2480	1.308	
	Low	2402	1.254	
EDR (8DPSK)	Middle	2441	1.251	
	High	2480	1.251	

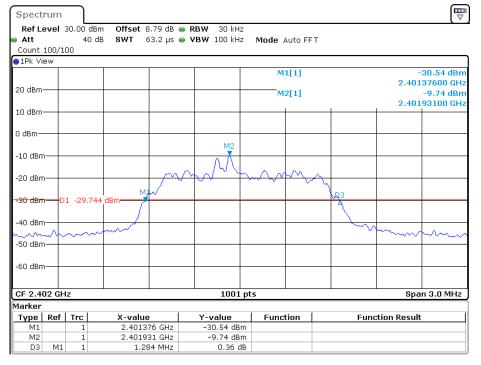

BDR (GFSK): Low Channel

Date: 24.SEP.2019 20:45:12


FCC Part 15.247 Page 33 of 77

BDR (GFSK): Middle Channel

Date: 24.SEP.2019 20:47:01

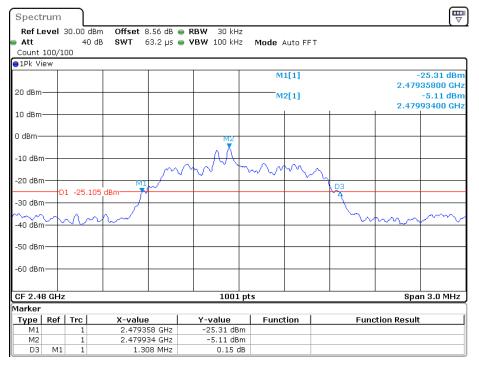

BDR (GFSK): High Channel

Date: 24.SEP.2019 20:48:31

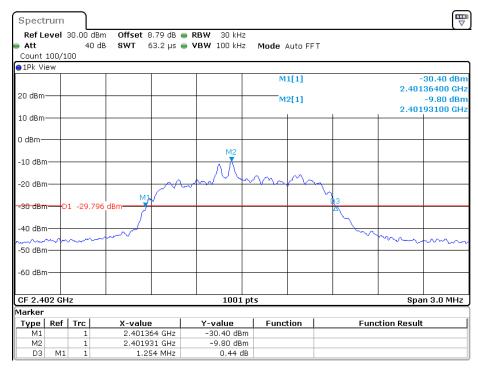
FCC Part 15.247 Page 34 of 77

EDR ($\pi/4$ -DQPSK): Low Channel

Date: 24.SEP.2019 20:50:45

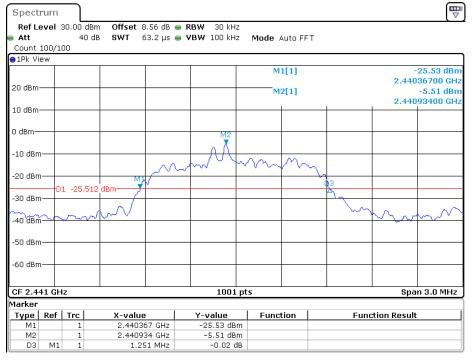

EDR ($\pi/4$ -DQPSK): Middle Channel

Date: 24.SEP.2019 20:52:40

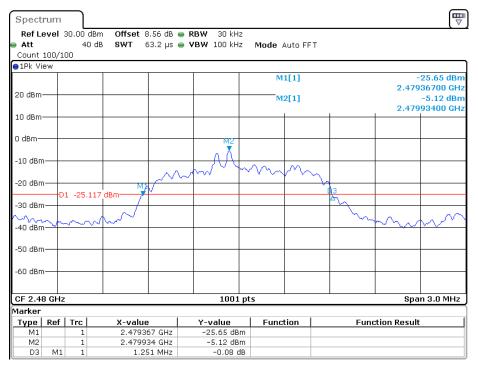

FCC Part 15.247 Page 35 of 77

EDR ($\pi/4$ -DQPSK): High Channel

Date: 24.SEP.2019 20:54:04


EDR (8DPSK): Low Channel

Date: 24.SEP.2019 20:56:05


FCC Part 15.247 Page 36 of 77

EDR (8DPSK): Middle Channel

Date: 24.SEP.2019 20:58:03

EDR (8DPSK): High Channel

Date: 24.SEP.2019 20:59:28

FCC Part 15.247 Page 37 of 77

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSZ190909K52-00A

Test Procedure

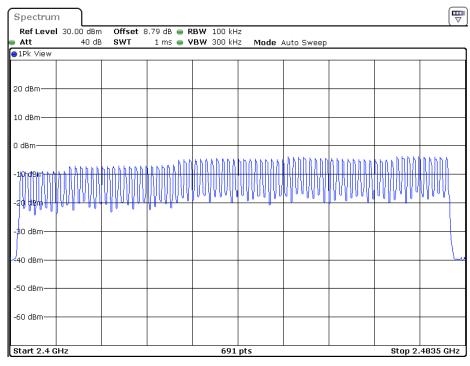
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

Environmental Conditions

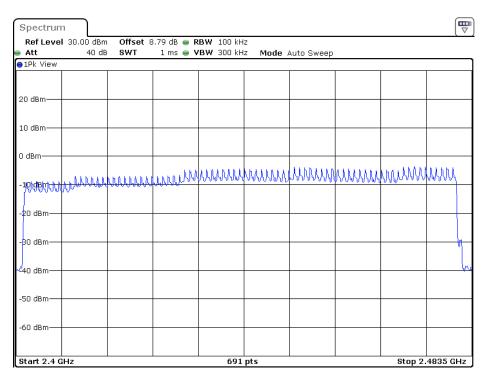
Temperature:	25 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by George Zhong on 2019-09-24.


EUT operation mode: Transmitting

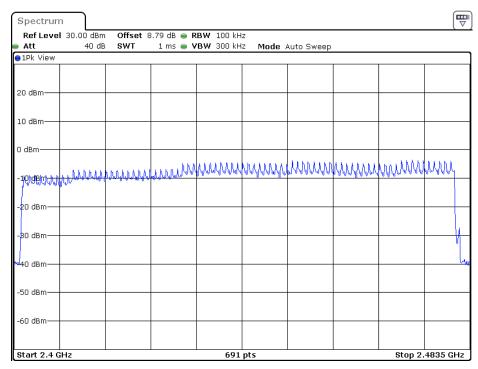
Test Result: Compliance. Please refer to following table and plots.

Mode	Frequency Range (MHz) Number of Hopping Channel (CH)		Limit (CH)	
BDR (GFSK)	2400-2483.5	79	≥15	
EDR (π/4-DQPSK)	2400-2483.5	79	≥15	
EDR (8DPSK)	2400-2483.5	79	≥15	


FCC Part 15.247 Page 38 of 77

BDR (GFSK): Number of Hopping Channels

Date: 24.SEP.2019 21:05:41


EDR ($\pi/4$ -DQPSK): Number of Hopping Channels

Date: 24.SEP.2019 22:11:55

FCC Part 15.247 Page 39 of 77

EDR (8DPSK): Number of Hopping Channels

Date: 24.SEP.2019 22:16:02

FCC Part 15.247 Page 40 of 77

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSZ190909K52-00A

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test or each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period pecified in the requirements. The sweep time shall be equal to, or less than, the period specified in the equirements. Determine the number of hops over the sweep time and calculate the total number of hops in he period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer) \times (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of ops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

Test Data

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	53 %
ATM Pressure:	101.0 kPa

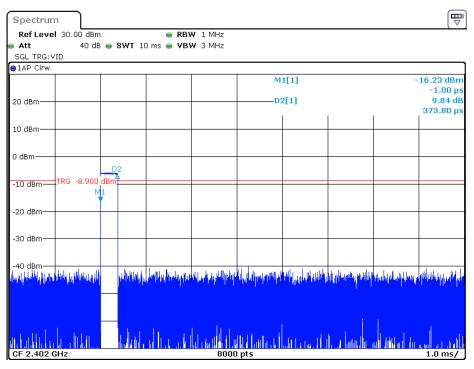
The testing was performed by George Zhong on 2019-09-24.

FCC Part 15.247 Page 41 of 77

EUT operation mode: Transmitting

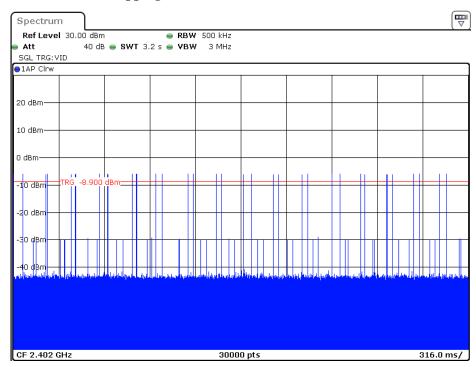
Test Result: Compliance. Please refer to following table and plots

TestMode	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
	Hop_2402	0.37	320	0.12	<=0.4	PASS
DH1	Hop_2441	0.37	320	0.12	<=0.4	PASS
	Hop_2480	0.37	330	0.123	<=0.4	PASS
	Hop_2402	1.62	140	0.227	<=0.4	PASS
DH3	Hop_2441	1.62	140	0.227	<=0.4	PASS
	Hop_2480	1.62	180	0.292	<=0.4	PASS
	Hop_2402	2.86	110	0.315	<=0.4	PASS
DH5	Hop_2441	2.86	120	0.344	<=0.4	PASS
	Hop_2480	2.86	50	0.143	<=0.4	PASS
	Hop_2402	0.38	320	0.122	<=0.4	PASS
2DH1	Hop_2441	0.38	320	0.122	<=0.4	PASS
	Hop_2480	0.38	320	0.122	<=0.4	PASS
	Hop_2402	1.63	170	0.276	<=0.4	PASS
2DH3	Hop_2441	1.63	180	0.293	<=0.4	PASS
	Hop_2480	1.63	170	0.276	<=0.4	PASS
2DH5	Hop_2402	2.87	110	0.315	<=0.4	PASS
	Hop_2441	2.87	60	0.172	<=0.4	PASS
	Hop_2480	2.87	110	0.315	<=0.4	PASS
	Hop_2402	0.38	320	0.122	<=0.4	PASS
3DH1	Hop_2441	0.38	320	0.122	<=0.4	PASS
	Hop_2480	0.38	330	0.126	<=0.4	PASS
3DH3	Hop_2402	1.62	170	0.276	<=0.4	PASS
	Hop_2441	1.62	180	0.292	<=0.4	PASS
	Hop_2480	1.63	160	0.26	<=0.4	PASS
	Hop_2402	2.87	100	0.287	<=0.4	PASS
3DH5	Hop_2441	2.87	80	0.229	<=0.4	PASS
	Hop_2480	2.87	70	0.201	<=0.4	PASS


Note 1: A period time=0.4*79=31.6(s), Total of Dwell=Pluse Time*Hopping Number

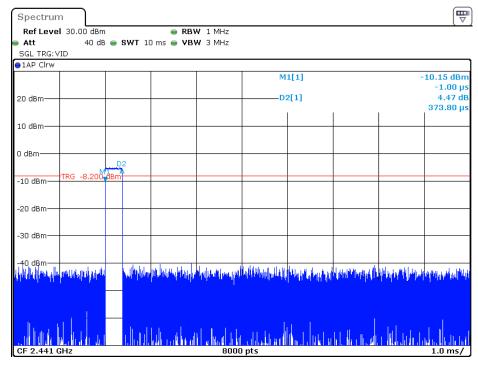
Note 2: Hopping Number = Hopping Number in 3.16s*10

Note 3: Hopping Number in 3.16s = Total of highest signals in 3.16s.(Second high signals were other channel)

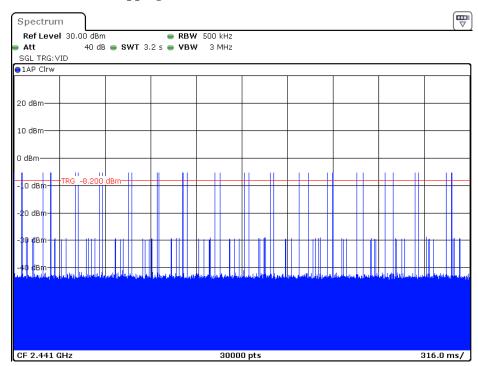

FCC Part 15.247 Page 42 of 77

BDR (GFSK):
Pulse Time, DH1, 2402 MHz

Date: 24.SEP.2019 22:37:28

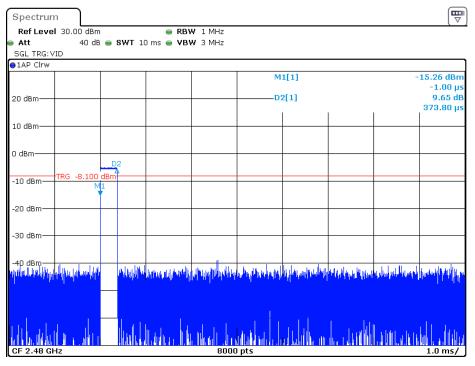

Hopping number in 3.16s, DH1, 2402 MHz

Date: 24.SEP.2019 22:37:36

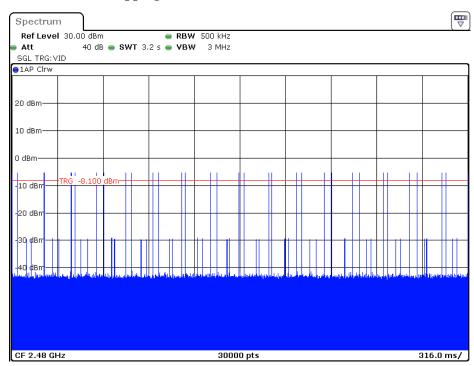

FCC Part 15.247 Page 43 of 77

Pulse Time, DH1, 2441 MHz

Date: 24.SEP.2019 22:38:32

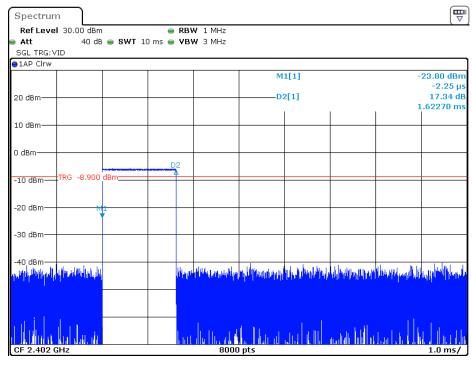

Hopping number in 3.16s, DH1, 2441 MHz

Date: 24.SEP.2019 22:38:41

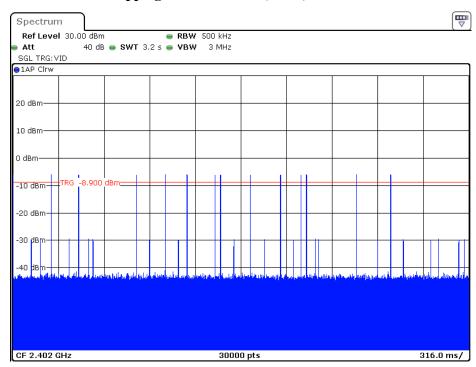

FCC Part 15.247 Page 44 of 77

Pulse Time, DH1, 2480 MHz

Date: 24.SEP.2019 22:39:06

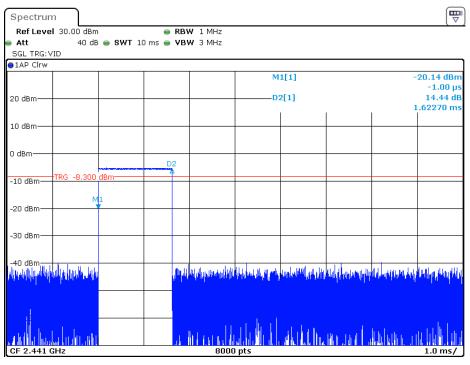

Hopping number in 3.16s, DH1, 2480 MHz

Date: 24.SEP.2019 22:39:14

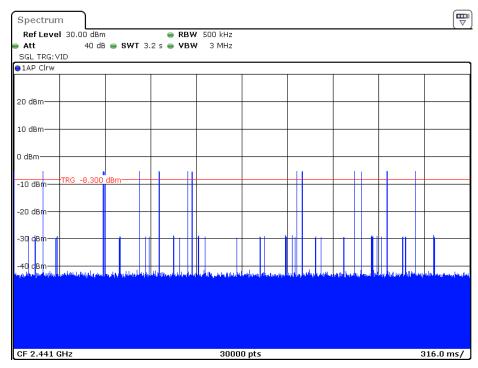

FCC Part 15.247 Page 45 of 77

Pulse Time, DH3, 2402 MHz

Date: 24.SEP.2019 22:40:29

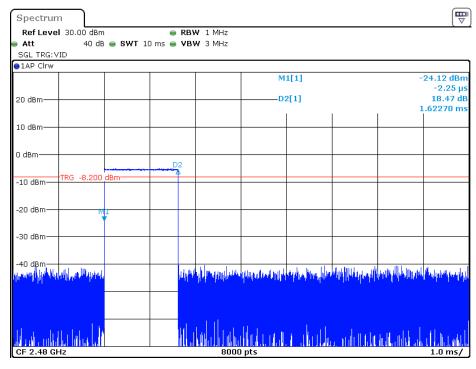

Hopping number in 3.16s, DH3, 2402 MHz

Date: 24.SEP.2019 22:40:37

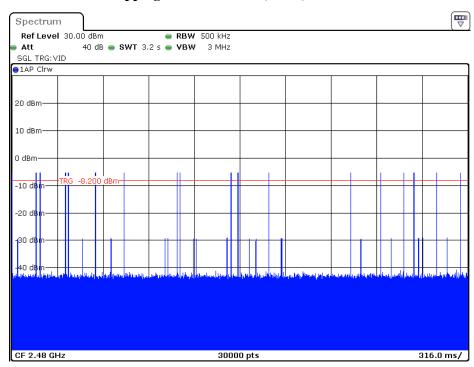

FCC Part 15.247 Page 46 of 77

Pulse Time, DH3, 2441 MHz

Date: 24.SEP.2019 22:41:00

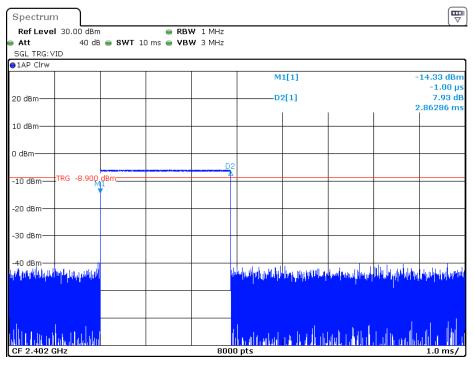

Hopping number in 3.16s, DH3, 2441 MHz

Date: 24.SEP.2019 22:41:09

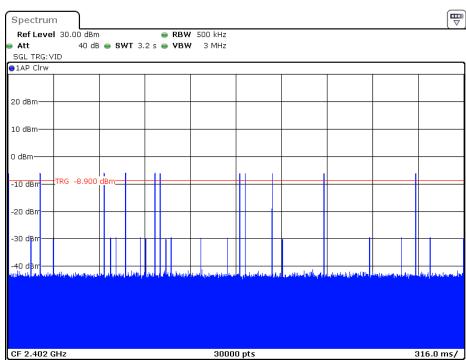

FCC Part 15.247 Page 47 of 77

Pulse Time, DH3, 2480 MHz

Date: 24.SEP.2019 22:41:32

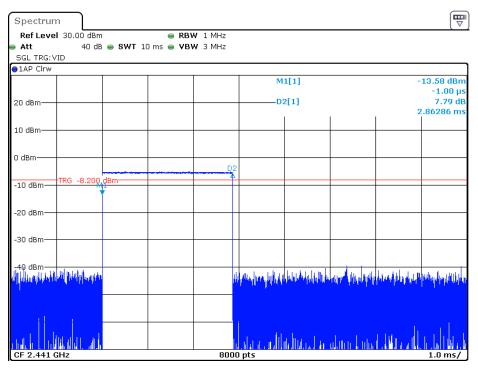

Hopping number in 3.16s, DH3, 2480 MHz

Date: 24.SEP.2019 22:41:41

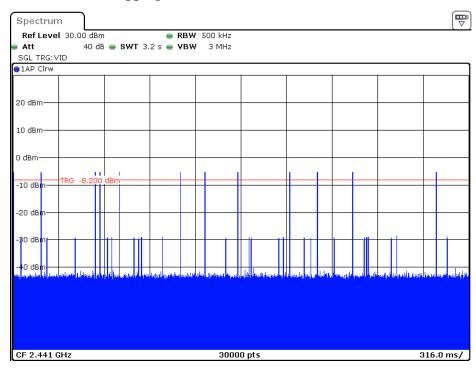

FCC Part 15.247 Page 48 of 77

Pulse Time, DH5, 2402 MHz

Date: 24.SEP.2019 22:42:40

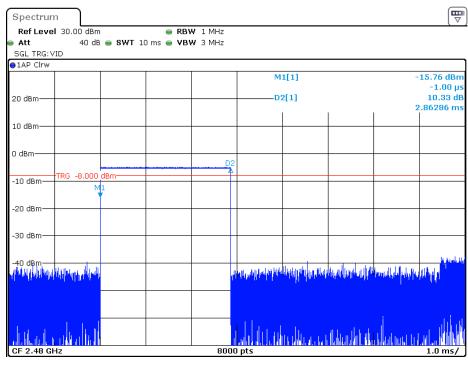

Hopping number in 3.16s, DH5, 2402 MHz

Date: 24.SEP.2019 22:42:49

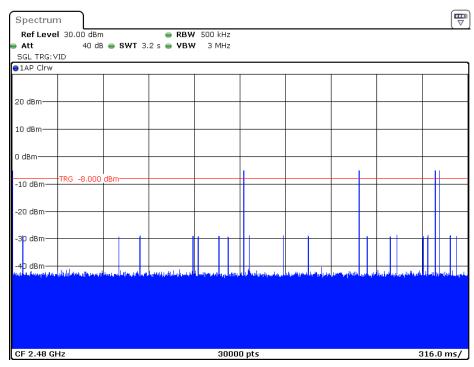

FCC Part 15.247 Page 49 of 77

Pulse Time, DH5, 2441 MHz

Date: 24.SEP.2019 22:43:15

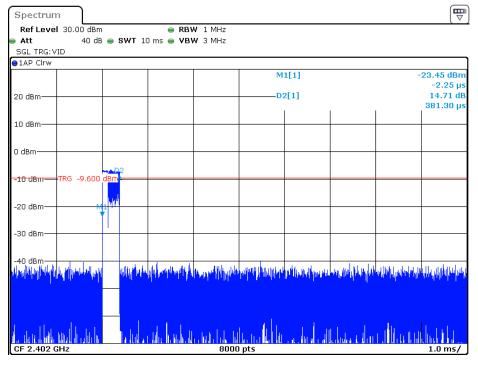

Hopping number in 3.16s, DH5, 2441 MHz

Date: 24.SEP.2019 22:43:23

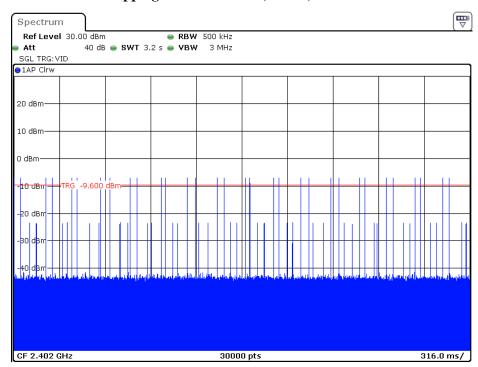

FCC Part 15.247 Page 50 of 77

Pulse Time, DH5, 2480 MHz

Date: 24.SEP.2019 23:02:35

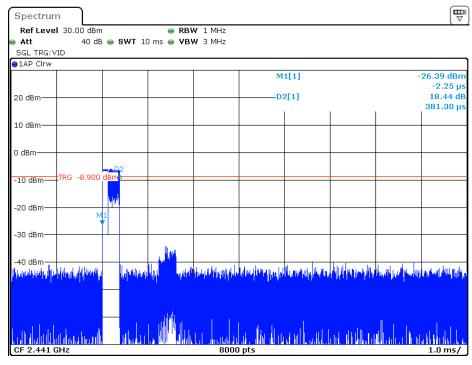

Hopping number in 3.16s, DH5, 2480 MHz

Date: 24.SEP.2019 23:02:44

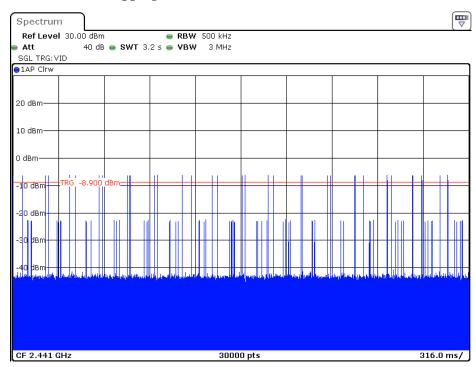

FCC Part 15.247 Page 51 of 77

EDR (π /4-DQPSK): Pulse Time, 2DH1, 2402 MHz

Date: 24.SEP.2019 22:44:42

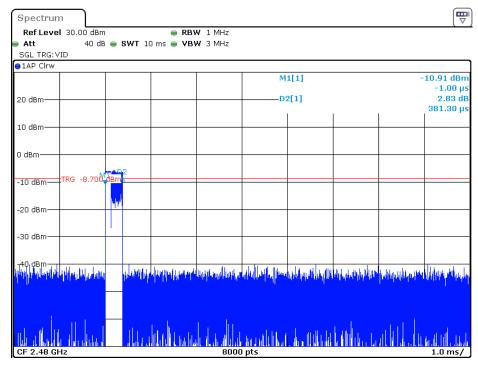

Hopping number in 3.16s, 2DH1, 2402 MHz

Date: 24.SEP.2019 22:44:50

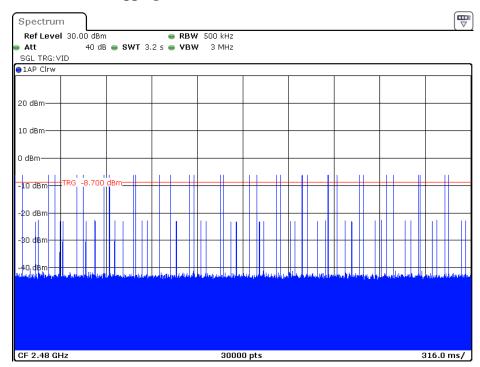

FCC Part 15.247 Page 52 of 77

Pulse Time, 2DH1, 2441 MHz

Date: 24.SEP.2019 22:45:24

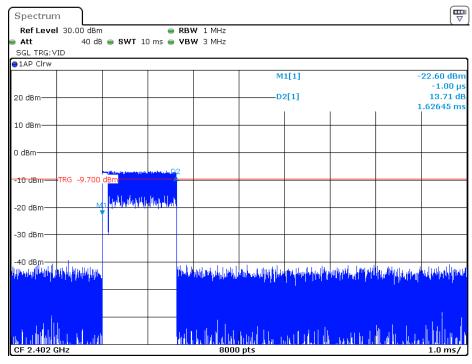

Hopping number in 3.16s, 2DH1, 2441 MHz

Date: 24.SEP.2019 22:45:33

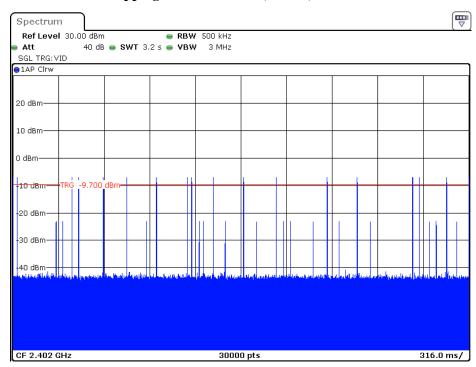

FCC Part 15.247 Page 53 of 77

Pulse Time, 2DH1, 2480 MHz

Date: 24.SEP.2019 22:45:56

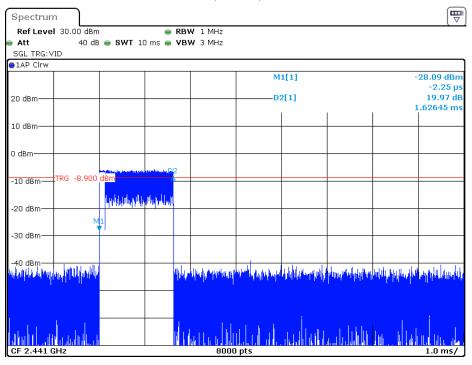

Hopping number in 3.16s, 2DH1, 2480 MHz

Date: 24.SEP.2019 22:46:05

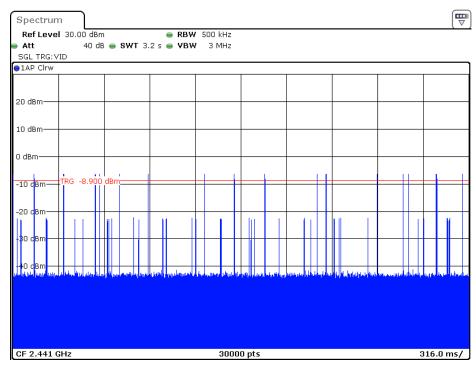

FCC Part 15.247 Page 54 of 77

Pulse Time, 2DH3, 2402MHz

Date: 24.SEP.2019 22:46:52

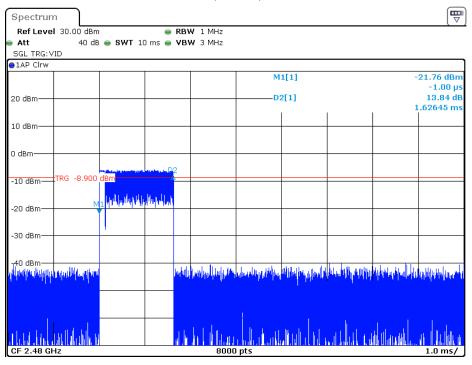

Hopping number in 3.16s, 2DH3, 2402MHz

Date: 24.SEP.2019 22:47:01

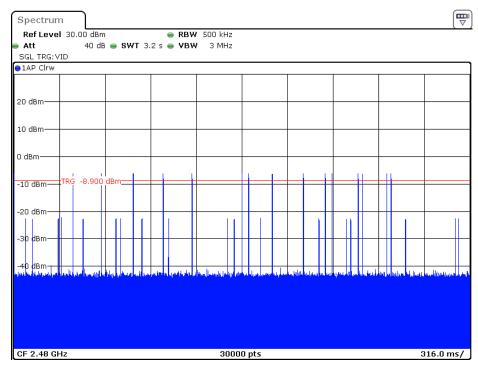

FCC Part 15.247 Page 55 of 77

Pulse Time, 2DH3, 2441MHz

Date: 24.SEP.2019 22:47:34

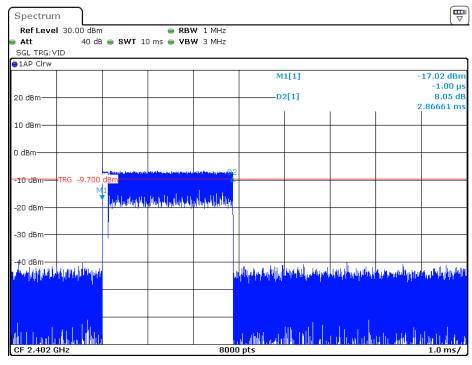

Hopping number in 3.16s, 2DH3, 2441MHz

Date: 24.SEP.2019 22:47:43

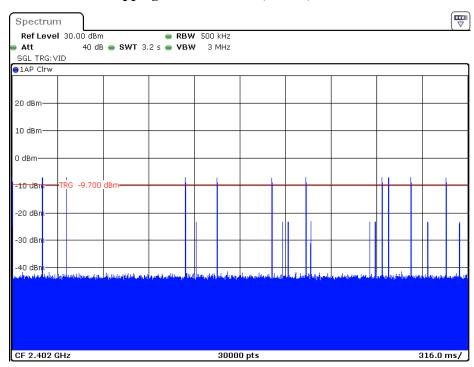

FCC Part 15.247 Page 56 of 77

Pulse Time, 2DH3, 2480MHz

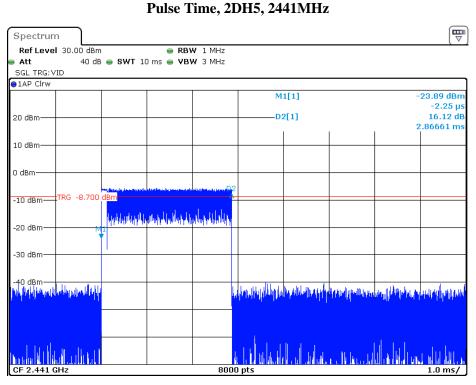
Date: 24.SEP.2019 22:48:11


Hopping number in 3.16s, 2DH3, 2480MHz

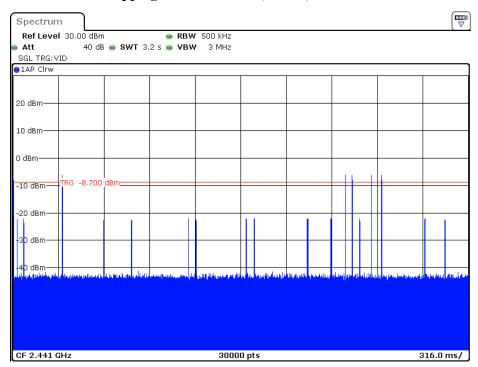
Date: 24.SEP.2019 22:48:19


FCC Part 15.247 Page 57 of 77

Pulse Time, 2DH5, 2402MHz

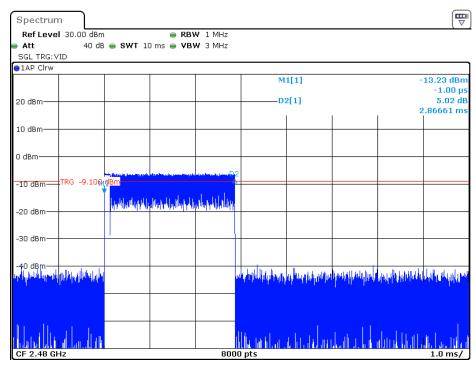

Date: 24.SEP.2019 22:49:26

Hopping number in 3.16s, 2DH5, 2402MHz

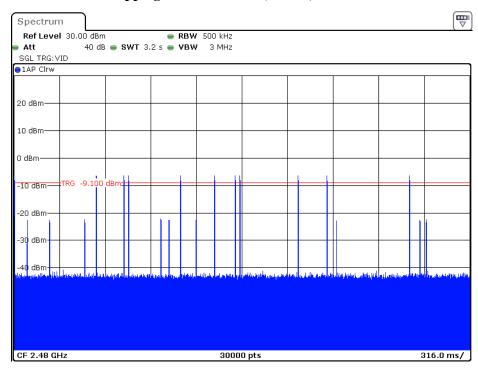

Date: 24.SEP.2019 22:49:35

FCC Part 15.247 Page 58 of 77

Date: 24.SEP.2019 23:03:38


Hopping number in 3.16s, 2DH5, 2441MHz

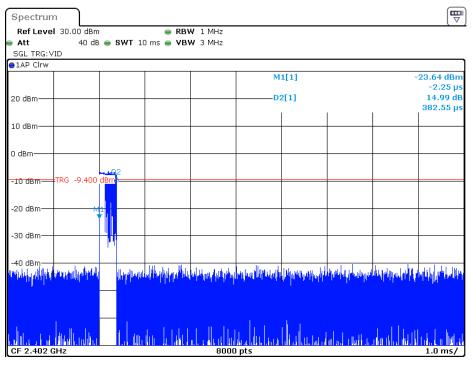
Date: 24.SEP.2019 23:03:46


FCC Part 15.247 Page 59 of 77

Pulse Time, 2DH5, 2480MHz

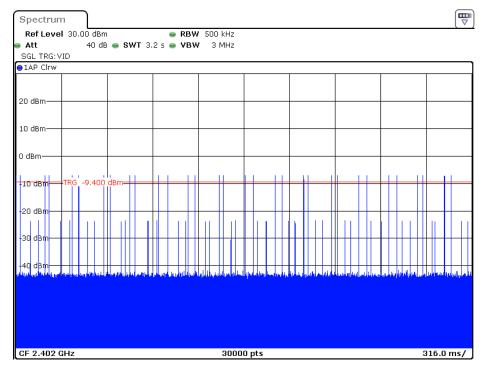
Date: 24.SEP.2019 23:05:36

Hopping number in 3.16s, 2DH5, 2480MHz



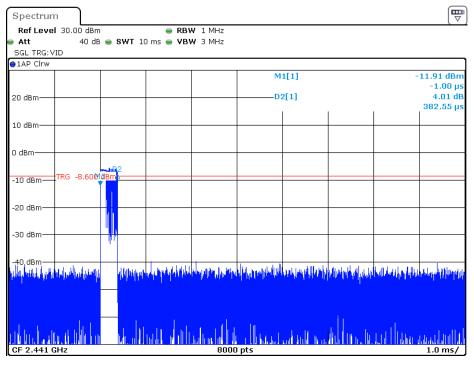
Date: 24.SEP.2019 23:05:45

FCC Part 15.247 Page 60 of 77

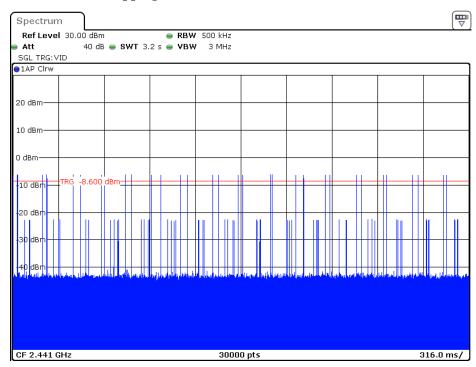

EDR (8DPSK):

Pulse time, 3DH1, 2402MHz

Date: 24.SEP.2019 22:52:37


Hopping number in 3.16S, 3DH1, 2402MHz

Date: 24.SEP.2019 22:52:45

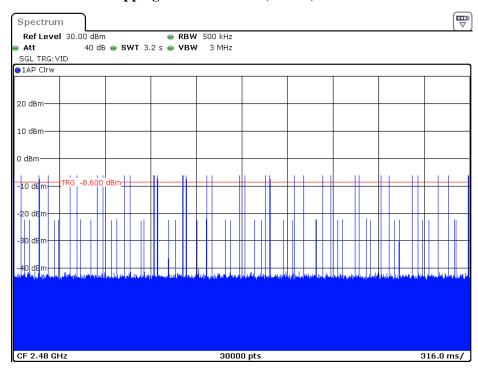

FCC Part 15.247 Page 61 of 77

Pulse time, 3DH1, 2441MHz

Date: 24.SEP.2019 22:53:32


Hopping number in 3.16S, 3DH1, 2441MHz

Date: 24.SEP.2019 22:53:40

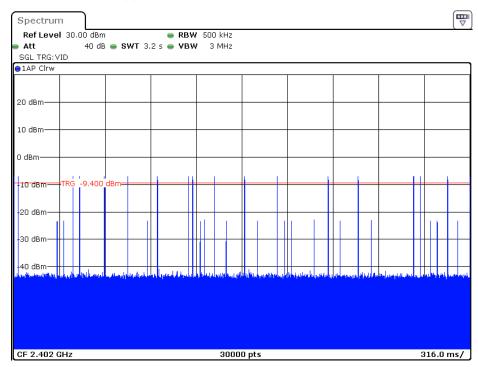

FCC Part 15.247 Page 62 of 77

Pulse time, 3DH1, 2480MHz

Date: 24.SEP.2019 22:54:09

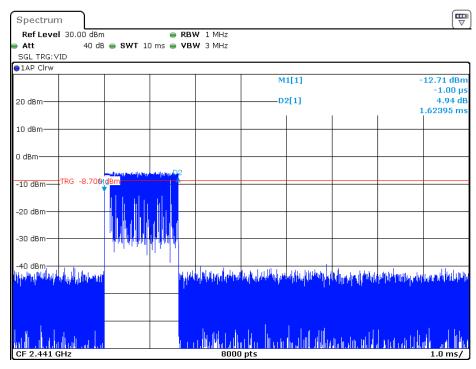

Hopping number in 3.16S, 3DH1, 2480MHz

Date: 24.SEP.2019 22:54:17

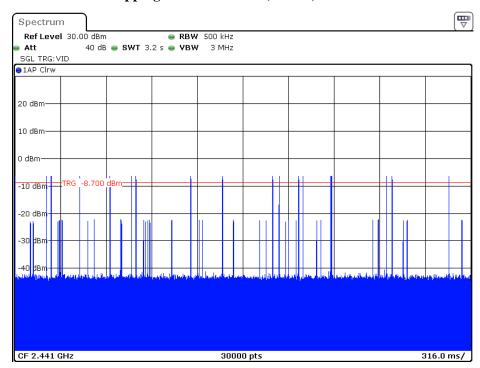

FCC Part 15.247 Page 63 of 77

Pulse time, 3DH3, 2402MHz

Date: 24.SEP.2019 22:55:17

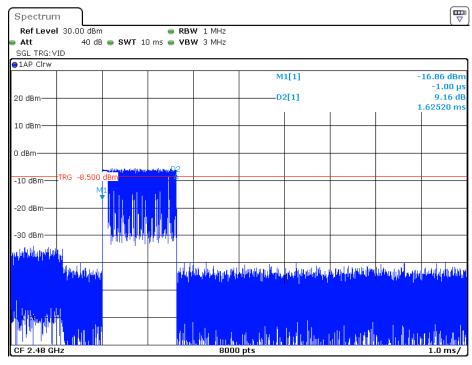

Hopping number in 3.16S, 3DH3, 2402MHz

Date: 24.SEP.2019 22:55:25

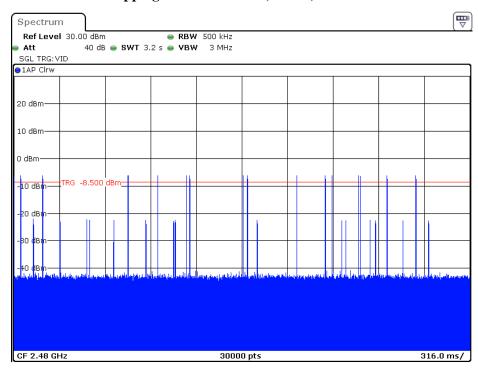

FCC Part 15.247 Page 64 of 77

Pulse time, 3DH3, 2441MHz

Date: 24.SEP.2019 22:55:48

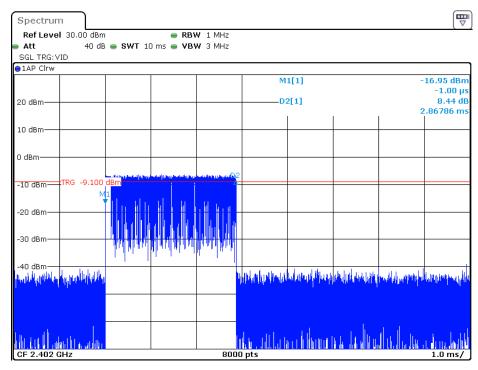

Hopping number in 3.16S, 3DH3, 2441MHz

Date: 24.SEP.2019 22:55:57

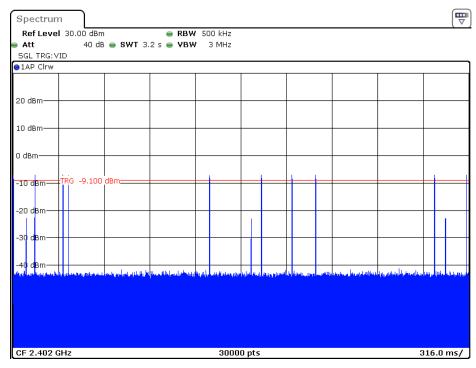

FCC Part 15.247 Page 65 of 77

Pulse time, 3DH3, 2480MHz

Date: 24.SEP.2019 22:56:20

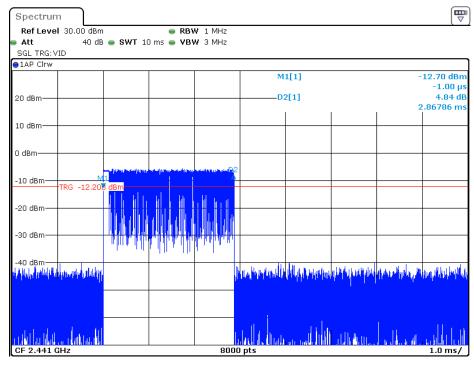

Hopping number in 3.16S, 3DH3, 2480MHz

Date: 24.SEP.2019 22:56:29

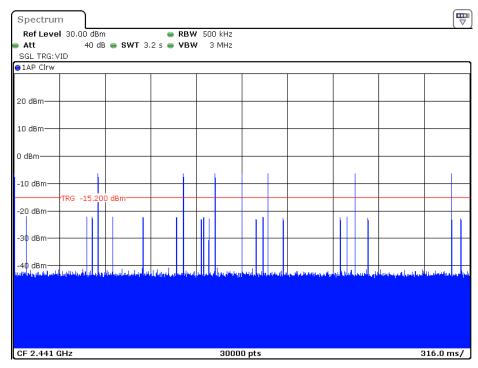

FCC Part 15.247 Page 66 of 77

Pulse time, 3DH5, 2402MHz

Date: 24.SEP.2019 22:57:29

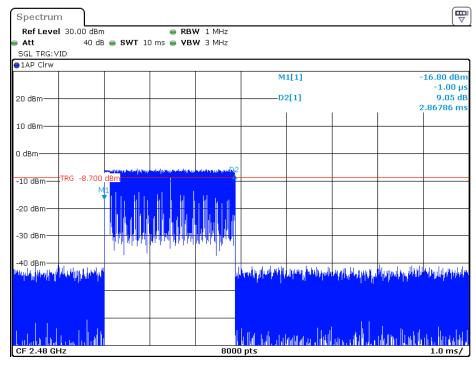

Hopping number in 3.16S, 3DH5, 2402MHz

Date: 24.SEP.2019 22:57:38

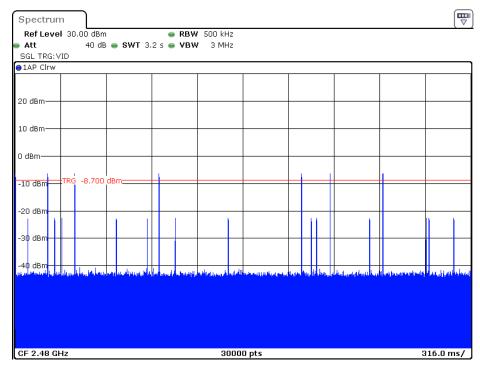

FCC Part 15.247 Page 67 of 77

Pulse time, 3DH5, 2441MHz

Date: 24.SEP.2019 22:57:57


Hopping number in 3.16S, 3DH5, 2441MHz

Date: 24.SEP.2019 22:58:06


FCC Part 15.247 Page 68 of 77

Pulse time, 3DH5, 2480MHz

Date: 24.SEP.2019 22:58:31

Hopping number in 3.16S, 3DH5, 2480MHz

Date: 24.SEP.2019 22:58:40

FCC Part 15.247 Page 69 of 77

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: RSZ190909K52-00A

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	24 ℃
Relative Humidity:	54 %
ATM Pressure:	101.0 kPa

The testing was performed by George Zhong on 2019-09-26.

EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table.

Mode	Channel	Frequency (MHz)	Peak Output Power		Limit
			(dBm)	(mW)	(mW)
BDR (GFSK)	Low	2402	-7.76	0.17	125
	Middle	2441	-3.83	0.41	125
	High	2480	-3.55	0.44	125
EDR (π/4-DQPSK)	Low	2402	-5.12	0.31	125
	Middle	2441	-1.86	0.65	125
	High	2480	-2.46	0.57	125
EDR (8DPSK)	Low	2402	-4.91	0.32	125
	Middle	2441	-1.80	0.66	125
	High	2480	-2.42	0.57	125

FCC Part 15.247 Page 70 of 77

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RSZ190909K52-00A

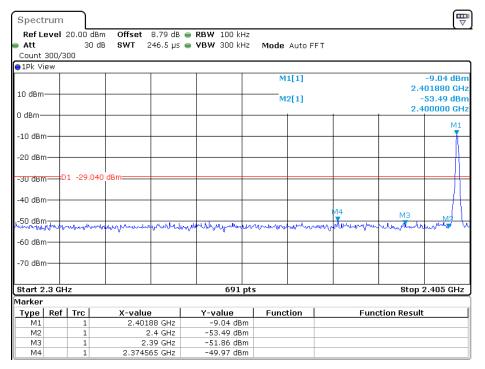
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

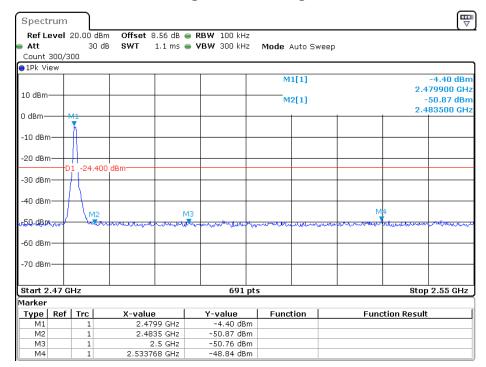
Environmental Conditions

Temperature:	23 ℃
Relative Humidity:	55 %
ATM Pressure:	101.0 kPa


The testing was performed by George Zhong from 2019-09-24 to 2019-09-26.

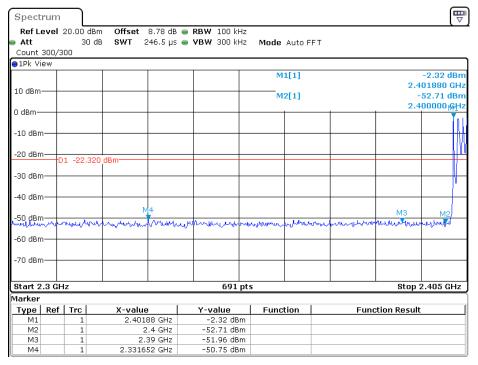
EUT operation mode: Transmitting

Test Result: Compliance. Please refer to following table and plots.

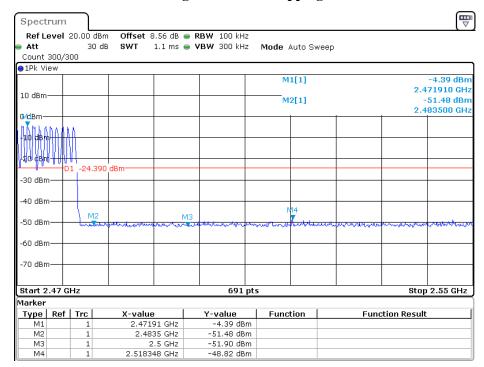

FCC Part 15.247 Page 71 of 77

BDR (GFSK): Band Edge Low Channel – Single

Date: 24.SEP.2019 20:45:48

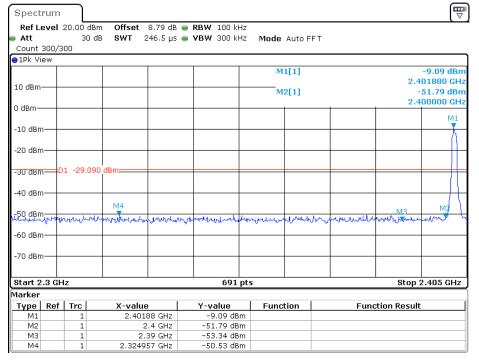

High Channel – Single

Date: 24.SEP.2019 20:49:07

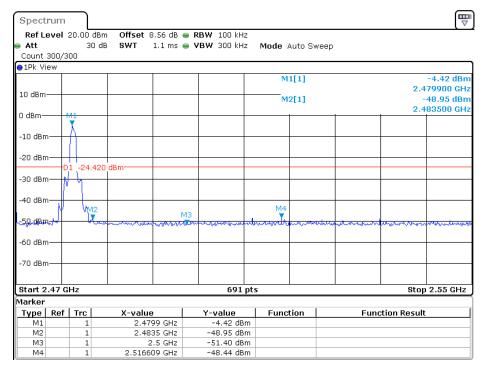

FCC Part 15.247 Page 72 of 77

Low Channel - Hopping

Date: 26.SEP.2019 19:50:15

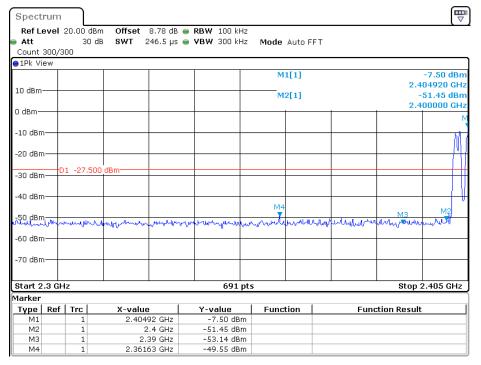

High Channel – Hopping

Date: 26.SEP.2019 19:50:36

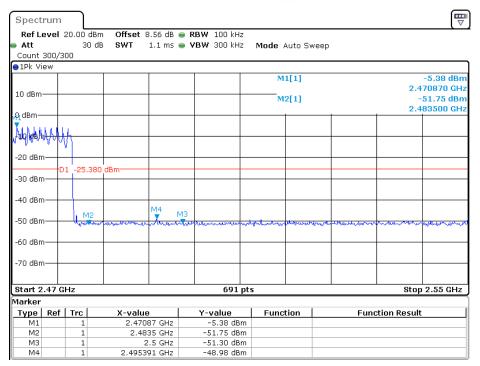

FCC Part 15.247 Page 73 of 77

EDR (π /4-DQPSK): Band Edge Low Channel – Single

Date: 24.SEP.2019 20:51:20

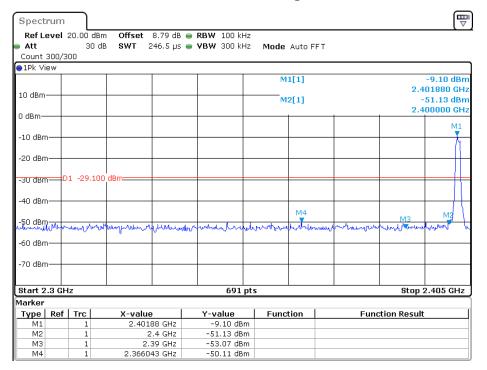

High Channel – Single

Date: 24.SEP.2019 20:54:40

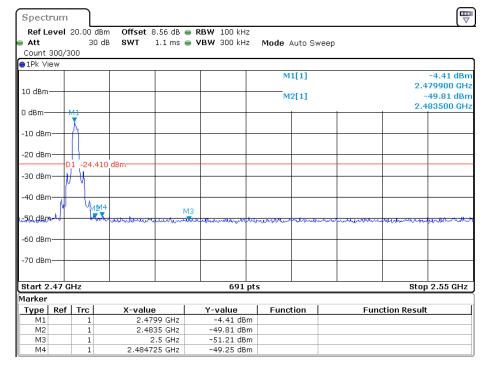

FCC Part 15.247 Page 74 of 77

Low Channel – Hopping

Date: 26.SEP.2019 19:51:14

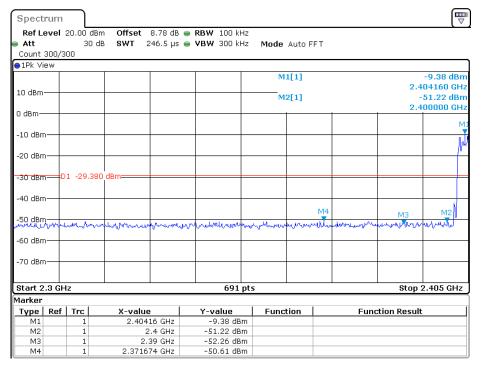

High Channel – Hopping

Date: 26.SEP.2019 19:51:34

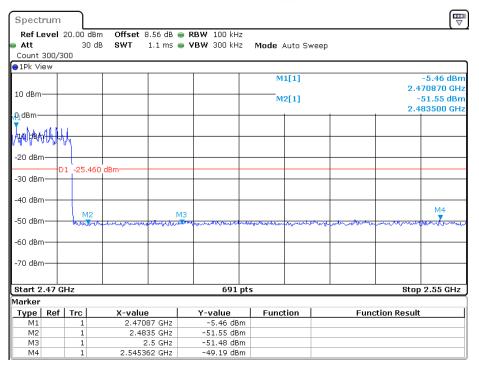

FCC Part 15.247 Page 75 of 77

EDR (8DPSK): Band Edge Low Channel – Single

Date: 24.SEP.2019 20:56:41


High Channel – Single

Date: 24.SEP.2019 21:00:03


FCC Part 15.247 Page 76 of 77

Low Channel - Hopping

Date: 26.SEP.2019 19:52:05

High Channel – Hopping

Date: 26.SEP.2019 19:52:27

***** END OF REPORT *****

FCC Part 15.247 Page 77 of 77