

Report No. : EED32K00143401 Page 1 of 39

TEST REPORT

Product : Pulse Oximeter

Trade mark : JUMPER

Model/Type reference : JPD-500G, JPD-500H

Serial Number : N/A

Report Number : EED32K00143401

FCC ID : 2ADYL-JPD500G

Date of Issue : Aug. 01, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Jumper Medical Equipment Co., Ltd D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal

Tested By:

Tom-chen

Rein for

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

Date: Aug. 01, 2018

Kevin lan (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 3177403017

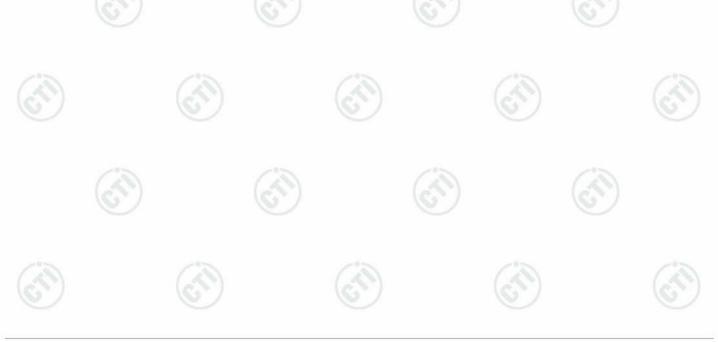
2 Version

Version No.	Date	(6)	Description		
00	Aug. 01, 2018		Original		
	125	12	713	/05	
((42)	(635)	(6%)	

Report No. : EED32K00143401 Page 3 of 39

3 Test Summary

rest Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Remark:

- 1. Test according to ANSI C63.4-2014 & ANSI C63.10-2013.
- 2. The tested sample(s) and the sample information are provided by the client.

N/A. The device is only battery operated, the test related AC mains is not applicable.

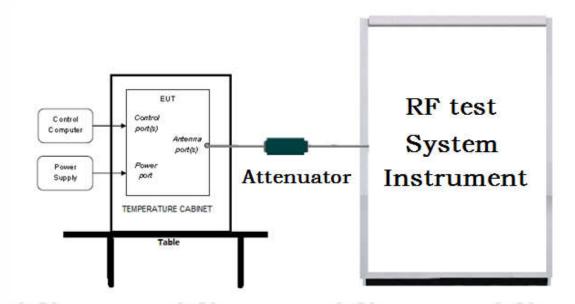
Model No.: JPD-500G, JPD-500H

Only the model JPD-500G was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being appearance and model name.

Report No. : EED32K00143401 Page 4 of 39

4 Content

1 COVE	R PAGE				•••••		1
2 VERS	ION	•••••	•••••	•••••	•••••	•••••	2
	SUMMARY						
4 CONT	ENT	•••••		•••••		•••••	4
5 TEST	REQUIREMENT	•••••		•••••		•••••	5
5.′ 5.′ 5.2 T	EST SETUP	setupions test setup)				5 5 6
6 GENE	RAL INFORMATION		•••••				7
6.2 G 6.3 P 6.4 D 6.5 T 6.6 D 6.7 A 6.8 C	CLIENT INFORMATION GENERAL DESCRIPTION OF RODUCT SPECIFICATION OF SUPPORTEST LOCATION	F EUTSUBJECTIVE TO TUNITSRDSRDSRDSRDSRDSRDS.TH	THIS STANDA	RD			
	TEASUREMENT UNCERTA PMENT LIST	1 April 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1,000			
Ap Ap Ap Ap Ap Ap	ppendix A): 6dB Occupi opendix B): Conducted opendix C): Band-edge opendix D): RF Conducted opendix E): Power Spectopendix E): Power Spectopendix F): Antenna Respondix G): Restricted to opendix H): Radiated Spendix H): Radiated Spendix H):	ed Bandwidth. Peak Output I for RF Conducted Spurious E tral Density quirement	Powerted Emission Emissions	s	diated)		12 14 16 17 20 22
РНОТО	GRAPHS OF TEST SE	TUP	•••••		•••••		31
РНОТО	GRAPHS OF EUT CO	NSTRUCTION	IAL DETAILS		•••••	•••••	33



Report No.: EED32K00143401 Page 5 of 39

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

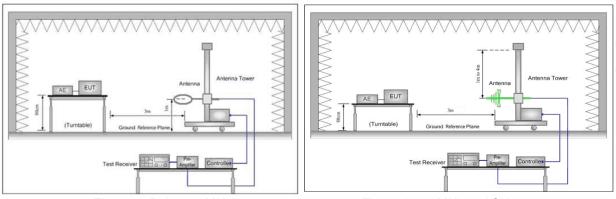


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

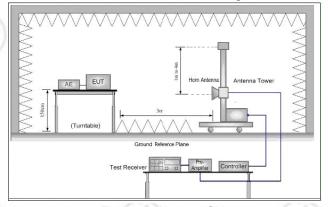
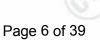



Figure 3. Above 1GHz


5.2 Test Environment

Operating Environment:		
Temperature:	24°C	
Humidity:	65% RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

	T.O	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
OFOK	2402841- 2400 841-	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).				

Report No. : EED32K00143401 Page 7 of 39

6 General Information

6.1 Client Information

Applicant:	Shenzhen Jumper Medical Equipment Co., Ltd			
Applicant:	Sherizhen Jumper Medicai Equipment Co., Eta			
Address of Applicant:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen Guangdong, China			
Manufacturer:	Shenzhen Jumper Medical Equipment Co., Ltd			
Address of Manufacturer:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China			
Factory:	Shenzhen Jumper Medical Equipment Co., Ltd			
Address of Factory:	D Building, No. 71, Xintian Road, Fuyong Street, Baoan, Shenzhen, Guangdong, China			

6.2 General Description of EUT

2410MHz

15

Product Name:	Pulse Oximeter		
Model No.(EUT):	JPD-500G, JPD-500H		
Test Model No.:	JPD-500G		(20)
Trade mark:	JUMPER		6.
EUT Supports Radios application:	BT 4.2 Single mode, 2402-2480MHz		
Hardware Version of the sample:	V2.1(manufacturer declare)		
Firmware version of the sample:	JPD_500G_BT(manufacturer declare)	(3)	
Power Supply:	Battery: 2x1.5V(AAA)=3.0V	(67)	
Sample Received Date:	Jun. 8, 2018		
Sample tested Date:	Jun. 8, 2018 to Aug. 1, 2018		
Sample Received Date:	Jun. 8, 2018		

6.3 Product Specification subjective to this standard

Operation F	requency:	2	2402MHz~2480	OMHz	0	/	6	
Bluetooth V	/ersion:	4	4.2					
Modulation	Technique:	I	DSSS					
Modulation	Type:		GFSK					
Number of	Channel:	4	40					
Test Power	Grade:	1	N/A(manufacturer declare)					
Test Softwa	are of EUT:	1	nRFgo Studio(manufacturer declare)					
Antenna Ty	/pe:	I	PCB Antenna				(3	
Antenna Ga	ain:	(OdBi)	(6,7))	(62)	
Test Voltag	je:	ŀ	Battery: 2x1.5V	(AAA)=3.0V				
Operation F	requency eac	h of chann	el					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz	
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz	
	(A'V)				1.00			

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

25

2450MHz

35

2470MHz

2430MHz

Report No. : EED32K00143401 Page 8 of 39

6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
	DE water conducted	0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
2	Dedicted Country and action to t	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction auriceis	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

Report No.: EED32K00143401 Page 9 of 39

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54436035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	2015860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-29-2018	03-28-2019
Temperature / Humidity Indicator	Defu	TH128		07-02-2018	07-01-2019

Report No. : EED32K00143401 Page 10 of 39

	3M	Semi/full-anechoid	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	/	06-04-2016	06-03-2019
Spectrum Analyzer	Agilent	E4443A	MY45300910	11-16-2017	11-15-2018
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-618	08-15-2017	08-14-2018
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	6042	06-05-2018	06-03-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041	06-05-2018	06-03-2021
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA09CL12 -0395-001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA08CL12 -0393-001	(01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA04CL12 -0396-002		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA03CL12 -0394-001		01-10-2018	01-09-2019
1 7 7 7 1			7.1		The second second

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: call: 0755-33681700 \\ Complaint E-mail: complaint call: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Complaint E-mail: 0755-33681700 \\ Com$

Report No. : EED32K00143401 Page 11 of 39

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	N/A
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.6876	1.0656	PASS
BLE	MCH	0.6905	1.0686	PASS
BLE	НСН	0.6916	1.0701	PASS

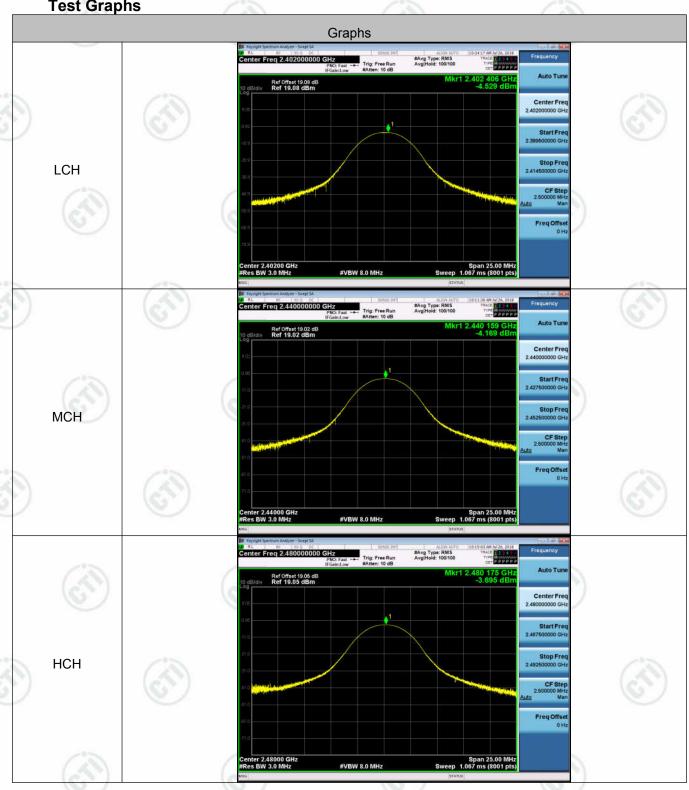
Report No. : EED32K00143401 Page 13 of 39

Test Graphs

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-4.529	PASS
BLE	MCH	-4.169	PASS
BLE	НСН	-3.695	PASS



Test Graphs

Report No.: EED32K00143401

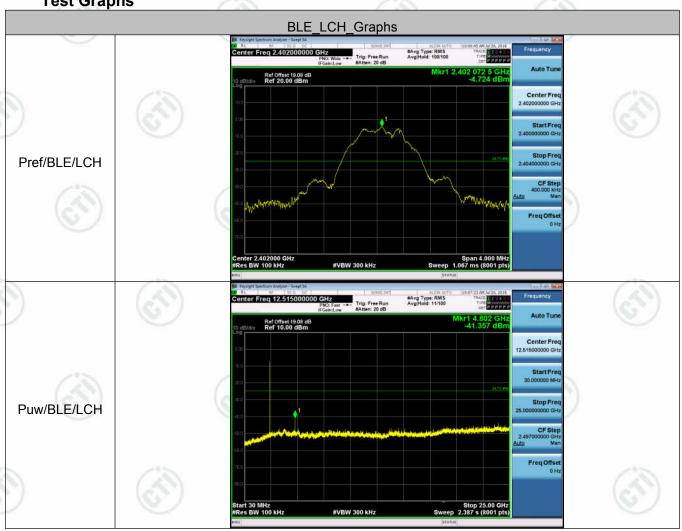
Report No. : EED32K00143401 Page 16 of 39

Appendix C): Band-edge for RF Conducted Emissions

Result Table

0	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	-4.508	-61.538	-24.51	PASS
_	BLE	НСН	-3.696	-55.830	-23.70	PASS

Test Graphs


Report No. : EED32K00143401 Page 17 of 39

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.724	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.399	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-3.847	<limit< td=""><td>PASS</td></limit<>	PASS

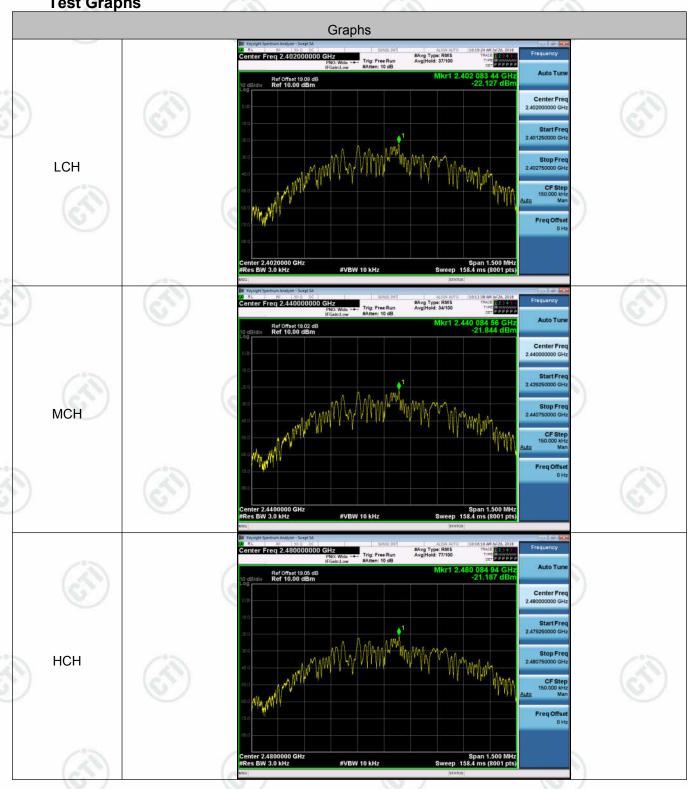
Test Graphs

Report No. : EED32K00143401 Page 19 of 39

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-22.127	8	PASS
BLE	MCH	-21.844	8	PASS
BLE	HCH	-21.187	8	PASS



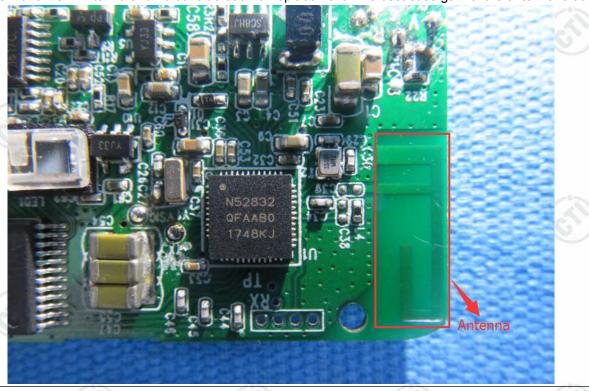
Test Graphs

Report No.: EED32K00143401

Report No.: EED32K00143401 Page 22 of 39

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

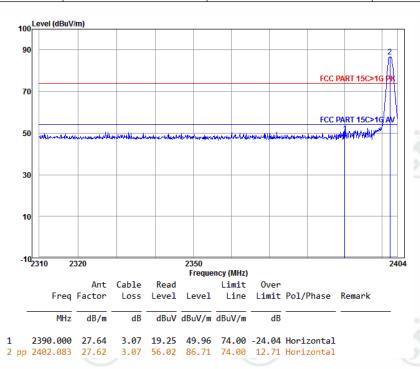
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

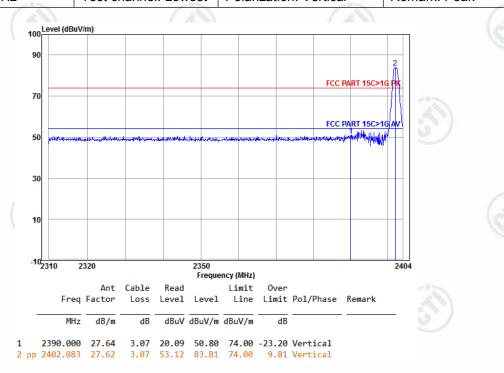
EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

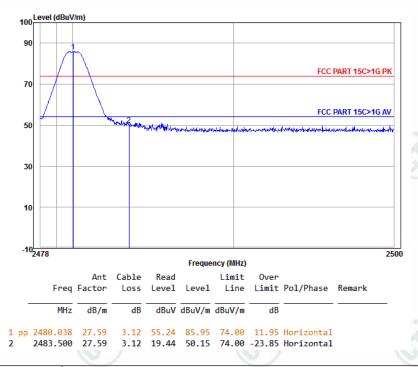
(Madiated)	100	(0.3	/	\	No. 1	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	<
	A1 4011	Peak	1MHz	3MHz	Peak	10
	Above 1GHz	Peak	1MHz	10Hz	Average	(63
Test Procedure:	Below 1GHz test proce a. The EUT was placed at a 3 meter semi-ardetermine the position of the EUT was set 3 was mounted on the Co. The antenna height determine the maximal polarizations of the EUT was set 3 was mounted on the Co. The antenna height determine the maximal polarizations of the EUT was turned from 0 descriptions. The test-receiver symbol Bandwidth with Max for Place a marker at the frequency to show of bands. Save the specific for lowest and higher	edure as below: d on the top of a rothechoic camber. The on of the highest range to the top of a variable-his varied from one mum value of the fiest antenna are set to remission, the EUT need to heights from the egrees to 360 degres to make the end of the restriction of the rest	eating table e table wa diation. he interfer eight anter meter to for eld strength make the r was arran 1 meter to ees to find ak Detect ted band of easure any	e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasurement aged to its v 4 meters a the maxin Function a	rs above the 360 degrees above the grants and vent. worst case a and the rotate and Specified the transmit in the restrict in the restrict.	to a, wh round vertic nd th able .
	Above 1GHz test proce g. Different between al to fully Anechoic Ch 18GHz the distance h. Test the EUT in the i. The radiation measu Transmitting mode, j. Repeat above proce	bove is the test site amber change form is 1 meter and table lowest channel, the lowest are performents are performent and found the X ax	table 0.8 is 1.5 me he Highestern X, is position	meter to 1 ter). t channel Y, Z axis p ing which i	.5 meter(Ab positioning fo t is worse ca	ove
_imit:	Frequency	Limit (dBµV/		1	mark	
	30MHz-88MHz	40.0			eak Value	
	88MHz-216MHz	43.5			eak Value	
	216MHz-960MHz	46.0			eak Value	
	960MHz-1GHz	54.0			eak Value	
	33011112 13112	54.0	- 165	·	je Value	
	Above 1GHz	74.0			Value	
				ı can		
(30)				J	(i)	

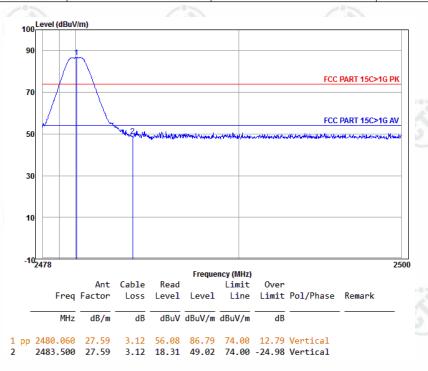




Test plot as follows:

Worse case mode:	GFSK		
Frequency: 2402MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak


,	Worse case mode:	GFSK		
_[]	requency: 2402MHz Test channel: Lowest Pol		Polarization: Vertical	Remark: Peak



Report No.: EED32K00143401 Page 25 of 39

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2480MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak


Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix H): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
(0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(0,1)	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete

Above 1GHz

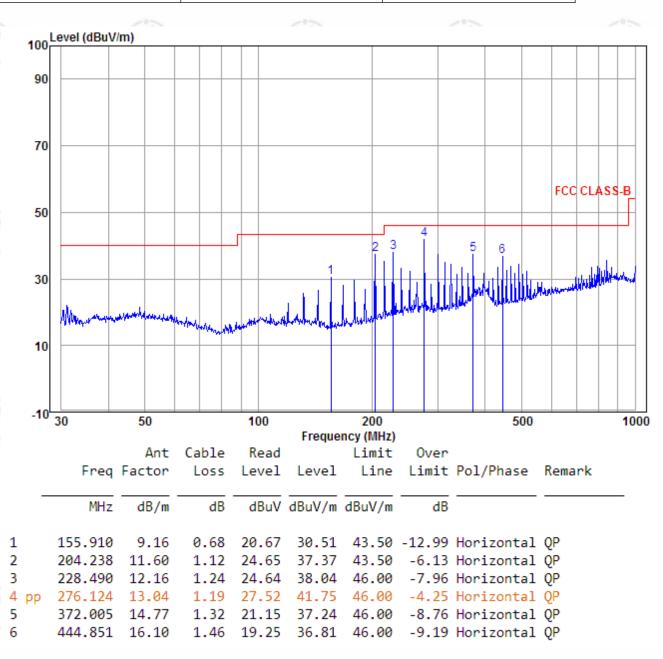
Limit:		Field strength	Limit	Domonic	Measurement
	Frequency	(microvolt/meter)	(dBµV/m)	Remark	distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	365	300
	0.490MHz-1.705MHz	24000/F(kHz)	-		30
/	1.705MHz-30MHz	30	-	(0.)	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3

500

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

54.0

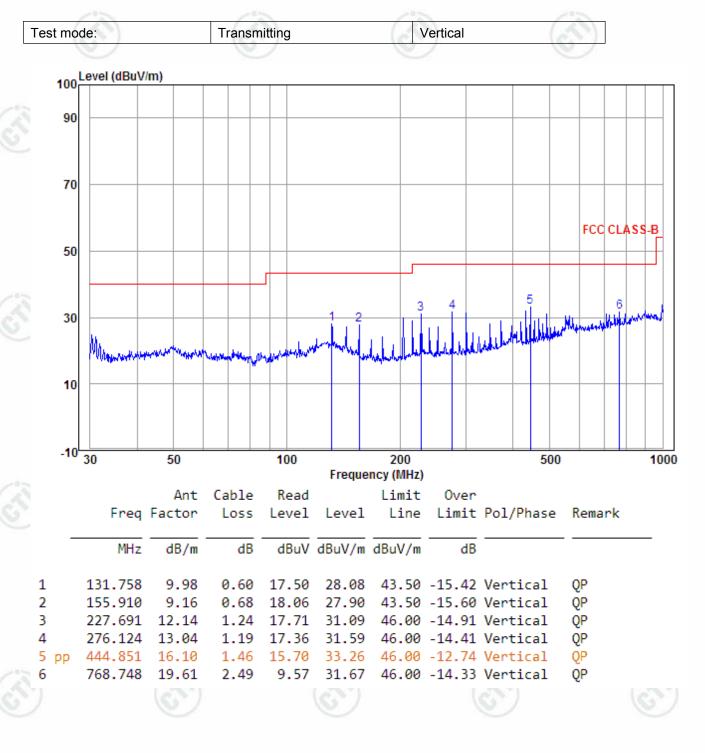
Average

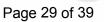


Report No.: EED32K00143401 Page 27 of 39

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			1
Test mode:	Transmitting	Horizontal	



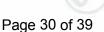


Transmitter Emission above 1GHz

Report No.: EED32K00143401

Worse case	mode:	GFSK		Test char	nnel:	Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1257.465	30.36	1.95	42.99	51.84	41.16	74.00	-32.84	Pass	Н
1585.248	31.03	2.39	43.03	52.00	42.39	74.00	-31.61	Pass	C H
4804.000	34.69	5.98	43.36	51.77	49.08	74.00	-24.92	Pass	Н
5532.263	35.54	6.96	43.37	49.16	48.29	74.00	-25.71	Pass	Н
7206.000	36.42	6.97	43.33	50.08	50.14	74.00	-23.86	Pass	Н
9608.000	37.88	6.98	42.96	46.03	47.93	74.00	-26.07	Pass	Н
1270.334	30.39	1.97	42.99	52.21	41.58	74.00	-32.42	Pass	V
1589.289	31.04	2.40	43.03	51.97	42.38	74.00	-31.62	Pass	V
2108.213	31.95	2.91	43.07	51.27	43.06	74.00	-30.94	Pass	V
4804.000	34.69	5.98	43.36	51.45	48.76	74.00	-25.24	Pass	V
7206.000	36.42	6.97	43.33	49.75	49.81	74.00	-24.19	Pass	V
9608.000	37.88	6.98	42.96	46.38	48.28	74.00	-25.72	Pass	V

Worse case	mode:	GFSK	3/11/	Test char	nnel:	Middle	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1241.562	30.32	1.93	42.99	52.49	41.75	74.00	-32.25	Pass	/° H
1617.862	31.09	2.43	43.03	51.88	42.37	74.00	-31.63	Pass	(AH)
4880.000	34.85	6.13	43.37	49.04	46.65	74.00	-27.35	Pass	H
5560.500	35.57	6.99	43.37	47.77	46.96	74.00	-27.04	Pass	Н
7320.000	36.43	6.85	43.33	48.69	48.64	74.00	-25.36	Pass	Н
9760.000	38.05	7.12	42.93	47.30	49.54	74.00	-24.46	Pass	Н
1267.104	30.38	1.96	42.99	52.24	41.59	74.00	-32.41	Pass	V
1597.401	31.05	2.41	43.03	52.03	42.46	74.00	-31.54	Pass	V
4880.000	34.85	6.13	43.37	49.07	46.68	74.00	-27.32	Pass	V
5925.863	35.85	7.37	43.36	48.99	48.85	74.00	-25.15	Pass	V
7320.000	36.43	6.85	43.33	48.20	48.15	74.00	-25.85	Pass	V
9760.000	38.05	7.12	42.93	48.18	50.42	74.00	-23.58	Pass	V



			J-175		21000		2/81		
Worse case	mode:	GFSK		Test chani	nel:	Highest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1273.572	30.40	1.97	42.99	51.66	41.04	74.00	-32.96	Pass	→ H
1601.472	31.06	2.41	43.03	51.39	41.83	74.00	-32.17	Pass	(H)
4960.000	35.02	6.29	43.38	47.75	45.68	74.00	-28.32	Pass	Н
5674.896	35.66	7.11	43.36	47.98	47.39	74.00	-26.61	Pass	Н
7440.000	36.45	6.73	43.33	46.74	46.59	74.00	-27.41	Pass	Н
9920.000	38.22	7.26	42.90	46.14	48.72	74.00	-25.28	Pass	Н
1257.465	30.36	1.95	42.99	52.76	42.08	74.00	-31.92	Pass	V
1597.401	31.05	2.41	43.03	52.60	43.03	74.00	-30.97	Pass	V
4960.000	35.02	6.29	43.38	47.86	45.79	74.00	-28.21	Pass	V
5603.126	35.60	7.04	43.37	46.75	46.02	74.00	-27.98	Pass	V
7440.000	36.45	6.73	43.33	46.17	46.02	74.00	-27.98	Pass	V
9920.000	38.22	7.26	42.90	46.06	48.64	74.00	-25.36	Pass	V

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: JPD-500G

Radiated spurious emission Test Setup-1(Below 30MHz)

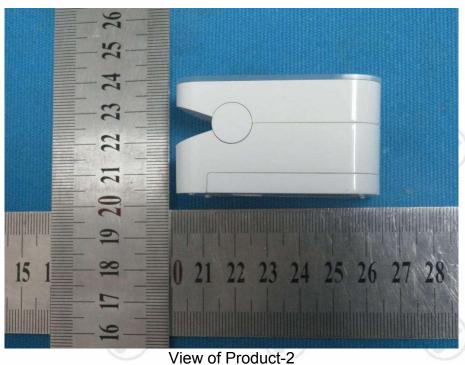
Radiated spurious emission Test Setup-2(30MHz-1GHz)



Page 32 of 39

Radiated spurious emission Test Setup-3(Above 1GHz)

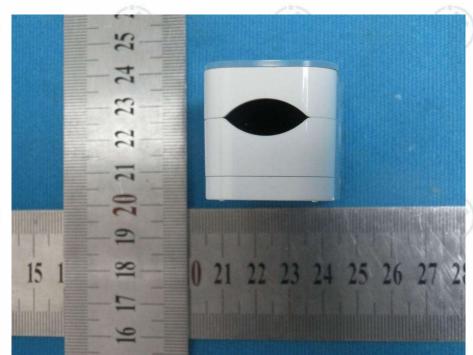
Radiated spurious emission Test Setup-4(Close-up)

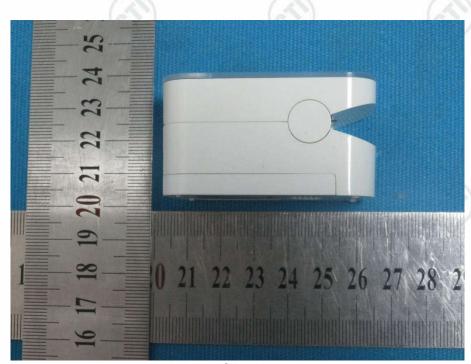


PHOTOGRAPHS OF EUT Constructional Details

Test model No.: JPD-500G

View of Product-1

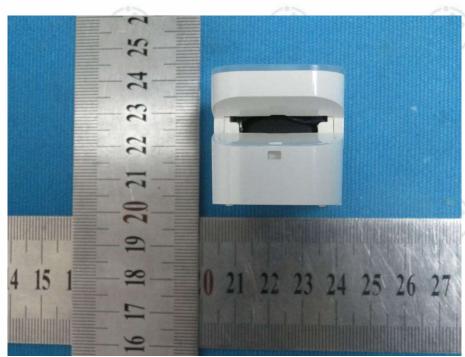




Report No. : EED32K00143401 Page 34 of 39

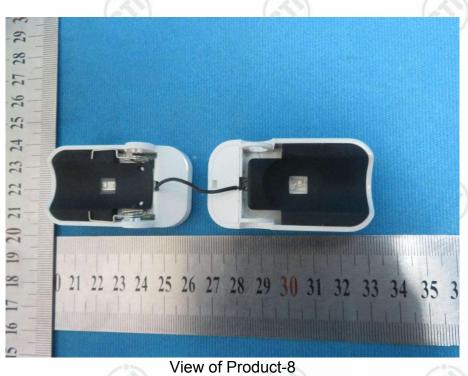
View of Product-3

View of Product-4



View of Product-5

View of Product-6



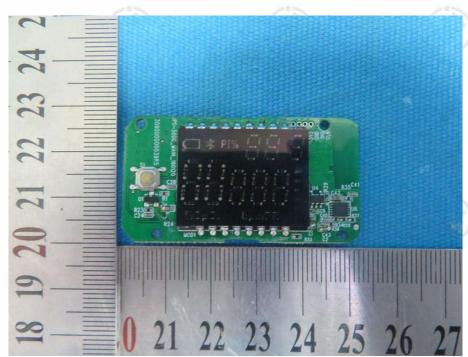
Page 36 of 39 Report No.: EED32K00143401

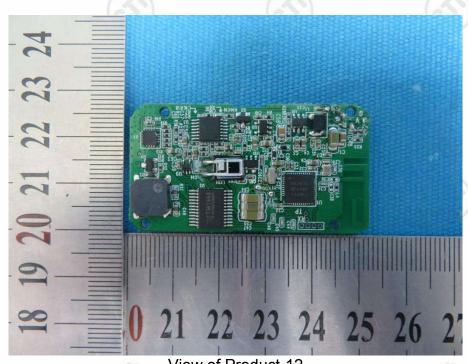
View of Product-7

Report No. : EED32K00143401 Page 37 of 39

View of Product-9

View of Product-10

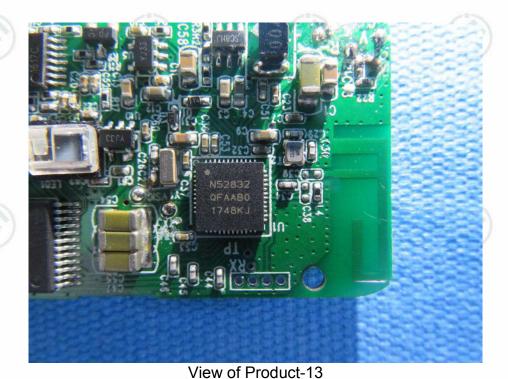


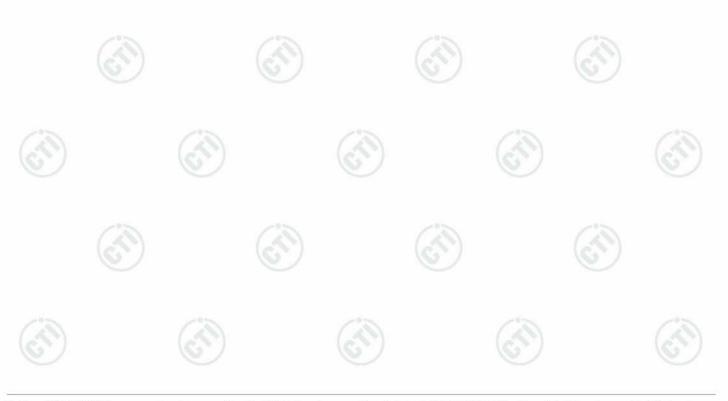


Report No.: EED32K00143401 Page 38 of 39

View of Product-11

View of Product-12





*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

