

6 Randolph Way Hillsborough, NJ 08844 Tel: (908) 927 9288

Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

Star

MODEL: IT-103C FCC ID: ST2-IT103C IC: 6012A-IT103C

August 15, 2014

This report concerns (check one): C Equipment type: <u>Low Power Intention</u>	Original grant x Class II changeonal Radiator
Company agrees to notify the Comp	yes, defer until:(date)
Transition Rules Request per 15.377 If no, assumed Part 15, Subpart B for [10-1-90 Edition] provision.	yes nox or unintentional radiators - the new 47 CFR
Report prepared for: Report prepared by: Report number:	CENTRAK, INC. Advanced Compliance Lab 0048-140701-01

Lab Code: 200101 The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	5
1.4 Test Methodology	6
1.5 Test Facility	6
1.6 Test Equipment	6
1.7 Statement for the Document Use	7
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 Special Accessories	9
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS	15
5. RADIATED EMISSION DATA	16
5.1 Field Strength Calculation	16
5.2 Test Methods and Conditions	16
5.3 Test Data	16
5.4 125KHz Transmission Radiated Test Data	21
6. EUT RECEIVING MODE VERIFICATION	23
7. CONDUCTED EMISSION DATA	23
8. PHOTOS OF TESTED EUT	28

Figures

Figure 2.1 ID Label	8
Figure 2.2 Location of Label on Back of the EUT	8
Figure 3.1 Radiated Emission and Conducted Emission Test Setup	10-12
Figure 3.2 Conducted Emission Test Setup	13
Figure 4.1 EUT Schematics	14
Figure 8.1-8.x EUT Details.	28-35

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: Star

Model: IT-103C

Applicant: CENTRAK, INC.

Test Type: FCC Part 15 Sub Part 15.249 & 15.209

IC RSS-210 (Issue 8) A2.9 & RSS-Gen (Issue 3)

CERTIFICATION

Result: PASS

Tested by: ADVANCED COMPLIANCE LABORATORY

Test Date: July 1~ August 15, 2014

Report Number: 0048-140701-01

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC/IC rules and regulations Part 15 subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li

Lab Manager

Advanced Compliance Lab

Date <u>August 15, 2014</u>

1.2 Equipment Modification

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	ID	CABLE
Product	Star IT-103C (1)	FCC ID: ST2-IT103C	
		IC: 6012A-IT103C	
Housing	PLASTICS		
Power Supply	AC/DC Adapter, I/P:100V-		
	240Vac,100mA; O/P:3.3Vdc, 500mA		
	&PoE 24V		
Operation Freq.	904MHz ~ 926MHz		
Receiver	IT-103C(RX)	Verification	

⁽¹⁾ EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-2003 at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Somerset, New Jersey, which is designated by IC as "site IC 3130". This site is also accepted by FCC to perform measurements under Part 15 or 18 (Registration # 90601). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Cal Due dd/mm/yy
Hewlett-	HP8546A	3448A0029	EMI Receiver	15/10/14
Packard		0		
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	15/01/15
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	15/01/15
Fischer Custom	LISN-2	900-4-0008	Line Impedance Stabilization Networks	28/05/15
Electro- Meterics	ALR-25M/30	289	10KHz-30MHz Active Loop Antenna	18/03/15
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	24/03/15
EMCO	3115	4945	Double Ridge Guide Horn Antenna	22/01/15

All Test Equipment Used are Calibrated Traceable to NIST Standards. Calibration Interval: two year.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

Centrak Star

Model No.: IT-103C

FCC ID: ST2-IT103C IC: 6012A-IT103C

This device complies with part 15 of the FCC & IC RSS-210 & RSS-Gen Rules. Operating is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Figuare 2.1 ID Label

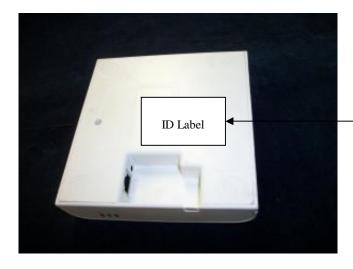


Figure 2.2 Location of the Label

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it).

Antenna Information: two identical fixed monopole antenna for 900MHz band, permanently attached to the PCB with max length, 4". 1.5dBi max. gain. Each time, only one antenna was used for transmitting the signal.

Testing was performed as EUT was continuously operated at the following frequency channels: Low=904MHz, Middle= 915MHz, High=926MHz for 900MHz Band. It has 2 modes, AC/DC adaptor mode and PoE mode under test.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 to Figure 3.3 illustrate this system, which is tested standing along.

AC/DC Adaptor mode

POE Mode

Figure 3.1 Radiated Test Setup

AC/DC Mode

POE mode

Figure 3.2 Conducted Test Setup

4. SYSTEM SCHEMATICS

See Attachment.

Figure 4.1 System Schematics

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dBµV/m

RA: Amplitude of EMI Receiver before correction in dBµV

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

4 drum

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

THE "DUTY CYCLE CORRECTION FACTOR" FOR SPURIOUS RADIATED EMISSIONS IS; 20 log * (4 ms / 100 ms) = -28 dB, WHICH WAS USED TO CORRECT THE AVERAGE RADIATED EMISSION READINGS.

5.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak detector and 9KHz IF bandwidth / 30KHz video bandwidth. For the range 30MHz - 1GHz, 100KHz IF bandwidth / 100KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement. Up to 10th harmonics were investigated.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

Test Personnel:

Typed/Printed Name: Edward Lee Date: August 15, 2014

Radiated Test Data (CH-904MHz/915MHz/926MHz)

Operation Mode: AC/DC Adapter, Vertical Orientation

Frequency	Polarity	Antenna	Azimuth	Peak /QP Reading	FCC/IC 3m	Difference	Average Reading	FCC/IC 3m	Difference
	(V,H)	Height		at 3m	Peak Limit	To Peak Limit	with	QP/Average Limit	To AVG Limit
	Position			(2)	(3)		Correction (>1GHz)	(1)	
(MHz) (4)	(X,Y,Z)	(m)	(Degree)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
904	V/Z	1.1	090	91.4				94	-2.6
1808	V/Z	1.1	090	50.6	74	-23.4	22.6	54	-31.4
2712	V/Z	1.1	090	50.4	74	-23.6	22.4	54	-31.6
904	H/Z	1.0	000	89.9				94	-4.1
1808	H/Z	1.1	235	50.8	74	-23.2	22.8	54	-31.2
2712	H/Z	1.1	235	51.8	74	-22.2	23.8	54	-30.2
915	V/Z	1.1	090	91.2				94	-2.8
1830	V/Z	1.1	090	50.7	74	-23.3	22.7	54	-31.3
2745	V/Z	1.1	090	50.6	74	-23.4	22.6	54	-31.4
915	H/Z	1.0	180	88.5				94	-5.5
1828	H/Z	1.1	235	50.8	74	-23.2	22.8	54	-31.2
2745	H/Z	1.1	235	51.9	74	-22.1	23.9	54	-30.1
926	V/Z	1.1	090	91.6				94	-2.4
1852	V/Z	1.1	090	50.7	74	-23.3	22.7	54	-31.3
2778	V/Z	1.1	090	50.6	74	-23.4	22.6	54	-31.4
926	H/Z	1.0	180	89.5				94	-4.5
1852	H/Z	1.1	235	50.5	74	-23.5	22.5	54	-31.5
2778	H/Z	1.1	235	50.6	74	-23.4	22.6	54	-31.4

⁽¹⁾ The limit for emissions within the 902-928MHz band is 50mV(94dB) per FCC Sec. 15.249 & IC RSS-210 Annex 2.9. The limit for its harmonics is 500uV (54dB). Other spurious emissions shall be lower than either its fundamental by 50dB or the limit defined in Sec. 15.209, whichever is higher.

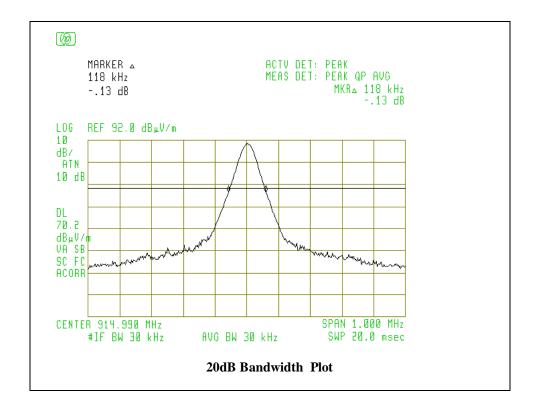
⁽²⁾ If the peak reading is less than the FCC/IC quasi-peak or average limit, it'll be not necessary to show the measured/calculated quasi-peak or average reading.

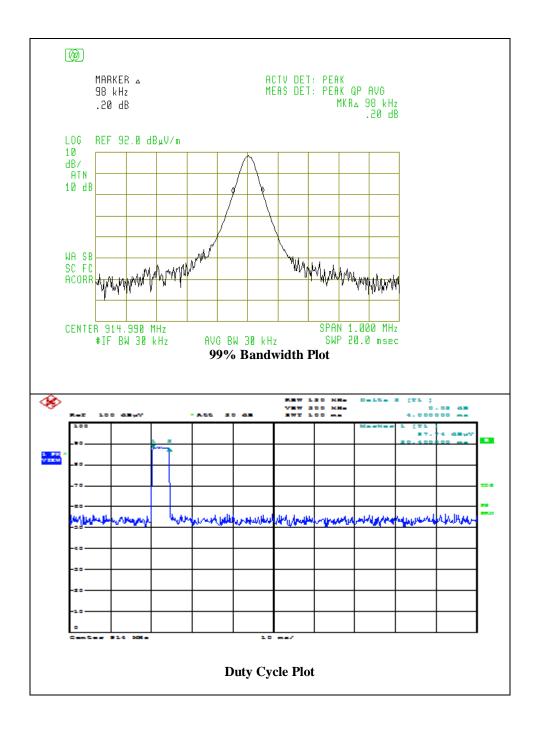
⁽³⁾ For above 1GHz range, peak reading shall meet the limit: average Limit+20dB.

⁽⁴⁾ For frequency range below 30MHz and up to 10th harmonics, there is no significant emission (lower than 20dB below the limit) founded.

Operation Mode: POE, Vertical Orientation

Frequency	Polarity (V,H)	Antenna Height	Azimuth	Peak /QP Reading at 3m	FCC/IC 3m Peak Limit	Difference To Peak Limit	Average Reading with	FCC/IC 3m QP/Average Limit	Difference To AVG Limit
	Position			(2)	(3)		Correction (>1GHz)	(1)	
(MHz)	(X,Y,Z)	(m)	(Degree)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
904	V/Z	1.1	090	91.9				94	-2.1
1808	V/Z	1.1	135	50.9	74	-23.1	22.9	54	-31.1
2712	V/Z	1.1	135	51.3	74	-22.7	23.3	54	-30.7
904	H/Z	1.0	090	88.2				94	-5.8
1808	H/Z	1.1	135	50.5	74	-23.5	22.5	54	-31.5
2712	H/Z	1.1	135	51.0	74	-23	23	54	-31.0
915	V/Z	1.1	330	90.3				94	-3.7
1830	V/Z	1.1	090	51.6	74	-22.4	23.6	54	-30.4
2745	V/Z	1.1	090	50.4	74	-23.6	22.4	54	-31.6
915	H/Z	1.0	090	88.8				94	-5.2
1828	H/Z	1.1	135	49.8	74	-24.2	21.8	54	-32.2
2745	H/Z	1.1	135	49.2	74	-24.8	21.2	54	-32.8
926	V/Z	1.1	330	92.1				94	-1.9
1852	V/Z	1.1	090	50.8	74	-23.2	22.8	54	-31.2
2778	V/Z	1.1	090	50.3	74	-23.7	22.3	54	-31.7
926	H/Z	1.0	090	88.6				94	-5.4
1852	H/Z	1.1	180	49.9	74	-24.1	21.9	54	-32.1
2778	H/Z	1.1	180	48.9	74	-25.1	20.9	54	-33.1


Other Spurious outside of the band 902-928MHz


(worst case data recorded)

Frequency	Polarity		Azimuth	Peak Reading	Peak Reading	FCC/IC 3m	Difference
	(V,H)	Height		at 3m	After	Limit	
	Position			(2)	Correction	(1)	
(MHz)	(X,Y,Z)	(m)	(Degree)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
55.1	H/Z	1.4	180	35.2*		40.0	-4.8
62.3	H/Z	1.3	180	36.3		40.0	-3.7
250	H/Z	1.1	135	40.3		46.5	-6.2
375	H/Z	1.0	235	44.3*		46.5	-2.2
746	H/Z	1.0	235	44.2		46.5	-2.3
876	H/Z	1.0	180	42.6		46.5	-3.9
54.7	V/Z	1.1	090	37.4*		40.0	-2.6
61.5	V/Z	1.1	235	36.0*		40.0	-4
104.0	V/Z	1.1	090	41.9*		43.5	-1.6
114.0	V/Z	1.1	090	42.0*		43.5	-1.5
375	V/Z	1.1	135	43.0		46.5	-3.5
750	V/Z	1.1	135	42.1		46.5	-4.4
875	V/Z	1.1	000	42.2		46.5	-3.2

^{*} quasi-peak reading for high level emission points.

Comparing to the limit defined in Sec. 15.209 &RSS-210, emissions below the limit by 20dB were not recorded.

Report No.: 0048-140701-01 Star Model No.: IT-103C FCC ID: ST2-IT103C IC: 6012A-IT103C Advanced Compliance Lab, 6 Randolph Way, Hillsborough, NJ 08844 Tel: (908) 927-9288 Fax: (908) 927-0728

6. EUT RECEIVING MODE VERIFICATION

Radiated Test Data for Receiving Mode (worst case: Vertical Orientation)

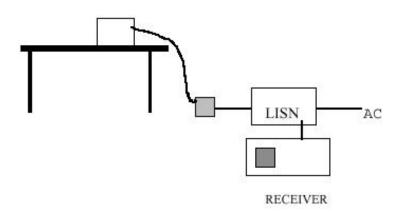
Frequency	Polarity	Antenna	Azimuth	Peak Reading	Peak Reading	FCC/IC 3m	Difference
	(V , H)	Height		at 3m	After	Limit	
	Position			(2)	Correction	(1)	
(MHz)	(X,Y,Z)	(m)	(Degree)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)
55.1	H/Z	1.4	180	35.2*		40.0	-4.8
62.3	H/Z	1.3	180	36.3		40.0	-3.7
250	H/Z	1.1	135	40.3		46.5	-6.2
375	H/Z	1.0	235	44.3*		46.5	-2.2
746	H/Z	1.0	235	44.2		46.5	-2.3
876	H/Z	1.0	180	42.6		46.5	-3.9
54.7	V/Z	1.1	090	37.4*		40.0	-2.6
61.5	V/Z	1.1	235	36.0*		40.0	-4
104.0	V/Z	1.1	090	41.9*		43.5	-1.6
114.0	V/Z	1.1	090	42.0*		43.5	-1.5
375	V/Z	1.1	135	43.0		46.5	-3.5
750	V/Z	1.1	135	42.1		46.5	-4.4
875	V/Z	1.1	000	42.2		46.5	-3.2

^{*} quasi-peak reading for high level emission points.

⁽¹⁾ Receiving mode spurious emissions shall be lower than the limit defined in Sec. 15.209 & RSS-Gen

⁽²⁾ If each peak reading is less than the FCC average limit, it'll be not necessary to show the measured/ calculated average reading.

7. CONDUCTED EMISSIONS DATA


7.1 Test Methods and Conditions

The EUT exercise program was loaded during the conducted emission test. EMI Receiver was scanned from 150KHz to 30MHz with maximum hold mode for maximum emission. The IF Bandwidth is 9KHz. Recorded data was sent to the plotter to generate output in linear format. At the input of the spectrum analyzer, a HP transient limiter is inserted for protective purpose. This limiter has a 10 dB attenuation in the range of 150KHZ to 30MHZ. That factor was automatically compensated by the receiver, so the readings are the corrected readings. The reference of the plots is using FCC Part 15 & CISPR22 Class B limit given as following:

Conducted Emission Technical Requirements							
	Class A		Class B				
Frequency Range	Quasi-Peak dBuV	Average dBuV	Quasi-Peak DBuV	Average dBuV			
150kHz -0.5MHz	79 (8912uV)	66 (1995uV)	66-56	56-46			
0.5MHz-30MHz	73 (4467uV)	60 (1000uV)					
0.5MHz- 5MHz			56	46			
5MHz-30MHz			60	50			

Emissions that have peak values close to (or over) the specification limit (if any) are also measured in the quasi-peak mode to determine the compliance.

7.2 Measurement Instrument Configuration for Conducted Emission

7.3 Testing Data

The following plots show the neutral and line conducted emissions for the typical operation condition (Transmitting and receiving). The conducted test data shows the worst case emissions still below the FCC Part 15/CISPR22 Class B limits.

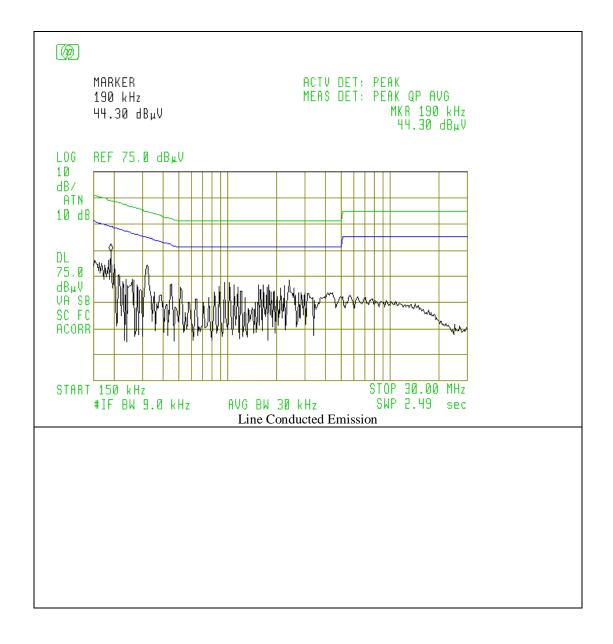
Operation Mode: AC/DC Adapter

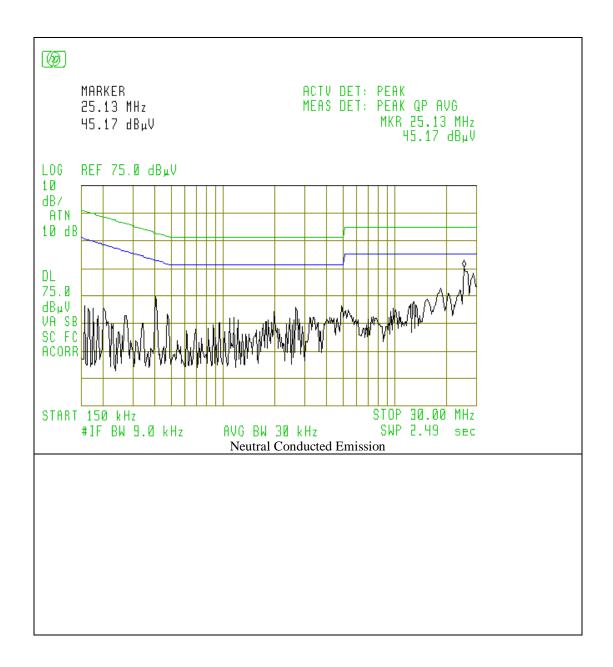
		1							
Highest Data for AC Main Conducted Emissions									
Frequency (KHz)	150	190	320	1030	1740				
Peak Reading									
(dBuV)	43.35	41.29	38.05	31.51	31.28				
from Line*									
Frequency (KHz)	150	190	260	320	1030				
Peak									
Reading(dBuV)	42.29	44.30	37.86	38.71	32.30				
from Neutral *									

Operation Mode: POE

Operation Mode. 1 OL										
Highest Data for AC Main Conducted Emissions										
Frequency (KHz)	7480	17590	23480	25130	28310					
Peak Reading										
(dBuV)	34.14	33.16	40.11	43.58	42.49					
from Line*										
Frequency (KHz)	200	410	2660	18320	25130					
Peak										
Reading(dBuV)	30.41	34.46	30.71	37.53	45.17					
from Neutral *										

^{*} If each peak reading is less than the FCC average limit, it'll be not necessary to show the measured/ calculated Quasi-peak & average reading.


Test Personnel:


Tester Signature

Date <u>08/19/2014</u>

Typed/Printed Name: Edward Lee

& Im

