Supplemental "Transmit Simultaneously" Test Report Report No.: RF191118E09-2 FCC ID: PY319400466 Test Model: RAX50 Series Model: RAX45 Received Date: Nov. 19, 2019 **Test Date:** Dec. 12 to 13, 2019 Issued Date: Dec. 27, 2019 Applicant: NETGEAR, Inc. Address: 350 East Plumeria Drive San Jose, CA 95134 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan FCC Registration / Designation Number: 723255 / TW2022 This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Report No.: RF191118E09-2 Page No. 1 / 27 Report Format Version: 6.1.2 ## **Table of Contents** | R | Release Control Record3 | | | | |---|--|--|--|--| | 1 | | Certificate of Conformity | 4 | | | 2 | | Summary of Test Results | 5 | | | | 2.1
2.2 | Measurement Uncertainty Modification Record | | | | 3 | | General Information | 6 | | | | 3.2
3.2.1 | General Description of EUT Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test | 9
.11
.11 | | | 4 | , | Test Types and Results | 12 | | | | 4.1.2
4.1.3
4.1.4
4.1.5
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5 | Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup Deviation from Test Standard Test Setup EUT Operating Conditions | 12
13
14
15
16
17
20
20
21
21
21 | | | | 4.2.7
4.3
4.3.1
4.3.2
4.3.4
4.3.5
4.3.6 | Test Results Conducted Out of Band Emission Measurement Limits of Conducted Out of Band Emission Measurement Test Setup Test Instruments Test Procedures Deviation from Test Standard EUT Operating Conditions Test Results | 22
24
24
24
24
24
24
24
24 | | | 5 | | Pictures of Test Arrangements | 26 | | | Α | ppen | dix – Information of the Testing Laboratories | 27 | | ## **Release Control Record** | Issue No. | Description | Date Issued | |---------------|-------------------|---------------| | RF191118E09-2 | Original release. | Dec. 27, 2019 | Report No.: RF191118E09-2 Page No. 3 / 27 Report Format Version: 6.1.2 ## 1 Certificate of Conformity Product: NIGHTHAWK AX6 AX5400 6-Stream WiFi Router, NIGHTHAWK AX6 AX4300 6-Stream WiFi Router **Brand: NETGEAR** Test Model: RAX50 Series Model: RAX45 Sample Status: ENGINEERING SAMPLE **Applicant:** NETGEAR, Inc. **Test Date:** Dec. 12 to 13, 2019 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10: 2013 The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Prepared by: house Mann, Date: Dec. 27, 2019 Phoenix Huang / Specialist Approved by : , Date: Dec. 27, 2019 Clark Lin / Technical Manager ## 2 Summary of Test Results | | 47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407) | | | | | | |--|---|--------|---|--|--|--| | FCC
Clause | Test Item | Result | Remarks | | | | | 15.207
15.407(b)(6) | AC Power Conducted
Emission | PASS | Meet the requirement of limit. Minimum passing margin is -10.29 dB at 0.30625 MHz. | | | | | 15.205 / 15.209 /
15.247(d)
15.407(b)
(1/2/3/4(i/ii)/6) | Radiated Emissions and Band
Edge Measurement | PASS | Meet the requirement of limit. Minimum passing margin is -5.5 dB at 38.00 MHz. | | | | Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ## 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 1.8 dB | | Conducted emissions | - | 3.1 dB | | Padiated Emissions up to 1 CHz | 9kHz ~ 30MHz | 3.0 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 1GHz | 4.9 dB | | | 1GHz ~ 6GHz | 5.1 dB | | Radiated Emissions above 1 GHz | 6GHz ~ 18GHz | 4.9 dB | | | 18GHz ~ 40GHz | 5.2 dB | ## 2.2 Modification Record There were no modifications required for compliance. Report No.: RF191118E09-2 Page No. 5 / 27 Report Format Version: 6.1.2 ## 3 General Information 3.1 General Description of EUT | 3.1 General Description | | | | | |-------------------------|---|--|--|--| | Product | NIGHTHAWK AX6 AX5400 6-Stream WiFi Router, NIGHTHAWK AX6 | | | | | Troduct | AX4300 6-Stream WiFi Router | | | | | Brand | NETGEAR | | | | | Test Model | RAX50 | | | | | Series Model | RAX45 | | | | | Status of EUT | ENGINEERING SAMPLE | | | | | Power Supply Rating | 12Vdc from adapter | | | | | Modulation Type | CCK, DQPSK, DBPSK for DSSS
64QAM, 16QAM, QPSK, BPSK for OFDM
256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz
1024QAM for OFDMA in 11ax HE mode | | | | | Modulation Technology | DSSS, OFDM, OFDMA | | | | | Transfer Rate | 802.11b: up to 11 Mbps
802.11a/g: up to 54 Mbps
802.11n: up to 600 Mbps
802.11ac: up to 1733.3 Mbps
802.11ax: up to 2401.9 Mbps | | | | | Operating Frequency | 2.4GHz: 2.412 ~ 2.462 GHz
5GHz: 5.18 ~ 5.24 GHz, 5.745 ~ 5.825 GHz | | | | | Number of Channel | 2.4GHz: 802.11b, 802.11g, 802.11n (HT20), VHT20, 80211ax (HE20): 11 802.11n (HT40), VHT40, 80211ax (HE40): 7 5GHz: 802.11a, 802.11n (HT20), 802.11ac (VHT20), 80211ax (HE20): 9 802.11n (HT40), 802.11ac (VHT40), 80211ax (HE40): 4 802.11ac (VHT80), 80211ax (HE80): 2 | | | | | Output Power | Non-Beamforming Mode: 2.412 ~ 2.462 GHz: 917.02 mW 5.18 ~ 5.24 GHz: 935.58 mW 5.745 ~ 5.825 GHz: 997.865 mW Beamforming Mode: 2.412 ~ 2.462 GHz: 874.052 mW 5.18 ~ 5.24 GHz: 863.139 mW 5.745 ~ 5.825 GHz: 797.393 mW | | | | | Antenna Type | Refer to Note | | | | | Antenna Connector | Refer to Note | | | | | Accessory Device | Adapter x 1 | | | | | Data Cable Supplied | RJ-45 Cable x 1 (Unshielded, 1.8 m) | | | | #### Note: 1. All models are listed as below. | Product Name | Model Name | Description | |--|------------|--| | NIGHTHAWK AX6 AX5400
6-Stream WiFi Router | RAADU | The hardware are the same, just only the Link Rate is different.
- Link Rate | | NIGHTHAWK AX6 AX4300
6-Stream WiFi Router | PAX45 | RAX50: 2.4GHz 600 Mbps, 5GHz 4800 Mbps
RAX45: 2.4GHz 480 Mbps, 5GHz 3840 Mbps | Note: From the above models, model: RAX50 was selected as representative model for the test and its data was recorded in this report. 2. Simultaneously transmission condition. | Condition | Technology | | | |-----------|---------------|-------------|--| | 1 | WLAN (2.4GHz) | WLAN (5GHz) | | 3. The EUT must be supplied one power adapter and following different models could be chosen as following table: | No. | Brand | Model No. | P/N | Spec. | |-----|---------|-------------------|--------------|------------------------------------| | | NETGEAR | 2ABL030F 1 NA | 332-10758-01 | Input: 100-120Vac, 1.0A, 50/60Hz | | 1 | | | | Output: 12V, 2.5A | | | | | | DC Output cable: Unshielded, 1.8 m | | | NETGEAR | NETGEAR AD2067F10 | | Input: 100-120Vac, 1.0A, 50/60Hz | | 2 | | | | Output: 12V, 2.5A | | | | | | DC Output cable: Unshielded, 1.8 m | Note: From the above models, the worst AC Power Conducted Emissions and Radiated Emissions test was found in **Adapter 1**. Therefore only the test data of the modes were recorded in this report. 4. The antennas provided to the EUT, please refer to the following table: | Antenna Operation 1 | Antenna Operation 2 | |---------------------|---------------------| | Dual_Ant0 | Dual_Ant0 | | Dual_Ant1 | Dual_Ant1 | | Single_Ant2 | Dual_Ant2 | | Single_Ant3 | Dual_Ant3 | Note: From the above antenna conditions, the worst case was found in Antenna Operation 1. Therefore only the test data of the mode was recorded in this report. 5. The directional antenna gain, please refer to the following table: | Frequency Range (GHz) | Directional Antenna Gain (dBi) | Antenna Type | Antenna Connector | | |-----------------------|--------------------------------|--------------|-------------------|--| | 2.4~2.4835 | 3.73 | | | | | 5.15 ~ 5.25 | 6.61 | | | | | 5.25 ~ 5.35 | 6.53 | Dipole | R-SMA | | | 5.47 ~ 5.725 | 6.64 | | | | | 5.725 ~ 5.85 | 6.66 | | | | Note: More detailed information, please refer to antenna specification. 6. The EUT incorporates a MIMO function: | · | 2.4GHz Band | | | | | |---|--------------------------------------|-------------|--|--|--| | MODULATION MODE | ODULATION MODE TX & RX CONFIGURATION | | | | | | 802.11b | 2TX | 2RX | | | | | 802.11g | 2TX | 2RX | | | | | 802.11n (HT20) | 2TX | 2RX | | | | | 802.11n (HT40) | 2TX | 2RX | | | | | VHT20 | 2TX | 2RX | | | | | VHT40 | 2TX | 2RX | | | | | 802.11ax (HE20) | 2TX | 2RX | | | | | 802.11ax (HE40) | 2TX | 2RX | | | | | | 5GHz Band | | | | | | MODULATION MODE | TX & RX COI | NFIGURATION | | | | | 802.11a | 4TX | 4RX | | | | | 802.11n (HT20) | 4TX | 4RX | | | | | 802.11n (HT40) | 4TX | 4RX | | | | | 802.11ac (VHT20) | 4TX | 4RX | | | | | 802.11ac (VHT40) | 4TX | 4RX | | | | | 802.11ac (VHT80) | 4TX | 4RX | | | | | 802.11ax (HE20) | 4TX | 4RX | | | | | 802.11ax (HE40) | 4TX | 4RX | | | | | 802.11ax (HE80) | 4TX | 4RX | | | | | Note: All of modulation mode support beamforming function except 802.11a/b/g modulation mode. | | | | | | 7. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual. Report No.: RF191118E09-2 Page No. 8 / 27 Report Format Version: 6.1.2 #### 3.1.1 Test Mode Applicability and Tested Channel Detail | EUT
CONFIGURE | ALL LIGABLE TO | | | | DESCRIPTION | |------------------|----------------|-------|-----|----|-------------| | MODE | RE≥1G | RE<1G | PLC | ОВ | DESCRIPTION | | - | √ | √ | V | V | - | Where RE≥1G: Radiated Emission above 1GHz & RE<1G: Radiated Emission below 1GHz Bandedge Measurement PLC: Power Line Conducted Emission **OB:** Conducted Out-Band Emission Measurement Note: The EUT had been pre-tested on the positioned of each 2 axis. The worst case was found when positioned on X-plane. ## **Radiated Emission Test (Above 1GHz):** The tested configurations represent the worst-case mode from all possible combinations by the maximum power. Following channel(s) was (were) selected for the final test as listed below. | MODE | E AVAILABLE TESTED CHANNEL | | MODULATION
TECHNOLOGY | MODULATION TYPE | | |--------------|----------------------------|-----|--------------------------|-----------------|--| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | | +
802.11a | 36 to 48
149 to 165 | 149 | OFDM | BPSK | | ### **Radiated Emission Test (Below 1GHz):** The tested configurations represent the worst-case mode from all possible combinations by the maximum Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE
CHANNEL | TESTED CHANNEL | MODULATION
TECHNOLOGY | MODULATION TYPE | | |--------------|------------------------|----------------|--------------------------|-----------------|--| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | | +
802.11a | 36 to 48
149 to 165 | 149 | OFDM | BPSK | | ### **Power Line Conducted Emission Test:** The tested configurations represent the worst-case mode from all possible combinations by the maximum ⊠ Following channel(s) was (were) selected for the final test as listed below. | MODE | ODE AVAILABLE TESTED CHANNEL | | MODULATION
TECHNOLOGY | MODULATION TYPE | |--------------|------------------------------|-----|--------------------------|-----------------| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | +
802.11a | 36 to 48
149 to 165 | 149 | OFDM | BPSK | Report No.: RF191118E09-2 Page No. 9 / 27 Report Format Version: 6.1.2 ## **Conducted Out-Band Emission Measurement:** The tested configurations represent the worst-case mode from all possible combinations by the maximum power. Following channel(s) was (were) selected for the final test as listed below. | MODE | AVAILABLE TESTED CHANNEL | | MODULATION
TECHNOLOGY | MODULATION TYPE | | |--------------|--------------------------|-----|--------------------------|-----------------|--| | 802.11b | 1 to 11 | 1 | DSSS | DBPSK | | | +
802.11a | 36 to 48
149 to 165 | 149 | OFDM | BPSK | | ## **Test Condition:** | APPLICABLE TO | ENVIRONMENTAL CONDITIONS | INPUT POWER | TESTED BY | |---------------|---------------------------|--------------|--------------| | RE≥1G | 24deg. C, 64%RH | 120Vac, 60Hz | Kevin Ko | | RE<1G | 25deg. C, 73%RH | 120Vac, 60Hz | Kevin Ko | | PLC | 25deg. C, 75%RH | 120Vac, 60Hz | Kevin Ko | | ОВ | OB 25deg. C, 60%RH | | Jyunchun Lin | Report No.: RF191118E09-2 Page No. 10 / 27 Report Format Version: 6.1.2 ## 3.2 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|--------------|---------|-------------------------|------------|---------|-----------------| | A. | Laptop | DELL | E6420 | B92T3R1 | FCC DoC | Provided by Lab | | B. | Laptop | DELL | E5430 | HYV4VY1 | FCC DoC | Provided by Lab | | C. | USB 3.0 Disk | SanDisk | MSIP-REM-TAD-S
DCZ73 | NA | NA | Provided by Lab | ### Note: ^{1.} All power cords of the above support units are non-shielded (1.8m). | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|--------------------| | 1. | RJ-45 Cable | 1 | 10 | No | 0 | Provided by Lab | | 2. | RJ-45 Cable | 1 | 10 | No | 0 | Provided by Lab | | 3. | DC Cable | 1 | 1.8 | No | 0 | Supplied by client | ## 3.2.1 Configuration of System under Test Report No.: RF191118E09-2 Page No. 11 / 27 Report Format Version: 6.1.2 ### 4 Test Types and Results ## 4.1 Radiated Emission and Bandedge Measurement 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. | Frequencies
(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |----------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | ### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$. - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Limits of unwanted emission out of the restricted bands | Limits of unwanted emission out of the restricted bands | | | | | | | |--|---------------|----------------------|---|---|--|--| | Applio | cable | То | Limit | | | | | 789033 D02 General UNII Test Procedure
New Rules v02r01 | | Field Strength at 3m | | | | | | | | PK:74 (dBµV/m) | AV:54 (dBμV/m) | | | | | Frequency Band | Applicable To | | EIRP Limit | Equivalent Field Strength at 3m | | | | 5150~5250 MHz | 15.407(b)(1) | | | | | | | 5250~5350 MHz | 15.407(b)(2) | | PK:-27 (dBm/MHz) | PK:68.2(dBµV/m) | | | | 5470~5725 MHz | | 15.407(b)(3) | | | | | | 5725~5850 MHz | \boxtimes | 15.407(b)(4)(i) | PK: -27 (dBm/MHz) *1
PK: 10 (dBm/MHz) *2
PK: 15.6 (dBm/MHz) *3
PK: 27 (dBm/MHz) *4 | PK: 68.2(dBμV/m) *1
PK: 105.2 (dBμV/m) *2
PK: 110.8(dBμV/m) *3
PK: 122.2 (dBμV/m) *4 | | | | | | 15.407(b)(4)(ii) | Emission limits in section 15.247(d) | | | | | *2 below the band edge increasing linearly to 10 | | | | | | | ^{*1} beyond 75 MHz or more above of the band edge. ### Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: E = $$\frac{1000000\sqrt{30P}}{3}$$ µV/m, where P is the eirp (Watts). Report No.: RF191118E09-2 Page No. 12 / 27 Report Format Version: 6.1.2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. ^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. ## 4.1.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED DATE | CALIBRATED UNTIL | |---|----------------------|---------------|-----------------|------------------| | Test Receiver
Keysight | N9038A | MY54450088 | July 03, 2019 | July 02, 2020 | | Pre-Amplifier
EMCI | EMC001340 | 980142 | May 30, 2019 | May 29, 2020 | | Loop Antenna
Electro-Metrics | EM-6879 | 264 | Jan. 22, 2019 | Jan. 21, 2020 | | RF Cable | NA | LOOPCAB-001 | Jan. 14, 2019 | Jan. 13, 2020 | | RF Cable | NA | LOOPCAB-002 | Jan. 14, 2019 | Jan. 13, 2020 | | Pre-Amplifier
Mini-Circuits | ZFL-1000VH2B | AMP-ZFL-01 | Oct. 23, 2019 | Oct. 22, 2020 | | Trilog Broadband Antenna SCHWARZBECK | VULB 9168 | 9168-406 | Nov. 11, 2019 | Nov. 10, 2020 | | RF Cable | 8D | 966-4-1 | Mar. 19, 2019 | Mar. 18, 2020 | | RF Cable | 8D | 966-4-2 | Mar. 19, 2019 | Mar. 18, 2020 | | RF Cable | 8D | 966-4-3 | Mar. 19, 2019 | Mar. 18, 2020 | | Fixed attenuator
Mini-Circuits | UNAT-5+ | PAD-3m-4-01 | Sep. 26, 2019 | Sep. 25, 2020 | | Horn_Antenna
SCHWARZBECK | BBHA 9120D | 9120D-783 | Nov. 24, 2019 | Nov. 23, 2020 | | Pre-Amplifier
EMCI | EMC12630SE | 980385 | Aug. 15, 2019 | Aug. 14, 2020 | | RF Cable | EMC104-SM-SM-1200 | 160923 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | 104 RF cable | 131215 | Jan. 10, 2019 | Jan. 09, 2020 | | RF Cable | EMC104-SM-SM-6000 | 180418 | May 03, 2019 | May 02, 2020 | | Pre-Amplifier EMCI | EMC184045SE | 980387 | Jan. 28, 2019 | Jan. 27, 2020 | | Horn_Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170519 | Nov. 24, 2019 | Nov. 23, 2020 | | RF Cable | EMC102-KM-KM-1200 | 160924 | Jan. 28, 2019 | Jan. 27, 2020 | | RF Cable | EMC102-KM-KM-1200 | 160925 | Jan. 28, 2019 | Jan. 27, 2020 | | Software | ADT_Radiated_V8.7.08 | NA | NA | NA | | Boresight Antenna Tower &
Turn Table
Max-Full | MF-7802BS | MF780208530 | NA | NA | | Spectrum Analyzer
R&S | FSV40 | 100964 | June 04, 2019 | June 03, 2020 | | Power meter
Anritsu | ML2495A | 1014008 | May 13, 2019 | May 12, 2020 | | Power sensor
Anritsu | MA2411B | 0917122 | May 13, 2019 | May 12, 2020 | | Fixed Attenuator
Mini-Circuits | MDCS18N-10 | MDCS18N-10-01 | Apr. 15, 2019 | Apr. 14, 2020 | ## Note: - 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in 966 Chamber No. 4. - 3. Loop antenna was used for all emissions below 30 MHz. - 4. Tested Date: Dec. 12 to 13, 2019 Report No.: RF191118E09-2 Page No. 13 / 27 Report Format Version: 6.1.2 #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### Note: 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. ## 4.1.4 Deviation from Test Standard No deviation. Report No.: RF191118E09-2 Page No. 14 / 27 Report Format Version: 6.1.2 ## 4.1.5 Test Setup ## For Radiated emission below 30MHz ## For Radiated emission 30MHz to 1GHz ## For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.1.6 EUT Operating Conditions - a. Connected the EUT with the Laptop which is placed on remote site. - b. Controlling software (Mtool 3.1.0.1) has been activated to set the EUT under transmission condition continuously at specific channel frequency. Report No.: RF191118E09-2 Page No. 16 / 27 Report Format Version: 6.1.2 ## 4.1.7 Test Results ### **Above 1GHz Data:** | FREQUENCY RANGE | 1GHz ~ 40GHz | | Peak (PK)
Average (AV) | |-----------------|--------------|--|---------------------------| |-----------------|--------------|--|---------------------------| | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 4824.00 | 45.1 PK | 74.0 | -28.9 | 2.16 H | 147 | 43.0 | 2.1 | | | 2 | 4824.00 | 43.4 AV | 54.0 | -10.6 | 2.16 H | 147 | 41.3 | 2.1 | | | 3 | 11490.00 | 45.7 PK | 74.0 | -28.3 | 1.17 H | 169 | 32.0 | 13.7 | | | 4 | 11490.00 | 35.1 AV | 54.0 | -18.9 | 1.17 H | 169 | 21.4 | 13.7 | | | 5 | #17235.00 | 47.7 PK | 68.2 | -20.5 | 1.33 H | 278 | 30.9 | 16.8 | | | | | ANTENNA | POLARITY | & TEST DI | STANCE: V | ERTICAL A | T 3 M | | | | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 4824.00 | 49.1 PK | 74.0 | -24.9 | 2.42 V | 40 | 47.0 | 2.1 | | | 2 | 4824.00 | 47.0 AV | 54.0 | -7.0 | 2.42 V | 40 | 44.9 | 2.1 | | | 3 | 11490.00 | 46.4 PK | 74.0 | -27.6 | 1.86 V | 136 | 32.7 | 13.7 | | | 4 | 11490.00 | 32.3 AV | 54.0 | -21.7 | 1.86 V | 136 | 18.6 | 13.7 | | | 5 | #17235.00 | 47.6 PK | 68.2 | -20.6 | 2.01 V | 237 | 30.8 | 16.8 | | ## **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit. - 5. " # ": The radiated frequency is out of the restricted band. Report No.: RF191118E09-2 Page No. 17 / 27 Report Format Version: 6.1.2 #### **Below 1GHz Data:** | FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|-------------|----------------------|-----------------| |-----------------|-------------|----------------------|-----------------| | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 47.17 | 32.1 QP | 40.0 | -7.9 | 3.00 H | 278 | 40.0 | -7.9 | | | 2 | 90.62 | 35.9 QP | 43.5 | -7.6 | 2.00 H | 271 | 49.5 | -13.6 | | | 3 | 124.99 | 32.6 QP | 43.5 | -10.9 | 3.00 H | 117 | 42.0 | -9.4 | | | 4 | 135.20 | 30.4 QP | 43.5 | -13.1 | 2.00 H | 107 | 38.9 | -8.5 | | | 5 | 150.86 | 33.2 QP | 43.5 | -10.3 | 2.00 H | 54 | 40.9 | -7.7 | | | 6 | 174.51 | 30.0 QP | 43.5 | -13.5 | 2.00 H | 289 | 38.7 | -8.7 | | #### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | FREQUENCY RANGE | 9kHz ~ 1GHz | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|-------------|----------------------|-----------------| |-----------------|-------------|----------------------|-----------------| | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|-------|--------|----------------------------|------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | | | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 38.00 | 34.5 QP | 40.0 | -5.5 | 1.00 V | 215 | 42.7 | -8.2 | | | 2 | 90.50 | 36.3 QP | 43.5 | -7.2 | 1.00 V | 237 | 49.9 | -13.6 | | | 3 | 125.01 | 35.3 QP | 43.5 | -8.2 | 1.00 V | 123 | 44.7 | -9.4 | | | 4 | 148.95 | 32.1 QP | 43.5 | -11.4 | 2.00 V | 74 | 39.8 | -7.7 | | | 5 | 309.17 | 23.6 QP | 46.0 | -22.4 | 1.00 V | 282 | 30.1 | -6.5 | | | 6 | 371.29 | 27.0 QP | 46.0 | -19.0 | 1.00 V | 160 | 31.9 | -4.9 | | #### **REMARKS:** - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. Margin value = Emission Level Limit value - 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. ### 4.2 Conducted Emission Measurement ## 4.2.1 Limits of Conducted Emission Measurement | Fraguency (MHz) | Conducted Limit (dBuV) | | | | | | |-----------------|------------------------|---------|--|--|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | | 0.50 - 5.0 | 56 | 46 | | | | | | 5.0 - 30.0 | 60 | 50 | | | | | Note: 1. The lower limit shall apply at the transition frequencies. 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. ## 4.2.2 Test Instruments | DESCRIPTION & MANUFACTURER | MODEL NO. | SERIAL NO. | CALIBRATED DATE | CALIBRATED UNTIL | |--|-------------------------|------------|-----------------|------------------| | Test Receiver
R&S | ESCS 30 | 847124/029 | Oct. 23, 2019 | Oct. 22, 2020 | | Line-Impedance
Stabilization Network
(for EUT)
R&S | ESH3-Z5 | 848773/004 | Oct. 23, 2019 | Oct. 22, 2020 | | Line-Impedance
Stabilization Network
(for Peripheral)
R&S | ESH3-Z5 | 835239/001 | Mar. 17, 2019 | Mar. 16, 2020 | | 50 ohms Terminator | 50 | 3 | Oct. 23, 2019 | Oct. 22, 2020 | | RF Cable | 5D-FB | COCCAB-001 | Sep. 27, 2019 | Sep. 26, 2020 | | Fixed attenuator EMCI | STI02-2200-10 | 003 | Mar. 14, 2019 | Mar. 13, 2020 | | Software
BVADT | BVADT_Cond_
V7.3.7.4 | NA | NA | NA | ### Note: - 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in Conduction 1. - 3 Tested Date: Dec. 12, 2019 Report No.: RF191118E09-2 Page No. 20 / 27 Report Format Version: 6.1.2 ### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. **Note:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. #### 4.2.4 Deviation from Test Standard No deviation. ### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.2.6 EUT Operating Conditions Same as 4.1.6. ## 4.2.7 Test Results | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-------|----------|-------------------|-----------------------------------| |-------|----------|-------------------|-----------------------------------| | | Phase Of Power : Line (L) | | | | | | | | | | |----|---------------------------|------------|-------|---------|-------|---------|-------|-------|--------|--------| | | Frequency | Correction | | g Value | | n Level | | nit | Ma | _ | | No | | Factor | (dB | uV) | (dB | uV) | (dB | uV) | (d | B) | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15391 | 9.99 | 35.16 | 17.69 | 45.15 | 27.68 | 65.79 | 55.79 | -20.64 | -28.11 | | 2 | 0.16953 | 9.99 | 32.99 | 19.57 | 42.98 | 29.56 | 64.98 | 54.98 | -22.00 | -25.42 | | 3 | 0.19687 | 9.99 | 31.42 | 21.96 | 41.41 | 31.95 | 63.74 | 53.74 | -22.33 | -21.79 | | 4 | 0.24375 | 9.99 | 29.77 | 18.94 | 39.76 | 28.93 | 61.97 | 51.97 | -22.21 | -23.04 | | 5 | 0.30625 | 10.00 | 35.36 | 28.04 | 45.36 | 38.04 | 60.07 | 50.07 | -14.71 | -12.03 | | 6 | 0.36484 | 10.00 | 25.03 | 13.60 | 35.03 | 23.60 | 58.62 | 48.62 | -23.59 | -25.02 | ### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) / | | |-------|-------------|-------------------|-------------------|--| | Phase | | Detector Function | Average (AV) | | | | Phase Of Power : Neutral (N) | | | | | | | | | | |----|------------------------------|------------|-------|---------|----------------|-------|-------|-------|--------|--------| | | Frequency | Correction | | g Value | Emission Level | | Limit | | Margin | | | No | | Factor | (dB | uV) | (dB | uV) | (dB | uV) | (d | B) | | | (MHz) | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15781 | 9.99 | 34.80 | 20.49 | 44.79 | 30.48 | 65.58 | 55.58 | -20.79 | -25.10 | | 2 | 0.16562 | 9.99 | 34.10 | 20.69 | 44.09 | 30.68 | 65.18 | 55.18 | -21.09 | -24.50 | | 3 | 0.18125 | 9.99 | 32.47 | 21.08 | 42.46 | 31.07 | 64.43 | 54.43 | -21.97 | -23.36 | | 4 | 0.21250 | 9.99 | 31.08 | 19.58 | 41.07 | 29.57 | 63.11 | 53.11 | -22.04 | -23.54 | | 5 | 0.24375 | 9.99 | 32.01 | 22.62 | 42.00 | 32.61 | 61.97 | 51.97 | -19.97 | -19.36 | | 6 | 0.30625 | 10.00 | 38.79 | 29.78 | 48.79 | 39.78 | 60.07 | 50.07 | -11.28 | -10.29 | #### Remarks: - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value ### 4.3 Conducted Out of Band Emission Measurement ### 4.3.1 Limits of Conducted Out of Band Emission Measurement Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). ### 4.3.2 Test Setup #### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 Test Procedures #### **MEASUREMENT PROCEDURE REF** - 1. Set the RBW = 100 kHz. - 2. Set the VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep time = auto couple. - 5. Trace mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. #### **MEASUREMENT PROCEDURE OOBE** - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = max hold. - 6. Allow trace to fully stabilize. - 7. Use the peak marker function to determine the maximum amplitude level. ### 4.3.5 Deviation from Test Standard No deviation. ### 4.3.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. ### 4.3.7 Test Results The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement. Report No.: RF191118E09-2 Page No. 24 / 27 Report Format Version: 6.1.2 ## 2.4GHz_802.11b CH1 + 5GHz_802.11a CH149 | 5 Distance of Test Assessments | |---| | 5 Pictures of Test Arrangements | | Please refer to the attached file (Test Setup Photo). | ## Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF191118E09-2 Page No. 27 / 27 Report Format Version: 6.1.2