Appendix No.: SYBH(Z-HAC)20171223016001-H1C #### **Appendix C. Calibration Certificate** | Table of contents | | | | | |----------------------|--|--|--|--| | Probe ER3DV6-2441 | | | | | | DAE4-1236 | | | | | | Dipole CD835V3-1114 | | | | | | Dipole CD1880V3-1100 | | | | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: ER3-2441 Nov17 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Huawei-SZ (Auden) **CALIBRATION CERTIFICATE** Object ER3DV6 - SN:2441 Calibration procedure(s) QA CAL-02.v8, QA CAL-25.v6 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: November 17, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Drimany Standards | ID | 0.15 | T | |----------------------------|------------------|-----------------------------------|------------------------| | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ER3DV6 | SN: 2328 | 10-Oct-17 (No. ER3-2328_Oct17) | Oct-18 | | DAE4 | SN: 789 | 2-Aug-17 (No. DAE4-789_Aug17) | Aug-18 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 22, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: NORMx,y,z DCP sensitivity in free space diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 - b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe ER3DV6 SN:2441 Manufactured: November 27, 2007 Calibrated: November 17, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ### DASY/EASY - Parameters of Probe: ER3DV6 - SN:2441 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)$ | 1.34 | 1.52 | 1.72 | ± 10.1 % | | DCP (mV) ^B | 91.9 | 99.4 | 99.0 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unc [₺] | |---------------------|---|---|-------|-------|------|-------|-------|------------------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 175.7 | ±3.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 154.5 | | | | | Z | 0.0 | 0.0 | 1.0 | | 193.4 | | | 10011-
CAB | UMTS-FDD (WCDMA) | Х | 3.23 | 65.9 | 18.0 | 2.91 | 142.3 | ±1.2 % | | | | Υ | 3.13 | 65.9 | 18.2 | | 123.1 | | | | | Z | 2.93 | 64.5 | 17.2 | | 113.6 | | | 10012-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | Х | 2.70 | 66.3 | 17.5 | 1.87 | 144.8 | ±0.9 % | | | | Y | 2.62 | 66.8 | 18.0 | | 125.4 | | | | | Z | 2.42 | 64.5 | 16.5 | | 116.3 | | | 10013-
CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-
OFDM, 6 Mbps) | X | 11.57 | 72.1 | 24.8 | 9.46 | 141.6 | ±3.0 % | | | | Υ | 11.06 | 71.1 | 24.2 | | 116.7 | | | | | Z | 10.70 | 69.5 | 22.8 | | 107.9 | | | 10021- GSM-F
DAC | GSM-FDD (TDMA, GMSK) | X | 15.92 | 96.4 | 27.7 | 9.39 | 125.0 | ±1.9 % | | | | Y | 12.21 | 94.9 | 26.9 | | 136.3 | | | | | Z | 23.64 | 99.4 | 28.5 | | 111.4 | | | 10061-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | X | 4.96 | 75.5 | 22.1 | 3.60 | 131.4 | ±1.9 % | | | | Y | 3.92 | 73.0 | 21.4 | | 111.0 | | | | | Z | 4.98 | 74.1 | 21.0 | | 106.8 | | | 10077-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 54 Mbps) | X | 11.61 | 73.3 | 27.1 | 11.00 | 118.0 | ±3.0 % | | | | Υ | 10.71 | 71.3 | 25.7 | | 96.4 | | | | | Z | 10.96 | 70.8 | 24.9 | | 93.1 | | | 10172-
CAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | Х | 7.49 | 74.5 | 26.8 | 9.21 | 108.9 | ±3.0 % | | | | Υ | 7.40 | 76.0 | 27.8 | | 125.7 | | | 10.170 | | Z | 9.56 | 80.0 | 28.8 | | 128.0 | | | | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | X | 7.73 | 74.6 | 26.8 | 9.48 | 108.1 | ±3.3 % | | | | Y | 7.75 | 76.7 | 28.2 | | 124.9 | | | 10005 | | Z | 10.04 | 80.8 | 29.3 | | 127.7 | | | 10235-
CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | Х | 7.77 | 74.8 | 26.9 | 9.48 | 108.3 | ±3.0 % | | | | Υ | 7.82 | 77.1 | 28.4 | | 125.2 | | | | | Z | 10.08 | 81.0 | 29.3 | | 127.7 | | | 10237-
CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | X | 7.46 | 74.4 | 26.7 | 9.21 | 108.4 | ±3.3 % | |--|---------------------------------------|---|-------|------|------|-------|-------|--------| | | | Υ | 7.44 | 76.2 | 28.0 | | 125.6 | | | | | Z | 9.56 | 80.0 | 28.8 | | 127.7 | | | 10238- LTE-TDD (SC-FDMA, 1 RB, 15 MHz, CAD 16-QAM) | | Х | 7.78 | 74.8 | 26.9 | 9.48 | 108.3 | ±3.0 % | | | | Υ | 7.77 | 76.8 | 28.2 | | 125.2 | | | | | Z | 10.11 | 81.1 | 29.4 | | 127.7 | | | 10240-
CAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | Х | 7.38 | 74.0 | 26.5 | 9.21 | 108.5 | ±3.0 % | | | | Υ | 7.50 | 76.5 | 28.1 | | 126.0 | | | | | Z | 9.60 | 80.2 | 28.9 | | 128.1 | | | 10295-
AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | Х | 13.48 | 95.4 | 39.7 | 12.49 | 111.2 | ±1.9 % | | | | Υ | 10.59 | 90.0 | 37.8 | | 90.9 | | | | | Z | 14.94 | 94.3 | 37.6 | | 96.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ### Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM,0 $^{\circ}$ f=2500 MHz,R22,0° ### Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$ f=600 MHz,TEM,90° f=2500 MHz,R22,90° ### Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ### Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(E-field) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ### **Deviation from Isotropy in Air** Error (φ, ϑ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) ### DASY/EASY - Parameters of Probe: ER3DV6 - SN:2441 #### **Other Probe Parameters** | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle (°) | -19.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 10 mm | | Tip Diameter | 8 mm | | Probe Tip to Sensor X Calibration Point | 2.5 mm | | Probe Tip to Sensor Y Calibration Point | 2.5 mm | | Probe Tip to Sensor Z Calibration Point | 2.5 mm | Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### IMPORTANT NOTICE #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. **Shipping of the DAE**: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. **Repair**: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### **Important Note:** Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### **Important Note:** To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Huawei-SZ (Auden) Accreditation No.: SCS 0108 C Certificate No: DAE4-1236 Jul17 #### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 1236 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: July 21, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|---------------------------------------|----------------------------------| | SN: 0810278 | 09-Sep-16 (No:19065) | Sep-17 | | ID# | Check Date (in house) | Scheduled Check | | SE UWS 053 AA 1001 | 05-Jan-17 (in house check) | In house check: Jan-18 | | SE UMS 006 AA 1002 | 05-Jan-17 (in house check) | In house check: Jan-18 | | | SN: 0810278 ID # SE UWS 053 AA 1001 | SN: 0810278 09-Sep-16 (No:19065) | Calibrated by: Name Function Signature Dominique Steffen Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: July 21, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1236_Jul17 Page 1 of 5 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ## DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = full range = -100...+300 mV Low Range: 1LSB = 6.1μV , 61nV , full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.972 ± 0.02% (k=2) | 404.872 ± 0.02% (k=2) | 405.864 ± 0.02% (k=2) | | Low Range | 4.00002 ± 1.50% (k=2) | 3.97578 ± 1.50% (k=2) | 4.00534 ± 1.50% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 45.0 ° ± 1 ° | |---|--------------| | Connector Angle to be used in DAST system | 45.0 ± 1 | ### Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |------------|---------|--------------|-----------------|-----------| | Channel X | + Input | 200031.25 | -9.51 | -0.00 | | Channel X | + Input | 20003.18 | -2.15 | -0.01 | | Channel X | - Input | -20001.84 | 2.92 | -0.01 | | Channel Y | + Input | 200024.54 | -10.36 | -0.01 | | Channel Y | + Input | 20002.28 | -2.89 | -0.01 | | Channel Y | - Input | -20005.23 | -0.25 | 0.00 | | Channel Z | + Input | 200026.19 | -14.13 | -0.01 | | Channel Z | + Input | 20001.09 | -4.02 | -0.02 | | Channel Z | - Input | -20004.59 | 0.41 | -0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.80 | -0.56 | -0.03 | | Channel X + Input | 201.81 | 0.32 | 0.16 | | Channel X - Input | -197.88 | 0.65 | -0.33 | | Channel Y + Input | 2001.10 | -0.26 | -0.01 | | Channel Y + Input | 200.03 | -1.43 | -0.71 | | Channel Y - Input | -199.66 | -1.06 | 0.54 | | Channel Z + Input | 2001.25 | 0.02 | 0.00 | | Channel Z + Input | 199.99 | -1.24 | -0.62 | | Channel Z - Input | -199.59 | -0.88 | 0.44 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 16.10 | 15.10 | | | - 200 | -14.81 | -16.18 | | Channel Y | 200 | -15.71 | -15.75 | | | - 200 | 14.57 | 14.61 | | Channel Z | 200 | -12.86 | -13.10 | | | - 200 | 10.65 | 10.95 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 3.28 | -2.96 | | Channel Y | 200 | 8.53 | * | 4.58 | | Channel Z | 200 | 9.15 | 6.95 | - | #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15755 | 17021 | | Channel Y | 16023 | 17322 | | Channel Z | 16300 | 17364 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.10 | -1.32 | 1.71 | 0.60 | | Channel Y | -0.05 | -2.28 | 2.19 | 0.79 | | Channel Z | -0.30 | -1.73 | 1.49 | 0.54 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 |