10239-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	1.65	69.67	18.43	6.02	65.0	± 9.6 %
CAD	64-QAM)							
		Y	6.16	88.50	25.06		65.0	
10010		Z	4.07	78.89	21.79	~ ~ ~ ~	65.0	
10240- CAD	QPSK)	×	1.78	68.77	20.32	6.02	65.0	±9.6%
		Y	3.14	78.73	24.52		65.0	
		Z	3.05	75.83	23.10		65.0	
10241-	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,	X	3.09	71.04	21.81	6.98	65.0	± 9.6 %
CAA	16-QAM)		5.94	90.20	25.20		65.0	
		7	5.64	77.12	23.20		65.0	
10242	LTE-TOD (SC-EDMA 50% RB 14 MHz	X	2 70	68.41	20.19	6.98	65.0	+96%
CAA	64-QAM)		2.70	00,41	20.47	0.00	00.0	10.0 %
		Y	4.94	76.94	23.76		65.0	
		Ζ	4.89	74.64	22.64		65.0	
10243-	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz,	X	2.78	67.24	20.54	6.98	65.0	± 9.6 %
CAA	QPSK)						~ ^	
		Y	4.14	72.94	22.88		65.0	
40044	LTC TOD (00 FDMA 50% DD 0 MUS		4.22	/1./2	22.18	7.00	65.0	100%
CAB	16-QAM)		0.80	57.73	3.30	3.98	65.0	±9.6 %
		Y	2.15	64.01	10.18		65.0	
		Z	2.44	64.99	11.42		65.0	
10245- CAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-OAM)	X	0.82	57.61	3.20	3.98	65.0	± 9.6 %
0/10		Y	2.13	63.69	9.96		65.0	
		z	2.42	64.65	11.19		65.0	
10246-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	X	0.87	60.00	5.50	3.98	65.0	± 9.6 %
000			2 12	67.09	12.65		65.0	
		Ż	2.17	66.84	12.00		65.0	
10247-	LTE-TDD (SC-FDMA, 50% RB, 5 MHz,	X	1.26	60.00	6.38	3.98	65.0	± 9.6 %
		V	2 78	67 32	13.60		65.0	
		7	2.70	66.99	13.82		65.0	
10248-	LTE-TDD (SC-FDMA, 50% RB, 5 MHz,	X	1.30	60.00	6.40	3.98	65.0	± 9.6 %
CAD	64-QAM)			1				
		Y	2.73	66.64	13.26		65.0	
		Z	2.81	66.52	13.58		65.0	
10249- CAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	X	1.24	61.72	8.36	3.98	65.0	± 9.6 %
		Y	3.85	75.74	18.20		65.0	
		Z	3.35	73.06	17.32		65.0	
10250- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	2.74	67.58	14.25	3.98	65.0	± 9.6 %
		Y	4.25	73.58	19.37		65.0	
		Z	4.02	71.93	18.78		65.0	
10251- CAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-OAM)	X	2.46	65.14	12.48	3.98	65.0	± 9.6 %
			3.86	70.68	17.56		65.0	
		Ż	3.78	69.64	17.25		65.0	
10252-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz,	Х	2.82	71.28	16.40	3.98	65.0	± 9.6 %
			4 0.9	70.52	21 77		65.0	
		7	4.29	76 11	20.42		65.0	
10253-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-0AM)	X	3.12	67.32	15.07	3.98	65.0	± 9.6 %
			4 18	70.66	18 33		65.0	+
	····		4.10	69.61	17.93		65.0	
10254-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	3.39	68.52	15.96	3.98	65.0	± 9.6 %
CAD	64-QAM)		· -		<u> </u>		ļ	
		<u> </u>	4.50	71.75	19.15		65.0	
1		Z	4.39	70.63	18,74	1	65.0	1

10255-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	3.40	72.07	17.90	3.98	65.0	± 9.6 %
CAD	QPSK)	<u> </u>						
		Y 7	4.72	76.03	20.86		65.0	
10256-	LTE-TDD (SC-EDMA_100% RB_14		4.30 0.74	<u>73.79</u> 56.57	19.90	3.08	65.0	+06%
CAA	MHz, 16-QAM)		0.7-4	00.07	1.40	5,80	05.0	19.0 %
	-	Y	1.50	60.83	7.03		65.0	
40057		Z	1.77	61.73	8.31		65.0	
10257-	LTE-TDD (SC-FDMA, 100% RB, 1.4	X	0.63	56.72	1.58	3.98	65.0	± 9.6 %
			1.50	60.62	6 90		65.0	
		7	1.77	61.47	8.06		65.0	
10258-	LTE-TDD (SC-FDMA, 100% RB, 1.4	X	0.75	60.00	4.13	3,98	65.0	± 9.6 %
CAA	MHz, QPSK)							
~~		Y	1.38	61.96	8.52		65.0	
10050			1.52	62.42	9.24		65.0	
CAR	16-OAM)	X	1.62	61.68	8.48	3.98	65.0	± 9.6 %
		Y	3.35	69.89	15.82		65.0	
		Z	3.28	68.97	15.69		65.0	
10260-	LTE-TDD (SC-FDMA, 100% RB, 3 MHz,	X	1.65	61.61	8.42	3.98	65.0	± 9.6 %
CAB	64-QAM)							
			3.36	69.55	15.64		65.0	
10261-	LTE-TOD (SC-EDMA 100% RB 3 MHz		1.63	64.06	15.57	2.09	65.0	+0.6.0/
CAB	QPSK)		1.00	04.00	10.09	3.90	05.0	19.0 %
		Y	4.19	76.83	19.42		65.0	
		Ζ	3.63	73.87	18.36		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	2.73	67.47	14.17	3.98	65.0	± 9.6 %
		Y	4.22	73.47	19.30		65.0	
40000		Z	4.00	71.83	18.72		65.0	
10263- CAD	LIE-IDD (SC-FDMA, 100% RB, 5 MHz,	X	2.46	65.13	12.47	3.98	65.0	± 9.6 %
		V	3.85	70.66	17 56		65.0	[
		z	3.77	69.62	17.25		65.0	
10264-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	X	2.78	71.03	16.25	3.98	65.0	± 9.6 %
CAD			4.04	70.02	04.60		GE O	
		7	4.91	75.88	21.03		65.0	
10265-	LTE-TDD (SC-FDMA, 100% RB, 10	X	3.31	68.31	16.16	3.98	65.0	+9.6%
CAD	MHz, 16-QAM)					0.00		2010 10
		Y	4.23	70.96	18.67		65.0	
40000		Z	4.14	69.89	18.23		65.0	
CAD	MHz, 64-QAM)		3.64	69.75	17.27	3.98	65.0	±9.6%
		Y	4.61	72.28	19.66		65.0	
40007		Z	4.48	71.09	19.18		65.0	
10267- CAD			3.65	73.23	18.74	3.98	65.0	± 9.6 %
	-	Y	4.96	76.74	21.09		65.0	
40000		Z	4.55	74.35	20.04		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	4.08	69.60	17.97	3.98	65.0	± 9.6 %
		Y	4.89	71.20	19.41		65.0	
10000			4.81	70.25	18.99	0.00	65.0	
CAD	MHz, 64-QAM)	X	4.15	69.51	17.90	3.98	65,0	± 9.6 %
		Y	4.93	70.92	19.29		65.0	
10070			4.85	69.98	18.89	0.00	65.0	
CAD	MHz, QPSK)	×	4.11	/2.44	19.03	3.98	65.0	± 9,6 %
		Y	5.01	74.05	20.18		65.0	
		2	4.76	72.38	19.41		65.0	

10274-	UMTS-FDD (HSUPA, Subtest 5, 3GPP	Х	1.45	63.39	10.22	0.00	150.0	± 9.6 %
		Y	2.58	68.99	15.79		150.0	
		Z	2.26	65.99	14.08		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	Х	1.00	66.09	12.05	0.00	150.0	± 9.6 %
		Y	1.98	74.04	18.23		150.0	
		Z	1.30	66.38	13.95		150.0	
10277- CAA	PHS (QPSK)	X	4.43	65.00	5.66	9.03	50.0	± 9.6 %
		Y	1.25	57.54	2.57		50.0	
10279	PHS (OPSK BW 884MHz Polloff 0.5)		1.34	58.35	3.69	0.02	50.0	+06%
CAA			1.39	56.79	4.19	9.03	50.0	± 9.0 %
			2.00	62.01	7.70		50.0	
10279-	PHS (OPSK_BW 884MHz_Rolloff 0.38)	×	1 42	58.87	1.28	9.03	50.0	+96%
CAA			0.04	00.07	7.04	0.00	50.0	1. 5.0 78
		7	2.04	63.16	8.96		50.0	
10290- AAB	CDMA2000, RC1, SO55, Full Rate	X	24.89	264.54	21.43	0.00	150.0	± 9.6 %
		Y	0.75	64.32	9.28		150.0	
		Z	0.55	60.53	6.84		150.0	
10291- AAB	CDMA2000, RC3, SO55, Full Rate	X	8.17	257.05	37.61	0.00	150.0	± 9.6 %
		Y	0.54	64.12	8.98		150.0	
40000		Z	0.37	60.00	6.07		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	2.31	326.58	8.83	0.00	150.0	± 9.6 %
····		<u>Y</u>	100.00	114.29	23.68		150.0	
10202	CDMA2000 BC2 SO2 Full Bate		0.37	60.29	6.50	0.00	150.0	
AAB	CDIVIA2000, RC3, SO3, Full Rate		2.41	304.08	37.98	0.00	150.0	± 9.6 %
		7	0.47	62.22	20.90		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	11.16	76.14	13.68	9.03	50.0	± 9.6 %
		Y	24.30	94.04	23.00		50.0	
		Z	21.29	93.19	23.41		50.0	
10297- AAC	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.00	69.33	16.06	0.00	150,0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	2.80	72.57	18.31		150.0	
10298-	LTE-FDD (SC-FDMA, 50% RB, 3 MHz,	X	2.31 8.49	68.33 243.95	15.80 30.00	0.00	150.0 150.0	± 9.6 %
			0 08	64.80	10.42		150.0	
		Ż	0.78	61.52	8.38		150.0	
10299- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	x	12.17	331.10	45.12	0.00	150.0	± 9.6 %
		Y	0.99	61.11	7.01		150.0	
		Z	1.06	61.03	7.46		150.0	
10300- AAC	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	10.15	348.38	28.30	0.00	150.0	± 9.6 %
		Y	0.82	59.43	5.36		150.0	
10204		<u>Z</u>	0.95	60.00	6.23		150.0	
AAA	10MHz, QPSK, PUSC)	X	3.30	64.31	15.03	4.17	50.0	± 9.6 %
		Y	4.07	65.29	17.00		50.0	
10302-	IEEE 802,16e WiMAX (29:18, 5ms)	<u> </u>	4.16	65 12	16.72	4 96	50.0	+96%
AAA	10MHz, QPSK, PUSC, 3 CTRL symbols)		1 52	65.76	17.66		50.0	20.070
		7	4.66	65 71	17.00	1	50.0	
		ş 6		1 00.41	1 11.00	1	1 00.0	1

10303-	IEEE 802.16e WIMAX (31:15, 5ms,	X	3.64	65.07	15.71	4.96	50.0	±9.6 %
AAA	TUMHZ, 64QAM, PUSC)		4 20	CE AA	17 14		50.0	
	· · · · · · · · · · · · · · · · · · ·	7	4.23	65 39	17.44	·	50.0	
10304- AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	3.46	64.98	15.29	4.17	50.0	± 9.6 %
		Y	4.15	65.58	17.11		50.0	
10008		Z	4.21	64.95	16.68		50.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	2.52	62.00	12.12	6.02	35.0	± 9.6 %
		Y	3.52	65.78	17.45		35.0	
10206	1555 902 460 MINAAX (20:40, 40mg	Z	3.76	66,23	17.67	0.00	35.0	
AAA	10MHz, 64QAM, PUSC, 18 symbols)	X	3.12	63.64	14.29	6.02	35.0	± 9.6 %
		Y 7	3.94	65.53	17.75		35.0	
10307- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz_OPSK_PUSC_18 symbols)	X	3.01	63.42	17.65	6.02	35.0	± 9.6 %
		Y	3.81	65.44	17.59		35.0	
		Z	4.01	65.68	17.70		35.0	
10308- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	3.02	63.75	14.28	6.02	35.0	± 9.6 %
		Y	3.78	65.60	17.74		35.0	
40000		Z	3.98	65.86	17.83		35.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	X	3.17	63,94	14.58	6.02	35.0	± 9.6 %
		Y -	3.94	65.55	17.83		35.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, OPSK, AMC 2x3, 18 symbols)	X	<u>4.14</u> 3.11	63.82	17.93	6.02	35.0	± 9.6 %
		Y	3.89	65.58	17.76		35.0	
		Z	4.09	65.78	17.84		35.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	2.31	68.15	15.92	0.00	150.0	± 9.6 %
		Y	3.15	71.23	17.71		150.0	
		Z	2.66	67.57	15.55		150.0	
10313- AAA	IDEN 1:3	X	1.67	67.67	13.40	6.99	70.0	± 9.6 %
		Y	2.25	71.10	15.22		70.0	
10214			1.73	67.06	13.24	40.00	70.0	
AAA			0,12	86.17	23.14	10.00	30.0	±9.6%
		Y 7	2.40	89,19	24.60		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	0.91	63.92	14.34	0.17	150.0	± 9.6 %
		Y	1.09	65.84	16.70		150.0	
		Z	0.93	62.70	14.16		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	X	3.71	66.95	15.64	0.17	150.0	± 9.6 %
		Y	4.26	67.26	16.51		150.0	
10017		Z	4.21	66.40	15.98		150.0	
10317- AAC	IEEE 802.11a WIFI 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	X	3.71	66.95	15.64	0.17	150.0	± 9.6 %
		Y	4.26	67.26	16.51		150.0	
10400-	IEEE 802.11ac WiFi (20MHz, 64-QAM,	X	<u>4.21</u> 3.67	66.40 66.95	15.98 15.61	0.00	150.0 150.0	± 9.6 %
AAU	sabc anth chcie)		4 00	67.50	40.50	L	450.0	
		Y 7	4.32	66.67	16.58	<u> </u>	150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM,	X	4.49	66.84	16.09	0.00	150.0	±9.6 %
7 U IU		Y	5.01	67.23	16.55		150.0	
·	-	Ż	4.95	66.47	16.07		150.0	

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	X	4.90	67.23	16.33	0.00	150.0	± 9.6 %
AAD	99pc duty cycle)							
			5.37	67.75	16.72		150.0	
10402	CDM42000 (1xEV DO_Boy_0)		5.33	07.10	16.30	0.00	150.0	+06%
AAB	CDMA2000 (TXEV-DO, RØV. 0)	^	24.09	204.04	21.43	0.00	115.0	± 9.6 %
		İγ	0.75	64.32	9.28		115.0	
		Ż	0.55	60.53	6.84		115.0	·
10404-	CDMA2000 (1xEV-DO, Rev. A)	X	24.89	264.54	21.43	0.00	115.0	± 9.6 %
AAB	· · · · · · · · · · · · · · · · · · ·							
		Y	0.75	64.32	9.28		115.0	
40400			0.55	60.53	6.84		115.0	
10406-	CDMA2000, RC3, SO32, SCH0, Full Rate	X	0.25	60.00	3.04	0.00	100.0	± 9.6 %
AAD	Trate	V	100.00	107.14	22.27		100.0	
		7	35.03	104.04	23.84		100.0	
10410-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz,	X	1.11	74.02	16.29	3.23	80.0	+9.6%
AAD	QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)					0.20		
		Y	100.00	123.32	29.06		80.0	
		Z	3.02	80.23	18.57		80.0	
10415-	HEEE 802.11b WiFi 2.4 GHz (DSSS, 1	X	0.88	63.60	14.08	0.00	150.0	± 9.6 %
AAA		v	1.05	65.44	16.40		150.0	
		7	0.90	62.27	13 77		150.0	
10416-	IEEE 802.11g WiFi 2.4 GHz (ERP-	X	3.72	67.22	15.78	0.00	150.0	± 9.6 %
AAA	OFDM, 6 Mbps, 99pc duty cycle)							
		Y	4.26	67.46	16.59		150.0	
		Z	4.18	66.47	15.97		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	X	3.72	67.22	15.78	0.00	150.0	±9.6 %
		Y	4.26	67.46	16.59		150.0	
10440		<u>Z</u>	4.18	66.47	15.97		150.0	
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)		3.67	67.37	15.86	0.00	150.0	± 9.6 %
		Υ	4.26	67.73	16.69		150.0	
	····	Z	4.18	66.68	16.03		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	X	3.70	67.32	15.83	0.00	150.0	± 9.6 %
		Y	4.28	67.63	16.66		150.0	
40.400		Z	4.19	66.61	16.02		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	×	3.79	67.23	15.85	0.00	150.0	± 9.6 %
		<u> Y</u>	4.37	67.55	16.64			ļ
10422	IEEE 902 11p (HT Croopfold 42.2		4.30	66.59	16.04	0.00	150.0	
AAB	Mbps, 16-QAM)		3.80	07.43	15.91	0.00	150.0	± 9,6 %
			4.40	66.83	16.12		150.0	
10424-	IEEE 802 11n (HT Greenfield 72 2		3.80	67.32	15.87	0.00	150.0	+96%
AAB	Mbps, 64-QAM)		0.00	67.72	40.70	0.00	150.0	1 9.0 %
		+	4.4	66 77	16.00		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	X	4.52	67.29	16.36	0.00	150.0	± 9.6 %
		ΙΥ	5.01	67.60	16.77		150.0	
		Z	5.00	66.98	16.36		150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	4.54	67.39	16.40	0.00	150.0	± 9.6 %
		Y	5.06	67.79	16.86		150.0	
		Z	5.04	67.17	16.45		150.0	

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,	X	4.54	67.34	16.38	0.00	150.0	± 9.6 %
AAB	64-QAM)		5.00	67.50	40.74		450.0	
			<u> </u>	66.90	16.74		150.0	
10430-	LTE-EDD (OEDMA 5 MHz E-TM 3.1)		2.54	67.86	10.30	0.00	150.0	+0.00/
AAB		^	2.04	07.00	12.99	0.00	150.0	± 9.0 %
		Y	5.20	77.46	20.26		150.0	
40404		Z	4.04	72.15	17.87		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	3.04	66.93	14.37	0.00	150.0	± 9.6 %
		Y	3.88	68.36	16.49		150.0	
		Z	3.75	66.95	15.66		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	3.52	67.40	15.50	0.00	150.0	± 9.6 %
		Y	4.19	67.98	16.66		150.0	
		Z	4.09	66.85	15.96		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	3.82	67.39	15.92	0.00	150.0	± 9.6 %
		Y	4.43	67.78	16.72		150.0	
		Z	4.36	66.81	16.12		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	X	1.61	62.74	9.15	0.00	150.0	±9.6 %
		Y	5.68	78.98	20.05		150.0	
		Z	3.98	72.24	17.17		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.04	73.03	15.81	3.23	80.0	±9.6 %
		Y	100.00	122.83	28.83		80.0	
		Z	2.85	79.40	18.23		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	1.63	62.08	8.98	0.00	150.0	± 9.6 %
		Y	3.10	68.15	14.99		150.0	
		Z	2.89	66.18	13,94		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	2.97	66.84	14.33	0.00	150.0	± 9.6 %
		Y	3.76	68,19	16.40		150.0	
		Z	3.63	66.75	15.54		150.0	
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	3.43	67.31	15.47	0.00	150,0	± 9.6 %
		Y	4.05	67.84	16.58		150.0	
		Z	3.95	66.68	15.86		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	3.70	67.17	15.79	0.00	150.0	± 9.6 %
		Y	4.26	67.58	16.60		150.0	
		Z	4.17	66.58	15.96		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	1.22	60.20	6.79	0.00	150.0	±9.6 %
		Y	2.78	67.25	13.76		150.0	
		Z	2.61	65.48	12.83		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	5.60	67.64	16.61	0.00	150.0	± 9.6 %
		Y	6.26	68.94	17.34		150.0	
		Ζ	6.00	67.69	16.64		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	3.27	66.46	15.58	0.00	150.0	± 9.6 %
		Y	3.68	66.34	16.37		150.0	
		Z	3.59	65.30	15.71		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	X	1.12	60.00	5.83	0.00	150.0	±9.6 %
		Y	3.56	71.73	16.05		150.0	
		Z	3.03	68.42	14.58		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	2.37	61.19	9.10	0.00	150.0	±9.6 %
		Y	4.86	70.51	17.92		150.0	
		Z	4.63	68.94	17.35		150.0	

10460-	UMTS-FDD (WCDMA, AMR)	Х	0.77	69.97	14.37	0.00	150.0	± 9.6 %
AAA								
·····		Y	1.81	83.33	22,94		150.0	
10461		<u>∠</u> ×	0.70	00.15 74.99	13.99	3 20	150.0	+06%
AAA	QPSK. UL Subframe=2.3.4.7.8.9)		1.10	74.00	17.91	3,29	00.0	19.0 %
		Y	100.00	130.63	32.41		80.0	
		Z	2.28	78.08	18.84		80.0	
10462-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X	5.93	230.19	29.26	3.23	80.0	± 9.6 %
	16-QAM, UL Subframe=2,3,4,7,8,9)		0.50	00.00	FFF		00.0	
		Y Z	0.59	60.00	5.55 7.06	· · · · · · · · · · · · · · · · · · ·	80.0	
10463-	LTE-TDD (SC-EDMA_1 RB_14 MHz	X	3.96	233.23	22.29	3.23	80.0	+96%
AAA	64-QAM, UL Subframe=2,3,4,7,8,9)		0.00	200.20	22.20	0.20	00.0	- 0.0 /0
		Y	23.26	230.85	21.52		80.0	
		Z	0.66	60.00	6.36		80.0	
10464-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	X	0.60	67.04	13.62	3.23	80.0	± 9.6 %
	QPSK, UL Subframe=2,3,4,7,8,9)		100.00	104.51	20.50		00.0	
		7	1 46	72.00	15.83		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	X	6.88	228.32	21.10	3.23	80.0	± 9.6 %
AAA	QAM, UL Subframe=2,3,4,7,8,9)							
		Y	0.24	55.14	2.95		80.0	
10100		Z	0.64	60.00	7.00		80.0	
10466-	LTE-TDD (SC-FDMA, 1 RB, 3 MHZ, 64-		4.90	230.59	11.80	3.23	80.0	± 9.6 %
	QAM, OL SUBITAILIE-2,3,4,7,6,9)	V	24 92	227.37	29.84		80.0	
	······································	z	0.66	60.00	6.32		80.0	
10467-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	X	0.65	68.17	14.23	3.23	80.0	± 9.6 %
AAC	QPSK, UL Subframe=2,3,4,7,8,9)							
		Y	100.00	125.25	29.82		80.0	
10469			1.58	73.06	16.29	0.00	80.0	
AAC	$OAM \cup U$ Subframe=2.3.4.7.8.9)	^	0.70	220.02	22.92	3.23	80.0	±9.6 %
7010		Y	0.24	55.19	3.02		80.0	
	* * * * * * * * * * * * * * * * * * *	Z	0.64	60.00	7.02		80.0	
10469-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-	X	4.89	230.67	12.36	3.23	80.0	± 9.6 %
AAC	QAM, UL Subframe=2,3,4,7,8,9)							
			24.62	227.52	30.16		80.0	
10470-	LTE-TOD (SC-EDMA 1 RB 10 MHz		0.00	69.21	0.32	3.23	80.0	+06%
AAC	QPSK, UL Subframe=2.3.4.7.8.9)		0.00	00,21	14.20	3.23	0,00	1 9.0 %
		Y	100.00	125.26	29.81		80.0	
		Z	1.58	73.08	16.29		80.0	
10471-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-	X	6.71	228.68	22.79	3.23	80.0	± 9.6 %
AAC	QAM, UL SUbtrame=2,3,4,7,8,9)		0.24	EE 10	2.09	<u> </u>	00.0	
			0.24	60.00	7.01	<u> </u>	80.0	
10472-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-	X	4.83	230.72	12.16	3 23	80.0	+96%
AAC	QAM, UL Subframe=2,3,4,7,8,9)							
		Y	24.39	227.78	30.29		80.0	
		Z	0.66	60.00	6.30		80.0	
10473-	LIE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	0.65	68,12	14.21	3.23	80.0	± 9.6 %
AAC	QPSK, UL Subirame=2,3,4,7,8,9)		100.00	125.20	20.79		00.0	
		7	1.57	73.01	16 25		80.0	
10474-	LTE-TDD (SC-FDMA, 1 RB. 15 MHz. 16-	x	6.67	228.73	22.56	3.23	80.0	± 9.6 %
AAC	QAM, UL Subframe=2,3,4,7,8,9)							/ / / / / / / / / / / / / / / /
		Y	0.59	60.00	5.48		80.0	
40475		Z	0.64	60.00	7.01		80.0	
AAC	QAM, UL Subframe=2,3,4,7,8,9)	X	4.82	230.67	11.80	3.23	80.0	± 9.6 %
		Y	24.34	227.67	30.21		80.0	
		Z	0.66	60.00	6.30		80.0	

10477-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-	X	6.74	228.54	21.21	3.23	80.0	± 9.6 %
AAC	QAM, UL Subframe=2,3,4,7,8,9)		0.23	55.09	2.80		80.0	-
			0.23	60.00	6.98		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	×	4.84	230.57	11.22	3.23	80.0	± 9.6 %
		Y	24.37	227.68	30.04		80.0	
10170		Z	0.66	60.00	6.29		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.02	84.98	21.47	3.23	80.0	±9.6 %
			100.00	125.48	31.72		80.0	
10480-			5.02	83.00	20.76	2.12	80.0	+0.0%
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)		4.00	00.00	44.96	3.23	00.0	± 9.0 %
		7	1.92	65.44	11.60		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	x	0.22	55.04	3.12	3.23	80,0	± 9.6 %
		Y	1.09	61.90	8.89		80.0	
		Z	1.31	62.31	9.77		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	53.67	208.87	10.65	2,23	80.0	± 9.6 %
		Y	1.05	62.14	9.95		80.0	
10400			0.98	60.56	9.26	0.00	80.0	
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)		64.01	327.64	15.81	2.23	80.0	± 9.6 %
			1.10	60.00	7.60		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	72.15	316.72	7.23	2.23	80.0	± 9.6 %
		Y	1.13	60.00	7.59		80.0	
		Z	1.24	60.00	8.22		80.0	
10485- 	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	0.75	60.00	6.88	2.23	80.0	± 9.6 %
		<u>Y</u>	2.48	72.41	16.54		80.0	
10486-			1.64	65.93	13.71	0.00	80.0	+0.6.9/
AAC	16-QAM, UL Subframe=2,3,4,7,8,9)		1.01	60.00	0.03	2.23	80.0	± 9.0 %
		7	1.00	62.22	10.9/		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.04	60.00	5.50	2.23	80.0	± 9.6 %
		Y	1.66	63.28	11.27		80.0	
		Z	1.59	61.98	10.79		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.44	64.72	13.06	2.23	80.0	±9.6 %
		Y	2.82	72.60	18.56	ļ	80.0	
10490			2.27	68.12	16.38		80.0	
AAC	16-QAM, UL Subframe=2,3,4,7,8,9)		1.47	01.87	10.73	2.23	80.0	± 9.6 %
		Y 7	2.82	66.05	16.54		80.0	
10490-	LTE-TDD (SC-FDMA, 50% RB, 10 MHz	X	1.47	61.55	10.50	2 23	80.0	+96%
AAC	64-QAM, UL Subframe=2,3,4,7,8,9)		2.86	68.61	16.37		80.0	20.0 %
		Ż	2.55	65.97	15.11		80.0	
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.98	66.25	14.91	2.23	80.0	± 9.6 %
		Y	2.98	70.44	18.02		80.0	
		Z	2.64	67.54	16.51		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	2.19	64.63	13.64	2.23	80.0	± 9.6 %
		<u> </u>	3.11	67.88	16.76		80.0	
		14	2.90	1 65.95	15.77	I	0.08	1

10493- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.21	64.43	13.47	2.23	80.0	± 9.6 %
		Y	3.16	67.71	16.66		80.0	
		Z	2.96	65.87	15.72		80.0	
10494- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	2.11	67.23	15.74	2.23	80.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	3.21	71.79	18.57	·	80.0	
		Z	2.78	68.52	16.88		80.0	
10495- AAC	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.35	65.50	14.66	2.23	80.0	± 9.6 %
		Y	3.14	68.07	17.04		80.0	
40.100		Z	2.93	66.16	16.02		80.0	
10496- AAC	L1E-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.42	65.39	14.61	2.23	80.0	± 9.6 %
		Υ	3.21	67.85	16.95		80.0	
40407			3.02	66.06	16.01	0.00	80.0	
AAA	MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.50	220.48	26.76	2.23	80.0	± 9.6 %
			0.82	60.00	6.90		80.0	
10409			0.88	60.00	7.23		80.0	
AAA	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)		0.00	60.00	0.00	2.23	80.0	± 9.6 %
		Y	1.06	60.00	5.49		80.0	
		Z	1.08	60.00	6.01		80.0	
10499- AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	0.00	60.00	0.00	2.23	80.0	± 9.6 %
		Y	1.10	60.00	5.30		80.0	
		Z	1.11	60.00	5.84		80.0	
10500- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	0.83	60.00	8.23	2.23	80.0	± 9.6 %
		Υ	2.68	72.91	17.52		80.0	
		Z	1.91	67.05	14.90		80.0	
10501- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.03	60.00	6.96	2.23	80.0	±9.6 %
		Y	2.26	66.74	13.90		80.0	
10500		Z	1.97	64.14	12.76		80.0	
10502- AAA	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.05	60.00	6.86	2.23	80.0	± 9.6 %
		Y	2.24	66.31	13.60		80.0	
10500		Z	1.99	63.95	12.58		80.0	
10503- AAC	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.42	64.51	12.94	2.23	80.0	± 9.6 %
		<u> </u>	2.78	72.32	18.42		80.0	<u> </u>
40504		Z	2.24	67.93	16.27		80.0	
AAC	16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.45	61.75	10.65	2.23	80.0	± 9.6 %
·		⊢ Υ	2.79	68.76	16.45		80.0	
10505			2.46	65.95	15.09	0.00	80.0	
AAC	64-QAM, UL Subframe=2,3,4,7,8,9)	X	1.46	61.45	10.42	2.23	80.0	± 9.6 %
		<u> </u>	2.84	68.47	16.29		80.0	
10506	TE TOD (SC EDMA 4000/ BB 40		2.53	67.00	15.05		80.0	
AAC	MHz, QPSK, UL Subframe=2,3,4,7,8,9)		2.09	07.08	15,65	2.23	80.0	± 9.6 %
ļ		Υ 	3.18	/1.01	18.48		80.0	
10507-	LTE-TOD (SC-EDMA 100% PP 10	<u> </u>	2.70	65.44	16.81	2.00	80.0	100%
AAC	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)		2.34	00.41	14.00	2.23	80.0	±9.6%
		Y	3.12	67.99	16.99		80.0	
		Z	2.92	66.10	15.98		80.0	

10508-	LTE-TDD (SC-FDMA, 100% RB, 10	X	2.40	65.29	14.54	2.23	80.0	+96%
AAC	MHz, 64-QAM, UL						0010	_ 0.0 /0
	Subframe=2,3,4,7,8,9)							
		Y	3.20	67.76	16.90		80.0	
		7	3.01	65.99	15.00		80.0	
10509-	LTE-TDD (SC-FDMA, 100% RB, 15	X	2.58	67.03	16.00	2.23	80.0	+96%
AAC	MHz, QPSK, UL Subframe=2.3.4.7.8.9)		2.00	07.00	10.00	2.20	00.0	± 3.0 %
			3 55	70.28	17 07		80.0	
	· · · · · · · · · · · · · · · · · · ·	7	3.24	67.04	16.71		80.0	
10510-	LTE-TOD (SC-EDMA 100% PB 15	- -	2.24	65.50	10.71	0.00	00.0	1000
	MH- 16-0AM UI	^	2,04	05.59	10.40	2.23	00.0	19.0%
////0	Subframe=2.3.4.7.8.0							
			2 55	67.40	17.00			
		+	3.00	07.42	17.00		80.0	
10511		- 5-	3.41	66.05	16.23	0.00	80.0	
	MHz 64-0AM 11	^	2.92	05.50	15.46	2.23	80.0	±9.6%
/010	Subframe=2.3.4.7.8.0							
			2.60	67.00	16.05		80.0	
		7	3.02	65.06	16.00		00.0	
10512			0.49	00.90	10.22		00.0	1000
10312- AAC	MHz OBSK 18 Subframe=2.2.4.7.9.0		2.57	67.43	16.22	2.23	80.0	±9.6%
770	MHZ, QF5K, UL Subirame-2,3,4,7,8,9)		0.05	74 54	40.07		00.0	
		Y T	3.65	71.51	18.37		80.0	
40540		<u> </u>	3.23	68.73	16.92		80.0	
10513-	LTE-TDD (SC-FDMA, 100% RB, 20		2.79	65.51	15.59	2.23	80.0	±9.6 %
AAC	MITZ, 16-QAM, UL							
	Subtrame=2,3,4,7,8,9)							
		<u>Y</u>	3.45	67.50	17.07		80.0	
		Z	3.30	66.08	16.26		80.0	
10514-	LTE-TDD (SC-FDMA, 100% RB, 20	X	2.87	65.41	15.56	2.23	80.0	±9.6%
AAC	MHz, 64-QAM, UL							
	Subframe=2,3,4,7,8,9)							
		Υ	3.50	67.18	16.96		80.0	
		Z	3.36	65.86	16.21		80.0	
10515-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2	X	0.84	63.77	14.11	0.00	150.0	±9.6%
AAA	Mbps, 99pc duty cycle)							
		Y	1.02	65.86	16.61		150.0	
		Z	0.85	62.40	13.77		150.0	
10516-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5	X	0.62	73.89	17.55	0.00	150.0	±9.6 %
AAA	Mbps, 99pc duty cycle)			1				
		Y	4.44	111.45	33.24		150.0	
		Z	0.45	67.70	14.48		150.0	
10517-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	0.68	65.50	14.61	0.00	150.0	± 9.6 %
AAA	Mbps, 99pc duty cycle)							
		Y	0.96	70.28	18.66	1	150.0	
		Z	0.68	63.72	13.93		150.0	
10518-	IEEE 802.11a/h WiFi 5 GHz (OFDM. 9	X	3.70	67.39	15.82	0.00	150.0	±9.6%
AAB	Mbps, 99pc duty cycle)	· ·	2.7.0					
_	· · · · · · · · · · · · · · · · · · ·	Y	4.26	67.62	16.61		150.0	
		7	4 17	66 58	15.96		150.0	
10519-	IEEE 802 11a/h WiEi 5 GHz (OEDM 12	x	3 79	67.51	15.88	0.00	150.0	+96%
AAB	Mbps, 99pc duty cycle)		0.10			0,00		
·····			4.38	67.73	16.67		150.0	
		+- <u>;</u>	4 31	66 74	16.05		150.0	
10520-	IFEE 802 11a/b W/EL5 GHz (OEDM 18	TY I	3.65	67 31	15 75	0.00	150.0	+96%
AAR	Mbps 99nc duty cycle)		0.00	01.01	10.15	0.00	100.0	- 0.0 /0
			1 25	67 69	16.61	<u> </u>	150.0	
		7	4.20	66.65	15.05		150.0	
10621		+	4.10	67.46	10.90	0.00	150.0	1060/
	Mbps - 90ps duty system	^	3.08	01.10	00.61	0.00	0.061	19.0%
	wipps, aape duty cycle)		4 4 0	67.00	40.00		4000	
		Γ Γ	4.10	07.02	10.08		100.0	1
40500		<u></u>	4.10	00.08	10.92	0.00	150.0	100%
10522-	IEEE 802.11a/n WIFI 5 GHZ (UFDM, 36		3.61	07.21	15.68	0.00	150.0	± 9.6 %
AAR	wups, sape auty cycle)		4.00	07.07	40.01	 	450.0	
		Y	4.20	67.65	16.61	l	150.0	
l		12	4.13	00.67	15.99	L	150.0	

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	3.58	67.41	15.78	0.00	150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)							
		Y	4.19	67.90	16.68		150.0	
40504		Z	4.09	66.77	15.97		150.0	
10524- AAB	Mbps, 99pc duty cycle)	X	3.55	67.17	15.73	0.00	150.0	± 9.6 %
		Y	4.18	67.74	16.69		150.0	
		Z	4.09	66.69	16.02		150.0	
10525- AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	X	3.68	66.62	15.57	0.00	150.0	± 9.6 %
		Y	4.25	66.93	16.35		150.0	
		Z	4.15	65.82	15.66		150.0	
10526- AAB	EEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	3.72	66.70	15.62	0.00	150.0	± 9.6 %
		Y	4.34	67.14	16.44		150.0	
		Z	4.25	66.06	15.76		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	X	3.68	66.74	15.58	0.00	150.0	± 9.6 %
		Y	4.29	67.16	16.40		150.0	
		Z	4.18	66.03	15.70		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	3.67	66.65	15.55	0.00	150.0	±9.6 %
		Y	4.30	67.15	16.42		150.0	
	· · · · · · · · · · · · · · · · · · ·	Z	4.20	66.04	15.73		150.0	
10529- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	X	3.67	66.65	15.55	0.00	150.0	± 9.6 %
		Y	4.30	67.15	16.42		150.0	
		Z	4.20	66.04	15.73		150.0	
10531- AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	X	3.64	66.66	15.53	0.00	150.0	± 9.6 %
		Y	4.25	67.14	16.38		150.0	
		Z	4.15	66.02	15.69		150.0	
10532- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	X	3.57	66.55	15.48	0.00	150.0	± 9.6 %
		Y	4.15	67.03	16.34		150.0	
		Z	4.04	65.89	15.62		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	3.68	66.88	15.62	0.00	150.0	± 9.6 %
		Y	4.30	67.28	16.44		150.0	
		Z	4.20	66.13	15.73		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	4.34	66.44	15.93	0.00	150.0	± 9,6 %
		Y	4.85	66.86	16.39		150.0	
		Z	4.79	66.06	15.87		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	4.34	66.46	15.95	0.00	150.0	± 9.6 %
		Y	4.87	66.95	16.44		150.0	
		Z	4.82	66.17	15.93		150.0	
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	4.25	66.45	15.91	0.00	150.0	± 9.6 %
		Y	4.78	66.98	16.43		150.0	
		Z	4.71	66.14	15.89		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	4.35	66.61	16.01	0,00	150.0	± 9.6 %
		Y	4.86	67.05	16.47	[150.0	
		Z	4.80	66.24	15.94		150.0	
10538- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	X	4.37	66.44	15.94	0.00	150.0	± 9.6 %
		Y	4.89	66.89	16.42		150.0	
		Z	4.84	66.13	15.93		150.0	
10540- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)	X	4.31	66.35	15.93	0.00	150.0	± 9.6 %
×		Y	4.83	66.86	16.43		150.0	
		Z	4.77	66.08	15.92		150.0	

10541-	IEEE 802.11ac WIFI (40MHz, MCS7,	X	4.33	66.41	15.92	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)		4.00	00.00	40.00		450.0	
			4.83	66.02	16.39		150.0	
10542-	IEEE 802.11ac WiFi (40MHz, MCS8,	X	4.45	66.54	16.01	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)		4.07	66.00	16.40		450.0	
		Z	4.97	66 12	15.43		150.0	
10543-	IEEE 802.11ac WiFi (40MHz, MCS9,	X	4.48	66.49	16.02	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)		5.04	66.07	46 50		450.0	
			5.04	66.28	16.00		150.0	
10544-	IEEE 802.11ac WiFi (80MHz, MCS0,	X	4.77	66.20	15.88	0.00	150.0	±9.6%
AAB	99pc duty cycle)		<u> </u>					
		Y 7	5.21	66.81	16.32		150.0	
10545-	IEEE 802,11ac WiFi (80MHz, MCS1	X	4.82	66.41	15.07	0.00	150.0	+96%
AAB	99pc duty cycle)				10.00	0.00	100.0	1 0.0 %
		Y	5.37	67.24	16.50		150.0	
10546-			5.34	66.63	16.10	0.00	150.0	
AAB	99pc duty cycle)		4.77	00.27	15.89	0.00	150.0	± 9.6 %
		Y	5.24	66.91	16.35		150.0	
10547			5.18	66.22	15.90		150.0	
AAB	99pc duty cycle)	X	4.83	66.38	15.95	0.00	150.0	±9.6 %
		Y	5.36	67.18	16.48		150.0	
40540		Z	5.31	66.51	16.04		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	4,82	66.54	16.01	0.00	150.0	±9.6 %
		Y	5.39	67.48	16.61		150.0	
10550		Z	5.39	66.96	16.24		150.0	
10550- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)		4.79	66.46	16.00	0.00	150.0	± 9.6 %
		Y	5.34	67.29	16.55		150.0	
		Z	5.30	66.62	16.12		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	4.75	66.25	15.87	0.00	150.0	±9.6 %
		Y	5.21	66.84	16.29		150.0	
40550		Z	5.16	66,14	15.84		150.0	
10552- AAB	BEE 802.11ac WIFI (80MHz, MCS8, 99pc duty cycle)	X	4.78	66.50	15.97	0.00	150.0	±9.6 %
		Y	5.22	66.98	16.36		150.0	
40550		Z	5.16	66.23	15.88		150.0	
AAB	99pc duty cycle)	X	4.79	66.33	15.90	0.00	150.0	± 9.6 %
		Y	5.26	66.86	16.32		150.0	
40554		Z	5.20	66.16	15.87		150.0	
AAC	99pc duty cycle)		5.25	66,42	15.95	0.00	150.0	±9.6 %
		Y	5.65	67.07	16.36		150.0	
10000		Z	5.60	66.46	15.97		150.0	
10555- AAC	IEEE 802.11ac WIFI (160MHz, MCS1, 99pc duty cycle)		5.31	66.63	16.05	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.71	67.24	16.43		150.0	
10556			5.68	66.67	16.06	0.00	150.0	
AAC	99pc duty cycle)	X	5.32	05.65	16.05	0.00	150.0	±9.6%
		Y	5.77	67.42	16.51		150.0	
10557			5.74	66.86	16.15		150.0	
AAC	99pc duty cycle)	X	5.28	06.55	16.01	0.00	150.0	±9.6%
		Y	5.72	67.25	16.45		150.0	
		Z	5.67	66.64	16.06		150.0	

10558- AAC	IEEE 802.11ac WiFi (160MHz, MCS4,	X	5,24	66.46	15.98	0.00	150.0	± 9.6 %
-7010			5.60	67.20	16.44		150.0	
	······································	7	5.65	66.61	16.06		150.0	
10560			5.00	66.44	16.00	0.00	150.0	+96%
AAC	99pc duty cycle)		J.20	00.44	10.00	0.00	150.0	1 3.0 %
		Y	5.72	67.18	16.47		150.0	
		Z	5.68	66.60	16.09		150.0	
10561-	IEEE 802.11ac WiFi (160MHz, MCS7,	X	5.21	66.38	15.99	0.00	150.0	± 9.6 %
1.00		V	5.66	67 17	16.49		150.0	
		7	5.63	66.59	16.12		150.0	
10562-	IEEE 802 11ac WIEI (160MHz_MCS8	X	5.30	66.67	16.12	0.00	150.0	+96%
AAC	99pc duty cycle)		5.50	00.07	10.10	0.00	100.0	2 0.0 %
ļ		<u>Υ</u>	5.70	67.29	16.55		150.0	
			5.66	66.70	16.17		150.0	
10563- AAC	99pc duty cycle)	X	5.57	67.31	16.43	0.00	150.0	±9.6 %
		Y	5.83	67.40	16.57		150.0	
		Z	5.78	66.77	16.18		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	3.98	67.19	15.91	0.46	150.0	± 9.6 %
		Y	4.54	67.45	16.63		150.0	
}		Z	4.49	66.59	16.10		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	4.14	67.73	16.32	0.46	150.0	± 9.6 %
		ΙY	4.73	67.88	16.97		150.0	
		Z	4.67	67.02	16.44		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	3.97	67.32	16.02	0.46	150.0	± 9.6 %
		Y	4.56	67.66	16.76		150.0	
		Z	4.51	66.79	16.21		150.0	
10567- AAA	IEEE 802,11g WiFi 2.4 GHz (DSSS- OEDM, 24 Mbps, 99pc duty cycle)	X	4.06	67.96	16.56	0.46	150.0	± 9.6 %
		Y	4.62	68.16	17.21		150.0	
		7	4.55	67.23	16.63		150.0	
10568- AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS- OEDM_36 Mbps_99nc duty cycle)	X	3.80	66.64	15.45	0.46	150.0	± 9.6 %
,		Y	4 4 1	67 18	16.36		150.0	
		7	4 38	66.42	15.88		150.0	
10569- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM 48 Mbps, 99pc duty cycle)	X	4.07	68.35	16.82	0.46	150.0	± 9.6 %
		Y	4.63	68.53	17 43		150.0	
		7	4.55	67.52	16.81		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	3.99	67.81	16.52	0.46	150.0	± 9.6 %
		Y	4.60	68.17	17.24	[150.0	1
		Z	4.53	67.25	16.66		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	0.93	63.68	14.15	0.46	130.0	± 9.6 %
	t the second s	Y	1.11	65.62	16.53	I	130.0	
		Z	0.97	62.81	14.25		130.0	
10572- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	X	0.94	64.27	14.56	0.46	130.0	± 9.6 %
		Y	1.13	66.40	17.03	<u> </u>	130.0	
		Z	0.97	63.27	14.57	<u> </u>	130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	1.10	79.41	19.97	0.46	130.0	± 9.6 %
		Y	29,09	140.84	40.18		130.0	
		Z	0.81	73.52	17.65	ł	130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.00	70.10	17.80	0.46	130.0	± 9.6 %
	terre terre in the second s	Y	1.40	75.63	21.83	1	130.0	l
		Z	0.96	67.63	16.92		130.0	
								-

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	3.74	66.83	15.70	0.46	130,0	± 9.6 %
<u>~~~</u>	OF DM, 8 Mbps, sope duty cycle)		4 30	67.12	16.57		120.0	
······		7	4.30	66.31	16.08		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	3.78	67.20	15.91	0.46	130.0	± 9.6 %
		Y	4.34	67.41	16.71		130.0	
10000		Z	4.29	66.55	16.18		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	3.89	67.42	16.06	0.46	130.0	± 9.6 %
		<u>Y</u>	4.48	67.61	16.83		130.0	
10578-			4.44	66.77	16.33		130.0	
AAA	OFDM, 18 Mbps, 90pc duty cycle)		3.83	67.60	16.23	0.46	130.0	± 9.6 %
		7	4.40	66.02	17.00		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	3.51	66.09	15.01	0.46	130.0	± 9.6 %
		Y	4.12	66.74	16.08		130.0	
		Z	4.09	65.97	15.60		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	3.49	65.97	14.89	0.46	130.0	±9.6 %
·		Υ	4.12	66.69	16.03		130.0	
10501		Z	4.11	65.99	15.59		130.0	
AAA	OFDM, 48 Mbps, 90pc duty cycle)	X	3.74	67.63	16.20	0.46	130.0	± 9.6 %
		Y 7	4.33	67.99	17.02		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	3.37	65.61	16.43	0.46	130.0	± 9.6 %
		Y	4.03	66.45	15.82		130.0	
		Z	4.01	65.72	15.36		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	3.74	66.83	15.70	0.46	130.0	± 9.6 %
		Y	4.30	67.12	16.57		130.0	
40504		Z	4.26	66.31	16.08		130.0	
AAB	Mbps, 90pc duty cycle)	X	3.78	67.20	15.91	0.46	130.0	± 9.6 %
			4.34	67.41	16.71		130.0	
10585-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12	X	3.89	67.42	16.18 16.06	0.46	130.0 130.0	± 9.6 %
		V	4 48	67.61	16.83		120.0	
*****		z	4.44	66.77	16.33		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	3.83	67.60	16.23	0.46	130.0	± 9.6 %
		Y	4.40	67.82	17.00		130.0	
		Z	4.35	66.92	16.45		130.0	
10587- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	3.51	66.09	15.01	0.46	130.0	±9.6 %
		<u> Υ</u>	4.12	66.74	16.08		130.0	
10588			4.09	65.97	15.60	0.40	130.0	
AAB	Mbps, 90pc duty cycle)			00.97	14.09	0.46	130.0	±9.6 %
	<u> </u>	7	4.12	65.00	15.03		130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	3.74	67.63	16.20	0.46	130.0	± 9.6 %
		Y	4.33	67.99	17.02		130.0	
		Z	4.26	67.01	16.43		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	3.37	65.61	14.64	0.46	130.0	±9.6 %
		Y	4.03	66.45	15.82		130.0	
		Z	4.01	65.72	15.36		130.0	

10591-	IEEE 802.11n (HT Mixed, 20MHz,	X	3.91	67.05	15.98	0.46	130.0	± 9.6 %
AAB	MCS0, 90pc duty cycle)		1 46	67.24	16 72		120.0	
		7	4.40	66.45	16.72		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1_90pc duty cycle)	X	3.96	67.20	16.07	0.46	130.0	± 9.6 %
7010		Y	4.56	67.49	16.83		130.0	
		Z	4.52	66.71	16.36		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	3.89	67.09	15.91	0.46	130.0	± 9.6 %
		Y	4.48	67.36	16.68		130.0	
10501		Z	4.44	66.57	16.20	0.40	130.0	1000
10594- AAB	MCS3, 90pc duty cycle)	X	3.93	67.20	16.06	0.46	130.0	± 9.6 %
		Y 7	4.53	67.56	16.87		130.0	
10595-	IEEE 802 11p (HT Mixed 20MHz		4.00	67.15	15.05	0.46	130.0	+96%
AAB	MCS4, 90pc duty cycle)		4.60	67.54	16.79	0.40	130.0	1 3.0 78
		7	4.50	66 73	16.70		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5_90nc duty cycle)	X	3.78	66.88	15.82	0.46	130.0	± 9.6 %
		Y	4.41	67.44	16.74		130.0	
		Z	4.38	66.66	16.26		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	3.79	66.92	15.72	0.46	130.0	± 9.6 %
		Y	4.37	67.31	16.57		130.0	
10 - 00			4.34	66.51	16.09	0.40	130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	3.85	67.45	16.19	0.46	130.0	± 9.6 %
		Y	4.40	67.66	16.93		130.0	
40500	JEEE 002 44= (UT Mixed 40MU/z		4,34	66.79	16.40	0.46	130.0	+06%
AAB	MCS0, 90pc duty cycle)		4.79	07.73	10.77	0.40	130,0	±9.0 %
		- Y	5.21	67.02	16.62		130.0	
10600-	IFFE 802 11n (HT Mixed 40MHz		4.68	67.02	16.57	0.46	130.0	+9.6%
AAB	MCS1, 90pc duty cycle)		5.21	67.78	17.04	0.70	130.0	
		7	5.21	67.42	16 79		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2_90pc duty cycle)	X	4.64	67.32	16.56	0.46	130.0	± 9.6 %
		Y	5.18	67.81	17.08		130.0	
		Z	5.18	67.25	16.73		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	4.63	67.06	16.35	0.46	130.0	± 9.6 %
		<u> </u>	5.19	67.55	16.86		130.0	
40000			5.23	67.15	16.59	0.40	130.0	
AAB	MCS4, 90pc duty cycle)		4.08	67.32	10.00	0.46	130.0	± 9.0 %
			5.23	67.74	17.10		130.0	
10604-	IEEE 802.11n (HT Mixed, 40MHz,	X	4.64	67.04	16.84	0.46	130.0	± 9.6 %
		-	5.12	67.34	16.87	<u> </u>	130.0	
		Z	5.13	66.84	16.55		130.0	
10605- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	X	4.61	67.01	16.45	0.46	130.0	± 9.6 %
		Y	5.17	67.54	16.97		130.0	
		Z	5.21	67.15	16.70		130.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	X	4.52	66.73	16.13	0.46	130.0	± 9.6 %
		Y	5.04	67.22	16.65		130.0	
		Z	5.04	66.71	16.33	1	130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	3.77	66.40	15.66	0.46	130.0	±9.6 %
		- v	4 33	66.69	16.43	 	130.0	
		Z	4.00	65.78	15.88		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	3.82	66.54	15.73	0.46	130.0	± 9.6 %
		Y	4.44	66.96	16.55		130.0	
10609-			4.38	66.06	16.01	0.40	130.0	
AAB	90pc duty cycle)		3.73	66.35	15.52	0.46	130.0	± 9.6 %
			4.34	65.87	15.81	<u> </u>	130.0	
10610- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	X	3.78	66.52	15.70	0.46	130.0	± 9.6 %
		Y	4.40	66.99	16.56		130.0	
10611		Z	4.34	66.07	16.00		130.0	
AAB	90pc duty cycle)		3.70	66.30	15.52	0.46	130.0	± 9.6 %
		Y 7	4.30	66.73	16.37		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	3.61	66.09	15.37	0.46	130.0	± 9.6 %
		Y	4.27	66.79	16.38		130.0	
40040		Z	4.22	65.92	15.84		130.0	
10613- AAB	IEEE 802.11ac WIFI (20MHz, MCS6, 90pc duty cycle)	X	3.64	66.03	15.27	0.46	130.0	± 9.6 %
			4.27	66.59	16.20		130.0	
10614- AAB	IEEE 802.11ac WiFl (20MHz, MCS7, 90pc duty cycle)	X	<u>4.22</u> 3.70	66.56	15.67	0.46	130.0	± 9.6 %
		Y	4.27	66.95	16.54		130,0	
		Z	4.20	66.00	15.96		130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)		3.64	65.99	15.16	0.46	130.0	± 9.6 %
			4,28	65.52	16.09		130.0	
10616- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	X	4.45	66.34	16.08	0.46	130.0	± 9.6 %
		Y	4.95	66.71	16.53		130.0	
40047		Z	4.93	66.07	16.13		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	4.43	66.27	16.03	0.46	130.0	±9.6 %
		- Y 7	4.97	66.78	16.54		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	X	4.37	66.39	16.11	0.46	130.0	± 9.6 %
		Y	4.90	66.88	16.61		130.0	
10010		Z	4.86	66.19	16.18		130.0	
AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	X	4.42	66.32	16.00	0.46	130.0	± 9.6 %
		7	4.94	66.19	16.49		130.0	
10620- AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	4.43	66.13	15.93	0.46	130.0	± 9.6 %
		Y	4.96	66.62	16.45		130.0	
40004		Z	4.96	66.05	16.09		130.0	
AAB	90pc duty cycle)		4.50	66.48	16.27	0.46	130.0	± 9.6 %
		- Y 7	0.0U	00.84 66.19	16.09		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	4.46	66.43	16.25	0.46	130.0	± 9.6 %
		+ y	4.98	66.91	16.73	L	130.0	
		7	4 96	66.27	16.33	L	130.0	

10623-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	4.39	66.10	15.89	0.46	130.0	±9.6 %
AAB	90pc duty cycle)							
		Y	4.89	66.49	16.36		130.0	
		Z	4.86	65.84	15.96		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	×	4.54	66.35	16.10	0.46	130.0	± 9.6 %
		Y	5.06	66.70	16.53		130.0	
		Z	5.05	66.11	16.17		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	4.65	66.63	16.32	0.46	130.0	± 9.6 %
		Y	5,15	66.88	16.69		130.0	
		Z	5.16	66.34	16.36		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	4.87	66.09	16.03	0.46	130.0	± 9.6 %
		Y	5.31	66.64	16.44		130.0	
		Z	5.28	66.07	16.09		130.0	
10627- AAB	IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)	X	4.96	66.39	16.17	0.46	130.0	± 9.6 %
		Y	5.52	67.25	16.73		130.0	
		Z	5.53	66.80	16.43		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	4.83	65.96	15.85	0.46	130.0	± 9.6 %
		Y	5.28	66.56	16.30		130.0	
		Z	5.27	66.03	15.96		130.0	
10629- AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	4.89	66.11	15.93	0.46	130.0	± 9.6 %
		Y	5.45	66.99	16.52		130.0	
		Z	5.45	66.49	16.20	·	130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	4.94	66.47	16.13	0.46	130.0	± 9.6 %
		Y	5.52	67.40	16.73		130.0	
		Z	5.58	67.09	16.50		130.0	
10631- AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.04	67.01	16.63	0.46	130.0	± 9.6 %
		Y	5.56	67.66	17.07		130.0	
		Z	5.56	67.16	16.74		130.0	
10632- AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	X	5.02	66.85	16.55	0.46	130.0	± 9.6 %
		Y	5.59	67.70	17.10		130.0	
		Z	5.59	67.18	16.77		130.0	
10633- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	X	4.86	66.17	16.01	0.46	130.0	±9.6 %
		ΙY	5.30	66.64	16.39		130.0	
		Z	5.27	66.07	16.03		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	4.95	66.64	16.30	0.46	130.0	± 9.6 %
		Y	5.35	66.92	16.58		130.0	
		Z	5.32	66.32	16.21		130.0	
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	4.70	65.44	15.34	0.46	130.0	± 9.6 %
		Y	5.17	66.01	15.82		130.0	
		Z	5.16	65.50	15.50		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	5.37	66.35	16.11	0.46	130.0	± 9.6 %
		Y	5.75	66.94	16.50		130.0	
		Z	5.74	66.45	16.20		130.0	
10637- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	X	5.47	66.68	16.28	0.46	130.0	± 9.6 %
		Y	5.84	67.17	16.61		130.0	
		Z	5.85	66.75	16.34		130.0	
10638- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	X	5.45	66.60	16.21	0.46	130.0	± 9.6 %
		Y	5.91	67.37	16.68		130.0	
		Z	5.90	66.89	16.39	1	130.0	

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	5.40	66.48	16.20	0.46	130.0	±9.6%
AAC	90pc duty cycle)							
		<u>Y</u>	5.83	67.15	16.61		130.0	
10640			5.82	66.67	16.32		130.0	
AAC	90pc duty cycle)	X	5.32	66.22	15.99	0.46	130.0	± 9.6 %
	······	Y	5.75	66.89	16.42		130.0	
10011		Z	5.75	66.45	16.15		130.0	
10641- AAC	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	X	5.45	66.45	16.13	0.46	130.0	± 9.6 %
		Y	5.88	67.07	16.54		130.0	
		Z	5.90	66.70	16.30		130.0	
10642- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	5.46	66.60	16.39	0.46	130.0	±9.6 %
		Y	5.90	67.28	16.81		130.0	······
		Z	5.89	66.80	16.53		130.0	
10643- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	X	5.28	66.13	16.00	0.46	130.0	± 9.6 %
		Y	5.73	66.91	16.51		130.0	
		Z	5.74	66.48	16.24		130.0	
10644- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	5.42	66.58	16.26	0.46	130.0	± 9.6 %
		Y	5.78	67.08	16.62		130.0	
10017		Z	5.78	66.62	16.33		130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	5.81	67.58	16.73	0.46	130.0	± 9.6 %
		Y	5.91	67.16	16.62		130.0	
10010		Z	5.93	66.77	16.38		130.0	
10646- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	X	2.64	72.38	24.11	9.30	60.0	± 9.6 %
		Y	4.60	84.41	29.31		60.0	
		Z	4.84	83.41	28.63		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	2.46	71.01	23.55	9.30	60.0	± 9.6 %
		Y	4.04	81.81	28.38		60.0	
	······································	Z	4.35	81.42	27.96		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	2.44	155.88	0.83	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	0.35	60.28	6.28		150.0	
		Z	0.35	60.00	5.54		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	2.08	63.49	12.30	2.23	80.0	±9.6 %
		Y	3.15	67.39	16.19		80.0	
		Z	2.91	65.29	15.14		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	X	3.02	65.17	14.89	2.23	80.0	±9.6 %
		Y	3.64	66.22	16.46		80.0	
		Z	3.52	64.96	15.78		80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	X	3.20	64.95	15.39	2.23	80.0	± 9.6 %
		Y	3.67	65.70	16.49		80.0	
		Z	3.57	64.61	15.88		80.0	
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	3.35	64.77	15.59	2.23	80.0	± 9.6 %
		Y	3.76	<u>65.5</u> 0	16.51		80.0	
40.070		Z	3.66	64.52	15.94		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	X	2.01	62.76	7.94	10.00	50.0	±9.6%
	······	Y	2.58	65,57	9.73		50.0	
		Z	3.05	67.26	11.01		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	X	0.84	60.00	5.36	6.99	60.0	±9.6 %
		Y	1.33	63.54	7.82		60.0	
		Z	1.53	64.53	8.66		60.0	

June 25, 2018

٠

10660- AAA	Pulse Waveform (200Hz, 40%)	X	0.39	60.00	3.98	3.98	80.0	± 9.6 %
		Y	0.54	61.57	5.88		80.0	
		Z	0.45	60.00	5.04		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	17.64	60.43	1.44	2.22	100.0	± 9.6 %
		Y	0.23	60.00	4.28		100.0	
		Z	0.25	60.00	3.48		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	Х	0.00	84.91	40.93	0.97	120.0	± 9.6 %
		Y	49.30	1078.61	357.44		120.0	
		Z	0.03	139.18	4.12		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-7410_Jul18

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7410	
Calibration procedure(s)	QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes	BNV 07/26/2018
Calibration date:	July 20, 2018	
This calibration certificate docur The measurements and the unc	nents the traceability to national standards, which realize the physical units of measur certainties with confidence probability are given on the following pages and are part of	ements (SI). the certificate.
All calibrations have been cond	ucted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidi	ty < 70%.
Calibration Equipment used (M	TE critical for calibration)	

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-17)	In house check: Oct-18

	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	III ba
			MRK
Approved by:	Katja Pokovic	Technical Manager	00 10
			nt ht-
			Issued: July 21, 2018
This calibration certificate	e shall not be reproduced except in full	without written approval of the lab	oratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura S
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: tissue simulating liquid TSL NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization ϕ orotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom . exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7410

Calibrated:

Manufactured: November 24, 2015 July 20, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.41	0.47	0.43	± 10.1 %
DCP (mV) ^B	93.6	99.2	96.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0,0	1.0	0.00	142.1	±2.5 %
		Y	0.0	0.0	1.0		157.1	,
		Z	0.0	0.0	1.0		143.0	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V⁻¹	T1 ms.V ^{-₂}	T2 ms.V⁻¹	T3 ms	T4 V⁻²	T5 V⁻¹	T6
Х	32.22	246.3	37.01	4.015	0.380	5.018	0.000	0.327	1.006
Y	34.20	252.5	34.94	7.011	0.000	5.034	0.846	0.193	1.003
Z	38.58	298.4	37.77	5.097	0.373	5.059	0.000	0.338	1.011

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^a Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.13	10.13	10.13	0.37	0.98	± 12.0 %
835	41.5	0.90	9.81	9.81	9.81	0.47	0.80	± 12.0 %
1750	40.1	1.37	8.40	8.40	8.40	0.60	0.80	± 12.0 %
1900	40.0	1.40	8.16	8.16	8.16	0.56	0.80	± 12.0 %
2300	39.5	1.67	7.78	7.78	7.78	0.32	0.85	± 12.0 %
2450	39.2	1.80	7.50	7.50	7.50	0.34	0.84	± 12.0 %
2600	39.0	1.96	7.24	7.24	7.24	0.32	0.89	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity calibration be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.87	9.87	9.87	0.33	1.02	± 12.0 %
835	55.2	0.97	9.63	9.63	9.63	0.42	0.86	± 12.0 %
1750	53.4	1.49	8.06	8.06	8.06	0.35	0.85	± 12.0 %
1900	53.3	1.52	7.78	7.78	7.78	0.39	. 0.80	± 12.0 %
2300	52.9	1.81	7.64	7.64	7.64	0.35	0.85	± 12.0 %
2450	52.7	1.95	7.45	7.45	7.45	0.32	0.86	± 12.0 %
2600	52.5	2.16	7.34	7.34	7.34	0.31	0.94	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity calibration frequency below 30 GHz to \pm 10 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-7410_Jul18

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

July 20, 2018

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	1.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	142.1	± 2.5 %
		Y	0.00	0.00	1.00		157.1	
		Z	0.00	0.00	1.00		143.0	
10010- CAA	SAR Validation (Square, 100ms, 10ms)	X	1.62	62.34	7.74	10.00	20.0	± 9.6 %
		Y	1.47	62.51	7.58		20.0	
		Z	1.74	63.23	8.42		20.0	
10011- CAB	UMTS-FDD (WCDMA)	X	0.82	65.36	13.43	0.00	150.0	± 9.6 %
		Y	1.01	68.19	15.53		150.0	
10010		2	0.83	64.89	13.22	0.44	150.0	
CAB	Mbps)	X	1.03	62.67	14.19	0.41	150.0	± 9.6 %
		Υ Υ	1.12	63.85	15.21		150.0	
40042		<u> </u>	1.03	62.50	14.16	4.40	150.0	100%
CAB	OFDM, 6 Mbps)		4.54	66.46	10.76	1.46	150.0	±9.6 %
		Y 	4.63	66.78	17.00		150.0	
10021			4.66	06.40	16.88	0.20	150.0	100%
DAC			10.10	04.01	00.55	9.09	50.0	± 9.0 %
		Y V	100.00	105.54	22.55		50.0	
10023-			7.05	77.63	24.09	0.57	50.0	+06%
DAC			100.00	104.90	00.00	3.57	50.0	1 3.0 78
		7	100.00	104.09	22.31		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	103.12	20.53	6.56	60.0	± 9.6 %
		Y	100.00	106.39	21.86		60.0	
		Z	100.00	108.56	23.07		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	3.34	64.62	22.65	12.57	50.0	± 9.6 %
		Y	5.12	80.55	32.48		50.0	
		Z	3.40	65.03	23.22		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	5.08	79.74	27.91	9.56	60.0	± 9.6 %
,		Y	6.12	86.23	31.42		60.0	
40007			5.62	82.16	29.24	4.00	60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	101.64	19.06	4.80	80.0	± 9.6 %
		Y J	100.00	109.60	22.50		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	99.62	17.55	3.55	100.0	± 9.6 %
		Y	100.00	115.32	24.21		100.0	
		Z	100.00	107.61	21.03		100.0	······
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	3.55	72.28	23.51	7.80	80.0	± 9.6 %
		Y	3.97	75.71	25.59		80.0	
		Z	3.84	73.87	24.49		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	X	2,93	72.58	11.67	5.30	70.0	± 9.6 %
		Y	100.00	104.73	20.69		70.0	
		Z	100.00	105.98	21.40		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	×	0.19	60.00	3,86	1.88	100.0	± 9.6 %
1		Y	100.00	108.46	20.17	E	100.0	
		Z	0.20	60.00	4.39	-	100.0	

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	8.28	60.36	1.45	1.17	100.0	± 9.6 %
			100.00	125.60	25.70		100.0	
		z	9.15	64.10	3.12		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	3,18	74.95	16.76	5.30	70.0	± 9.6 %
		Y	16.17	99.83	25.75		70.0	
		Z	6.70	87.29	22.45		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	1.10	65.34	10.90	1.88	100.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	2.67	76.50	16.58		100.0	
40025		Z	1.54	69.44	13.90		100.0	
CAA	DH5)	X	0.87	63.89	9,87	1.17	100.0	± 9.6 %
		Y -	1.73	72.02	14.58		100.0	
10036-	IEEE 802 15 1 Bluetooth (8 DBSK DH1)		1.13	66.49	12.17	E 20	100.0	
CAA			0.14	11.33	17.73	5.30	70.0	± 9.6 %
		1 Y	34,06	110.90	28.74		70.0	
10037- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	X	1.04	64.82	10.64	1.88	100.0	± 9.6 %
		Y	2.27	74.65	15.89		100.0	
10000		Z	1.43	68.68	13.56		100.0	
10038- CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	X	0.88	64.05	10.08	1.17	100.0	± 9.6 %
		Y	1.75	72.43	14.90		100.0	
10020		Z	1.13	66.71	12.40		100.0	
CAB		X	0.74	62,99	8.94	0.00	150.0	± 9.6 %
		Y 7	1.38	69.75	13.20		150.0	
10042-	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-	X	2,54	64.89 68.84	10.73	7.78	150.0 50.0	± 9.6 %
			100.00	102.42	20.46		50.0	
		7	100.00	102.42	20.40		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.06	120.88	5.44	0.00	150.0	± 9.6 %
		Y	0.00	104.37	4.38		150.0	
		Z	0.08	121.43	6.73		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	4.91	69.00	13.47	13.80	25.0	± 9.6 %
		Y	7.93	75.14	15.14		25.0	
10040		Z	10.77	79.26	17.66		25.0	
_CAA	Slot, 12)	X	4.71	71.69	13.37	10.79	40.0	± 9.6 %
		Y	12,12	82.16	16.51		40.0	
10056-	LIMTS-TOD (TD SCDMA 1 29 Mone)	<u> </u>	15.08	85.95	18.75	0.00	40.0	
CAA			9.20	83.60	20.05	9.03	50.0	± 9.6 %
		Y 7	100.00	119.47	30.42		50.0	·····
10058-	EDGE-EDD (TDMA_8PSK_TN 0-1-2-3)	<u>~</u> X	20.92	60.27	26.50	<u>e e e</u>	50.0	100%
DAC			2.37	09.27	21.35	0,00	100.0	± 9.6 %
······		7	<u>3.∠/</u> 3.17	70.45	22.91		100.0	
10059- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	X	1.02	63.20	14.50	0.61	110.0	± 9.6 %
		Y	1.12	64,64	15.70		110.0	
		Z	1.03	63.16	14.59		110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	Х	1.55	78.45	19.20	1.30	110.0	± 9.6 %
		Y	11.63	111.29	30.45		110.0	
		Z	2.11	82.91	21.03		110.0	

July 20, 2018

10061-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	1.39	70.50	17.86	2.04	110.0	± 9.6 %
CAB	Mbps)		1 94	76 74	21.24		110.0	
		z	1.54	72.59	19.16		110.0	
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.34	66.44	16.20	0.49	100.0	± 9.6 %
		Y	4.45	66.80	16.45		100.0	
40000			4.46	66.35	16.27	0 70	100.0	
10063- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.35	66.52	16.28	0.72	100.0	± 9.6 %
			4.46	66.88	16.54		100.0	
10064-	IEEE 802 11a/b WiEi 5 GHz (OEDM 12		4.47	66 71	16.30	0.86	100.0	+96%
CAC	Mbps)		4.00	00.71	10.40	0.00	100.0	1 0.0 //
		Y 7	4.69	67.07	16.73		100.0	
10065-	IEEE 802 11a/b W/IEI 5 GHz (OEDM 18	X	4.73	66.52	16.53	1.21	100.0	+96%
CAC	Mbps)		4.40	00.02	10.00	1.21	100.0	1 3.0 70
		Y	4,56	66.89	16.79		100.0	
10066-	IFEE 802 11a/b WIEL5 GHz (OEDM 24		4.60	66.48	10.67	1.46	100.0	+06%
CAC	Mbps)		4.40	00,40	10.05	1.40	100.0	± 9.0 %
		Y	4.56	66.86	16.93		100.0	
10067-	IEEE 802 11 a/b W/iEi 5 GHz (OEDM 36		4.61	66 77	10.84	2.04	100.0	+96%
CAC	Mbps)	^	4.75	00.11	17.10	2.04	100.0	1 9.0 %
		Y	4.84	67.12	17.40	L	100.0	
10069			4.90	66.81	17.33	2.55	100.0	+06%
CAC	Mbps)		4.70	00.00	17.29	2.00	100.0	19.0 %
		<u>Y</u>	4.86	67.00	17.55		100.0	
10060			4.92	66.73	17.50	267	100.0	+06%
CAC	Mbps)		4.01	00.00	17.40	2.07	100.0	± 9.0 %
		Y	4.92	67.01	17.74		100.0	
10071			5.00	66.78	17.71	1.00	100.0	+06%
CAB	(DSSS/OFDM, 9 Mbps)		4.02	00.00	17.03	1.99	100.0	I 9.0 %
		Y	4.72	66.82	17.28		100.0	
10072-	IEEE 802 11a WiEi 2 4 GHz	X	4.75	66.67	17.10	2 30	100.0	+96%
CAB	(DSSS/OFDM, 12 Mbps)		4.00	00.07		2.00	100.0	10.0 %
			4.66	67.03	17.45		100.0	
10073-	IEEE 802.11g WiFi 2.4 GHz	X	4.70	66.83	17.30	2.83	100.0	± 9.6 %
CAB	(DSSS/OFDM, 18 Mbps)			07.47	47 77		400.0	
		7	4.71	66.85	17.68		100.0	
10074-	IEEE 802.11a WiFi 2.4 GHz	X	4.62	66.77	17.64	3.30	100.0	± 9.6 %
CAB	(DSSS/OFDM, 24 Mbps)		4 70	67.00	47.00		100.0	
			4.70	66 75	17.92		100.0	
10075-	IEEE 802.11a WiFi 2.4 GHz	X	4.63	66.75	17.86	3.82	90.0	±9.6 %
CAB	(DSSS/OFDM, 36 Mbps)		A 74	07.00	10.45			
		Y 7	4./1	66.76	18.15		90.0	
10076-	IEEE 802.11g WiFi 2.4 GHz	X	4.68	66.63	18.04	4.15	90.0	± 9.6 %
	USSS/OFDM, 48 Mbps)	Y	4,74	66.91	18.31		90.0	
		Z	4.79	66.61	18.24		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz	X	4.71	66.72	18.15	4.30	90.0	± 9.6 %
		Y	4.77	66.99	18.42		90.0	
		Z	4.82	66.69	18.35		90.0	

.

10081-	CDMA2000 (1xRTT, RC3)	X	0.41	60.41	6.86	0.00	150.0	± 9.6 %
CAB			0.04	0100	40.00			
	·····		0.64	64.39	10.26		150.0	
10082-	IS-54 / IS-136 EDD (TDMA/EDM_PI/4-	X	6.37	60.67	0.20	A 77	80.0	+96%
CAB	DQPSK, Fullrate)		0.07	00.07	1.50	4.77	00.0	1 3.0 %
		Y	0.58	60.00	3.05		80.0	
10000		Z	0.60	60.00	3.10		80.0	
10090-	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	103.19	20.57	6.56	60.0	± 9.6 %
DAC		v	100.00	106.40	04.00		60.0	
		7	100.00	108.67	21.00		0.00	
10097-	UMTS-FDD (HSDPA)	X	1.61	66.98	14.45	0.00	150.0	+9.6 %
CAB	· · ·							
		Y	1.83	68.94	15.87		150.0	
10000		Z	1.61	66.33	14.36		150.0	
CAB	OWIS-FDD (HSOPA, Subtest 2)	X	1.57	66.91	14.41	0.00	150.0	± 9.6 %
		Y	1 80	68.88	15.85		150.0	
		Z	1.57	66.26	14.32		150.0	
10099-	EDGE-FDD (TDMA, 8PSK, TN 0-4)	Х	5.11	79.85	27.95	9.56	60.0	± 9.6 %
DAC								
		Y	6.18	86.42	31.49		60.0	
10100-		4	5.66	82.29	29.29	0.00	60.0	
CAE	MHz. QPSK)	^	2.12	08.80	15.96	0.00	150.0	± 9.6 %
		Y	2.98	70.42	16.85	·	150.0	
		Ζ	2.77	68.66	15.78		150,0	
10101-	LTE-FDD (SC-FDMA, 100% RB, 20	X	2.94	66.71	15.42	0.00	150.0	±9.6 %
CAE	MHz, 16-QAM)							
			3.09	67.54	15.94		150.0	
10102-	LTE-EDD (SC-EDMA_100% RB_20		3.00	66.78	15.35	0.00	150.0	0.6 %
CAE	MHz, 64-QAM)		0.00	00.70	10.00	0.00	150.0	19.0%
		Y	3.19	67.54	16.04	······	150.0	
		Z	3.11	66.65	15.49		150.0	
10103-	LTE-TDD (SC-FDMA, 100% RB, 20	X	4.63	72.33	19.10	3.98	65.0	± 9.6 %
UAF	MHZ, QPSK)		5.04	74.05	00.40			
		7	5.31	73.33	20.40		65.0	
10104-	LTE-TDD (SC-FDMA, 100% RB, 20	X	4 71	70.15	18.72	3 98	65.0	+96%
CAF	MHz, 16-QAM)			10.10	10.10	0.00	00.0	13.0 %
		Y	5.12	71.87	19.74		65.0	
40405		Z	4.99	70.84	19.32		65.0	
10105- CAE	LTE-TDD (SC-FDMA, 100% RB, 20		4.62	69.52	18.79	3.98	65.0	±9.6 %
0/1			1 08	71.09	10.67		8E O	
		7	4.80	70.18	19.07		65.0	
10108-	LTE-FDD (SC-FDMA, 100% RB, 10	X	2.32	68.23	15.74	0.00	150.0	+9.6%
CAF	MHz, QPSK)							
		Y	2.56	69.77	16.68		150.0	
10100		Z	2.39	67.99	15.57		150.0	
CAF	MHz 16-0AM)	X	2.57	66.62	15.17	0.00	150.0	±9.6 %
			2 73	67 56	15.82		150.0	
······································		z	2.64	66.42	15.13		· 150.0	
10110-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	X	1.82	67.31	15.00	0.00	150.0	±9.6 %
CAF	QPSK)					_		
·,		<u> Y </u>	2.06	69.08	16.19		150.0	
10111-	TE-EDD (SC-EDMA 100% PR 5 Mile		1.89	67.03	14.94		150.0	
CAF	16-QAM)		2.21	07.50	10.11	0.00	150.0	±9.6%
		Y	2.50	68.95	16.11		150.0	
		Z	2.32	67.14	15.12		150.0	

10112-	LTE-FDD (SC-FDMA, 100% RB, 10	X	2.70	66.75	15.29	0.00	150.0	± 9.6 %
CAF	MHz, 64-QAM)							
		Y	2.86	67.62	15.89		150.0	
10112		- C	2.11	66.52	15.24	0.00	150.0	1069/
CAF	64-QAM)		2.41	07.80	15.29	0.00	150.0	±9.0%
		Y	2.64	69.12	16.24		150.0	
		Ζ	2.47	67.38	15.32		150.0	
10114-	IEEE 802.11n (HT Greenfield, 13.5	X	4.85	66.91	16.28	0.00	150.0	± 9.6 %
CAC	Mbps, BPSK)		4.00	07.00			450.0	
		<u> </u>	4.92	67.20	16.42		150.0	
10115	IEEE 902 11n /HT Croonfold 91 Mhno		4.93	66.07	16.23	0.00	150.0	+06%
CAC	16-QAM)	^	0.06	00.97	10.51	0.00	100.0	19.0 %
		Y	5.16	67.24	16.44		150.0	
		Z	5.19	66.91	16.30		150.0	
10116-	IEEE 802.11n (HT Greenfield, 135 Mbps,	Х	4.91	67.06	16.28	0.00	150.0	± 9.6 %
CAC	64-QAM)							
		Y	5.00	67.37	16.44		150.0	
40447		Z	5.02	67.01	16.26		150.0	
10117- CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps,	×	4.82	66.80	16.24	0.00	150.0	±9.6%
		Y	4,91	67.14	16.41		150.0	
		Ż	4.92	66.75	16.22		150.0	
10118-	IEEE 802.11n (HT Mixed, 81 Mbps, 16-	X	5.15	67.18	16.42	0.00	150.0	± 9.6 %
CAC	QAM)							
		Y	5.23	67.42	16.54		150.0	
10110		Z	5.28	67.15	16.43		150.0	
10119- CAC	LEEE 802.11n (HT Mixed, 135 Mbps, 64-	×	4.92	67.09	16.30	0.00	150.0	±9.6%
0/10		Y	5.00	67.37	16.45		150.0	
	-	Z	5.02	67.00	16.27		150.0	
10140-	LTE-FDD (SC-FDMA, 100% RB, 15	X	3.06	66.79	15.45	0.00	150.0	± 9.6 %
CAE	MHz, 16-QAM)				45.05		450.0	
		Y 7	3.21	67.57	15.95		150.0	
10141			3.13	67.00	15.40	0.00	150.0	+06%
CAE	MHz, 64-QAM)	^	5.13	07.01	13.00	0.00	100.0	1 3.0 %
		Y	3.34	67.73	16.14		150.0	
		Z	3.26	66.83	15.61		150.0	
10142- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	1.53	66.71	13.85	0.00	150.0	± 9.6 %
		Y	1.82	69.13	15.54		150.0	
		Z	1.62	66.60	14.09		150.0	
10143- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	X	1.93	66.97	13.55	0.00	150.0	± 9.6 %
		Y	2.31	69.49	15.29		150.0	
		Z	2.06	67.05	14.07		150.0	
10144- CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	1.68	64.38	11.67	0.00	150.0	± 9.6 %
		Y	1.94	66.13	13.09		150.0	
		Z	1.85	64.82	12.42		150.0	
10145- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	0.61	60.00	6.25	0.00	150.0	±9.6 %
		Y	0.75	61.41	7.98		150.0	
			0.75	60.75	7.63		150.0	
10146- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	0.82	60.00	5.83	0.00	150.0	± 9.6 %
		Y	0.92	60.25	6.35		150.0	
		Z	1.12	61.59	7.98		150.0	
10147- CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	0,84	60.00	5.89	0.00	150.0	± 9.6 %
		Y	0.96	60.55	6.61		150.0	
		Z	1.20	62.21	8.43	1	150.0	

10149-	LTE-FDD (SC-FDMA, 50% RB, 20 MHz,	X	2.58	66.69	15.22	0.00	150,0	± 9.6 %
	1 16-QAIVI)	+	274	67.62	45.07		450.0	
			2.74	66.49	15.07		150.0	
10150- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	2.71	66.82	15.33	0.00	150.0	± 9.6 %
		Y	2.87	67.69	15.94		150.0	
		Z	2.78	66.58	15.28		150.0	
10151- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	Х	4.58	74.10	19.83	3.98	65.0	± 9.6 %
		Y	5.45	77.40	21.46		65.0	
40450		Z	5.00	75.19	20.56		65.0	
CAF	16-QAM)	X	4.21	69.89	18.16	3.98	65.0	± 9.6 %
		Y 	4.65	71.84	19.30		65.0	
10153-	LTE-TOD (SC-EDMA 50% RB 20 MHz	+	4.51	70.68	18.85	2.00	65.0	100%
CAF	64-QAM)		4.00	71.00	19.09	3.98	65.0	± 9.6 %
		7	1 95	72.96	20.18		65.0	- <u>-</u>
10154- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	1,85	67.65	19.74	0.00	150.0	±9.6 %
		Y	2.10	69.48	16.44		150.0	
		Z	1.92	67.37	15.16		150.0	
10155- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	Х	2.27	67.61	15.14	0.00	150.0	± 9.6 %
		Y	2.50	69.00	16.15		150.0	
40450		Z	2.33	67.17	15.15		150.0	
CAF	QPSK)	X	1.31	65.90	12.85	0.00	150.0	± 9.6 %
		Y	1.64	68.88	14.94		150.0	
10157.			1.43	66.11	13.38		150.0	
_CAF	16-QAM)		1.43	63.96	10.91	0.00	150.0	± 9.6 %
			1.74	66.31	12.74		150.0	
10158- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	2.42	67.89	15.35	0.00	150.0	± 9.6 %
		Y	2.65	69.22	16.31		150.0	
		Z	2.48	67.46	15.37		150.0	
10159- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	1.49	64.13	11.04	0.00	150.0	± 9.6 %
		Y	1.82	66.66	12.95		150.0	
40400		Z	1.70	65.00	12.13		150.0	
CAE	QPSK)	X	2.41	67.89	15.65	0.00	150.0	± 9.6 %
		Y	2.60	69.05	16.44		150.0	
10161-	TE-EDD (SC EDMA 50% DB 15 MHz		2.48	67.64	15.56		150.0	
CAE	16-QAM)	X	2.59	66.74	15.14	0.00	150.0	± 9.6 %
			2.76	67.68	15.82		150.0	
10162-	LTE-EDD (SC-EDMA 50% BB 15 MHz		2.00	67.00	15.14	0.00	150.0	
CAE	64-QAM)		2.10	07.00	10.01	0.00	150,0	±9.6%
	· · · · · · · · · · · · · · · · · · ·	7	2.07	66 73	15.97		150.0	
10166- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	X	2.91	67.87	18.41	3.01	150.0	± 9.6 %
		t y t	3.09	68,81	18 75		150.0	
		Z	3.17	68.75	19.02		150.0	
10167- CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	3.24	69.92	18.52	3.01	150.0	± 9.6 %
		Y	3.65	71.74	19.22		150.0	
		Z	3.63	71.08	19.26		150.0	
10168-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64 OAM)	X	3.66	72.66	20.22	3.01	150.0	± 9.6 %
---------------	--	---	------	-------	-------	------	-------	---------
		Y	4.14	74.51	20.83		150.0	
		Z	4.11	73.91	20.95		150.0	
10169- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	2.32	65.83	17.44	3.01	150.0	± 9.6 %
		Y	2.49	67.28	18.07		150.0	
		Z	2.46	66.70	18.14		150.0	
10170- CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	2.74	70.01	19.35	3.01	150.0	± 9.6 %
		Y	3.21	72.95	20.48		150.0	
		Z	3.00	71.51	20.32		150.0	
10171- AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	2.31	66.53	16.58	3.01	150.0	± 9.6 %
		Y	2.63	68.93	17.60		150.0	
		Z	2.50	67.67	17.42		150.0	
10172- CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	2.90	74.23	22.35	6.02	65.0	±9.6 %
		Y	3.68	79.90	24.98		65.0	
		Z	3.91	80.19	25.56		65.0	
10173- CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	3.92	78.79	22.40	6.02	65.0	± 9,6 %
,		Y	6,85	89.50	26.38		65.0	
		Z	6.70	89.11	27.06		65.0	
10174- CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	2.90	73.28	19.67	6.02	65.0	± 9.6 %
		Y	5.51	84.77	24.11		65.0	
		Z	4.93	82.66	24.17		65.0	
10175- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	2.30	65.58	17.20	3.01	150.0	± 9.6 %
		Y	2.47	67.02	17.83		150.0	
		Z	2.44	66.43	17.89		150.0	
10176- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	2.74	70.03	19.36	3.01	150.0	± 9.6 %
		Y	3.21	72.97	20.49		150.0	
		Z	3.00	71.53	20.33		150.0	
10177- CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	Х	2.31	65.68	17.27	3.01	150.0	± 9.6 %
		Y	2.48	67.13	17.91		150.0	
		Z	2.45	66.56	17.98		150.0	
10178- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	2.73	69.91	19.28	3.01	150.0	± 9.6 %
		Y	3.19	72.83	20.41		150.0	
		Z	2.98	71.36	20.23		150.0	
10179- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	2.50	68.14	17.82	3.01	150.0	± 9.6 %
		Y	2.89	70.84	18.91		150.0	
		Z	2.72	69.48	18.74		150.0	
10180- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	2.31	66.50	16.56	3.01	150.0	± 9.6 %
		Y	2.63	68.90	17.57		150.0	
		Z	2.50	67.63	17.39		150.0	
10181- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	2.31	65.67	17.27	3.01	150.0	± 9.6 %
		Y	2.48	67.11	17.90		150.0	
		Z	2.45	66.54	17.97		150.0	
10182- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	2.73	69.88	19.27	3.01	150.0	± 9.6 %
		Y	3.19	72.81	20.40		150.0	
		Z	2.98	71.34	20.21	ļ	150.0	
10183- AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	2.31	66.48	16.55	3.01	150.0	± 9.6 %
		Y	2.63	68.87	17.56		150.0	
		Z	2.49	67.61	17.37		150.0	1

July 20, 2018

4

10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	X	2.32	65.70	17.29	3.01	150.0	± 9.6 %
			0.40	07.45	17 00			
		7	2.49	66.59	17.92		150.0	
10185-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-	X	2.74	69.95	19.31	3.01	150.0	± 9.6 %
	QAM)							
		Y 7	3,20	72.88	20.43		150.0	
10186-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-	X	2.39	66.53	16.58	3.01	150.0	+96%
AAE	QAM)					0.01	100.0	1 0.0 %
		Y	2.64	68.94	17.60		150.0	
10187-	I TE-EDD (SC-EDMA 1 RB 14 MHz	<u> </u>	2.51	67.67	17.41	0.04	150.0	
CAF	QPSK)	^	2.33	00.70	17.37	3.01	150.0	±9.6%
		Y	2.50	67.22	18.00		150.0	
40400		Z	2.47	66.64	18.07		150.0	
10188- CAF	16-QAM)	X	2.80	70.47	19.65	3.01	150.0	± 9.6 %
		<u> </u>	3.29	73.46	20.79		150.0	
10189-	LTE-EDD (SC-EDMA 1 RB 14 MHz	<u> </u>	3.07	72.01	20.64	2.04	150.0	
AAF	64-QAM)		2.30	00.00	16.82	3.01	150.0	± 9.6 %
		7 7	2.69	69.31	17.86	·	150.0	
10193-	IEEE 802.11n (HT Greenfield, 6.5 Mbps.	X	4.23	66.54	15.90	0.00	150.0	+96%
CAC	BPSK)		4.00	00.00	10.00	0.00	100.0	1 3.0 %
		Y 7	4.33	66.90	16.14		150.0	
10194-	IEEE 802.11n (HT Greenfield, 39 Mbps,	X	4.36	66.75	16.04	0.00	150.0	+96%
CAC	16-QAM)					0.00	100.0	20.070
		Υ ",	4.47	67.12	16.27		150.0	
10195-	IEEE 802 11n (HT Greenfield, 65 Mbps	<u> </u>	4.47	66.58	16.01	0.00	150.0	1000
CAC	64-QAM)		4.55	00.70	10.05	0.00	150.0	±9,6%
		Y	4.50	67.13	16.28		150.0	
10106		Z	4.50	66.61	16.03		150.0	
CAC	BPSK)	X	4.21	66.52	15.87	0.00	150.0	± 9.6 %
		Y	4.32	66.89	16.12		150.0	
10197-	IEEE 802 11n (HT Mixed 39 Mbps 16-		4.31	66.33	15.87	0.00	150.0	
CAC	QAM)		4.37	00.75	10.04	0.00	150.0	± 9.6 %
		Y 7	4.48	67.12	16.28		150.0	
10198-	IEEE 802.11n (HT Mixed, 65 Mbps, 64-	<u> </u>	4.48	66.75	16.02	0.00	150.0	1000
CAC	QAM)			00.75	10.00	0.00	150.0	±9.6%
		Y 7	4.50	67.13	16.28		150.0	
10219-	IEEE 802.11n (HT Mixed, 7.2 Mbps.	X	4.16	66.56	15.04	0.00	150.0	+069/
CAC	BPSK)			00.00	10.00	0.00	150.0	± 9.0 %
		Y	4.27	66.93	16.10		150.0	
10220-	FEE 802 11p (HT Mixed 42.2 Mbps 16		4.26	66.35	15.83		150.0	
CAC	QAM)		4.30	66.72	16.03	0.00	150.0	±9.6 %
		Y	4.47	67.08	16.26		150.0	
10221-	IFFF 802 11n (HT Mixed 72.2 Mbps 64		4,47	66.56	16.01		150.0	
CAC	QAM)		4.40	00.71	10.04	0.00	150.0	± 9.6 %
		¥	4.51	67.07	16.27		150.0	
10222-	IEEE 802.11n (HT Mixed 15 Mbrs		4.51	66.56	16.03	0.00	150.0	
CAC	BPSK)		4.00	08.00	16.23	0.00	150.0	±9.6 %
		Y	4.88	67.12	16.39		150.0	
		4	4.89	66.72	16.20 I		i 150.0 l	

10223-	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	X	5.04	66.95	16.32	0.00	150.0	± 9.6 %
UAU		v	5 14	67.29	16.49		150.0	
	·····	7	5.14	66.99	16.36		150.0	
10224- CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-	X	4.84	66.92	16.22	0.00	150.0	± 9.6 %
		Y	4.92	67.24	16.38		150.0	
10225			4.93	66.82	16.18	0.00	150.0	1000
CAB			2.40	00.00	14.20	0.00	150.0	± 9.6 %
		Y 7	2.62	66.44	14.96		150.0	
10226		4	2.55	65.41	14.45	6.00	150.0	1060/
	16-QAM)		7.00	19.14	22.07	0.02	05.0	19.076
			7.10	90.90	20.97		65.0	
10227-	LTE-TDD (SC-EDMA_1 RB_14 MHz	X	4 10	78.95	21.00	6.02	65.0	+96%
CAA	64-QAM)		7 49	0.35	21.00	0.02	05.0	± 3.0 %
		7	7 75	09.71	20.70		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X	3.12	75.94	23.15	6.02	65.0	± 9.6 %
		Y	4.06	82.01	25.85		65.0	
		z	4.25	82.24	26.47		65.0	
10229- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	3.94	78,88	22.44	6.02	65.0	± 9.6 %
		Y	6.91	89.62	26.42		65.0	
		Ζ	6.76	89.24	27.11		65.0	
10230- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	3.89	78.03	21.47	6.02	65.0	± 9.6 %
		Y	6.86	88.27	25.23		65.0	
		Z	7.16	89.19	26.40		65.0	
10231- CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	3.03	75.32	22.81	6.02	65.0	± 9.6 %
		Y	3.92	81.25	25.48		65.0	
10232			4.10	81.44	26.07	6.02	65.0	+06%
CAE	QAM)		6.90	90.60	22.44	0.02	65.0	1 9.0 %
			6.74	89.00	20.42		65.0	
10233-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-	X	3.88	77.99	21.46	6.02	65.0	± 9.6 %
0.1		Y	6.83	88.22	25.21		65.0	
		Z	7.13	89.13	26.38		65.0	
10234- CAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	2.96	74.84	22.48	6.02	65.0	± 9.6 %
		Y	3.82	80.66	25.12		65.0	
		Z	4.00	80.82	25.70		65.0	
10235- CAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	3.94	78.87	22.44	6.02	65.0	± 9.6 %
		Y	6.90	89.63	26.43		65.0	
10000		Z	6.75	89.23	27.11	0.00	65.0	1000
10236- CAE	64-QAM)	×	3.92	78.11	21.50	6.02	65.0	±9,6%
			6.93	88.43	25.27	<u> </u>	65.0	ļ
10007		- 2	7.23	89.34	20.44	6.00	65.0	+06%
CAE	QPSK)		3.03	(5.32	22.81	0.02	05.0	19.0%
		Y	3.92	81.27	25.49		65.0	1
10238-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	4.10 3.93	81.45 78.83	26.08	6.02	65.0	± 9.6 %
	TO-QAW)	Y	6.87	89.57	26.41		65.0	
	······································	Z	6.72	89.17	27.08		65.0	1

10239-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	3.87	77.95	21.45	6.02	65.0	± 9.6 %
	64-QAM)		<u> </u>	00.47	05.00		05.0	
		7	7 10	80.17	25.20		65,0	
10240- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, OPSK)	X	3.02	75.30	22.81	6.02	65.0	± 9.6 %
		Y	3.91	81.25	25.48		65.0	
		Z	4.09	81.42	26.07		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	5.47	76.60	23.52	6.98	65.0	± 9.6 %
		<u>Y</u>	6.28	79.70	24.95		65.0	
40040		Z	6.08	77.98	24.56		65.0	
CAA	64-QAM)	X	5.17	/5.55	22.99	6.98	65.0	±9.6 %
		Y 7	5.96	77.10	24.47		65.0	
10243-	LTE-TDD (SC-EDMA 50% RB 14 MHz	X	<u> </u>	72.66	24.09	6.98	65.0	+96%
CAA	QPSK)		4.95	74.66	22.01	0.50	65.0	1 9.0 %
		7	4.00	73.70	23.04		65.0	
10244- CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	2.59	65.60	11.95	3.98	65.0	± 9.6 %
		Y	3.16	68.30	13.59		65.0	
		Z	3.94	71.58	16.14		65.0	
10245- _CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.56	65.23	11.69	3.98	65.0	± 9,6 %
		Y	3.08	67.71	13.25		65.0	
10246	TE TOD (SC EDMA FOW DD 2 MUR	Z	3.80	70.75	15.70	0.00	65.0	
CAC	QPSK)	X	2.30	67.33	13.29	3.98	65.0	± 9.6 %
		Y 7	3.40	73.14	16.55		65.0	
10247- CAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-OAM)	X	2.93	67.28	16.41 14.07	3.98	65.0	± 9.6 %
		Y	3.57	70.51	16 14		65.0	
		ż	3.50	69.72	16.15		65.0	
10248- CAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.93	66.83	13.84	3.98	65.0	± 9.6 %
		Y	3.51	69.74	15.76		65.0	
10010		Z	3,49	69.17	15.87		65.0	
10249- CAE	QPSK)	X	3.40	72.89	17.31	3.98	65.0	± 9.6 %
	···	Y	5.05	79.62	20.60		65.0	
10250- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	4.35	76.73	19.72 18.68	3.98	65.0 65.0	± 9.6 %
		Y	4.65	74.35	20.17		65.0	
		Z	4,43	72.91	19.73		65.0	
10251- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	3.86	69.66	17.25	3.98	65.0	± 9.6 %
		Y	4.37	71.98	18.68		65.0	
40050		Z	4.24	70.85	18.35		65.0	
10252- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	4.28	75.56	20.13	3.98	65.0	± 9.6 %
		<u>Y</u>	5.50	80.28	22.41		65.0	
10253-	TETTDD (SC-EDMA 50% PR 15 MUS	4	4.84	77.34	21,32	0.00	65.0	
CAE	16-QAM)		4.17	69.62	17.88	3,98	65.0	±9.6 %
······.			4.59	71.50	19.03		65.0	
10254- CAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-0AM)	X	4.46	70.34	18.66	3.98	65.0 65.0	± 9.6 %
		Y	4 90	72.45	19 77		65.0	
		Ż	4.75	71.28	19.37		65.0	

10255- CAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, OPSK)	X	4.40	73.51	19.69	3.98	65.0	±9.6 %
		Y	5.16	76.59	21.27		65.0	
		Ż	4.77	74.49	20.43		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	1.88	62.21	8.80	3.98	65.0	± 9.6 %
		Y	2.16	63.72	9.95		65.0	
		Z	2.68	66.18	12.27		65.0	
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	1.87	61.92	8.53	3.98	65.0	±9.6 %
		Y	2.13	63.28	9.61		65.0	
		Z	2,60	65.47	11.78		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	1.63	62.98	9.76	3.98	65.0	± 9.6 %
		Y	2.11	66.24	12.11		65.0	
40050		<u> </u>	2.20	66.42	12.68	0.00	65.0	
10259- CAC	16-QAM)	X	3.37	69.09	15.81	3.98	65.0	±9.6 %
		<u> </u>	4.03	72.21	17.73		65.0	
40000			3.88	71.08	17.53	0.00	65.0	1069
CAC	64-QAM)	X	3.41	68.89	15.70	3.98	05.0	±9.6 %
		Y 	4.05	71.86	17.55		65.0	
10261			3.92	70.83	17.40	2.00	65.0	+06%
CAC	QPSK)			73.04	10.24	3.90	05.0	1 9.0 %
· · ·		Y 7	4.99	79.08	21.01		65.0	
10262-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	X	4.05	71.68	18.62	3.98	65.0	± 9.6 %
		Y	4 63	74 27	20.11		65.0	
		Z	4.42	72.84	19.67		65.0	
10263- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	3.85	69.65	17.25	3.98	65.0	± 9.6 %
		Y	4.36	71.96	18.67		65.0	
		Z	4.23	70.83	18.35		65.0	
10264- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	4.23	75.35	20.01	3.98	65.0	± 9.6 %
		Y	5.43	80.04	22.29		65.0	
		Z	4.79	77.13	21.21		65.0	
10265- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	4.21	69.90	18.16	3.98	65.0	± 9.6 %
		Υ	4.65	71.84	19.30		65.0	1
10000			4.51	70.68	18.86		65.0	
10266- CAE	MHz, 64-QAM)	×	4.55	/1.05	19.08	3.98	65.0	± 9.6 %
		Y Y	5.00	72.95	20.16		65.0	
40067			4.85	71.75	19.72	2.00	65.0	+06%
CAE	MHz, QPSK)	×	4.57	74.06	19.81	3.90	05.0	± 9.0 %
		Y 7	0.43	75 14	21.43		00.0	
10268-	LTE-TDD (SC-FDMA, 100% RB, 15	X	4.99	70.28	18.92	3.98	65.0	± 9.6 %
			5 29	71.90	19.82		65.0	
		Ż	5.16	70.86	19.41		65.0	
10269- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	4.93	70.03	18.82	3.98	65.0	±9.6 %
		Y	5.31	71.54	19.69		65.0	
		Z	5.18	70.53	19.29		65.0	
10270- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	4.82	72.26	19.25	3.98	65.0	±9.6 %
		Ý	5.40	74.50	20.39		65.0	
		Z	5.12	72.93	19.74		65.0	

10274-	UMTS-FDD (HSUPA, Subtest 5, 3GPP	X	2.30	66.08	14.21	0.00	150.0	± 9.6 %
		Y	2.48	67.13	15.07		150.0	
		Ż	2.37	65.78	14.35		150.0	
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.33	66.42	14.09	0.00	150.0	± 9.6 %
		Y	1.55	68.66	15.67		150.0	
40077			1.35	65.99	13.99		150.0	
CAA		X	1.44	58.96	4.35	9.03	50.0	± 9.6 %
		Y 7	1.29	58.94	4,16		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	2.42	63.55	9.32	9.03	50.0	± 9.6 %
		Y	2.50	65.00	10.23		50.0	
		Z	3.00	66.61	11.73		50.0	
10279- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	2.47	63.72	9.48	9.03	50.0	± 9.6 %
		<u>Y</u>	2.58	65.28	10.45		50.0	
10290-	CDMA2000 RC1 SO55 Full Pate		3.09	66.89	11.94		50.0	
AAB			0.64	61.56	1.87	0.00	150.0	± 9.6 %
		7	0.98	65.79	11.09		150.0	
10291-	CDMA2000, RC3, SO55, Full Rate	X	0.04	60.33	679	0.00	150.0	+96%
AAB			0.11	64.19	10.10	0.00	150.0	1 9.0 76
		7	0.02	61.10	8.20		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	0.46	61.89	7.99	0.00	150.0	± 9.6 %
		Y	1.01	70.37	13.40		150.0	
		Z	0.57	63.19	9.51		150.0	
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	0.64	65.03	10.07	0.00	150.0	± 9.6 %
		Y	4.97	89.66	20.54		150.0	
10295-	CDMA2000_RC1_SO3_1/8th Rate 25 fr		0.76	66.38	11.57	0.00	150.0	
AAB			24.75	00.04	22.30	9.03	50.0	± 9.6 %
		7	14.97	91.75	20.07		50.0	
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.34	68.34	15.82	0.00	150.0	±9.6 %
		Y	2.58	69.89	16.76		150.0	
		Z	2.40	68.08	15.64		150.0	
10298- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	0.86	62.29	9.16	0.00	150.0	±9.6 %
		Y	1.16	65.45	11.69		150.0	
10299-			1.05	63.56	10.60		150.0	
AAD	16-QAM)		1.14	61.76	8.21	0.00	150.0	± 9.6 %
			1.41	63.51	9.50		150.0	
10300- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	0.97	60.07	6.55	0.00	150.0	± 9.6 %
		Y	1.14	61.11	7.49		150.0	
		Z	1.33	62.21	8.89		150.0	
10301- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	X	4.13	64.55	16.56	4.17	50.0	± 9.6 %
		Y	4.26	65.00	16.97		50.0	
10200		Z	4.39	64.86	16.90		50.0	
AAA	10MHz, QPSK, PUSC, 3 CTRL symbols)	X	4.66	65.38	17.39	4.96	50.0	±9.6 %
		<u>⊢Υ</u>	4.76	65.70	17.72		50.0	
		4	4.88	65.46	17.59		I 50.0	

10303- ΔΔΔ	IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 640AM, PUSC)	X	4.45	65.36	17.40	4.96	50.0	± 9.6 %
7001	100012, 0100100, 10000	Y	4.51	65.30	17 48		50.0	
		Z	4.62	65.06	17.37		50.0	
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.25	64.98	16.73	4.17	50.0	± 9.6 %
		Y	4.36	65.33	17.07		50.0	
10000		Z	4.45	64.98	16.90		50.0	
10305- AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	3.81	66.28	17.81	6.02	35.0	± 9.6 %
		Y	3.76	65.91	18.03		35.0	
10306- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz 640AM PUSC 18 symbols)	X	4.04	65.73	18.48	6.02	35.0	± 9.6 %
		Y	4.17	65.55	18.11		35.0	
		Z	4.39	65.94	18.38		35.0	
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	X	4.05	65.69	17.78	6.02	35.0	± 9.6 %
		Y	4.04	65.48	17.96		35.0	
40000		Z	4.27	65.96	18.27		35.0	
10308- 	10MHz, 16QAM, PUSC)	X	4.03	65.87	17.91	6.02	35.0	± 9.6 %
		Y 7	4.01	65.64	18.09		35.0	
10309-	IEEE 802 16e WIMAX (29:18, 10ms		4.20	65.77	18.40	6.02	35.0	+96%
AAA	10MHz, 16QAM, AMC 2x3, 18 symbols)		4 10	65.64	10.00	0.02	35.0	1 3.0 %
			4.19	66.06	18.20		35.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	X	4.13	65.78	17.90	6.02	35.0	±9.6 %
		Y	4.12	65.57	18.08		35.0	
		Ζ	4.34	65.98	18.35		35.0	
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	2.69	67.62	15.56	0.00	150.0	± 9.6 %
		Υ -	2.94	69.08	16.39		150.0	
10313-			2.75	67.21	15.38	6.00	150.0	+96%
AAA			2.79	73.35	16.36	0.99	70.0	1 9.0 %
		Z	2.09	69.09	14.51		70.0	
10314- AAA	IDEN 1:6	X	3.26	75.39	19.57	10.00	30.0	± 9.6 %
		Y	5.56	85.97	24.05		30.0	
		Z	4.04	79.23	21.39		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	X	0.96	62.72	14.16	0.17	150.0	± 9.6 %
		Y	1.05	63.94	15.22		150.0	
10216			0.96	62.45	14.04	0.17	150.0	+06%
AAB	OFDM, 6 Mbps, 96pc duty cycle)		4.24	00.42	15.90	0.17	150.0	± 9.0 %
		7 7	4.30	00.00	16.22		150.0	
10317-	IEEE 802,11a WiFi 5 GHz (OFDM, 6	X	4.24	66.42	15.96	0.17	150.0	± 9.6 %
AAC	Mbps, 96pc duty cycle)		4 35	66.80	16.22		150.0	
		z	4.36	66.32	16.01		150.0	
10400- AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	X	4.31	66.71	15.99	0.00	150.0	± 9.6 %
		Y	4.43	67.11	16.24		150.0	
		Z	4.43	66.60	15.99		150.0	
10401- AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	4.98	66.52	16.05	0.00	150.0	± 9.6 %
		Y	5.08	66.87	16.24		150.0	
l.		1 2	01.0	1 00.70	1 10,10	1	1 100.0	1

July 20, 2018

10402-	IEEE 802.11ac WiFi (80MHz, 64-QAM,	X	5.36	67.14	16.28	0.00	150.0	± 9.6 %
AAD	99pc duty cycle)							
		Υ 	5.44	67.45	16.42		150.0	
10402			5.45	67.07	16.25		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	0.64	61.56	7.87	0.00	115.0	± 9.6 %
		Y	0.98	65.79	11.09		115.0	
		Z	0.84	63.19	9.57		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	0.64	61.56	7.87	0.00	115.0	± 9.6 %
		Y	0.98	65.79	11.09		115.0	
		Z	0.84	63.19	9.57		115.0	
10406- AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	Х	100.00	119.53	28.08	0.00	100.0	±9.6 %
		Y	100.00	115.68	26.57		100.0	
		Z	100.00	126.19	31.47		100.0	
10410- AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	2.86	79.80	18.70	3.23	80.0	± 9.6 %
		Y	25.09	107.33	26.44		80.0	
		Z	100.00	133.23	34.42		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	Х	0.92	62.32	13.80	0.00	150.0	± 9.6 %
		Y	1.00	63.42	14.80		150.0	
		Z	0.91	61.96	13.60		150.0	
10416- AAA	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 99pc duty cycle)	Х	4.22	66.50	15.96	0.00	150.0	± 9.6 %
		Y	4.32	66.87	16.21		150.0	
		Z	4.32	66.33	15.95		150.0	
10417- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	Х	4.22	66.50	15.96	0.00	150.0	± 9,6 %
	• • • • • • • • • • • • • • • • • • •	Y	4.32	66.87	16.21		150.0	
		Z	4.32	66.33	15.95		150.0	· ·
10418- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	×	4.21	66.71	16.02	0.00	150.0	±9.6 %
		Y	4.32	67.09	16.27		150.0	
		Z	4.31	66.51	15.99		150.0	
10419- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	×	4.23	66.64	16.01	0.00	150.0	±9.6 %
		Y	4.34	67.01	16.25		150.0	
		Z	4.33	66.45	15.98		150.0	
10422- AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	X	4.33	66.62	16.03	0.00	150.0	± 9.6 %
÷		Y	4.44	66.98	16.26		150.0	
		Z	4.44	66.45	16.00		150.0	
10423- AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	Х	4.45	66.86	16.11	0.00	150.0	± 9.6 %
		Y	4.56	67.23	16.34		150.0	
	······································	Z	4.57	66.72	16.10		150.0	
10424- 	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	X	4.38	66.81	16.08	0.00	150.0	±9.6 %
		Y	4.50	67.18	16.32		150.0	·
		Z	4.50	66.66	16.07		150.0	
10425- AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	Х	5.03	67.03	16.34	0.00	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	5.11	67.32	16.49		150.0	
		Z	5.14	66.98	16.33	· · · · · · · · · · · · · · · · · · ·	150.0	
10426- AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	X	5.06	67.16	16.40	0.00	150.0	± 9.6 %
		Y	5.13	67.40	16.52		150.0	
		Z	5.17	67.10	16.39		150.0	

Certificate No: EX3-7410_Jul18

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,	X	5.01	66.91	16.27	0.00	150.0	± 9.6 %
AAB	64-QAM)	V	5.09	67 10	16./1		150.0	
		7	5.03	66.90	16.28		150.0	
10430-	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	4.07	72.07	17.91	0.00	150.0	± 9.6 %
AAC								
		<u> </u>	4.24	72.56	18.40		150.0	
10424		<u> </u>	4.04	/1.02	17.78	0.00	150.0	
AAC	$\begin{bmatrix} LTE - PDD \ (OFDMA, TO MHZ, E - TM 3.1) \end{bmatrix}$		3.79	66.99	15.69	0.00	150.0	±9.6%
		Y	3.94	67.49	16.09		150.0	
		Ζ	3.92	66.79	15.76		150.0	
10432- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	X	4.13	66.89	15.96	0.00	150.0	± 9.6 %
		Y	4.26	67.30	16.25		150.0	
40400		Z	4.25	66.71	15.96		150.0	
10433- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.40	66.85	16.11	0.00	150.0	± 9.6 %
		Υ Υ	4.51	67.22	16.34		150.0	
10424		<u> </u>	4.51	66.70	16.09	0.00	150.0	
AAA		×	4.05	72.38	17.35	0.00	150.0	±9.6%
		Y	4.37	73,48	18.19		150.0	
10435			4.07	71.60	17.40	0.00	150.0	1069/
AAE	QPSK, UL Subframe=2,3,4,7,8,9)		2.12	79.05	10.30	3.23	00.0	± 9.0 %
		Y	21.44	105.07	25.81		80.0	
10447.			100.00	132.91	34.27	0.00	450.0	+06%
AAC	Clipping 44%)		2.90	00.34	14.12	0.00	150.0	± 9.0 %
		Y	3.18	67.31	14.92		150.0	
10448			3.13	66.39	14.53	0.00	150.0	+06%
AAC	Clippin 44%)	^	3.07	00.79	10.07	0.00	150.0	19.0%
		Y	3.81	67.30	15.97		150.0	
		Z	3.78	66.58	15.62		150.0	
10449- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	X	3.98	66.71	15.86	0.00	150.0	± 9.6 %
		Y	4.10	67.14	16.16	[150.0	
		Z	4.09	66.52	15.85		150.0	
10450- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	4.21	66.62	15.96	0.00	150.0	± 9.6 %
		Y	4.32	67.01	16.21		150.0	
10151		Z	4.30	66.46	15.93		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	2.70	65.75	13.11	0.00	150.0	± 9.6 %
		Y	2.96	67.00	14.12		150.0	
40450			2.94	66.14	13.79	0.00	150.0	100%
AAB	99pc duty cycle)	X	5.99	67.61	16.55	0,00	150.0	± 9.6 %
		Y 7	6.02	67.70	16.61		150.0	
10457			0.11	65.22	10.01	0.00	150.0	+06%
AAA			0.01	00.02	10.70	0.00	150.0	1 9.0 %
		Y 7	3.09	65.04	15.94		150.0	
10458-			3.00	69.04	10.00	0.00	150.0	+96%
AAA	carriers)		2.13	74.00	40.00	0.00	450.0	1 3.0 70
		Y 7	3.69	60.00	10.02		150.0	
10459-	CDMA2000 (1xEV-DO, Rev. B, 3	X	3.53 4.69	69.03	17.48	0.00	150.0	± 9.6 %
		Y	4,79	69.11	17.75		150.0	
		Ż	4.84	68.73	17.83	 	150.0	

10460-	UMTS-FDD (WCDMA, AMR)	X	0.72	66.02	14.12	0.00	150.0	± 9.6 %
			0.01	60.57	16.66		150.0	
		7	0.31	65.26	13.70		150.0	
10461- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, OPSK_UL_Subframe=2.3.4.7.8.9)	X	1.93	75.92	18.31	3.29	80.0	±9.6 %
		Y	6.83	93.43	24.06		80.0	
		Z	100.00	137.66	36.58		80.0	
10462- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	0.63	60.00	7.27	3.23	80.0	± 9.6 %
		Y	0.63	60.00	7.19		80.0	
		Z	1.15	65.31	10.99		80.0	
10463- AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	0.65	60.00	6.55	3.23	80.0	±9.6 %
		Y	0.66	60.00	6.45		80.0	
10101		Z	0.67	60.00	7.76		80.0	
10464- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.38	71.32	15.83	3.23	80.0	± 9.6 %
		Y	4.54	86.66	21.20		80.0	
10.105		Z	100.00	134.26	34.80		80.0	
10465- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.63	60.00	7.20	3.23	80.0	± 9.6 %
	······································	Y	0.63	60.00	7.11		80.0	
40.400		Z	0.94	63.37	10.05		80.0	
10466- AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.65	60.00	6.50	3.23	80.0	±9.6 %
		Y	0.66	60.00	6.41		80.0	
10107		Z	0.68	60.00	7.70		80.0	
10467- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.47	72.19	16.22	3.23	80.0	± 9.6 %
		Y	5.30	88.83	21.91		80.0	
		Ζ	100.00	134.76	35.02		80.0	
10468- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	Х	0.63	60.00	7.22	3.23	80.0	± 9.6 %
		Y	0.63	60.00	7.14		80.0	
		Z	0.99	63.90	10.32		80.0	
10469- AAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	Х	0.65	60.00	6.51	3.23	80.0	± 9.6 %
		Y	0.66	60.00	6.41		80.0	
10.4770		Z	0.68	60.00	7.70		80.0	
10470- AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.46	72.21	16.22	3.23	80.0	±9.6 %
		Y	5.35	88.98	21.94		80.0	
40474		Z	100.00	134.82	35.03		80.0	
AAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	0.63	60.00	7.21	3.23	80.0	±9.6 %
		⊢ <u>Y</u>	0.63	60.00	7.12		80.0	
10472		Z	0.98	63.79	10.26		80.0	
AAD	QAM, UL Subframe=2,3,4,7,8,9)	X	0.65	60.00	6.49	3.23	80.0	± 9.6 %
		Y	0.66	60.00	6.39		80.0	
10473		<u> </u>	0.67	60.00	7.68		80.0	
AAD	QPSK, UL Subframe=2,3,4,7,8,9)	×	1.46	72.15	16.20	3.23	80.0	±9.6 %
		<u> </u>	5.31	88.87	21.90		80.0	
10474-	TE-TOD (SC-EDMA 4 DP 45 MU- 40	4	100.00	134.77	35.01	0.00	80.0	
AAD	QAM, UL Subframe=2,3,4,7,8,9)		0.63	60.00	7.20	3.23	80.0	± 9.6 %
		<u> </u>	0.63	60.00	7.12	······	80.0	
10475	TETDD (SC EDMA 4 DD 45 MUL 04	<u> </u>	0.97	63.74	10.23		80.0	
AAD	QAM, UL Subframe=2,3,4,7,8,9)	×	0.65	60.00	6.49	3.23	80.0	± 9.6 %
		Y	0.66	60.00	6.39		80.0	
		Z	0.67	60.00	7.69		80.0	

10477- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2.3,4,7,8,9)	X	0.63	60.00	7.17	3.23	80.0	± 9.6 %
		Y	0.63	60.00	7.08		80.0	
		Z	0.93	63.31	10.01		80.0	
10478- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	0.65	60.00	6.47	3.23	80.0	± 9.6 %
		Y	0.66	60.00	6.37		80.0	
		Z	0.67	60.00	7.67		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.26	80.69	20.19	3.23	80.0	± 9.6 %
		Ι <u>Υ</u>	7.01	87.70	22.71		80.0	
10490			21.27	105.57	28.88	2.00	80.0	
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)		1.00	00.39	12,32	3,23	80.0	± 9.0 %
		Υ 7	3.13	71.95	14.74		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-OAM LIL Subframe=2.3.4.7.8.9)	X	1.43	63.16	10.40	3.23	80.0	± 9.6 %
		Y	2.06	66.80	12.23		80.0	
		Z	6.11	79.62	18.02		80.0	
10482- AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.06	61.11	9.78	2.23	80.0	± 9.6 %
		Y	1.73	66.89	13.39		80.0	
10100		Z	1.53	64.78	12.61		80.0	
10483- AAB	16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.23	60.00	8.50	2.23	80.0	± 9.6 %
		Y	1.57	62.45	10.22		80.0	
10484-	LTE-TDD (SC-FDMA, 50% RB, 3 MHz,	X	1.26	68.98	14.19 8.49	2.23	80.0	±9.6 %
	04-QAM, DE Subiranie-2,0,4,7,0,9)	Y	1.54	61.98	9.97		80.0	
		Z	2.53	67.57	13.58		80.0	
10485- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	1.66	65.74	13.74	2.23	80.0	±9.6 %
		Y	2.52	71.78	17.06		80.0	
		Z	2.10	68.47	15.70		80.0	
10486- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	1.66	62.56	11.27	2.23	80.0	± 9.6 %
		Y	2.26	66.58	13.85		80.0	
10487-	LTE-TDD (SC-FDMA, 50% RB, 5 MHz,	X	2.12 1.67	65.12 62.33	13.38	2.23	80.0	± 9.6 %
	64-QAW, UL Subtrame=2,3,4,7,8,9)	+	2.24	66 10	13 50		80.0	
		+	2.24	64.83	13.00		80.0	
10488- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, OPSK, UL Subframe=2.3.4.7.8.9)	X	2.26	67.65	16.13	2.23	80.0	±9.6 %
		Y	2.82	71.24	18.12	-	80.0	
		Z	2.57	69.00	17.08		80.0	
10489- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	2.49	65.85	15.07	2.23	80.0	± 9.6 %
		Y	2.90	68.21	16.54		80.0	
40400			2.74	66.70	15.91	0.00	80.0	
10490- AAD	64-QAM, UL Subframe=2,3,4,7,8,9)	X	2.57	65.79	15.03	2.23	80.0	±9.6%
		Y 7	2.97	68.04	16.46		80.0	
10491-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	2.63	67.24	16.30	2.23	80.0	± 9.6 %
		Ι γ	3.09	69.79	17.74		80.0	
		Ż	2.92	68.21	16.96		80.0	<u> </u>
10492- AAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2.3.4.7.8.9)	X	2.93	65.80	15.66	2.23	80.0	± 9.6 %
		Y	3.24	67.45	16.69		80.0	
		Z	3.14	66.35	16.22		80.0	

10/00								
10493-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,		2.99	65.74	15.62	2.23	80.0	± 9.6 %
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)							
		Y	3.29	67.32	16.63		80.0	
		Z	3.21	66.28	16.18		80.0	
10494-	LTE-TDD (SC-FDMA, 50% RB, 20 MHz,	X	2.77	68.16	16.65	2.23	80.0	+96%
AAE	QPSK, UL Subframe=2.3.4.7.8.9)			00.10	10.00	2.20	00.0	1 0.0 /0
		Y	3 31	71.10	18.21		80.0	
		7	3.09	69.31	17 33		00.0	
10495-	TE-TOD (SC-EDMA 50% RB 20 MHz	- -	2.05	66.01	15.00	2.00	00.0	1.0.0.1/
AAF	16-OAM UL Subframe=2.3.4.7.8.9)		2.35	00.01	15.69	2.23	00.0	±9.0 %
	10 Grim, 02 Odbirdine-2,0,4,1,0,0)		2.25	67.67	40.04		00.0	
			3.20	07.07	10.91		0.08	
10496-			3.10	00.09	16.41		0.08	
	64_0 AM UL Subfrom $-2.2.4.7.9.0$	^	3.04	65.92	15.89	2.23	80.0	± 9.6 %
7076	04-02-04 M, OL OUDITAINE-2,0,4,7,0,9			07.40	10.01			
		Ŷ	3.34	67.48	16.84	 	80.0	
40407		<u> </u>	3.25	66.45	16.38		80.0	
10497-	LTE-TOD (SC-FDMA, 100% RB, 1.4	X	0.90	60.00	7.56	2.23	80.0	± 9.6 %
AAA	MHZ, QPSK, UL Subtrame=2,3,4,7,8,9)							
		ΙΥ	0.94	60.22	8.59		80.0	
		Z	0.98	60.00	8.77		80.0	
10498-	LTE-TDD (SC-FDMA, 100% RB, 1.4		1.09	60.00	6.33	2.23	80.0	± 9.6 %
AAA	MHz, 16-QAM, UL							
	Subframe=2,3,4,7,8,9)							
		Y	1.09	60.00	7.12		80.0	1
		Ζ	1.16	60.00	7.58		80.0	
10499-	LTE-TDD (SC-FDMA, 100% RB, 1.4	X	1.11	60.00	6.17	2.23	80.0	+9.6%
AAA	MHz, 64-QAM, UL						00.0	20.0 %
	Subframe=2,3,4,7,8,9)							
		Y	1.11	60.00	6.94		80.0	
		Z	1.17	60.00	7 42		80.0	
10500-	LTE-TDD (SC-FDMA, 100% RB, 3 MHz	X	1.91	66.68	14 78	2.23	80.0	+06%
AAB	QPSK, UL Subframe=2.3.4.7.8.9)			00,00	14.70	2.20	00.0	19.0 %
			2.64	71.54	17.40		80.0	
		7	2.01	89.89	16.26		00.0	
10501-	LTE-TDD (SC-EDMA_100% RB_3 MHz		2.20	64.22	12.04	2.00	00.0	10.0.00
AAB	16-QAM, UL Subframe=2 3 4 7 8 9)		2.02	04.23	12.91	2.20	80.0	±9.6%
			2.60	67.75	45.44			
			2.00	07.75	10.11		80.0	
10502-	TE-TOD (SC-EDMA 100% PB 3 MHz		2.42	64.07	14.51	0.00	80.0	
AAB	$64-\Omega$ M UL Subframe=2.3.4.7.8.0)	^	2.05	64.07	12.75	2.23	80.0	±9.6 %
7010	04-QAM, 0E Subitane-2,3,4,7,6,9)			07 54				
<u> </u>			2.63	67.51	14.92		80.0	
10502			2.46	65.95	14.37		80.0	
10303- A A D	ODSK 111 Subframe=2.2.4.7.2.0	X	2.23	67.47	16.03	2.23	80.0	±9.6 %
	QFSR, UL SUDITAITIE=2,3,4,7,8,9)					······		
		Y	2.79	71.03	18.01		80.0	
40504		Z	2.54	68.82	16.98		80.0	
10504-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	X	2.48	65.75	15.00	2.23	80.0	± 9.6 %
AAD	16-QAM, UL Subframe=2,3,4,7,8,9)							
		Y	2.88	68.10	16.48		80.0	
10505		Z	2.73	66.60	15.85		80.0	
10505-	LTE-TDD (SC-FDMA, 100% RB, 5 MHz,	X	2.55	65.70	14.97	2.23	80.0	± 9.6 %
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)							
		Y	2.95	67.94	16.40		80.0	
		Ζ	2.81	66.54	15.82		80.0	[
10506-	LTE-TDD (SC-FDMA, 100% RB, 10	X	2.76	68.04	16,58	2.23	80.0	+96%
AAD	MHz, QPSK, UL Subframe=2,3,4,7,8,9)							
		Y	3.29	70.96	18.14	·····	80.0	
		Ζ	3.07	69.18	17.26		80.0	
10507-	LTE-TDD (SC-FDMA, 100% RB. 10	X	2.93	65.95	15.85	2.22	80.0	+060/
AAD	MHz, 16-QAM, UL			00.00	, 0.00	6	00.0	1 9.0 %
	Subframe=2,3,4,7,8,9)						l	Ì
		γ	3.24	67.61	16.87		80.0	
		7	3 14	66 53	16 37		<u></u>	
······	· · · · · · · · · · · · · · · · · · ·	-	V. 177	00.00	10.07		00.0	

10508- AAD	LTE-TDD (SC-FDMA, 100% RB, 10	X	3.03	65.86	15.84	2.23	80.0	±9.6 %
	Subframe=2.3.4.7.8.9)							
		Y	3.33	67.40	16.79		80.0	
		Z	3.24	66.38	16.33		80.0	
10509- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	3.24	67.72	16.53	2.23	80.0	± 9.6 %
		Y	3.69	69.96	17.72		80.0	
		Z	3.51	68.56	17.03		80.0	
10510- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2.2.4.7.8.0)	X	3.43	65.97	16.12	2.23	80.0	± 9.6 %
		+ - +	3 71	67.32	16.01		80.0	
			3.64	66.47	16.52		80.0	
10511- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2 3 4 7 8 9)	X	3.52	65.89	16.12	2.23	80.0	± 9.6 %
		Y	3 78	67 15	16.86		80.0	
		Ż	3.71	66.32	16.49		80.0	
10512- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2.3,4,7,8,9)	X	3.22	68.47	16.72	2.23	80.0	± 9.6 %
		Y	3.79	71.22	18.12		80.0	
		Z	3.54	69.57	17.32		80.0	
10513- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.32	66.00	16.15	2.23	80.0	± 9.6 %
		Y	3.60	67.43	16.98	1	80.0	
		Z	3.52	66.56	16.56		80.0	
10514- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2.3,4,7,8,9)	X	3.39	65.79	16.10	2.23	80.0	± 9.6 %
		Y	3.64	67.11	16.88		80.0	
	*	Z	3.57	66.28	16.49		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.88	62.44	13.81	0.00	150.0	± 9.6 %
		Y	0.96	63.62	14.88		150.0	
		Z	0.87	62.07	13.59		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.45	66.98	14.48	0.00	150.0	± 9.6 %
		<u> </u>	0.65	72.72	18.47		150.0	
10517		Z	0.42	65.95	13.66	0.00	150.0	
10517- AAA	Mbps, 99pc duty cycle)	X	0.70	63.68	13.97	0.00	150.0	±9.6 %
		Y	0.81	65.65	15.62		150.0	
10518- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99nc duty cycle)	X	4.21	63.23 66.61	13.65	0.00	150.0	± 9.6 %
		Y	4.32	66.98	16.20	1	150.0	
		Z	4.31	66.42	15.93	1	150.0	
10519- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	4.34	66.77	16.04	0.00	150.0	± 9.6 %
		Y	4.46	67.14	16.28		150.0	
		Z	4.46	66.61	16.03		150.0	
10520- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	X	4.20	66.68	15.95	0.00	150.0	± 9.6 %
		Y	4.32	67.07	16.20		150.0	
		Z	4.31	66.53	15.94		150.0	
10521- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	4.13	66.63	15.92	0.00	150.0	± 9.6 %
		Y	4,25	67.04	16.18		150.0	
		Z	4.24	66.49	15.91		150.0	
10522- AAB	IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	4.17	66.72	15.99	0.00	150.0	± 9.6 %
		<u> </u>	4.29	67.14	16.26	ļ	150.0	
		Z	4.30	66.63	16.02	1	150.0	1

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.12	66.80	15.96	0.00	150.0	± 9.6 %
			4.24	67.10	16.22		150.0	:
		7	4.24	66.57	15.90		150.0	
10524-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54	X	4.13	66.73	16.01	0.00	150.0	+96%
AAB	Mbps, 99pc duty cycle)						100.0	2010 //
		Y	4.25	67.13	16.27		150.0	
40505		Z	4.25	66.57	15.99		150.0	
10525-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.18	65.86	15.65	0.00	150.0	± 9.6 %
			4.20	66.06	15.04		450.0	
		7	4.29	65.65	15.91		150.0	
10526-	IEEE 802.11ac WiFi (20MHz, MCS1	X	4.28	66 10	15.01	0.00	150.0	+06%
AAB	99pc duty cycle)		····	00.10	10.70	0.00	100.0	1 3.0 %
		Y	4.41	66.52	16.01		150.0	
		Z	4.40	65.94	15.73		150.0	
10527-	IEEE 802.11ac WiFi (20MHz, MCS2,	Х	4.22	66.07	15.69	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)							
		Y	4.34	66.49	15.96		150.0	
10500		Z	4.33	65.90	15.66		150.0	
AAB	99pc duty cycle)	X	4.23	66.08	15.73	0.00	150.0	±9.6 %
		Y	4.36	66.51	15.99		150.0	
		Z	4,34	65.91	15.70		150.0	
10529-	IEEE 802.11ac WiFi (20MHz, MCS4,	X	4.23	66.08	15.73	0.00	150.0	+9.6%
AAB	99pc duty cycle)							_ 0.0 /0
		Y	4.36	66.51	15.99		150.0	
40504		Z	4.34	65.91	15.70		150.0	
AAB	99pc duty cycle)	X	4.19	66.07	15.68	0.00	150.0	± 9.6 %
		Y	4.32	66.52	15,96		150.0	
		Z	4.31	65.94	15.68		150.0	
10532-	IEEE 802.11ac WiFi (20MHz, MCS7,	X	4.08	65.93	15.61	0.00	150.0	±9.6 %
AAB	99pc duty cycle)							
		Y	4.20	66.39	15.90		150.0	
10522		Z	4.19	65.79	15.60		150.0	
AAB	99pc duty cycle)	X	4.23	66.16	15.73	0.00	150.0	±9.6 %
		Y	4.36	66.60	16.00		150.0	
		Z	4.35	65.98	15.69		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	4.82	66.10	15.85	0.00	150.0	±9.6 %
		Y	4.91	66.46	16.04		150.0	
		Z	4.91	66.02	15.83		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	4.85	66.20	15.91	0.00	150.0	± 9.6 %
		Y	4 94	66 56	16.09		150.0	
		Ż	4.97	66 17	15.90		150.0	
10536-	IEEE 802.11ac WiFI (40MHz, MCS2,		4.74	66.19	15.87	0.00	150.0	+96%
AAB	99pc duty cycle)					0.00	100.0	10.0 /0
······		Y	4.84	66.58	16.08		150.0	
		Z	4.85	66.14	15.86		150.0	
10537- AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)	X	4.82	66.26	15.91	0.00	150.0	±9.6 %
			4 91	66 50	16.09		150.0	
		z	4,91	66.13	15.00	······	150.0	
10538-	IEEE 802.11ac WiFi (40MHz, MCS4.		4.87	66.17	15.91	0.00	150.0	+96%
AAB	99pc duty cycle)					0.00	100,0	10.0 /0
		Y	4.97	66.52	16.09		150.0	
10540			4.98	66.12	15.90		150.0	
AAB	IEEE 802.11ac WIFI (40MHz, MCS6, 99pc duty cycle)	×	4.80	66.12	15.90	0.00	150.0	± 9.6 %
		Y T	4.90	66.49	16.09		150.0	
		Z	4.91	66.07	15.89		150.0	

10541-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	4.79	66,06	15.85	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)							
		Y	4.89	66.43	16.04		150.0	
105/2-			4.89	65.96	15.82	0.00	150.0	+06%
AAB	99pc duty cycle)		4.34	00.17	13.92	0.00	130.0	1 9.0 %
		Y	5.04	66.51	16.10		150.0	
		Z	5.05	66.09	15.90		150.0	
10543-	IEEE 802.11ac WiFi (40MHz, MCS9,		5.03	66.31	16.03	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)		5 11	66.60	16 17		150.0	
		7	5.12	66.17	15.17		150.0	
10544-	IEEE 802.11ac WiFi (80MHz, MCS0,	$\frac{1}{X}$	5.18	66.16	15.86	0.00	150.0	±9.6 %
AAB	99pc duty cycle)							
		<u>Y</u>	5.26	66.52	16.02		150.0	
10515			5.26	66.12	15.84	0.00	150.0	
AAB	99nc duty cycle)		5.30	60.05	16.06	0.00	150.0	±9.0%
		Y	5.42	66.93	16,19		150.0	
		Z	5.45	66.61	16.04		150.0	
10546-	IEEE 802.11ac WiFi (80MHz, MCS2,	X	5.20	66.27	15.88	0.00	150.0	± 9.6 %
AAB	99pc duty cycle)		F 00	00.00	40.05		450.0	
		7	5.29	66.25	16.05		150.0	
10547-	IEEE 802,11ac WiEi (80MHz_MCS3		5.31	66.50	15.07	0.00	150.0	+9.6 %
AAB	99pc duty cycle)		0.01	00.00	10.00	0.00		
		Y	5.37	66.75	16.11		150.0	
		Z	5.38	66.37	15.93		150.0	
10548- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	X	5.41	66.98	16.21	0.00	150.0	± 9.6 %
		Y	5.49	67.30	16.36		150.0	
10550			5.57	67.13	16.28	0.00	150.0	1069/
AAR	99nc duty cycle)		5.30	00.00	16.06	0.00	150.0	±9.0 %
74.00		Y	5.35	66.83	16.16		150.0	
		Z	5.37	66.46	15.99		150.0	
10551- AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	5.19	66.21	15.83	0.00	150.0	± 9.6 %
		Y	5.28	66.60	16.01	ļ	150.0	
		Z	5.30	66.24	15.84		150.0	
10552- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	5.18	66.29	15.86	0.00	150.0	± 9.6 %
		<u> </u>	5.27	66.65	16.04		150.0	
10552			5,26	66.20	15.82	0.00	150.0	+96%
AAB	99pc duty cycle)		5.25	00.22	10.00	0.00	100.0	1 0.0 %
		Y	5.32	66.58	16.03		150.0	
		Z	5.32	66.18	15.85	ļ	150.0	
10554- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 99nc duty cycle)	X	5.62	66.51	15.95	0.00	150.0	± 9.6 %
		Τ _Υ	5.68	66.84	16.09		150.0	
		Z	5.69	66.48	15.94		150.0	
10555- AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	5.69	66.71	16.04	0.00	150.0	± 9.6 %
		Y	5.76	67.04	16.18		150.0	
		Z	5.79	66.75	16.05		150.0	
10556- AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	5.75	66.88	16.11	0.00	150.0	± 9.6 %
	·	<u> </u>	5.80	67.16	16.23		150.0	ļ
40557			5.83	66.85			150.0	+0.0%
AAC	99pc duty cycle)	×	5.69	00.70	10.04	0.00	150.0	± 9.0 %
 		⊢ Υ -	5.76	67.04	16.19		150.0	<u> </u>
1		1 4	0.11	1 00.09	1 10.03	1	1 100.0	1

10558-	IEEE 802.11ac WiFi (160MHz, MCS4,	X	5.67	66.68	16.05	0.00	150.0	± 9.6 %
AAC	99pc duty cycle)		E 70	07.07	40.00		450.0	
		7	5.70	66.79	16.22		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	5.71	66.66	16.07	0.00	150.0	± 9.6 %
		Y	5.79	67.02	16.23		150.0	
		Z	5.81	66.69	16.09		150.0	1
10561- AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.65	66.65	16.10	0.00	150.0	± 9.6 %
		Y	5.72	67.00	16.25		150.0	
10562		<u> </u>	5.75	66.69	16.12	L	150.0	
AAC	99pc duty cycle)	×	5.68	66.77	16.16	0.00	150.0	± 9.6 %
			5.77	67.15	16.33		150.0	-
10563-	IEEE 802,11ac WiEI (160MHz_MCS9		5.80	66.82	16.21	0.00	150.0	+06%
AAC	99pc duty cycle)		5.88	67.15	16.10	0.00	150.0	1 9.0 %
		7	5.91	66.85	16.29		150.0	
10564- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.52	66.62	16.09	0.46	150.0	± 9.6 %
		Y	4.63	66.97	16.32		150.0	
		Z	4.63	66.48	16.09		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty cycle)	X	4.71	67.05	16.42	0.46	150.0	±9.6 %
		Y	4.82	67.38	16.63		150.0	
10566- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OEDM 18 Mbns, 99nc duty cycle)	X	4.83	66.91 66.82	16.42 16.20	0.46	150.0	± 9.6 %
	Ci Dini, io mopo, sope daty cycle)	- V	4 65	67 19	16/3		150.0	
		z	4.66	66.71	16.22		150.0	
10567- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	4.58	67.25	16.61	0.46	150.0	± 9.6 %
		Y	4.69	67.60	16.82		150.0	
40500		Z	4.69	67.12	16.60		150.0	
AAA	OFDM, 36 Mbps, 99pc duty cycle)	X	4.42	66.46	15.88	0.46	150.0	± 9.6 %
			4.54	66.88	16.15		150.0	
10569-	IEEE 802 11a WiEi 2 4 GHz (DSSS-		4.56	66.45	15.95	0.40	150.0	
AAA	OFDM, 48 Mbps, 99pc duty cycle)		4.00	67.96	10.70	0.46	150.0	± 9.6 %
		$\frac{1}{7}$	4.00	67.31	16.97		150.0	
10570- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 99pc duty cycle)	X	4.57	67.27	16.64	0.46	150.0	± 9.6 %
		Y	4.68	67.61	16.85		150.0	
40074		Z	4.69	67.12	16.62		150.0	
10571- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	X	0.99	62.81	14.23	0.46	130.0	± 9.6 %
····			1.09	64.12	15.35		130.0	
10572-	IFEE 802 11h WiEi 2.4 GHz (DSSS 2		1.00	62.69	14.25	0.40	130.0	
AAA	Mbps, 90pc duty cycle)		1.00	64.00	14.53	0.46	130.0	± 9.6 %
······		7	1.10	63.12	10.71		130.0	
10573- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	X	0.77	71.94	17.18	0.46	130.0	± 9.6 %
		Y	1.53	83.79	23.08		130.0	
4057		Z	0.78	71.84	17.05		130.0	
10574- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	0.97	67.27	16.73	0.46	130.0	±9.6 %
		ĻΥ	1.16	70.12	18.67		130.0	
		Z	0.98	67.08	16.66		130.0	

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	X	4.29	66.33	16.06	0.46	130.0	±9.6 %
////		Y	4 40	66.70	16 31		130.0	
		z	4.41	66.24	16.12		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.32	66.56	16.16	0.46	130.0	± 9.6 %
		Y	4.43	66.92	16.41		130.0	
10000		Z	4.43	66.43	16.20		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	4.47	66.78	1 6.31	0.46	130.0	± 9.6 %
		Y	4.58	67.14	16.55		130.0	
10578-			4.60	66.69	16.36	0.46	130.0	1069/
AAA	OFDM, 18 Mbps, 90pc duty cycle)		4.50	67.00	10.42	0.40	130.0	19.0 %
		7	4.49	66.83	16.00		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	4.12	66.01	15.59	0.46	130.0	± 9.6 %
		Y	4.24	66.44	15.89		130.0	
		Z	4.26	65.99	15.69		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	4.14	66.03	15.59	0.46	130.0	± 9.6 %
		Y	4.27	66.48	15.90		130.0	
10591		Z	4.30	66.06	15.72	0.40	130.0	100%
AAA	OFDM, 48 Mbps, 90pc duty cycle)		4.29	07.01	10.39	0.40	130.0	± 9.0 %
			4.41	66.97	16.65		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	4.04	65.76	15.35	0.46	130.0	±9.6 %
		Y	4.17	66.20	15.67		130.0	
		Z	4.19	65.76	15.46		130.0	
10583- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	4.29	66.33	16.06	0.46	130.0	± 9.6 %
		Y	4.40	66.70	16.31		130.0	
10594		Z	4.41	66.24	16.12	0.40	130.0	100%
AAB	Mbps, 90pc duty cycle)		4.32	66.00	10.10	0.46	130.0	± 9.6 %
		7 7	4.43	66.43	16.41		130.0	
10585- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	4.47	66.78	16.31	0.46	130.0	±9.6 %
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Y	4.58	67.14	16.55		130.0	
		Z	4.60	66.69	16.36		130.0	
10586- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	4.38	66.93	16.42	0.46	130.0	± 9.6 %
		Y	4.49	67.29	16.66		130.0	
10507			4.50	66.83	16.46	0.40	130.0	100%
AAB	Mbps, 90pc duty cycle)	X	4.12	66.01	15.59	0.46	130.0	± 9.6 %
		Y 7	4.24	65.00	15.89		130.0	
10588-	IEEE 802 11a/h WIEL5 GHz (OEDM 36	X	4.20	66.03	15.09	0.46	130.0	+96%
AAB	Mbps, 90pc duty cycle)		4.11	66.48	15.00	0.40	130.0	10.0 %
		Z	4.30	66.06	15.72	 	130.0	
10589- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	x	4.29	67.01	16.39	0.46	130.0	± 9.6 %
		Y	4.41	67.39	16.65		130.0	
		Z	4.41	66.87	16.41		130.0	
10590- AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	4.04	65.76	15.35	0.46	130.0	±9.6%
		Y	4.17	66.20	15.67		130.0	
1	1	Z	4.19	1 65.76	15.46	1	1 130.0	I

10591- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS0. 90pc duty cycle)	Х	4.45	66.46	16.22	0.46	130.0	± 9.6 %
		Y	4.56	66.80	16.44		130.0	
		Z	4.57	66.34	16.25		130.0	
10592- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)	X	4.56	66.73	16.33	0.46	130.0	± 9.6 %
		Y	4.67	67.08	16.56		130.0	
		Z	4.69	66.64	16.38		130.0	
10593- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)	X	4.47	66.59	16.17	0.46	130.0	± 9.6 %
		<u> </u>	4.59	66.95	16.42		130.0	
40504		Z	4.60	66.51	16.23		130.0	
AAB	MCS3, 90pc duty cycle)	X	4.53	66.78	16.36	0.46	130.0	±9.6 %
			4.64	67.13	16.59		130.0	
10505-	IEEE 802 11p (HT Mixed 20MHz		4.00	66.75	16.40	0.40	130.0	100%
AAB	MCS4, 90pc duty cycle)		4.49	07.40	10.20	0.40	130.0	± 9.6 %
		7	4.01	07.12	16.00		130.0	
10596- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	X	4.42	66.68	16.23	0.46	130.0	± 9.6 %
		Y	4.53	67.07	16.49		130.0	
		Z	4.55	66.62	16.29		130.0	
10597- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	X	4.37	66.54	16.07	0.46	130.0	± 9.6 %
		Y	4.49	66.93	16.34		130.0	
(Z	4.51	66.49	16.14		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.38	66.81	16.37	0.46	130.0	±9.6 %
		Y	4.49	67.18	16.61		130.0	
40500		Z	4.50	66.72	16.41		130.0	
AAB	MCS0, 90pc duty cycle)		5.17	67.00	16.56	0.46	130.0	± 9.6 %
		$-\frac{Y}{7}$	5.23	67.23	16.68		130.0	
10600-	IEEE 802 11n (HT Mixed 40MHz		5.27	67.25	16.57	0.40	130.0	
AAB	MCS1, 90pc duty cycle)		5.20	07.55	10.71	0.40	130,0	±9.6 %
		7	5.31	67.52	16,80		130.0	
10601- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	X	5.19	67.20	16.65	0.46	130.0	± 9.6 %
		Υ	5.24	67.37	16 74		130.0	I
		Z	5.28	67.08	16.63		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.24	67.11	16.52	0.46	130.0	± 9.6 %
		Y	5.31	67.34	16.64		130.0	
		Z	5.41	67.24	16.63		130.0	
10603- 	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	X	5.29	67.35	16.79	0.46	130.0	± 9.6 %
	······································	Y	5.38	67.63	16.93		130.0	
40004		Z	5.49	67.59	16.94		130.0	
10604- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	X	5.15	66.85	16.51	0.46	130.0	± 9.6 %
		<u>Y</u>	5.25	67.21	16.70		130.0	
10605	IEEE 802 11p (UT Mixed 40MU		5.37	67.21	16.74		130.0	
AAB	MCS6, 90pc duty cycle)	×	5.23	67.14	16.65	0.46	130.0	±9.6 %
		_ <u> ¥</u>	5.30	67.39	16.79		130.0	
10606-	IEEE 802 11n (HT Mixed 40MH-		5.38	67.23	16.74	0.40	130.0	
AAB	MCS7, 90pc duty cycle)		0.00	00.00	10.20	0.46	130.0	±9.6 %
			5.11	66.89	16.39		130.0	
			0.14	00.57	16.26		130.0	

10607-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.30	65.79	15.85	0.46	130.0	± 9.6 %
			4 4 1	66.18	16 11		130.0	
	·····	z	4.41	65.65	15.87		130.0	
10608- AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	4.42	66.08	15.98	0.46	130.0	± 9.6 %
		Y	4.54	66.48	16.24		130.0	
		Z	4.55	65.99	16.03		130,0	
10609- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	4.32	65.89	15.79	0.46	130.0	± 9.6 %
		<u>Y</u>	4.44	66.32	16.07		130.0	
10610-			4.44	65.81	15.84	0.40	130.0	
AAB	90pc duty cycle)		4.37	00.00	10,98	0.46	130.0	± 9.6 %
	·····	1 7	4.49	65.00	16.24		130.0	
10611- AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	4.28	65.85	15.80	0.46	130.0	± 9.6 %
		Y	4.40	66.28	16.08		130.0	
		Z	4.41	65.78	15.85		130.0	
10612- AAB	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	4.26	65.94	15.82	0.46	130.0	±9.6 %
		<u>Y</u>	4.39	66.39	16.11		130.0	
40040		Z	4.40	65.90	15.88		130.0	
AAB	90pc duty cycle)	X	4.25	65.75	15,65	0.46	130.0	± 9.6 %
		Y 7	4.38	66.20	15.95		130.0	
10614- AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	X	4.40	66.02	15.94	0.46	130.0	± 9.6 %
		Y	4.36	66.46	16.22		130.0	
		Z	4.36	65.95	15.99	· · · ·	130.0	
10615- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	X	4.26	65.66	15.54	0.46	130.0	± 9.6 %
		Y	4.39	66.11	15.84		130.0	
40646			4.40	65.60	15.61	0.40	130.0	
AAB	90pc duty cycle)	×	4.95	66.09	16.09	0.46	130.0	± 9.6 %
		1 7	5.04	66.06	16.12		130.0	
10617- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	X	4.98	66.18	16.11	0.46	130.0	± 9.6 %
		Y	5.07	66.52	16.29		130.0	
		Z	5.13	66.25	16.19		130.0	
10618- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	×	4.89	66.22	16.14	0.46	130.0	± 9.6 %
		<u> </u>	4.99	66.61	16.35		130.0	
40640		Z	5.02	66.28	16.21	0.40	130.0	100%
AAB	90pc duty cycle)	X	4.94	66.16	16.04	0.46	130.0	± 9.6 %
		Y 7	5.01	66.00	16.21	<u> </u>	130.0	
10620-	IEEE 802.11ac WIFI (40MHz MCS4		4 98	66.07	16.05	0.46	130.0	+96%
AAB	90pc duty cycle)	- v	5.08	66.42	16.00	0.40	130.0	1 0.0 /0
			5.12	66.10	16.11	 	130.0	
10621- AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	5.00	66.21	16.25	0.46	130.0	± 9.6 %
		Y	5.09	66.55	16.43		130.0	
		Z	5.12	66.22	16.29		130.0	
10622- AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	×	4.98	66.29	16.29	0.46	130.0	±9.6 %
ļ		Y	5.08	66.63	16.46		130.0	
1		- I Z	5.11	1 66.32	1 16.34	1	i 130.0	1

10623-	IEEE 802.11ac WiFi (40MHz, MCS7,	X	4.88	65.86	15.92	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)							
		Y	4.97	66.20	16.11		130.0	
40004		Z	4.99	65.82	15.95		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.07	66.13	16.12	0.46	130.0	±9.6 %
		Y	5.16	66.45	16.30		130.0	
		Z	5.20	66.12	16.17		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.18	66.36	16.31	0.46	130.0	± 9.6 %
		Y	5.24	66.57	16.42		130.0	
		Z	5.32	66.38	16.36		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.30	66.10	16.05	0.46	130.0	± 9.6 %
		Y	5.38	66.44	16.22		130.0	
10007		Z	5.40	66.12	16.09		130.0	
10627- AAB	IEEE 802.11ac WIFi (80MHz, MCS1, 90pc duty cycle)	X	5.53	66.77	16.36	0.46	130.0	±9.6 %
		Y	5.59	67.01	16.48		130.0	
		Z	5.65	66.81	16.41		130.0	
10628- AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	X	5.29	66.06	15.93	0.46	130.0	±9.6 %
		Y	5.37	66.41	16.10		130.0	
		Z	5.40	66.11	15.98		130.0	
10629- 	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	X	5.43	66.42	16.11	0.46	130.0	± 9.6 %
		Y	5.47	66.61	16.20		130.0	
40000		Z	5.50	66.31	16.08		130.0	
10630- AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	X	5.59	67.09	16.45	0.46	130.0	± 9.6 %
		Y	5.66	67.38	16.59		130.0	
		Z	5.82	67.46	16.66		130.0	
10631- 	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	X	5.58	67.18	16.70	0.46	130.0	±9.6 %
		<u> </u>	5.66	67.50	16.84		130.0	
40000			5.74	67.33	16.79		130.0	
AAB	90pc duty cycle)	X	5.57	67.09	16.67	0.46	130.0	±9.6 %
		Y	5.60	67.22	16.72		130.0	
40000			5.64	66.96	16.63		130.0	
10633- AAB	IEEE 802.11ac WIFI (80MHz, MCS7, 90pc duty cycle)	X	5.30	66.12	16.00	0.46	130.0	± 9.6 %
		Y	5.39	66.49	16.18		130.0	
40004			5.45	66.28	16.11		130.0	
AAB	90pc duty cycle)	X	5.34	66.35	16.17	0.46	130,0	± 9.6 %
		<u> </u>	5.43	66.70	16.34		130.0	
10625		<u> </u>	5.44	66.35	16.20		130.0	
AAB	90pc duty cycle)	X	5.19	65.54	15.47	0.46	130.0	± 9.6 %
		<u> </u>	5.28	65.93	15.68		130.0	
10626			5.31	65.62	15.55		130.0	
AAC	90pc duty cycle)	X	5.75	66.48	16.16	0.46	130.0	± 9.6 %
		<u> </u>	5.81	66.78	16.30		130.0	
10627		- <u>Z</u>	5.84	66.50	16.20		130.0	
AAC	90pc duty cycle)	X	5.86	66.76	16.29	0.46	130.0	± 9.6 %
		<u> </u>	5.91	67.05	16.42		130.0	
10620			5.98	66.87	16.37		130.0	
AAC	90pc duty cycle)	X	5.90	66.89	16.33	0.46	130.0	± 9.6 %
		Y	5.95	67.16	16.45		130.0	
			5.98	66.88	16.35		130.0	

10639-	IEEE 802.11ac WiFi (160MHz, MCS3,	X	5.83	66.70	16.28	0.46	130.0	±9.6 %
AAC	90pc duty cycle)		E 00	07.00	40.40		400.0	
		7	5.90	66.76	16.4Z		130.0	
10640- AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 90nc duty cycle)	X	5.77	66.49	16.12	0.46	130.0	± 9.6 %
70.00		Υ	5.85	66.88	16.30		130.0	
		Z	5.92	66.69	16.24		130.0	
10641- AAC	IEEE 802.11ac WIFi (160MHz, MCS5, 90pc duty cycle)	Х	5.90	66.70	16.24	0.46	130.0	±9.6 %
		Y	5.96	66.97	16.37		130.0	
10010		Z	6.02	66.77	16.30		130.0	
10642- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	X	5.91	66.85	16.49	0.46	130.0	± 9.6 %
		Y	5.98	67.18	16.64		130.0	
10643-	IEEE 802 11ac W/iEi /160MHz_MCS7	X	0.03 5.75	66.52	16.00	0.46	130.0	+06%
AAC	90pc duty cycle)		5.75	66.96	46.97	0.40	420.0	1 9.0 %
		7	5.88 5.88	66 65	16.30		130.0	
10644- AAC	IEEE 802.11ac WIFi (160MHz, MCS8, 90pc duty cycle)	X	5.80	66.66	16.30	0.46	130.0	± 9.6 %
		Y	5.88	67.03	16.47		130.0	
		Z	5.94	66.85	16.42		130.0	
10645- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	X	5.94	66.78	16.33	0.46	130.0	± 9,6 %
		Y	6.00	67.06	16.46		130.0	
10010		Z	6.15	67.15	16.54	0.00	130.0	
10646- AAE	QPSK, UL Subframe=2,7)	X	5.05	83.78	28.65	9.30	60.0	± 9.6 %
			6.98	93.27	32,89		60.0	
10647-	LTE-TDD (SC-EDMA_1 RB_20 MHz		4.54	91.00	27 99	930	60.0	+96%
AAE	QPSK, UL Subframe=2,7)		5.00	90.07	21.55	3.30	60.0	1 3.0 %
		7	6.33	89.46	31.67		60.0	
10648- AAA	CDMA2000 (1x Advanced)	X	0.37	60.00	6,05	0.00	150.0	± 9.6 %
		Y	0.48	61.63	8.16		150.0	
		Z	0.43	60.11	6.90		150.0	
10652- AAC	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	2.93	65.21	15.11	2.23	80.0	± 9.6 %
		<u>Y</u>	3.20	66.58	16.05		80.0	
40652			3.10	65.44	15.57	0.02	80.0	100%
AAC	Clipping 44%)		3,55	04,93	10.73	2.23	80.0	± 9.0 %
		Y 7	3.74	65.00	15.00		0.08	
10654-	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1,	X	3.60	64.60	15.83	2.23	80.0	± 9.6 %
	UIPPING 44%)		2 76	65 20	16.24		80.0	
		7	3.70	64.69	16.04		80.0	
10655- AAD	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	3.69	64.52	15.89	2.23	80.0	± 9.6 %
		Y	3.83	65.30	16.38		80.0	
		Z	3.78	64.64	16.09		80.0	
10658- AAA	Pulse Waveform (200Hz, 10%)	X	3.48	68.63	11.85	10.00	50.0	± 9.6 %
		Y	5.65	74.45	13.80		50.0	
10659-	Pulse Waveform (200Hz, 20%)	Z X	7.21 2.03	77.53 66.95	15.77 10.03	6.99	50.0 60.0	± 9.6 %
			400.00	104 40	40.70		00.0	
			100.00	101.12	21.38		60.0	
L								,

_

,

10660- AAA	Pulse Waveform (200Hz, 40%)	X	0.68	62.61	6.79	3.98	80.0	± 9.6 %
		Y	100.00	101.16	18.64		80.0	
	· · · · · · · · · · · · · · · · · · ·	Z	100.00	99.78	18.10		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	0.25	60.00	4.25	2.22	100.0	± 9.6 %
		Y	100.00	102.31	18.13		100.0	
		Z	0.28	60.39	4.93		100.0	
10662- AAA	Pulse Waveform (200Hz, 80%)	Х	6.06	60.21	1.38	0.97	120.0	± 9.6 %
		Y	100.00	96.37	14.68		120.0	
		Z	9.95	60.38	1.42		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG

PC-Test

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: EX3-7308_Aug18 **ALIBRATION CERTIFICATE**

S

С

S

Object	EX3DV4 - SN:7308
Calibration procedure(s)	QA CAL-01.v9, QA CAL-141.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes
Calibration date:	August 23, 2018
This calibration certificate doc	uments the traceability to national standards, which realize the physical units of measurements (SI)

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Schodulad Onlineation
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02072)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217 02672)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02073)	Apr-19
Reference Probe ES3DV2	SN: 3013	30 Dog 17 (No. 562 2012 Dog 17)	Apr-19
DAF4	SNI 660		Dec-18
		21-Dec-17 (No. DAE4-660_Dec17)	Dec-18
Secondary Standards		Check Date (in house)	Sobothilad Obasi
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	16-Apr-16 (in house check Jun 18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700		In nouse cneck: Jun-20
Network Analyzer E8358A	SN US41080477	21 Mag 14 (in house check Jun-18)	In nouse check: Jun-20
			In house check: Oct-18

	Name	Function	Signature	
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 - 1	1.
				P
Approved by:				*
Approved by.	Katja Poković	Technical Wanager		1 <u>2</u> [

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: August 24, 2018

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
- Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatones to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx.v.z
DCP	diode compression point
CF	crest factor (1/duty, cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
^	i.e., $9 = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Probe EX3DV4

SN:7308

Manufactured: Calibrated:

March 11, 2014 August 23, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.49	0.60	0.44	± 10.1 %
DCP (mV) [®]	99.6	97.1	102.5	

Modulation Calibration Parameters

	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊨] (k=2)
0		X	0.0	0.0	1.0	0.00	177.2	±3.5 %
		Y	0.0	0.0	1.0		165.4	
		Z	0.0	0.0	1.0		159.6	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V⁻²	T2 ms.V ¹	T3 ms	T4 V⁻²	T5 V ⁻¹	T6
<u> </u>	53.71	401.2	35.76	12.80	0.351	5.077	0.717	0.413	1.005
Y	56.67	439.8	38.08	13.44	0.524	5.100	0.000	0.597	1.012
<u>Z</u>	40.98	304.1	35.29	8.573	0.334	5.045	1.531	0.174	1.005

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

		T						
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	_10.23	10.23	10.23	0.57	0.81	± 12.0 %
835	41.5	0.90	9.96	9.96	9.96	0.58	0.81	± 12.0 %
1750	40.1	1.37	8.66	8.66	8.66	0.36	0.80	± 12.0 %
1900	40.0	1.40	8.26	8.26	8.26	0.29	0.85	± 12.0 %
2300	39.5	1.67	7.81	7.81	7.81	0.29	0.85	± 12.0 %
2450	39.2	1.80	7.45	7.45	7.45	0.35	0.91	± 12.0 %
2600	39.0	1.96	7.30	7.30	7.30	0.35	0.87	± 12.0 %
5250	35.9	4.71	5.10	5.10	5.10	0.40	 1.80	± 13.1 %
_ 5600	35.5	5.07	4.85	4.85	4.85	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.04	5.04	5.04	0.40	1.80	± 13.1 %

Calibration	Parameter	Determined	in Head	Tissue	Simulating	Media
	, arameter	Determined	т пеац	lissue	Simulating	Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

	Deletion	T				ound		
f (MHz) ^C	Permittivity ^F	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.38	10.38	10.38	0.36	0.99	± 12.0 %
835	55.2	0.97	10.19	10.19	10.19	0.50	0.82	± 12.0 %
1750	53.4	1.49	8.13	8.13	8.13	0.27	1.04	± 12.0 %
1900	53.3	1.52	7.79	7.79	7.79	0.38	0.85	± 12.0 %
_2300	52.9	1.81	7.73	7.73	7.73	0.37	0.80	± 12.0 %
2450	52.7	1.95	7.57	7.57	7.57	0.34	0.88	± 12.0 %
2600	52.5	2.16	7.40	7.40	7.40	0.29	0.95	± 12.0 %
5250	48.9	5.36	4.48	4.48	4.48	0.50	1.90	± 13.1 %
_5600	48.5	5.77	4.00	4.00	4.00	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.18	4.18	4.18	0.50	1.90	± 13.1 %

Calibration	Parameter	Determined in	Body ⁻	Tissue	Simulating	Modia
					Ynnuuunu	ITICUIA

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency

validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Other Probe Parameters

Connector Angle (°)	400.5
Mechanical Surface Detection Mode	108.5
Optical Surface Detection Mode	enabled
Probe Overall Length	disabled
	337 mm
Probe Body Diameter	10 mm
Tip Length	
Tip Diameter	
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to School X Calibration Point	1 mm
Tobe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	14 mm

Appendix: Modulation Calibration Parameters

	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max Unc ^E (k=2)
0	CW	X	0.00	0.00	1.00	0.00	177.2	+35%
		Y	0.00	0.00	1.00		165.4	10.0 /6
		Z	0.00	0.00	1.00	<u> </u>	159.6	<u>├</u> ────-
10010- <u>CAA</u>	SAR Validation (Square, 100ms, 10ms)	X	2.71	68.17	11.26	10.00	20.0	± 9.6 %
		Y	2.39	66.64	10.67		20.0	
10011		Z	1.90	64.26	9.03		20.0	
10011- CAB	UMTS-FDD (WCDMA)	X	1.19	70.37	17.06	0.00	150.0	±9.6 %
	·	Y	0.96	66.50	14.51		150.0	
10010		Z	1.05	68.92	16.00		150.0	
10012- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	X	1.18	64.67	16.08	0.41	150.0	± 9.6 %
		Y	1.11	63.43	15.04		150.0	
		Z	1.13	64.11	15.48		150.0	
10013- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 6 Mbps)	X	4.93	66.75	17.26	1.46	150.0	± 9.6 %
		Y	4.92	66.47	17.15		150.0	
40004		Z	4.74	66.75	17.08		150.0	
10021- _DAC	GSM-FDD (TDMA, GMSK)	X	100.00	114.38	27.28	9.39	50.0	± 9.6 %
		Y	100.00	114.83	27.64		50.0	[
		Z	100.00	109.69	24.90		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	X	100.00	113.94	27.13	9.57	50.0	± 9.6 %
		Y	100.00	114.49	27.54		50.0	
		Z	100.00	109.21	24.74		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	115.48	26.77	6.56	60.0	± 9.6 %
		Y	100.00	114.18	26.29		60.0	
		Z	100.00	109.85	23.86		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	6.22	84.66	34.29	12.57	50.0	± 9.6 %
		Y	4.94	76.24	29.94		50.0	
		<u>Z</u>	5.36	79.88	31.57		50.0	
10026- DA <u>C</u>	EDGE-FDD (TDMA, 8PSK, TN 0-1)	X	11.81	100.22	36.35	9.56	60.0	± 9.6 %
		<u>Y</u>	11.10	97.75	35.30		60.0	
10007		Z	7.89	<u>90</u> .81	32.78		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	X	100.00	118.27	27.22	4.80	80.0	± 9.6 %
		Y	100.00	1 <u>14.</u> 44	25.61		80.0	
10000		Z	_100.00	<u>111.67</u>	23.86		80.0	
DAC	GPRS-FDD (IDMA, GMSK, TN 0-1-2-3)	X	100.00	122.72	28.40	3.55	100.0	± 9.6 %
<u> </u>		<u> </u>	100.00	114.80	25.04		100.0	
40000		Z	100.00	114.83	24.49		100.0	
DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	6.56	85.50	29.56	7.80	80.0	± 9.6 %
ļ		Y	<u>6.53</u>	84.80	<u>29.</u> 16		80.0	
10000		Ž	4.80	79.03	26.78		80.0	
10030- CAA	□EEE 802.15.1 Bluetooth (GFSK, DH1)	X	100.00	114.96	26.10	5.30	70.0	± 9.6 %
		<u>Y</u>	_100.00	112.69	25.18		70.0	
		Z	100.00	108.37	22.73		70.0	
10031- 	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	126.84	28.53	1.88	100.0	± 9.6 %
		Y	100.00	105.21	19.68		100.0	
		Z	100.00	108.61	20.59		100.0	

10032-	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	100.00	146.53	35.02	1.17	100.0	± 9.6 %
<u> </u>		- v-	100.00	05.65	45.05	<u> </u>	- 100 0	
		7	100.00	112.00	15.05		100.0	
10033- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	X	100.00	133.98	36.90	5.30	70.0	± 9.6 %
		Υ	94.91	132 14	36.35	<u> </u>	70.0	
		z	24.70	106.96	28.52		70.0	
10034- CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	X	8.70	95.28	25.33	1.88	100.0	±9.6 %
		Y	4.18	83.23	21.11		100.0	
		Z	3.97	82.01	19.44		100.0	
10035- 	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	X	3.83	83.82	21.38	1.17	100.0	± 9.6 %
		Y	2.23	74.99	17.69		100.0	
10000		Z	2.33	75.94	16.98		100.0	
<u>CAA</u>	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	X	100.00	134.50	37.14	5.30	70.0	± 9.6 %
		Y	100.00	<u>1</u> 33.48	36.76		70.0	
10037			_56.60	119.91	<u>31.85</u>		70.0	
		×	7.69	93.53	24.78	1.88	100.0	± 9.6 %
	<u> </u>	<u> </u>	3.89	82.31	20.76		100.0	
10038-	IFEE 802 15 1 Plugtooth (8 DDDIK, DLUS)	<u></u>	3.40	80.12	18.77		100.0	
		X	3.93	84.59	21.78	1.17	100.0	±9.6 %
		<u>Y</u>	2.28	75.57	18.03		100.0	
10039-		<u>⊢</u>	2.38	76.51	17.34		100.0	L
			2.78	/8.14	18.71	0.00	150.0	± 9.6 %
		Y	1.67	70.12	14.94		<u>150.0</u>	
10042- CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4- DQPSK, Halfrate)	X	100.00	110.92	15.76 24.96	7.78	<u>150.0</u> 50.0	± 9.6 %
		- v	100 00	110.00	04 75			
		7	100.00	106.01	24.70		50.0	
10044- CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	X	0.00	112.58	4.43	0.00	150.0	± 9.6 %
		Y	0.07	121.95	9.84		150.0	
··		Z	0.01	118.94	9.83		150.0	
10048- CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	X	100.00	111.48	27.44	13.80	25.0	±9.6 %
		Y	100.00	112.85	28.28	- <u> </u>	25.0	
10040		<u>Z</u>	18.65	86.54	19.90		25.0	
CAA	Slot, 12)	X	100.00	112.40	26.75	10.79	40.0	± 9.6 %
	<u> </u>	<u>Y</u>	100.00	113.42	27.38		40.0	
10056-	LIMTS TOD (TD SCDMA 1 28 March)	<u> </u>	46.23	99.19	22.45		40.0	
	(10-30DMA, 1.28 MCps)	×	100.00	126.85	34.82	9.03	50.0	± 9.6 %
		- <u>'</u>	100.00	126.84	34.96		50.0	
10058-	EDGE-EDD (TDMA 8PSK TN 0-1-2.3)			116.99	30.84		50.0	
DAC		<u>^</u>	4.07	79.06	26.07	6.55	100.0	±9.6 %
	<u> </u>	<u> </u>	4.89	78.72	25.82		100.0	
10059-	IEEE 802 11b WiFi 2 4 GHz (DSSS 2	<u> </u>	3.78	<u> </u>	23.87		100.0	
CAB	Mbps)		1.24	00.08	16.89	0.61	110.0	± 9.6 %
		7	1.15	64.70	15.80	·	110.0	
10060- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	X	100.00	05.12 145.11	16.08 38.67	1.30	<u>110.0</u> 110.0	± 9.6 %
			100.00	120.44	05.54			
		7	100.00	143 12	37.45		110.0	
		-	100.00	<u>140.10</u>	57.40		0.011	

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11	X	5.01	92.44	27.34	2.04	110.0	± 9.6 %
		+	3.88	86.70	24.04	<u> </u>	110.0	<u> </u>
			2.64	81 37	24.94	+	110.0	<u> </u>
10062- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	4.74	66.80	16.70	0.49	100.0	± 9.6 %
		Y	4.72	66.44	16.52		100 0	
		Z	4.55	66.78	16.53	† <u> </u>	100.0	
10063- _CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	4.76	66.90	16.81	0.72	100.0	± 9.6 %
		Y	4.74	66.55	16.64		100.0	<u> </u>
10064		<u>Z</u>	4.57	66.86	16.62		100.0	
	Mbps)	X	5.07	67.18	17.05	0.86	100.0	± 9.6 %
		<u>Y</u>	<u>5.06</u>	66.88	16.91		100.0	
10065-	IEEE 802 11a/b W/IEI 5 CHz (OEDM 18	+ 5 -	4.83	67.08	16.83		100.0	
CAC	Mbps)		4.93	67.08	17.15	1.21	100.0	± 9.6 %
			4.92	66.80	17.03		100.0	
10066- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	X	4.95	67.11	17.33	1.46	100.0	± 9.6 %
		Y	4 94	66.84	17 22	<u></u>	100.0	
		Z	4.70	66.94	17.07		100.0	
10067- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.22	67.17	17.72	2.04	100.0	± 9.6 %
		Υ	5.23	66.94	17.65		100.0	
		Z	4.99	67.15	17.52		100.0	
10068- CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	X	5.28	67.31	17.99	2.55	100.0	±9.6 %
		Y	5.30	67.12	17.95		100.0	
10060				67.08	17.69		100.0	
	Mbps)	X	5.36	67.24	18.15	2.67	100.0	±9.6 %
		<u>ř</u>	5.38	67.05	18.11	<u> </u>	100.0	
10071-	IEEE 802.11g WiFi 2.4 GHz	X	5.09	66.83	17.88	1.00	100.0	
	(DSSS/OFDM, 9 Mbps)			66.59	17.50	1.99	100.0	± 9.6 %
		┼╼╧┤	4.83	66.80	17.40	·	100.0	
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.00	67.20	17.81	2.30	100.0	± 9.6 %
		Y	5.01	66.96	17.73		100 0	
		Z	4.79	67.07	17.56		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	Х	5.05	67.32	18.13	2.83	100.0	± 9.6 %
		Y	5.06	67.11	18.07		100.0	
		Z	4.84	67.21	17.87		100.0	
10074- CAB	IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.01	67.17	18.27	3.30	100.0	±9.6 %
		<u>Y</u>	5.03	66.98			100.0	
10075-	IEEE 802 11a W/iEi 2 4 GHz			67.10	18.01		100.0	
CAB	(DSSS/OFDM, 36 Mbps)		5.05	67.33	18.61	3.82	90.0	±9.6 %
		<u>r</u>	5.08	67.18	18.60		90.0	
10076-	IEEE 802 11g WiEi 2 4 GHz		<u>4.04</u> 5.04	67.01	18.28	4.45	90.0	
CAB	(DSSS/OFDM, 48 Mbps)		5.04 	07.01	10.07	4.15	90.0	± 9.6 %
	+	┼╌┤	0.00	66.05	18.66		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	5.05	67.06	18.76	4.30	90.0	± 9.6 %
		+ +	5 07	66.80	18.74		00.0	
		Ż	4.89	67.03	18.52		90.0	
						a l	,	1
10081-	CDMA2000 (1xRTT, RC3)	X	1.10	69.87	14.99	0.00	150.0	± 9.6 %
--------	------------------------------------	-----------------------	-------------	----------	--------------	-----------	----------	-------------
			<u> </u>				<u> </u>	
		<u> </u>	0.78	64.74	11.83		150.0	
10082-	IS-54 / IS-136 EDD (TDMA/EDM_PI/4-		0.78	60.00	11.97	4 77	150.0	
CAB	DQPSK, Fullrate)		0.03	00.00	4.38	4.//	00.0	±9.6 %
		Y	0.71	60.00	4.39		80.0	
		Z	7.97	68.50	6.36	<u> </u>	80.0	
10090-	GPRS-FDD (TDMA, GMSK, TN 0-4)	X	100.00	115.53	26.81	6.56	60.0	± 9.6 %
		<u> </u>	100.00	<u> </u>				
		Y	100.00	114.29	26.36		60.0	
10097-	UMTS-EDD (HSDPA)	$+\frac{2}{\sqrt{2}}$	100.00	109.90	23.90		60.0	
CAB		^	1.85	00.97	10.02	0.00	150.0	± 9.6 %
		Y	1.75	66.81	15 24		150.0	
		Z	1.87	68.90	16.13		150.0	
10098-	UMTS-FDD (HSUPA, Subtest 2)	X	1.91	68.95	16.60	0.00	150.0	± 9.6 %
		<u> </u>	1.71	66.77	15.20		150.0	
10000-			1.83	68.86	<u>16.11</u>		150.0	
DAC	LDOL I DD (IDMA, OPSK, IN 0-4)	^	11.93	100.45	36.42	9.56	60.0	± 9.6 %
		Y	11 20	97.95	35 37		60.0	
		ż	7.96	90.99	32.84		60.0	
10100-	LTE-FDD (SC-FDMA, 100% RB, 20	X	3.40	71.76	17.45	0.00	150.0	+96%
	MHz, QPSK)					0.00	100.0	1 3.0 %
		Y	3.10	69.82	16.33		150.0	
10101		Z	<u>3.12</u>	70.91	17.03		150.0	· · · · · ·
	MHz 16 OAM)	X	3.36	68.15	16.35	0.00	150.0	± 9.6 %
			2.04		4			
		<u>-</u>	3.24	67.23	15.//	<u> </u>	150.0	·
10102-	LTE-FDD (SC-FDMA, 100% RB, 20	X	3.45	68.05	16.07	0.00	150.0	
_CAE	MHz, 64-QAM)		0.40	00.00	10.42	0.00	150.0	±9.6%
		Ŷ	3.34	67.19	15.87		150.0	
		Z	3.28	67.71	16.16		150.0	
10103-	LTE-TDD (SC-FDMA, 100% RB, 20	X	6.86	77.75	21.56	3.98	65.0	± 9.6 %
	<u></u>	<u></u>						
		<u>- Y</u>	6.56	76.62	21.10		65.0	
10104-	LTE-TOD (SC EDMA 400% DD 20	<u> </u>	5.69	75.27	20.45		65.0	
CAF	MHz. 16-QAM)		6.41	74.58	21.07	3.98	65.0	±9.6 %
			6 33	74.04	20.96		05.0	
		z	5.58	72 74	20.00		65.0	
10105-	LTE-TDD (SC-FDMA, 100% RB, 20	X	6.09	73.43	20.88	3 98	65.0	+06%
CAF	MHz, 64-QAM)				20.00	0.00	05.0	± 9.0 %
		Y	6.03	72.95	20.69		65.0	
10109	ITE FDD (00 FD) II (00 FD)	Z	5.24	71.29	19.75		65.0	
CAF	MHz OBSK)	X	2.97	70.94	17.29	0.00	150.0	± 9.6 %
			0.70		10.17			
			2.72	69.08	<u>16.17</u>		150.0	
10109-	LTE-FDD (SC-FDMA, 100% BB, 10		-2.70	68.05	10.88		150.0	
CAF	<u>MHz, 16-QAM)</u>		0.02	00.05	10.32	0.00	150.0	±9.6%
		Y	2.90	67.02	15.66		150.0	
40440		Z	2.83	67.71	15.99		150.0	
10110-	LIE-FDD (SC-FDMA, 100% RB, 5 MHz,	X	2.42	70.09	17.00	0.00	150.0	± 9.6 %
	<u>ursk</u>					· · · · ·		//
	<u> </u>	<u>Y</u>	2.21	68.14	15.78		150.0	
10111-	LTE-EDD (SC-EDMA 100% PR 5 MUL	+	2.18	69.46	16.49		150.0	
CAF	16-QAM)		2.76	69.06	16.78	0.00	150.0	± 9.6 %
			2.50	67.50	15.90		150.0	<u> </u>
		Ż	2.59	68 99	16 20		150.0	
				00.00	10.00		100.0	

EX3DV4-- SN:7308

10112-	LTE-FDD (SC-FDMA, 100% RB, 10	T	3 1/	67 07	40.05	T		<u> </u>
CAF	MHz, 64-QAM)		5.14	07.97	16.35	0.00	150.0	± 9.6 %
		Y	3.03	67.00	15 72	<u>├</u>	150.0	<u>├-</u>
		Ž	2.95	67.72	16.05		150.0	<u>├──</u> ──
10113-	LTE-FDD (SC-FDMA, 100% RB, 5 MHz,	X	2.92	69.11	16.87	0.00	150.0	+96%
	64-QAM)						100.0	1 20.0 %
<u> </u>		Y	2.75	67.72	16.02		150.0	
10111		Z	2.74	69.14	16.51		150.0	
	IEEE 802.11n (HT Greenfield, 13.5	X	5.18	67.31	16.57	0.00	150.0	±9.6%
CAC								
		Y	<u>5.14</u>	66.93	16.36		150.0	
10115		Z	5.02	67.26	16.48		150.0	
		X	5.52	67.57	16.70	0.00	150.0	± 9.6 %
		V						
			5.51	67.29	16.56		150.0	
10116-	IEEE 802 11n (HT Greenfield, 135 Mbns		5.27	67.30	16.50		150.0	
CAC	64-QAM)	^	5.29	07.00	16.61	0.00	150.0	±9.6 %
		V	5.27	67.21	16.40		450.0	
		7	5.10	67.44	16.60		150.0	
10117-	IEEE 802.11n (HT Mixed, 13.5 Mbps.	X	5 16	67.25	16 55	0.00	150.0	+0.0%
CAC	BPSK)	``	5.10	020	10.00	0.00	100.0	19.0%
		Y	5.13	66.89	16.36	<u> </u>	150.0	
		Z	4.99	67.15	16.44		150.0	
10118-	IEEE 802.11n (HT Mixed, 81 Mbps, 16-	X	5.59	67.74	16.79	0.00	150.0	+96%
CAC								20.0 /0
		Y	5.60	67.49	16.67		150.0	
10110		Z	5.34	67.49	16.60		150.0	
10119-	IEEE 802.11n (HT Mixed, 135 Mbps, 64-	X	5.26	67.49	16.59	0.00	150.0	± 9.6 %
		<u>Y</u>	5.24	67.15			150.0	
10140-		<u> </u>	5.09	67.40	16.49		150.0	
CAE	MHz 16-0AM		3.50	68.05	16.33	0.00	150.0	±9.6 %
			2 20	67.40	45.70			
		7	3.39	67.19	15.79		150.0	
10141-	LTE-FDD (SC-EDMA 100% BB 15	X	3.62	69 10	16.07		150.0	
CAE	MHz. 64-QAM)		5.02	00.10	10.40	0.00	150.0	±9.6%
		Y	3.51	67 27	15 96		150.0	
		Z	3.43	67.85	16.00		150.0	
10142-	LTE-FDD (SC-FDMA, 100% RB, 3 MHz,	x	2.22	70.35	16.88	- 0.00	150.0	+98%
<u>CA</u> E	QPSK)		-			0.00	100.0	20.070
		Y	1.98	67.98	15.45	·	150.0	
		Z	1.97	69.67	16.10		150.0	
10143-	LTE-FDD (SC-FDMA, 100% RB, 3 MHz,	X	2.70	70.21	16.79	0.00	150.0	± 9.6 %
CAE	16-QAM)							
		Y	2.44	68.12	15.58		150.0	
10144		Z	2.48	69.97	16.00		150.0	
10144- CAE	LTE-FDU (SC-FDMA, 100% RB, 3 MHz,	X	2.42	67.64	15.07	0.00	150.0	± 9.6 %
	04-WAIVI)						<u> </u>	
		<u> </u>	2.20	00.15	14.15		150.0	
10145-		-4	2.13	66.86	13.96		150.0	
CAF	MHz OPSK)	^	1.94	ъ <u>8</u> .23	14.00	0.00	150.0	± 9.6 %
			1 25	6/ 02	12 02		150.0	
		7	1 00	63.72	10.21		150.0	
10146-	LTE-FDD (SC-FDMA, 100% RB, 1.4	$\frac{2}{x}$	2.38	68.67	13.30	0.00	150.0	+000
CAF	MHz, 16-QAM)		2.00	00.01	10.00	0.00	130.0	I 9.0 %
		Y	2.63	70,03	14,41		150.0	
		Z	1.37	62.94	8.80		150.0	
10147-	LTE-FDD (SC-FDMA, 100% RB, 1.4	X	3.01	71.74	14.81	0.00	150.0	± 9.6 %
CAF	_MHz, 64-QAM)		-					- 0.0 /0
<u> </u>		Y	3.44	73.73	16.16		150.0	
		Z	1.50	63.86	9.38		150.0	

10149- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	3.03	68.12	16.37	0.00	150.0	± 9.6 %
		v	2 91	67.09	15 71		150.0	
		7	2.31	67.08	16.04		150.0	
10150- CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	X	3.15	68.03	16.39	0.00	150.0	± 9.6 %
		Y	3.03	67.05	15 76		150 0	
		Z	2.96	67.78	16.09		150.0	
10151- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	7.33	80.62	22.85	3.98	65.0	± 9.6 %
		Ý	6.93	79.21	22.28		65.0	
		Z	6.07	78.22	21.74		65.0	
10152- CAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	X	5.98	74.73	20.92	3.98	65.0	±9.6 %
		Y	5.89	74.12	20.68		65.0	
10152	LTE TOD (00 EDUAL FOR DE ALLA	Z	5.12	72.74	19.78		65.0	
CAF	64-QAM)	X	6.33 	75.57	21.65	3.98	65.0	±9.6 %
		<u> </u>	6.23	74.94	21.41		65.0	
10154-		Z	5.49	73.78	_20.61		65.0	
CAF	QPSK)		2.49	70.63	17.32	0.00	150.0	± 9.6 %
		Y	2.26	68.57	16.06		150.0	
10155-	TE-EDD (SC-EDMA 50% PR 10 MH-		2.24	69.92	16.77		150.0	
CAF	16-QAM)		2.77	69.07	16.79	0.00	150.0	± 9.6 %
		<u> </u>	2.59	67.59	15.89		150.0	
10156-	LTE-FDD (SC-FDMA 50% RB 5 MHz		2.09	70.95	16.41	0.00	150.0	
CAF	QPSK)		2.11	70.85	16.93	0.00	150.0	± 9.6 %
·- <u> </u>		7	1.83	68.04	15.26		150.0	
10157- CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	2.31	69.80	15.80	0.00	150.0 150.0	± 9.6 %
		v ·	2 08	66.62	14 16	<u> </u>	450.0	
		7	1.98	67.47	13 02		150.0	
10158- CAF	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	x	2.92	69.17	16.92	0.00	150.0	± 9.6 %
		Y	2.75	67.77	16.06		150.0	
		Z	2.75	69.22	16.57		150.0	
10159- _CAF	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	X	2.44	69.17	15.69	0.00	150.0	± 9.6 %
		Y	2.19	67.06	14.45		150.0	
10100		Ζ	2.09	67.96	14.21		150.0	
CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	2.90	69.57	16.90	0.00	150.0	± 9.6 %
		<u>Y</u>	2.74	68.24	16.05		150.0	
10161		Z	2.70	69.25	16.60		150.0	
CAE	16-QAM)	X	3.05	67.98	16.35	0.00	150.0	± 9.6 %
	<u> </u>	<u>⊢ ≚</u>	2.93	66.95	15.69		150.0	
10162-	TE-EDD (SC-EDMA 50% PR 45 MUL	Z	<u>2.86</u>	67.77	16.01		150.0	
CAE	64-QAM)		3.15	68.06	16.42	0.00	150.0	± 9.6 %
	······································	<u> ¥</u>	3.03	67.06	15.79		150.0	
10166-	LTE-EDD (SC-EDMA 50% BB 14 MHz	- <u>4</u>	2.97	67.96	16.14		150.0	
CAF	QPSK)		3.07	69.77	19.22	3.01 	150.0	±9.6 %
		<u> </u>	3.71	69.61	19.37		150.0	
10167-	LTE-FDD (SC-FDMA 50% RB 1 4 MH-	+ 🗧	3.45	<u></u>	19.35		150.0	
CAF	16-QAM)		4.01	/2.92	19.78	3.01	150.0	±9.6 %
		⊢ <u>¥</u> –	4.57	72.37	19.78		150.0	
		<u> </u>	4.42	74.02	20.14		150.0	

EX3DV4-SN:7308

10168-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	X	5.13	75.25	21 12	3.01	150.0	+0.0 1/
CAF	64-QAM)			10.20	21.12	0.01	150.0	± 9.6 %
<u> </u>		<u>Y</u>	5.05	74.54	21.07		150.0	<u> </u>
10169-	LTE EDD (SC EDMA 1 DD 20 Mile	<u>Z</u>	5.13	77.22	21.87		150.0	
	QPSK)	X	3.12	70.03	19.37	3.01	150.0	± 9.6 %
		<u> </u>	3.15	69.73	19.46		150.0	
10170-		<u> </u>	2.86	69.57	19.15	<u> </u>	150.0	
CAE	16-QAM)		4.58	77.10	22.08	3.01	150.0	±9.6 %
<u> </u>	<u> </u>		4.39	75.79	21.81		150.0	
10171- AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	3.64	78.23	19.05	3.01	150.0 150.0	±9.6 %
		Y	3 59	71 47	19.00		450.0	
		z	3.36	72.39	19.02		150.0	
10172- CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	12.64	100.34	31.84	6.02	65.0	± 9.6 %
		Ŷ	12.97	100.68	32.37		65.0	
		Z	5.77	87.24	27.51		65.0	
10173- CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	36.96	114.71	33.67	6.02	65.0	± 9.6 %
		Y.	30.92	112.16	33.64		65.0	
40474		Z	22.36	108.00	31.61		65.0	
CAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	X	22.92	104.35	30.17	6.02	65.0	± 9.6 %
<u> </u>		Ϋ́	21.96	104.04	30.70		65.0	_
10175-		<u> </u>	11.65	95.24	27.25		65.0	
CAF	QPSK)	×.	3.08	69.68	19.10	3.01	150.0	± 9.6 %
	· <u> </u>	7	3.11	69.39	19.20		150.0	
10176-	LTE-EDD (SC-EDMA 1 RB 10 MHz		<u>Z.82</u>	09.22	18.88	2.04	150.0	
CAF	16-QAM)	~	4.09	75.90	22.09	3.01	150.0	± 9.6 %
	<u> </u>	7	4.40	78.06	21.82		150.0	
10177- CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	3.11	69.85	19.21	3.01	150.0	± 9.6 %
		Y	3.14	69,56	19.30		150.0	
		Z	2.84	69.38	18.97		150.0	
10178- CAF	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	4.53	76.83	21.94	3.01	150.0	± 9.6 %
		Y	4.34	75.53	21.68		150.0	
		Z	4.39	77.99	22.42		150.0	
10179- CAF	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	4.06	74.50	20.40	3.01	150.0	± 9.6 %
	<u> </u>	<u>Y</u>	3.95	73.49	20.26		150.0	
10180		Z	3.83	75.09	20.61		150.0	
CAF	QAM)	X	3.62	72.15	18.99	3.01	150.0	± 9.6 %
	+	Y -	3.58	/1.38	18.93		150.0	
10181-		4	3.35	60.92	18.97	2.04	150.0	
CAE	QPSK)	<u> </u>	0.10	09.03	19.20	3.01	150.0	± 9.6 %
			2.13	69.54	19.29		150.0	
10182- CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	4.52	76.80	21.93	3.01	150.0	± 9.6 %
		Y	4.33	75.51	21.66		150 0	<u> </u>
		Ż	4.38	77.96	22,40		150.0	
10183- AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	3.62	72.12	18.97	3.01	150.0	±9.6%
		Y	3.57	71.35	18.91		150.0	
		Z	3.34	72.29	18.96		150.0	

10184-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz,	X	3 11	69.88	19 22	3 01	150.0	+96%
CAE	QPSK)		0.11	00.00	13.22	0.01	100.0	1 9.0 %
		Y	3.14	69.58	19.32		150.0	
		z	2.85	69.41	18 99		150.0	
10185-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-	X	4.54	76.88	21.97	3.01	150.0	+96%
CAE	QAM)					0.01	100.0	10.0 /0
		Y	4.35	75.59	21.70		150.0	
		Z	4.41	78.06	22.45		150.0	
10186-	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-	Х	3.64	72.20	19.01	3.01	150.0	±9.6 %
	QAM)							
		Y	<u>3.5</u> 9	71.42	18.95		150.0	
10107		Z	3.36	72.37	19.00	_	150.0	_
10187- CAF	QPSK)	X	3.12	69.93	19.28	3.01	150.0	± 9.6 %
		Y	3 15	69.63	19.37		150.0	
		Ż	2.86	69.48	19.07		150.0	
10188-	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz,	X	4.72	77 70	22.40	3.01	150.0	+96%
CAF	16-QAM)						100.0	
		Y	4.51	76.33	22.11		150.0	
10190		Z	4.61	<u>78</u> .98	22.92		150.0	
AAF	64-QAM)	X	3.73	72.70	19.32	3.01	150.0	± 9.6 %
		Y	3.67	71.88	19.24		150.0	
		Ζ	3.46	72.92	19.33		150.0	
10193-	IEEE 802.11n (HT Greenfield, 6.5 Mbps,	X	4.59	66.76	16.33	0.00	150.0	± 9.6 %
	BPSK)			66.04	40.00			
	· · · · · · · · · · · · · · · · · · ·	7	4.00	00.31	10.09		150.0	
10194-	IEEE 802 11n (HT Greenfield 39 Mbps		- <u>4.42</u>	67.10	16.19	0.00	150.0	
CAC	16-QAM)	L	4.77	07.10	10.45	0.00	150.0	±9.6%
		Y_	4.74	66.66	16.21		150.0	
40405		Z	4.58	67.08	16.32		150.0	
10195- CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-OAM)	X	4.82	67.12	16.46	0.00	150.0	± 9.6 %
		<u>_</u>	4 70		40.00			
		7	4.78	66.69	16.22		150.0	
10196-	IEEE 802 11n (HT Mixed 6.5 Mbps	× ×	4.62	66.94	16.34	0.00	150.0	
CAC	BPSK)		4.00	00.04	10.30	0.00	150.0	±9.6%
		Y	4.56	66.40	16.12		150.0	
10107		Z	4.41	66.83	16.20		150.0	
CAC	□ IEEE 802.11n (HT Mixed, 39 Mbps, 16- □ QAM)	X	4.79	67.12	16.46	0.00	150.0	±9.6 %
		Y	4 75	66.69	16.22	<u> </u>	150.0	
·		Ż	4.59	67.09	16.33		150.0	
10198-	IEEE 802.11n (HT Mixed, 65 Mbps, 64-	X	4.82	67.14	16.00	0.00	150.0	+96%
CAC	QAM)						100.0	13.0 %
		<u> </u>	4.78	66.71	16.24		150.0	
10219-	IEEE 802 11n (HT Mixed 7.0 Mine	<u> </u>	4.61	67.11	16.35		150.0	
CAC			4.55	66.86	16.33	0.00	150.0	± 9.6 %
		Y	4.51	66.41	16.08		150.0	
		Z	4.37	66.86	16.17		150.0	
10220-	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-	X	4.79	67.10	16.45	0.00	150.0	±9.6 %
	QAM)							
<u> </u>		⊢¥	4.75	66.67	16.22		150.0	
10221-	IFFE 802 11n (HT Mixed 72.2 Mbrs 64		4.58	67.05	16.32		150.0	
CAC	QAM)		4.83	67.06	16.45	0.00	150.0	±9.6 %
		Y	4.79	66.64	16.23		150.0	
		Z	4.62	67.04	16.33		150.0	
10222- CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	X	5.14	67.26	16.55	0.00	150.0	± 9.6 %
			<u> </u>		40.00			
		7	4.07	6745	16.36	<u> </u>	150.0	
	······································		4.9/	L 07.15	10.43		I 150.0	

EX3DV4-- SN:7308

10223-	IEEE 802.11n (HT Mixed, 90 Mbps, 16-	X	5.45	67.43	16 65	0.00	150.0	100%
	QAM)			01.40	10.00	0.00	150.0	± 9.6 %
		Ŷ	5.45	67.18	16.52		150.0	
		Z	5.25	67.35	16.55	<u> </u>	150.0	<u> </u>
10224-	IEEE 802.11n (HT Mixed, 150 Mbps, 64-	X	5.19	67.37	16.53	0.00	150.0	+069
	QAM)	Ì			10.00	0.00	130.0	19.0%
		Y	5.15	66.99	16.33		150 0	
<u> </u>		Z	5.01	67.26	16.42		150.0	
10225-	UMTS-FDD (HSPA+)	X	2.89	66.55	15.78	0.00	150.0	+069/
						0.00	100.0	1 2 9.0 %
		Y	2.80	65,71	15.24		150.0	
		Z	2.72	66.49	15.32		150.0	
10226-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X	42.12	117.30	34.47	6.02	65.0	+96%
	16-QAM)	_					00.0	20.0 %
		Y	34.39	114.35	34.35		65.0	
		Z	25.78	110.75	32.49		65.0	
10227-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X :	33.34	110.83	32.01	6.02	65.0	±9.6%
	64-QAM)							
		Y.	<u>29.1</u> 4	109.23	32.25		65.0	
40000		Z	<u>23.91</u>	107.08	30.63		65.0	
10228-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X	15.66	105.06	33.38	6.02	65.0	± 9.6 %
	<u>QPSK)</u>							
	·	Y	<u> 15.84 </u>	105.37	33.95		65.0	
10000		Z	7.75	93.33	29.68		65.0	
10229-	LTE-TOD (SC-FDMA, 1 RB, 3 MHz, 16-	X	37.28	114.84	33.72	6.02	65.0	± 9.6 %
		<u> </u>		<u> </u>				
— <u> </u>	<u> </u>	<u>Y</u>	31.13	112.26	33.67		65.0	
10220		Z	22.62	108.17	<u>31.67</u>		65.0	
CAC	QAM)	X	29.88	108.76	31.36	6.02	65.0	±9.6 %
		Y	26.58	107.43	31 66		65.0	
		Z	20.85	104.61	29.86	<u>-</u>	65.0	<u>_</u>
10231-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz,	X	14.65	103.59	32.85	6.02	65.0	+96%
CAC	QPSK)						00.0	10.0 /0
		Y	14.88	103.95	33.43		65.0	
		Z	7.34	92.15	29.19		65.0	
10232-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-	X	37.25	114.84	33.71	6.02	65.0	± 9.6 %
	QAM)							
	<u> </u>	Y	<u>31.</u> 10	112.26	33.67		65.0	
10000		Z	22.58	108.16	31.67		65.0	
10233-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-	X	29.82	108.74	31.35	6.02	65.0	±9.6 %
CAE	QAM)							
		Y	26.53	107.41	31.66		65.0	
10004	1 75 700 /00 501// / 75 500	Z	20.76	104.56	29.85		65.0	
10234- CAE	LTE-TUD (SC-FUMA, 1 RB, 5 MHz,		13.83	102.21	32.30	6.02	65.0	± 9.6 %
			14.40	100.04	00.04			_
			7.02	102.64	32.91		65.0	
10235-	LTE-TOD (SC-EDMA 1 RB 10 MHz		- 7.03	91.14	28.71		65.0	
CAE	16-QAM)		37.38	114.93	33.74	6.02	65.0	± 9.6 %
		v	31.21	112 24	22 70		05.0	
		7	22.65	108.24	21.60		05.0	
10236-	LTE-TDD (SC-FDMA 1 RB 10 MHz	X	30.43	100.24	21 /2		05.0	
CAE	64-QAM)	^	00.40	103.00	51.45	0.02	05.0	±9.0 %
			27.03	107 71	31 73		65.0	
		Ż	21,22	104 87	29.93		65.0	
10237-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz.		14,73	103 74	32.90	6.02	65.0	+96%
CAE	QPSK)	.				0.02	00.0	± 3.0 70
		Y	14.96	104.11	33.48		65.0	
		Z	7.35	92.21	29.22		65.0	
10238-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz.	X	37.20	114.83	33.71	6.02	65.0	+96%
CAE	16-QAM)				++++	Q.V2		- 0.0 /0
		Y	31.07	112.26	33.67		65.0	
		Z	22.51	108.13	31.66		65.0	

10239-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz,	X	29.73	108.72	31.35	6.02	65.0	± 9.6 %
			26 19	107.40	24.66		000	
	<u> </u>	7	20.40	107.40	20.83		65.0	
10240- CAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, OPSK)	X	14.67	104.50	32.88	6.02	65.0	± 9.6 %
		Y	14.89	104.03	33.46		65.0	
		Ż	7.33	92.17	29.20		65.0	
10241- CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	X	8.22	81.62	25.84	6.98	65.0	± 9.6 %
		Y	8.21	81.11	25.93		65.0	·
		Z	7.55	81.89	25.74		65.0	· · · ·
10242- <u>CA</u> A	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	7.60	79.92	25.06	6.98	65.0	±9.6 %
		Y	7.70	79.68	25.24		65.0	
		Ζ	6.63	79.21	24.57		65.0	
10243- <u>CA</u> A	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	Х	6.06	76.28	24.43	6.98	65.0	± 9.6 %
		Y	6.20	76.29	24.69		65.0	
10044		Z	<u>5.27</u>	<u>75</u> .02	23.70		65.0	
10244- _CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	6.94	79.13	20.40	3.98	65.0	± 9.6 %
		Y	7.61	80.93	21.65		65.0	
10045		Z	4.63	73.01	16.54		65.0	
CAC	64-QAM)	X	6.74	78.35	20.03	3.98	65.0	±9.6 %
		Y	7.38	80.11	21.28		65.0	
10246		<u>Z</u>	4.46	72.20	<u>16.1</u> 4		<u>65</u> .0	
CAC	QPSK)	X	8.26	86.16	23.38	3.98	65.0	±9.6 %
┢━━━━-━		<u>Y</u>	7.07	83.23	<u>22</u> .34		65.0	
10247-		<u>-</u>	4.76	77.46	19.00		65.0	
CAE	16-QAM)	X	5.60	76.50	20.35	3.98	65.0	± 9.6 %
		- <u>-</u>	5.37	75.45	19.96		65.0	
10248-	TE-TDD (SC-EDMA 50% BB 5 MHz		4.29	75.70	17.71		65.0	
CAE	64-QAM)	- <u>`</u>		75.70	19.98	3.98	65.0	± 9.6 %
		7		74.79	19.65		65.0	
10249- CAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, OPSK)	X	9.19	88.24	24.95	3.98	65.0	± 9.6 %
		Y	7 96	85 32	23 00		65.0	
		Ż	6.28	82.28	22.00	··	65.0	
10250- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	X	6.20	77.76	22.32	3.98	65.0	± 9.6 %
		Γγ	6.01	76.85	21.97		65.0	
		Ζ	5.20	75.42	20.86		65.0	
10251- _CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	5.85	75.32	20.92	3.98	65.0	± 9.6 %
L		Y	5.73	74.58	20.63		65.0	
		Z	4.92	73.12	19.45		65.0	
10252- CAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	Х	8.09	84.95	24.58	3.98	65.0	±9.6 %
		Y	7.42	82.94	23.81		65.0	
40050		Z	6.31	<u>81.5</u> 2	22.96		65.0	
CAE	16-QAM)	X	5.80	74.00	20.63	3.98	65.0	± 9.6 %
<u> </u>	· · · · · · · · · · · · · · · · · · ·	Y	5.72	73.40	20.39		65.0	<u> </u>
10054		Z	5.04	72.28	19.52		65.0	
CAE	64-QAM)	X	6.14	74.84	21.30	3.98	65.0	± 9.6 %
		Y	6.05	74.22	21.07		65.0	┼─────┤
		Z	5.36	73.21	20.25		65.0	

Certificate No: EX3-7308_Aug18

EX3DV4- SN:7308

10255-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	6.81	79.50	22.67	3.98	65.0	± 9.6 %
		+ _Y -	6.50	78.25	22.40	<u> </u>		
		<u> </u>	5 72	77.27	21.10	╞───-	65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	x	5.54	75.38	17.88	3.98	65.0	± 9.6 %
		Y	6.45	78.02	19.55	<u> </u>	65.0	
10057		Z	3.15	67.52	12.83		65.0	+
CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	5.31	74.31	17.34	3.98	65.0	± 9.6 %
		Y	6.14	76.80	18.96		65.0	+
10050		Z	3.05	66.79	12.37		65.0	<u>+</u>
<u>CAA</u>	MHz, QPSK)	X	6.24	81.13	20.76	3.98	65.0	± 9.6 %
		Ι <u>Υ</u>	<u> </u>	78.91	19.97		65.0	
10259		Z	3.09	70.62	15.05		65.0	
CAC	16-QAM)		5.84	76.93	21.04	3.98	65.0	± 9.6 %
			5.63	75.94	20.66		65.0	
10260-	LTE-TOD (SC-EDMA 100% PR 2 MH-		<u>4.68</u>	73.82	18.92		65.0	
CAC	64-QAM)	×	5.84	76.54	20.88	3.98	65.0	± 9.6 %
	<u> </u>	- <u>+</u>	5.65	75.62	20.54		65.0	
10261-	LTETED (SC-EDMA 100% PR 3 MUS		4.68	73.47	18.76		65.0	
CAC	QPSK)		7.94	85.32	24.30	3.98	65.0	± 9.6 %
			<u>/.1/</u>	83.07	23.45		65.0	
10262- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	<u> </u>	77.72		3.98	<u>65.0</u> 65.0	± 9.6 %
			6 00 8	76.91	21.02			_
		7	5 19	75.36	20.81		65.0	
10263- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	5.84	75.30	20.91	3.98	65.0	± 9.6 %
		Y	5.72	74.57	20.63		65.0	
		Z	4.91	73.09	19.44		65.0	
10264- CAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	8.00	84.72	24.48	3.98	65.0	± 9.6 %
		Y	7.34	82.73	23.71		65.0	
		Z	6.24	81.28	22.84		65.0	
10265- CAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	5.98	74.73	20.93	3.98	65.0	± 9.6 %
		Y	5.89	74.12	20.69		65.0	
10266		Z	5.12	<u>72.74</u>	19.78		65.0	
_CAE	MHz, 64-QAM)	X	6.33 	75.56	21.64	3.98	65.0	± 9.6 %
		<u>Y</u>	6.22	74.93	21.40		65.0	
10267-	LTE-TOD (SC EDMA 100% DD 10		5.49	73.76	20.60		65.0	
CAE	MHz, QPSK)	X	7.32	80.56	22.82	3.98	65.0	± 9.6 %
			6.92	79.16	22.26		65.0	
10268-	LTE-TOD (SC-EDMA 100% BB 15	<u> </u>	6.05	78.17	21.72		65.0	
CAE	MHz, 16-QAM)		0.52	74.24	21.04	3.98	65.0	± 9.6 %
-		┝╌╧┤	6.45	/3.73	20.85		65.0	<u> </u>
10269- CAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz 64-QAM)	X	<u>5.74</u> 6.46	73.71	20.16 20.87	3.98	65.0 65.0	±9.6 %
		Y	6.39	73.22	20.69		65.0	
10070		Z	5.73	72.22	20.02		65.0	
CAE	MHz, QPSK)	X	6.79	76.82	21.42	3.98	65.0	± 9.6 %
		Y	6.57	75.90	21.04		65.0	
		Z	5.88	75.11	20.59		65.0	

10274- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	X	2.66	66.98	15.73	0.00	150.0	± 9.6 %
		Y	2 54	65 90	15.04	<u> </u>	150.0	
			2.55	67.07	15.35		150.0	<u> </u>
10275- CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	X	1.78	69.77	16.72	0.00	150.0	± 9.6 %
		ΤY-	1.55	67.13	15.03		150.0	
		Z	1.62	69.04	16.02		150.0	<u>+</u>
10277-	PHS (QPSK)	X	2.12	61.97	7.55	9.03	50.0	+96%
<u>C</u> AA	·		0.05	<u> </u>	7.00			
			2,20	60.21	7.96		50.0	
10278- CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	X	10.93	86.19	21.29	9.03	50.0	± 9.6 %
			9.64	84.41	20.05		50.0	
	<u> </u>		3.57	69.00	20.95		50.0	
10279-	PHS (QPSK, BW 884MHz, Rolloff 0.38)	X	11 22	86.49	21.46	9.03	50.0	+06%
CAA					21.40	9.03	50.0	19.0%
	<u> </u>	<u>Y</u>	9.91	84.71	<u>21.11</u>		<u>50.0</u>	
10290-	CDMA2000 BC1 SOFE Full Bate	<u> </u>	3.69	69.35	13.38			· _
AAB		X	1.95	72.86	16.32	0.00	150.0	± 9.6 %
		Y	1.38	67.46	13.46		150.0	
		Z	1.34	_ 68.81	13.27		150.0	
10291- 	CDMA2000, RC3, SO55, Full Rate	Х	1.06	69.47	14.79	0.00	150.0	± 9.6 %
		Y	0.76	64.53	11.71		150.0	
		Z	0.76	66.05	11 81		150.0	
10292- AAB	CDMA2000, RC3, SO32, Full Rate	X	1.83	78.35	18.94	0.00	150.0	± 9.6 %
		TY	0.91	67.73	13.68	<u> </u>	150 0	<u>_</u>
		Ż	1.34	73.93	15.68		150.0	<u> </u>
10293- AAB	CDMA2000, RC3, SO3, Full Rate	X	4.73	93.04	24.47	0.00	150.0	± 9.6 %
		Ŷ	1.31	72 72	16.40	<u> </u>	150.0	
		Ż	6.43	94.81	23 11		150.0	
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	X	10.60	89.87	26.40	9.03	50.0	± 9.6 %
		Y	10.25	88.78	26.08		50.0	
		Ż	12.25	89.80	24 68		50.0	
10297- AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	2.99	71.06	17.36	0.00	150.0	±9.6 %
		Y	2.73	69 18	16.24		150 0	
		Ż	2.72	70.32	16.96		150.0	
10298- AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	X	1.90	70.47	15.90	0.00	150.0	± 9.6 %
		Y	1.56	67.01	13.91		150 0	┝────┥
40000		Z	1.44	67.67	13.50		150.0	┝────┥
10299- <u>AA</u> D	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	X	3.07	71.64	15.53	0.00	150.0	± 9.6 %
		Y	3.23	72.42	16.33		150.0	
		Z	2.17	67.61	12.32		150.0	
10300- 	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	X	2.19	66.26	12.34	0.00	150.0	± 9.6 %
		<u>Y</u>	2.31	66.80	13.02		150.0	
10301			1.57	63.33	9.50		150.0	
	10MHz, QPSK, PUSC)	X	4.82	65.43	17.57	4.17	50.0	± 9.6 %
		Y	4.87	65.32	17.50		50.0	
40000		Z	4.60	65.72	17.49		50.0	
10302- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	X	5.31	66.17	18.35	4.96	50.0	± 9.6 %
		Ŷ	5.36	66.00	18 25	<u> </u>	50.0	
		z	5.00	66.00	18.02		50.0	——

EX3DV4-- SN:7308

10303-	IEEE 802.16e WIMAX (31:15, 5ms,	X	5.06	65.83	18 21	4 96	50.0	
<u> </u>	10MHz, 64QAM, PUSC)				10.21	4.50	50.0	1 9.6 %
		Ý	5.11	65.70	18.12	<u> </u>	50.0	+
40004		Z	4.75	65.61	17.82		50.0	<u></u>
AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	X	4.87	65.69	17.69	4.17	50.0	± 9.6 %
		Ý	4.90	65.47	17.55		50.0	·
10005		Z	4.58	65.56	17.35		50.0	
10305- <u>AAA</u>	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	4.43	67.35	19.83	6.02	35.0	± 9.6 %
		Y]	4.56	67.70	19.98	<u> </u>	35.0	
40000		Z	4.15	67.17	19.10		35.0	
AAA	10MHz, 64QAM, PUSC, 18 symbols)	X	4.77	66.43	19.36	6.02	35.0	± 9.6 %
	<u> </u>	<u>Y</u>	4.86	66.61	19.45		35.0	
10307-	IEEE 802 160 M/MAX (20:40, 40-	Z	4.49	66.31	<u>18.</u> 82		35.0	
	10MHz, QPSK, PUSC, 18 symbols)	X	4.67	66.65	19.36	6.02	35.0	±9.6 %
		<u>Y</u>	4.78	66.88	19.46		35.0	
10308-	IFEE 802 16e WIMAX (20:18, 10mg	+ + +	4.37	66.39	18.75	<u> </u>	35.0	
_AAA	10MHz, 16QAM, PUSC)		4.64	66.81	19.48	6.02	35.0	±9.6 %
		+ ¥ 	4.74	67.03	19.58		35.0	
10309-	IEEE 802 16e WiMAX (29-18, 10mg		4.35	66.60	18.90		35.0	
AAA	10MHz, 16QAM, AMC 2x3, 18 symbols)		4.84	66.72	19.54	6.02	35.0	± 9.6 %
		Y 7	4.94	66.92	19.63		35.0	
10310- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, OPSK, AMC 2x3, 18 symbols)	X	4.52	66.49	<u>18.95</u> 19.33	6.02	35.0 35.0	± 9.6 %
	Towniz, Gron, Ame 2x3, To symbols)	$+ \vee +$	1 01	66 60	10.10			
	· · · · · · · · · · · · · · · · · · ·	┼┾┤	4.01	66 27	19.42		35.0	
10311- AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	X	3.36	70.26	16.95	0.00	150.0	±9.6%
		Y	3.08	68.46	15.91		150.0	
		Ż	3.08	69.51	16.57		150.0	
10313- AAA	iDEN 1:3	X	5.95	81.40	19.48	6.99	70.0	±9.6 %
		Y	4.30	76.35	17.48		70.0	
		Z	3.21	73.80	16.43		70.0	
10314- AAA	iDEN 1:6	X	12.17	97.07	27.72	10.00	30.0	± 9.6 %
<u> </u>		Y	7.44	87.94	24.60		30.0	
10045		Z	6.18	85.76	23.72		30.0	
AAB	Mbps, 96pc duty cycle)	X	1.10	64.61	16.02	0.17	150.0	± 9.6 %
		Y	1.01	63.21	14.85		150.0	
10216			1.05	<u>64</u> .14	15.48		150.0	
AAB	OFDM, 6 Mbps, 96pc duty cycle)	X	4.65	66.81	16.47	0.17	150.0	± 9.6 %
	<u></u>	<u> Y</u>	4.62	66.42	16.27	<u> </u>	<u> 15</u> 0.0	
10317-		+ { + +	4.46	66.78	<u>16.31</u>		150.0	
AAC	Mbps, 96pc duty cycle)		4.65	66.81	16.47	0.17	150.0	±9.6 %
	<u>+</u>	<u> </u>	4.62	66.42	16.27		150.0	
10400-	1EEE 802 11ac W/IEI (20MHz 64 OAM	<u>-÷</u>	4.46	66.78	16.31		150.0	
AAD	99pc duty cycle)		4./8	07.10	16.44	0.00	150.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·		4./4	66.73	16.21		150.0	<u>]</u>
10401_			4.55	67.11	16.31		150.0	
AAD	99pc duty cycle)		5.43	67.23	16.53	0.00	150.0	± 9.6 %
-	<u> </u>	<u> Υ</u>	5.42	66.92	16.38		150.0	
		LΖ	5.24	<u>67.</u> 11	16.40		150.0	

10402- AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	X	5.71	67.66	16.59	0.00	150.0	± 9.6 %
		Y	5.70	67.34	16.43		150.0	
L		Z	5.52	67.48	16.45		150.0	
10403- AAB	CDMA2000 (1xEV-DO, Rev. 0)	X	1.95	72.86	16.32	0.00	115.0	± 9.6 %
		Y	1.38	67.46	13.46		115.0	
		Z	1.34	68.81	13.27		115.0	
10404- AAB	CDMA2000 (1xEV-DO, Rev. A)	X	1.95	72.86	16.32	0.00	115.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	<u>1.38</u>	67.46	13.46	_	115.0	
10100			1.34	<u>68.81</u>	13.27		115.0	
AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	X	100.00	122.38	30.73	0.00	100.0	± 9.6 %
		Y	81.48	123.67	32.28		100.0	
10110		Z	100.00	<u>11</u> 4.83	_ 26.66		100.0	
AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	X	100.00	123.65	31.04	3.23	80.0	± 9.6 %
-	<u> </u>	Y	100.00	127.30	33.02		80.0	
40445		Z	100.00	122.18	29.60		80.0	
10415- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	X	1.02	63.74	15.40	0.00	150.0	± 9.6 %
		<u>Y</u>	0.94	62.36	14.20		150.0	
10440		Z	<u>0.</u> 99	63.49	14.99		150.0	
AAA	OFDM, 6 Mbps, 99pc duty cycle)	X	4.59	66.79	16.39	0.00	150.0	± 9.6 %
		<u> </u>	4.55	66 <u>.36</u>	<u>16.15</u>		150.0	
10/17		Z	4.42	<u> 66.</u> 82			150.0	
	Mbps, 99pc duty cycle)	X	4.59	66.79	16.39	0.00	150.0	±9.6 %
		Y	4.55	66.36	16.15		150.0	
10/10		Z	4.42	66.82	<u>16.27</u>	_	150.0	
AAA	OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	X	4.58	66.96	16.41	0.00	150.0	± 9.6 %
— <u> </u>		Y	4.54	<u>66.</u> 49	16.15		150.0	
10410		<u>Z</u>	4.42	<u>67.01</u>	16.31		150.0	
AAA	OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	×	4.61	66.90	16.41	0.00	150.0	± 9.6 %
		<u>Y</u>	4.56	66.45	16.16		150.0	
10422		- <u>z</u>	4.43	66.95	16.30		150.0	
	BPSK)	X	4.73	66.90	16.41	0.00	150.0	± 9.6 %
		<u>Y</u>	<u>4.69</u>	<u>66.47</u>	16.18		150.0	
10423-		Z	4.54	66.92	<u>16.3</u> 1		150.0	
AAB	Mbps, 16-QAM)	X	4.91	67.24	16.54	0.00	150.0	±9.6 %
	·	⊢ <u>Ť</u> ∣	4.87	66.82	<u>16.3</u> 1		150.0	
10424-		<u> </u>	4.68	<u>67.21</u>	16.40		150.0	
AAB	Mbps, 64-QAM)	X	4.82	67.19	16.51	0.00	150.0	±9.6 %
	<u> </u>	<u> </u>	4.79	66.76	16.28		150.0	
10425-		L Z	4.61	67.16	16.38		150.0	
AAB	BPSK)	×	5.41	67.47	16.65	0.00	150.0	± 9.6 %
—	<u> </u>	<u> Y</u>	5.40	<u>67.</u> 17	16.50		150.0	
10/26		Z	5.21	67.35	16.53		150.0	
AAB	16-QAM)	×	5.41	67.47	16.65	0.00	150.0	±9.6 %
<u> </u>		Y	5.40	67.19	16.50		150.0	
		<u>Z</u>	5.23	67.42	16.56		150.0	— —

EX3DV4- SN:7308

10427-	IEEE 802.11n (HT Greenfield, 150 Mbps,	x	5.42	67.47	16 64		150.0	+0.6 %
	64-QAM)				10.04	0.00	150.0	± 9.0 %
		<u> </u>	5.41	67.16	16.48		150.0	
10430-	LTE-FDD (OEDMA 5 MHz E-TM 3 1)	<u>-</u>	5.22	67.32	16.51	<u> </u>	150.0	
AAC			4.40	/1.17	18.58	0.00	150.0	± 9.6 %
	+	Y -	4.23	70.08	17.99		150.0	
10431-	LTE-FDD (OFDMA 10 MHz F-TM 3 1)	╞╧	4.30	$\frac{72.10}{0.740}$	18.56		150.0	
AAC			4.01	07.42	16.46	0.00	150.0	± 9.6 %
		7	4.20	67.45	16.15	<u> </u>	150.0	
10432- AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	x	4.60	67.26	16.24	0.00	150.0	± 9.6 %
		Y	4.56	66.79	16.22	<u> </u>	150.0	
10.000		Z	4.38	67.26	16.33	<u> </u>	150.0	
10433- AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	4.84	67.23	16.53	0.00	150.0	± 9.6 %
		Y	4.80	66.80	16.30		150.0	
10424	MICOMA (DO Tast Markel 4 of DOUD	<u>Z</u> .	4.63	67.20	16.40		150.0	
AAA		X	4.54	72.17	18.64	0.00	150.0	± 9.6 %
	<u> </u>	<u> </u>	4.31	70.81			150.0	
10435		<u> </u>	4.47	73.20	18.53		150.0	
AAE	QPSK, UL Subframe=2,3,4,7,8,9)		100.00	123.43	30.93	3.23	80.0	± 9.6 %
			100.00	127.09	32.93		80.0	
10447- AAC	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.63	67.60	<u>29.46</u> 15.97	0.00	80.0 150.0	± 9.6 %
		Y	3.55	66.82	15.51		150.0	
		Z	3.36	67.49	15.39		150.0	
10448- AAC	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	4.14	67.21	16.33	0.00	150.0	± 9.6 %
		Y	4.08	66.64	16.00		150.0	
40440		Z	3.93	67.24	16.11		150.0	
10449- AAC	L1E-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	×	4.40	67.10	16.39	0.00	150.0	± 9.6 %
		<u>Y</u>	4.35	66.60	<u>16.1</u> 1		150.0	
10450		<u>_Z</u>	4.21	67.10	16.24		150.0	
AAC	Clipping 44%)	X	4.59	67.00	16.40	0.00	150.0	± 9.6 %
		Y	4.54	66.54	16.14		150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	<u>4.41</u> 3.56	67.98	<u>16.27</u> 15.68	0.00	150.0 150.0	± 9.6 %
		Y	3.45	67.01	15,16		150.0	
		Z	3.21	67.51	14.85		150.0	
10456- AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	X	6.26	68.01	16.78	0.00	150.0	± 9.6 %
-		Y	6.26	67.75	16.66		150.0	
10457		Z	6.13	67.97	16.72		150.0	
AAA	UMIS-FDD (DC-HSDPA)	X	3.81	65.42	16.11	0.00	150.0	± 9.6 %
			3.77	64.98	15.86		150.0	
10458-			3.13		15.98		150.0	
AAA	carriers)		4.10	60.01	17.08	0.00	150.0	± 9.6 %
	+		3.82	72.44	17.32		150.0	
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	5.19	68.40	18.36	0.00	150.0	± 9.6 %
		Y	5.10	67 75	18.06		150.0	
		Ż	5.01	69.18	18.25		150.0	
		<u> </u>						

10460-	UMTS-FDD (WCDMA, AMR)	Х	1.07	72.05	18.39	0.00	150.0	± 9.6 %
			0.04	07.05	1	<u> </u>		
<u>-</u>		Y 7	0.81	67.05	15.17		150.0	
10461-	LTE-TDD (SC-EDMA 1 RB 14 MHz	+ <u>-</u>	100.00	120.11	17.24	2.00	150.0	100%
AAA	QPSK, UL Subframe=2.3.4.7.8.9)	^	100.00	129.11	33.59	3.29	80.0	±9.6 %
	,	Y	100.00	132.68	35.56		80.0	
		Ż	100.00	128.17	32.38	+	80.0	
10462-	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz,	X	29.76	94.39	20.32	3 23	80.0	+96%
AAA	16-QAM, UL Subframe=2,3,4,7,8,9)						00.0	10.0 %
	· · · · · · · · · · · · · · · · · · ·	Y	100.00	112.07	25.94	[80.0	
40.400		Z	0.79	60.49	7.76		80.0	
10463-	LIE-IDD (SC-FDMA, 1 RB, 1.4 MHz,	X	2.50	68.97	12.20	3.23	80.0	± 9.6 %
<u> </u>	<u>04-QAM, OL Subirame=2,3,4,7,8,9)</u>		400.00	407.50		<u> </u>		
	···-	$\frac{1}{7}$		107.58	23.85		80.0	
10464-	LTE-TDD (SC-EDMA 1 BB 3 MHz		100.00	126.20	0.89	2.00	80.0	
AAB	QPSK, UL Subframe=2.3.4.7.8.9)	^	100.00	120.29	32.12	3.23	80.0	± 9.6 %
		Y	100.00	130.29	34.26	<u> </u>	800	
		Z	100.00	124.25	30.42		80.0	
10465-	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-	X	9.13	82.53	17.12	3.23	80.0	+96%
	QAM, UL Subframe=2,3,4,7,8,9)						00.0	20.0 /0
<u>_</u>	·	Y	100.00	111.30	25.58		80.0	
10400		Ž	<u>0.75</u>	60.00	7.44		80.0	
10466-	CAM UL Subfrome=2.2.4.7.9.0	X	1.98	66.71	11.27	3.23	80.0	±9.6 %
	CAM, OL Subirarne=2,3,4,7,8,9)	V	00.00	400.00				
		7	99.88	106.88	23.53	<u> </u>	80.0	
10467-	LTE-TDD (SC-EDMA 1 BB 5 MHz		100.00	126.60	6.83	0.00	80.0	
AAD	QPSK, UL Subframe=2.3.4.7.8.9)		100.00	120.00	32.25	3.23	80.0	±9.6%
		Y	100.00	130.59	34.40	·	000	
		ż	100.00	124.67	30.60		80.0	
10468-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-	X	11.66	85.00	17.83	3 23	80.0	+96%
AAD	QAM, UL Subframe=2,3,4,7,8,9)					0.20	00.0	10.0 %
		Y	100.00	111.53	25.68		80.0	
10400		<u>Z</u>	0.75	60.09	7.51		80.0	
	LIE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-	X .	1.98	66.75	11.28	3.23	80.0	± 9.6 %
	QAM, OL Subframe=2,3,4,7,8,9)		(
			100.00	106.90	23.54		80.0	
10470-	LTE-TDD (SC-EDMA 1 RB 10 MHz	<u>-</u>	100.00	60.00	6.83		80.0	
AAD	QPSK, UL Subframe=2.3 4 7 8 9)	^	100.00	120.04	32.26	3.23	80.0	± 9.6 %
		Y	100.00	130.65	3/ /1		80.0	
		Z	100.00	124.69	30.60		80.0	
10471-	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-	X	11.32	84.67	17.72	3 23	80.0	+96%
AAD	QAM, UL Subframe=2,3,4,7,8,9)		_			0.20	00.0	10.0 /0
		Y	100.00	111.46	25.64		80.0	
10470		Z	0.75	60.04	7.47		80.0	
	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-	Х	1.96	66.63	11.22	3.23	80.0	±9.6 %
	CAM, OL Subirame=2,3,4,7,8,9)							
		- <u>Y</u>	100.00	106.82	23.49		<u> 8</u> 0.0	
10473-	LTE-TDD (SC-EDMA 1 RB 15 MHz	- 🗧	100.00	100.00	6.81		80.0	
AAD	QPSK, UL Subframe=2.3.4.7.8.9)	^	100.00	120.00	32.24	3.23	80.0	±9.6 %
		∨	100.00	130 61	34 30			
		z	100.00	124.64	30.58		80.0	
10474-	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-	X	11.06	84.45	17.66	3.23	80.0	+96%
AAD	QAM, UL Subframe=2,3,4,7,8,9)	-		i v		0.20	00.0	± 9,0 %
<u> </u>		Y	100.00	111.47	25.64	— <u> </u>	80.0	
10475		Z	0.74	60.02	7.45		80.0	
10475- AAD	CIE-IDD (SC-FDMA, 1 RB, 15 MHz, 64-	X]	1.95	66.59	11.20	3.23	80.0	± 9.6 %
	Convi, OL Subiranie=2,3,4,7,8,9)							
		- Y 	99.99	106.84	23.50		80.0	
	· · · · · · · · · · · · · · · · · · ·		0.77	60.00	6.81		80.0	

EX3DV4-SN:7308

10477-	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-	X	9.10	82.47	17.07	3.23	80.0	+96%
	QAM, UL Subframe=2,3,4,7,8,9)		400.00					
		7		111.24	25.54		80.0	
10478- AAE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	1.93	66.47	11.14	3.23	80.0 80.0	± 9.6 %
		Ý	96.81	106.44	23.40	<u> </u>	80.0	
40.000		Z	0.77	60.00	6.80	 	80.0	<u> </u>
10479- _AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	9.68	90.97	25.10	3.23	80.0	± 9.6 %
		Y_	13.83	97.37	27.65		80.0	
10480-			12.23	94.71	25.17		80.0	
	<u>16-QAM, UL Subframe=2,3,4,7,8,9)</u>	×	11.91	88.02	22.17	3.23	80.0	± 9.6 %
	+ <u> </u>		19.25	95.65	25.10		80.0	
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	X	9.15	83.59	18.54 20.38	3.23	80.0 80.0	± 9.6 %
		Y	15.12	91.18	23.39		80.0	
		Z	4.40	74.24	15.71		80.0	<u></u>
10482- 	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	4.76	79.70	20.44	2.23	80.0	±9.6%
		Y	3.53	74.74	18.45		80.0	
10492		Z	2.62	71.60	<u>16</u> .13		80.0	
AAB	16-QAM, UL Subframe=2,3,4,7,8,9)	X	5.87	78.17	19.16 	2.23	80.0	± 9.6 %
	<u> </u>		8.24	83.44	21.55		80.0	
10484-	LTE-TDD (SC-EDMA 50% RB 3 MHz	<u> </u>	2.93	69.04	14.15		80.0	
AAB	64-QAM, UL Subframe=2,3,4,7,8,9)	<u> </u>	5.55	70.01	18.60	2.23	80.0	± 9.6 %
<u> </u>		Г 7	2.72	<u> 81.28 </u>	20.83		80.0	
10485- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2 3 4 7 8 9)	X	4.47	78.87	21.04	2.23	80.0	± 9.6 %
		Ý	3.68	75.23	19 49		80.0	
		Z	3.15	74.27	18.50		80.0	
10486- AAD	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	3.79	72.50	18.04	2.23	80.0	± 9.6 %
		. Y	3.38	70.29	17.05		80.0	
10487		Z	2.84	69.02	15.57		80.0	
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.74	71.89	17.77	2.23	80.0	±9.6 %
		Υ 7	3.37	69.86	16.85		80.0	
10488- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	4.24	75.86	20.43	2.23	80.0	± 9.6 %
		Y	3.83	73.65	19.40		80.0	
		Z	3.28	72.72	18.85		80.0	
10489- AAD	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	3.72	70.49	18.27	2.23	80.0	± 9.6 %
		Ϋ́	3.53	69.26	17.66		80.0	_
10400		<u>Z</u>	3.19	68.97	17.14		80.0	
AAD	64-QAM, UL Subframe=2,3,4,7,8,9)	X	3.79	70.18	18.14	2.23	80.0	± 9.6 %
		<u>Y</u>	3.62	69.04	17.58		80.0	
10491-	LTE-TDD (SC-FDMA, 50% RB, 15 MHz,	X	4.23	<u>68.77</u> 73.19	<u>17.05</u> 19.42	2.23	80.0 80.0	± 9.6 %
		Y	3.95	71. <u>6</u> 5	18.67	<u> </u>	80.0	
10400		<u>_Z</u>	3.47	70.90	18.25		80.0	
AAD	16-QAM, UL Subframe≈2,3,4,7,8,9)	X	3.97	69.24	17.95 	2.23	80.0	±9.6 %
		<u>Y</u>	3.85	68.36	17.51		80.0	
L			J.5U	68.04	17.11		1 80.0	

Y 3.92 68.21 17.46 Z 3.56 67.90 17.04 10494- AAE LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 4.79 75.46 20.14 Y 4.38 73.53 19.24	2.23	80.0 80.0 80.0	±9.6%
Z 3.56 67.90 17.04 10494- AAE LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 4.79 75.46 20.14	2.23	80.0 80.0	± 9.6 %
10494- AAE LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 4.79 75.46 20.14 Y 4.38 73.53 19.24	2.23	80.0	± 9.6 %
Y 4.38 73.53 19.24	2.23	00.0	1
	2.23	00.0	
Z <u>3.78</u> 72.48 18.78	2.23	80.0	<u> </u>
10495- LTE-TDD (SC-FDMA, 50% RB, 20 MHz, X 4.03 69.76 18.19 AAE 16-QAM, UL Subframe=2,3,4,7,8,9)		80.0	± 9.6 %
Y 3.90 68.85 17.73		80.0	
Z 3.53 68.35 17.31		80.0	
10496- LTE-TDD (SC-FDMA, 50% RB, 20 MHz, X 4.08 69.35 18.04 AAE 64-QAM, UL Subframe=2,3,4,7,8,9)	2.23	80.0	± 9.6 %
Y 3.97 68.51 17.62		80.0	
Z 3.60 68.09 17.22		80.0	
10497- LTE-TDD (SC-FDMA, 100% RB, 1.4 X 3.72 75.87 18.08 AAA MHz, QPSK, UL Subframe=2,3,4,7,8,9)	2.23	80.0	± 9.6 %
<u> </u>		80.0	
	_	80.0	
AAA MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	2.23	80.0	±9.6 %
<u> </u>		80.0	T
Z 1.20 60.00 8.21		80.0	
10499- LTE-TDD (SC-FDMA, 100% RB, 1.4 X 2.18 65.35 12.41 AAA MHz, 64-QAM, UL	2.23	80.0	± 9.6 %
Y 1.97 63.70 11.62		80.0	
Z 1.22 60.00 8.05		80.0	
International Interna International International<	2.23	80.0	± 9.6 %
Y 3.63 74.04 19.27		80.0	
Z 3.15 73.35 18.54		80.0	
International Content Internating and Conten International Conten	2.23	80.0	± 9.6 %
Y 3.44 69.83 17.26		80.0	
Z 3.03 69.25 16.29		80.0	
10502- LTE-TDD (SC-FDMA, 100% RB, 3 MHz, X 3.79 71.34 17.92 AAB 64-QAM, UL Subframe=2,3,4,7,8,9) 1<	2.23	80.0	± 9.6 %
Y 3.50 69.66 17.14		80.0	
Z 3.07 69.05 16.12		80.0	
International Interna International International<	2.23	80.0	±9.6 %
<u>Y 3.77 73.43 19.30</u>		80.0	
10504 LTE TOD (00 FOMA 4000) OD THE Z 3.23 72.50 18.74		80.0	
10504- LTE-TDD (SC-FDMA, 100% RB, 5 MHz, X X 3.70 70.40 18.21 AAD 16-QAM, UL Subframe=2,3,4,7,8,9)	2.23	80.0	± 9.6 %
Y 3.52 69.18 17.61		80.0	-
10505 I TE TOD (00 FDMA 400) OD F WILL 2 3.17 68.86 17.07		80.0	
AAD 64-QAM, UL Subframe=2,3,4,7,8,9) 70.08 18.09	2.23	80.0	± 9.6 %
Y 3.60 68.95 17.53		80.0	
10506 LTE TOD (SC FDMA 4000) DD (2 3,25 68.67 16.99		80.0	
AAD MHz, QPSK, UL Subframe=2,3,4,7,8,9) X 4.74 75.29 20.06	2.23	80.0	±9.6%
Y 4.34 73.37 19.17		80.0	
10507- LTE TDD (SC EDMA 4000(DD 40 10 10 10 10 10 10 10 10 10 10 10 10 10		80.0	
AAD MHz, 16-QAM, UL X 4.01 69.69 18.15 Subframe=2,3,4,7,8,9)	2.23	80.0	± 9.6 %
<u>Y</u> 3.88 68.79 17.69		80.0	<u>├───</u> /
Z 3.51 68.29 17.27		80.0	<u>├</u>

10508-	LITE TOD (SO EDMA 4000) DD 10							
AAD	MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)		4.07	69.28	18.00	2.23	80.0	± 9.6 %
		+ $-$	2.00			<u> </u>		
		+	3.90	68.45	17.58	+	80.0	
10509-	LTE-TDD (SC-FDMA, 100% RB, 15		3.09	72.40	17.17		80.0	<u> </u>
AAD	MHz, QPSK, UL Subframe=2,3,4,7,8,9)		4.07	73.12	19.15	2.23	80.0	± 9.6 %
	······································	- <u> ¥</u>	4.57	71.69	18.46		80.0	
10510-	LTE-TOD (SC-EDMA 100% PR 15	-+	4.08	70.95	18.12	<u> </u>	80.0	
AAD	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)		4.40	69.19	17.97	2.23	80.0	± 9.6 %
		Y	4.36	68.46	17.61	<u> </u>	80.0	+
		Z	3.98	67.93	17.23		80.0	<u>+ </u>
10511- AAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.49	68.83	17.85	2.23	80.0	± 9.6 %
		ÝY	4.40	68 15	17 52			<u> </u>
		Z	4.03	67.70	17.16	<u> </u>	80.0	<u> </u>
10512- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	5.35	75.53	19.95	2.23	80.0	± 9.6 %
		Y	4.89	73.64	19.09		80.0	<u> </u>
		Z	4.27	72.56	18.64	<u>├</u> ─────	80.0	
10513- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	4.37	69.62	18.15	2.23	80.0	± 9.6 %
		TY	4.26	68.83	17 75		90 0	
		Z	3.86	68.15	17.33	<u> </u>	80.0	
10514- AAE	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	4.36	69.04	17.95	2.23	80.0	± 9.6 %
		Y	4 26	68.32	17.60		80.0	
		z	3.89	67.75	17.20		80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	0.98	64.01	15.52	0.00	150.0	± 9.6 %
		Y	0.90	62.52	14.23	<u> </u>	150.0	_
		Z	0.95	63.71	15.08		150.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	0.96	80.43	22.24	0.00	150.0	± 9.6 %
		Y	0.52	69.16	15.73		150.0	
10517		Z	0.74	75.71	19.80		150.0	
	Mbps, 99pc duty cycle)	X	0.87	66.95	16.73	0.00	150.0	±9.6%
		Y	0.75	64.30	14.64		150.0	
10510			0.81	66.10	15.98		150.0	
	Mbps, 99pc duty cycle)	X	4.59	66.88	16.37	0.00	150.0	±9.6 %
	<u> </u>	<u> </u>	4.55	66.43	16.12		150.0	
10510		<u> </u>	4.41	66.91	16.25		150.0	
AAB	Mbps, 99pc duty cycle)	×	4.79 	67.13	16.49	0.00	150.0	±9.6 %
		<u> </u>	4.75	66.71	16.26		150.0	
10520		2	4.57	67.10	16.35		150.0	
AAB	Mbps, 99pc duty cycle)	X	4.64	67.11	16.43	0.00	150.0	± 9.6 %
		<u> ⊻</u>	4.60	66.67	<u>16</u> .18		150.0	
10521-		<u> Z</u>	4.43	67.05	16.27		150.0	
AAB	Mbps, 99pc duty cycle)		4.57	67.12	16.42	0.00	150.0	±9.6 %
	······	<u> Y</u>	4.53	66.66	16.16		150.0	
10522-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36	<u>Z</u> X	<u>4.36</u> 4.63	67.04 67.16	16.26 16.48	0.00	150.0 150.0	± 9.6 %
	wops, aapc auty cycle)		4.50	00.70				
			4.59	67.47	16.22		150.0	————
	<u> </u>	4	<u>4</u> .42	07.17	10.36		150. <u>0</u>	

10523-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48	X	4.51	67.05	16.34	0.00	150.0	± 9.6 %
AAB	Mbps, 99pc duty cycle)							
ļ		Y_	4.46	66.56	16.06		150.0	
10501			<u>4.33</u>	67.10	16.24		150.0	
10524- 	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	X	4.58	67.09	16.46	0.00	150.0	±9.6%
		Ý	4.53	66.64	16.20		150.0	
		Z	4.37	67.10	16.33		150.0	
10525-	IEEE 802.11ac WiFi (20MHz, MCS0,	X	4.55	66.14	16.05	0.00	150.0	± 9.6 %
	99pc duty cycle)							
		Y	4.50	65.66	15.78		150.0	
		Z	4.38	66.18	15.95		150.0	
10526- _AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	X	4.74	66.53	16.19	0.00	150.0	± 9.6 %
		Y	4.69	66.05	15.93		150.0	
		Z	4.52	66.50	16.07		150.0	
10527- AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	x	4.66	66.50	16.15	0.00	150.0	±9.6 %
		Y	4.61	66.01	15.87	<u> </u>	150.0	· · ·
		Z	4.45	66.47	16.02		150.0	
10528- AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	X	4.67	66.52	16.18	0.00	150.0	± 9.6 %
		Y	4.62	66.03	15.91		150.0	
		Ż	4 47	66.48	16.05		150.0	
10529-	IEEE 802.11ac WiFi (20MHz, MCS4,		4.67	66.52	16.00	0.00	150.0	+06%
AAB	99pc duty cycle)				10.10	0.00	130.0	I 9.0 %
	· · · · · · · · · · · · · · · · · · ·		4.62	66.03	15.91	<u> </u>	150.0	
10531-	JEEE 802 11ac W/iEi (20MHz MCS6		4.47	66.48	16.05		150.0	
AAB	99pc duty cycle)		4.07	66.65	16.20	0.00	150.0	± 9.6 %
_	· · · · · · · · · · · · · · · · · · ·	Y	4.63	<u>66.16</u>	_15.93_		150.0	
10522			4.44	66.54	<u>16.</u> 04		150.0	_
AAB	99pc duty cycle)	X	4.53	66.51	16.14	0.00	150.0	± 9.6 %
		Y	4.48	66.01	15.86		150.0	<u> </u>
		Z	4.32	66.41	15.98		150.0	
10533- AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	X	4.68	66.56	16.16	0.00	150.0	± 9.6 %
		Y	4.63	66.06	15.89		150.0	
		Z	4.48	66.56	16.05		150.0	
10534- AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	X	5.19	66.60	16.20	0.00	150.0	± 9.6 %
		Y	5.16	66.20	15.99		150.0	
		Z	5.01	66.50	16.09		150.0	
10535- AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	X	5.26	66.75	16.27	0.00	150.0	± 9.6 %
		TY	5.22	66.35	16.06		150.0	├
		Z	5.06	66.65	16.16		150.0	┝┈────┤
10536- AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)	X	5.13	66.73	16.24	0.00	150.0	± 9.6 %
		† y †	5.09	66 32	16 02		150.0	<u>├──</u>
		z	4.95	66.64	16.13		150.0	
10537-	IEEE 802.11ac WiFi (40MHz, MCS3.	$\overline{\mathbf{x}}$	5.19	66.69	16.22	0.00	150.0	+0.6.9/
AAB	99pc duty cycle)		E 45	00.00				± 9.0 %
			5.15	00.30	16.01		150.0	
10538-	IEEE 802,11ac WiFi (40MHz MCS4	+ 😓 -	5.00	00.09	10.11		150.0	
AAB	99pc duty cycle)		J.∠ø	00.73	16.28	0.00	150.0	±9.6 %
	<u> </u>	<u> Y</u>	5.26	66.36	16.08		150.0	
10540	IEEE 802 1100 14/15/ (4014)	Z	5.08	66.58	<u>16</u> .14		150.0	
AAB	99pc duty cycle)	X	5.21	66.72	16.29	0.00	150.0	± 9.6 %
		Y	5.17	66.33	16.08		150.0	<u> </u>
	L	Z	5.01	66.56	16.15		150.0	

EX3DV4- SN:7308

10541-	IEEE 802 11ac WIEL (40MH- MCCZ							
AAB	99pc duty cycle)	X	5.18	66.60	16.22	0.00	150.0	± 9.6 %
		Υ Y	5.14	66.20	16.01	<u> </u>	150.0	<u> </u>
		Z	4,99	66.47	16.09	<u></u>	150.0	·
10542- 	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	5.33	66.65	16.26	0.00	150.0	± 9.6 %
		Y	5.31	66.28	16.07		150.0	
40540		Z	5.14	66.55	16.15		150.0	
10543- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	X	5.41	66.68	16.29	0.00	150.0	±9.6 %
		Y	5.39	66.31	16.11		150.0	<u> </u>
40544		Z	5.20	66.56	16.18		150.0	
AAB	99pc duty cycle)	_ X	5.49	66.70	16.18	0.00	150.0	± 9.6 %
		<u>Y</u>	5.45	66.31	15.98		150.0	
10545			5.34	66.58	16.07		150.0	
AAB	99pc duty cycle)	X	5.68	67.09	16.32	0.00	150.0	± 9.6 %
	<u> </u>	<u> </u>	5.66	66.76	16.15		150.0	
10546		<u>Z</u>	<u>5.51</u>	<u>66.9</u> 8	16.23		150.0	
AAB	99pc duty cycle)	X	5.57	66.94	16.26	0.00	150.0	± 9.6 %
		- <u>-</u>	5.54	66.57	16.08		150.0	
10547			5.38	66.73	16.11		150.0	
AAB	99pc duty cycle)	X	5.64	66.98	16.27	0.00	150.0	± 9.6 %
		<u> </u>	5.63	66.66	16.11		150.0	
10548		<u>Z</u>	5.45	66.79	16.14		150.0	
AAB	99pc duty cycle)	X	5.90	67.92	16.71	0.00	150.0	± 9.6 %
	<u>+</u>	- <u>Y</u>	5.97	<u>67.8</u> 7	16.68		150.0	
10660			5.63	67.50	16.47		150.0	
AAB	99pc duty cycle)	X	5.59	66.92	16.26	0.00	150.0	±9.6 %
	<u> </u>	<u>Y</u>	5.55	66.54	<u>16</u> .07		150.0	
10551-			5.42	66.82	<u>16.17</u>		150.0	
AAB	99pc duty cycle)		5.60	66.98	16.25	0.00	150.0	± 9.6 %
	+	Y -	5.56	66.60	16.06		<u>15</u> 0.0	
10552			5.40	66.75	16.10		150.0	
AAB	99pc duty cycle)	X	5.51	66.77	16.16	0.00	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	<u>Y</u>	5.47	66.37	<u>15.9</u> 6		<u>15</u> 0.0	
10553-			5.35	66.67	16.06		150.0	
AAB	99pc duty cycle)		5.60	66.81	16.21	0.00	150.0	± 9.6 %
	<u> </u>		5.56	66.43	16.01		150.0	
10554-		<u> </u>	5.41	66.65	16.08		150.0	
AAC			5.89	67.05	16.26	0.00	150.0	± 9.6 %
	<u> </u>	Y	5.86	66.69	16.08		150.0	
10555-			<u> </u>	66.91	16.14		150.0	
AAC	99pc duty cycle)		6.02	67.35	16.38	0.00	150.0	± 9.6 %
	+	- <u> · <u>Y</u> </u>	6.00	67.02	16.22		150.0	
10556-			5.86	67.17	16.25		150.0	
AAC	99pc duty cycle)		0.04	67.39	16.40	0.00	150.0	± 9.6 %
	+	<u> Y</u>	6.02	67.06	_ 16.23_		150.0	
10557			5.88	67.24	16.28		150.0	
AAC	99pc duty cycle)	X	6.01	67.32	16.38	0.00	150.0	± 9.6 %
_		<u> </u>	5.99	66.98	16.22		150.0	
		<u>Z</u>	5.85	67.13	16.24		150.0	

10558-	IEEE 802.11ac WiFi (160MHz, MCS4,	X	6.07	67.49	16.48	0.00	150.0	± 9.6 %
			6.05	67.47	10.20		150.0	
			5.00	67.17	16.33		150.0	
10560- AAC	IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)	X	6.06	67.34	16.44	0.00	150.0	± 9.6 %
		Y	6.04	66.99	16.28		150.0	
		Z	5.88	67.13	16.30		150.0	
10561- _ <u>A</u> AC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	X	5.98	67.30	16.46	0.00	150.0	± 9.6 %
		Y	5.96	66.96	16.30	i —	150.0	
		Z	5.81	67.11	16.32		150.0	
10562- AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)	X	6.11	67.72	16.67	0.00	150.0	± 9.6 %
		Y	6.12	67.46	16.55		150.0	
40500-		Z	5.89	67.37	16.45		150.0	
10563- AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	X	6.43	68.23	16.87	0.00	150.0	± 9.6 %
		Y	6.50	68.16	16.85		150.0	
10501		Z	<u>5.96</u>	67.23	<u>1</u> 6.35		150.0	
10564- 	IEEE 802.11g WIFI 2.4 GHz (DSSS- OFDM, 9 Mbps, 99pc duty cycle)	X	4.91	66.93	16.51	0.46	150.0	± 9.6 %
		Y	4.88	66.54	16.31		150.0	
10505		Z	4.73	66.93	16.37		150.0	
10565- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 99pc duty_cycle)	X	5.16	67.40	16.83	0.46	150.0	± 9.6 %
		Y	<u>5</u> .13	67.02	16.64		150.0	
40500		Z	4.93	67.35	16.69		150.0	
10566- 	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 99pc duty cycle)	X	4.99	67.26	16.66	0.46	150.0	± 9.6 %
		Y	4.96	66.87	16.45		150.0	
		Z	4.77	67.18	16.50		150.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 99pc duty cycle)	X	5.02	67.67	17.02	0.46	150.0	± 9.6 %
		Y	4.98	67.25	16.79		150.0	
10500		Z	4.81	67.60	16.88		150.0	
10568- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 99pc duty cycle)	X	4.90	67.00	16.42	0.46	150.0	± 9.6 %
— <u> </u>		Y	4.87	66.62	16.22		150.0	
40500		Z	4.67	66.94	16.26		150.0	
10569- AAA	JEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 99pc duty cycle)	X	4.97	67.73	17.07	0.46	150.0	±9.6 %
		Y	4.93	67.29	16.83		150.0	
10570		Z	4.78	67.78	16.99		150.0	
AAA	OFDM, 54 Mbps, 99pc duty cycle)	X	5.01	67.57	17.00	0.46	150.0	± 9.6 %
		Y	4.97	67.15	16.77		150.0	
10571		Z	4.80	<u>6</u> 7.57	16.89		150.0	
AAA	Mbps, 90pc duty cycle)	X	1.17	65.22	16 <mark>.</mark> 39	0.46	130.0	± 9.6 %
<u> </u>	+ <u> </u>	Y	1.09	63.89	15.30		130.0	
10570			1.10	64.48	15.68		130.0	
AAA	Mbps, 90pc duty cycle)	X	1.19	65.91	16.81	0.46	130.0	± 9.6 %
	·	Y	1.10	64.45	15.65		130.0	
10570		Z	1.12	65.08	16.07		130.0	
AAA	Mbps, 90pc duty cycle)	X	11.95	118.97	33.95	0.46	130.0	± 9.6 %
		Y	2.10	86.50	22.92		130.0	
10574		Z	2.78	93.83	26.37		130.0	
AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	X	1.42	73.69	20.72	0.46	130.0	±9.6 %
		Y	1.20	70.19	18.52		130.0	
		Z	1.24	71.54	19.44		130.0	

EX3DV4- SN:7308

.

10575-	LIEFE 802 110 WIEL 2 4 OUE (D000							
AAA	OFDM, 6 Mbps, 90pc duty cycle)		4.69	66.71	16.57	0.46	130.0	± 9.6 %
<u>├</u>		Y	4.67	66.34	16.38		130.0	<u> </u>
10576		Z	4.50	66.68	16.40	<u></u>	130.0	
AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	4.72	66.88	16.64	0.46	130.0	± 9.6 %
	<u> </u>	Y	4.69	66.50	16.44		130.0	
10577		Z	4.53	66.88	16.48		130.0	
	OFDM, 12 Mbps, 90pc duty cycle)	X	4.94	67.20	16.81	0.46	130.0	±9.6 %
		Y	4.91	66.83	16.62		130.0	
10579		<u>Z</u>	4.71	<u>67.</u> 13	16.63		130.0	
<u>AAA</u>	OFDM, 18 Mbps, 90pc duty cycle)	X	4.83 	67.37	16.92	0.46	130.0	± 9.6 %
		Y	4.81	<u>66</u> .98	<u>16.7</u> 2		130.0	
10570			4.61	67.29	16.74		130.0	
AAA	OFDM, 24 Mbps, 90pc duty cycle)	X	4.60	66.66	16.24	0.46	130.0	± 9.6 %
		Y	4.57	66.30	16.05		130.0	
10580			4.37	66.49	16.00		130.0	
	OFDM, 36 Mbps, 90pc duty cycle)	X	4.64 	66.67	16.25	0.46	130.0	± 9.6 %
		<u> Y </u>	4.62		<u>16.06</u>		130.0	
10591			4.41	66.55	16.03		130.0	
	OFDM, 48 Mbps, 90pc duty cycle)	X	4.73	67.42	16.87	0.46	130.0	± 9.6 %
		Y.	4.70	67.02	16.65		130.0	
10500		Z	4.52	6 <u>7.36</u>	16.71		130.0	
<u>A</u> AA	OFDM, 54 Mbps, 90pc duty cycle)	X	4.54	66.41	16.03	0.46	130.0	± 9.6 %
		Y	4.53	66.07	15.85		130.0	
40500		Z	4.30	66.25	15.78		130.0	
AAB	Mbps, 90pc duty cycle)	X	4.69	66.71	16.57	0.46	130.0	±9.6 %
		Y	4.67	66.34	16.38		130.0	
10594		<u>Z</u>	4.50	66.68	<u> 16.40 </u>		130.0	
AAB	Mbps, 90pc duty cycle)	X	4.72	66.88	16.64	0.46	130.0	±9.6 %
		<u> </u>	4.69	66.50			130.0	
10595		Z	4.53	66.88			<u>130.0</u>	
	Mbps, 90pc duty cycle)	X	4.94	67.20	16.81	0.46	130.0	±9.6 %
		<u> </u>	4.91	66.83	16.62		<u>130</u> .0	
10596		<u>Z</u>	4.71	67.13	<u> 16.</u> 63		130.0	
AAB	Mbps, 90pc duty cycle)	X	4.83	67.37	16.92	0.46	130.0	±9.6 %
		<u> ¥</u>	4.81	66.98	16.72		130.0	
10587-		┼╧┼	4.61	67.29	16.74		130.0	
AAB	Mbps, 90pc duty cycle)	X	4.60	66.66	16.24	0.46	130.0	±9.6 %
		- <u> · </u> -	4.5/	66.30			130.0	
10588-	IEEE 802 11a/b W/EEE OU - (OEDM 00		4.37	66.49	16.00		130.0	
	Mbps, 90pc duty cycle)		4.64	66.67	16.25	0.46	130.0	±9.6 %
	<u> </u>	+ <u>Y</u>	4.62	66.31	16.06		130.0	
10580			4.41	66.55	16.03		130.0	
AAB	Mbps, 90pc duty cycle)		4.73	67.42	16.87	0.46	130.0	±9.6 %
		<u> Y</u>	4.70	67.02	16.65		130.0	
10500		<u> </u> Z	4.52	67.36	16.71		130.0	
AAB	Mbps, 90pc duty cycle)	X	4.54	66.41	16.03	0.46	130.0	±9.6 %
	<u> </u>	Y	4.53	66.07	15.85		130.0	
		Z	4.30	66.25	15.78		130.0	

10591-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.84	66.77	16.66	0.46	130.0	± 9.6 %
AAB	MCS0, 90pc duty cycle)							
		<u> </u>	4.82	66.41	16.48		130.0	
10502		<u> </u>	4.66	66.76	16.51		130.0	
AAB	MCS1, 90pc duty cycle)		5.01	67.12	16.79	0.46	130.0	± 9.6 %
		Y	4.99	66.76	16.61		130.0	
		Z	4.79	67.07	16.64		130.0	
10593-	IEEE 802.11n (HT Mixed, 20MHz,	X	4.93	67.04	16.68	0.46	130.0	+9.6%
AAB	MCS2, 90pc duty cycle)	_						
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>4.9</u> 1	66.69	<u>16.5</u> 1		130.0	
- 10 - 0		_ Z	<u> 4.71 </u>	66.95	16.50		130.0	
10594- AAB	MCS3, 90pc duty cycle)		4.98	67.20	16.83	0.46	130.0	± 9.6 %
		Y	4.96	66.84	16.65		130.0	
		Z	4.76	67.13	16.67		130.0	
10595- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	X	4.95	67.16	16.73	0.46	130.0	± 9.6 %
		- <u>v</u>	1 03	66 90	16 55		(20.0	
			4.33	67.10	10.00		130.0	
10596-	IEFE 802 11n (HT Mixed 20MHz	Y Y	1.80	67.16	16.37	0.46	130.0	1000
AAB	MCS5, 90pc duty cycle)		4.09	07.10	10.74	0.46	130.0	± 9.6 %
		<u>Y</u>	4.87	66.79	16.55		130.0	
40507		Z	4.66	67.08	16.56		130.0	
AAB	MCS6, 90pc duty cycle)		4.84	67.08	16.63	0.46	130.0	±9.6 %
		Y	4.82	66.71	16.44	<u> </u>	130.0	
		Z	4.61	66.96	16.43		130.0	
10598- AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	X	4.82	67.33	16.90	0.46	130.0	± 9.6 %
			4 80	66 95	16 70		120.0	
			4 60	67.20	16.70		130.0	
10599-	IEEE 802.11n (HT Mixed, 40MHz.	<u> </u>	5.51	67.30	16.83	0.46	130.0	+0 6 %
AAB	MCS0, 90pc duty cycle)		0.01	07.00	10.05	0.40	130.0	±9.0 %
		Y	5.50	67.04	16.72		130.0	
		Z	5.31	67.18	16.69		130.0	
10600-	IEEE 802.11n (HT Mixed, 40MHz,	X	5.66	67.75	17.03	0.46	130.0	± 9.6 %
		<u>Y</u>	5.70	<u>67.6</u> 6			130.0	
10601		<u> </u>	5.42	67.55	16.85		130.0	_
AAB	MCS2, 90pc duty cycle)	X	5.54	67.49	16.91	0.46	130.0	± 9.6 %
		Y	5.55	67.29	16.83		130.0	
		Z	5.33	67.34	16.76		130.0	
10602- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	X	5.62	67.47	16.82	0.46	130.0	± 9.6 %
			5.64	67 27	16.74	<u> </u>	120.0	<u> </u>
		 Z	5.46	67.51	16.74	<u>-</u>	130.0	<u>├──</u> ──┤
10603- AAB	IEEE 802.11n (HT Mixed, 40MHz,	X	5.72	67.83	17.13	0.46	130.0	±9.6 %
			E 70	07.50	47.04		<u> </u>	
	<u> </u>		<u> </u>	07.56	17.01	<u> </u>	130.0	
10604-	IFEE 802 11n (HT Mixed 40MHz	<u> </u>		67.80	17.05		130.0	
AAB	MCS5, 90pc duty cycle)		5.51	67.26	16.84	0.46	130.0	±9.6 %
		<u>Y</u>	5,51	67.00	16.72		130.0	
10005		Z	5.40	67.44	16.85		130.0	
AAB	MCS6, 90pc duty cycle)	X	5.62	67.58	16.99	0.46	130.0	± 9.6 %
		TY	5.63	67.37	16.01		120.0	
			5 43	67.48	16.91		120.0	
10606- AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7_90pc duty cycle)	- <u> </u>	5.39	67.04	16.59	0.46	130.0	±9.6 %
			E 00	00.75	40.15			
<u> </u>		- ř 	5.38	00.75	16.46	L	<u>130.0</u>	
	· · · · · · · · · · · · · · · · · · ·		5.18	66.82	16.39		130.0	

EX3DV4-SN:7308

10607-	IEEE 802 1120 WIEI (20MU- MOOD							
AAB	90pc duty cycle)	X	4.69	66.11	16.30	0.46	130.0	± 9.6 %
			4 65	65 70	16.00	<u> </u>		<u> </u>
		 ;	4.51	66 12	16.09	<u> </u>	130.0	ļ
10608-	IEEE 802.11ac WiFi (20MHz, MCS1,		4.89	66.54	16.10		130.0	
AAB	90pc duty cycle)			00.04	10.47	0.40	130.0	± 9.6 %
<u> </u>		Y	4.86	66.13	16.26	<u> </u>	120.0	 -
		Z	4.67	66.48	16.32	<u> </u>	130.0	<u>-</u>
10609-	IEEE 802.11ac WiFi (20MHz, MCS2,	X	4.78	66.40	16.32	0.46	130.0	+0.6.0/
	90pc duty cycle)					0.40	100.0	1 5.0 %
		Y	4.74	65.99	16.10		130.0	
40040		Z	4.56	66.32	16.14		130.0	<u>+</u>
10610-	IEEE 802.11ac WiFi (20MHz, MCS3,	X	4.83	66.56	16.48	0.46	130.0	+96%
ААВ								
		<u>Y</u>	4.80	66.15	16.27		130.0	
10611			4.61	66.49	16.31		130.0	
10011- AAB	Place duty cycle)		4.74	66.37	16.33	0.46	130.0	±9.6 %
				I				
		- <u>Y</u>	4.71	65.96	16.12		130.0	
10612-	IFEE 802 11ac WiEi (20MHz MODE		4.52	66.28	16.15		130.0	
AAB	90pc duty cycle)	X	4.76	66.53	16.38	0.46	130.0	± 9.6 %
<u> </u>			4 70					
			4.73	66.12	16.16		130.0	
10613-	IFEE 802 11ac WIEI (20MHz MCS6		4.52	66.43	16.20		130.0	
AAB	90pc duty cycle)		4.70	00.43	16.27	0.46	130.0	±9.6 %
			4 74	66.02	16.06		400.0	
			4 52	66.26	16.05		130.0	
10614-	IEEE 802.11ac WiFi (20MHz, MCS7.		4 70	66.62	16.50	0.46	130.0	
AAB	90pc duty cycle)			00.02	10.00	0.40	130.0	±9.0%
			4.67	66 19	16 28		130.0	
		Z	4.48	66.49	16.31		130.0	
10615-	IEEE 802.11ac WiFi (20MHz, MCS8,		4.74	66.19	16.10	0.46	130.0	+96%
AAB	90pc duty cycle)							10.0 %
		Y	4.72	65.79	15.90		130.0	
		Z	4.52	66.11	15.92		130.0	
10616-	IEEE 802.11ac WiFi (40MHz, MCS0,	X	5.34	66.61	16.47	0.46	130.0	± 9.6 %
AAB	90pc duty cycle)							
		<u>Y</u>	5.32	<u>66.</u> 28			130.0	
10617		<u> </u>		66.47	<u>16.</u> 32		130.0	
10017- AAR	IEEE 602.11ac WIFI (40MHZ, MCS1,		5.40	66.74	16.51	0.46	130.0	± 9.6 %
			<u> </u>		40.07			
		- ř	5.38	66.41	16.35		130.0	
10618-	IEEE 802 11ac WIEL (40MHz MCS2		5.21	66.65	16.39		130.0	
AAB	90pc duty cycle)	^	5.29	66.79	16.56	0.46	130.0	±9.6 %
		+++++++++++++++++++++++++++++++++++++++	5 27	66.46	16 30		120.0	
	· · · · · · · · · · · · · · · · · · ·	+ + +	5 11	66.70	16.39		120.0	
10619-	IEEE 802.11ac WiFi (40MHz, MCS3	X	5.31	66.61	16.40	0.46	130.0	+0 6 0/
AAB	90pc duty cycle)		0.01	00.01	10.40	0.40	130.0	I 9.0 %
		Y	5.30	66.30	16.25		130.0	
		Z	5.11	66.46	16.24		130.0	
10620-	IEEE 802.11ac WiFi (40MHz, MCS4,	X	5.41	66.67	16.47	0.46	130.0	+96%
AAB	90pc duty cycle)							- 0.0 /0
		<u> </u>	5.41	66.38	16.34		130.0	
40001		Z	5.19	66.48	16.30		130.0	
10621-	IEEE 802.11ac WiFi (40MHz, MCS5,	X	5.40	66.76	16.64	0.46	130.0	± 9.6 %
AAB	and and and a second se	_ <u></u>						_
		<u> - + - Y</u>	5.38	66.43	16.48		130.0	
10622			5.21	66.64	16.50		130.0	
10022- 448		X	5.41	66.91	16.70	0.46	130.0	±9.6 %
		+				<u> </u>		
	· · · · · · · · · · · · · · · · · · ·	- <u>r</u>	5.39	66.60	10.55		130.0	
		4	<u>5.2</u> 0	00.74	10.55		130.0	

10623- AAB	IEEE 802.11ac WiFi (40MHz, MCS7,	X	5.29	66.45	16.36	0.46	130.0	± 9.6 %
, , , , , , , , , , , , , , , , , , ,			5 27	66.12	16 20		120.0	
			5.08	66.28	16.20		130.0	
10624- AAB	IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)	X	5.48	66.64	16.51	0.46	130.0	± 9.6 %
		Y	5.47	66.35	16.38		130.0	
	····	Ż	5.28	66.51	16.36		130.0	
10625- AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)	X	5.87	67.67	17.07	0.46	130.0	± 9.6 %
		Y	5.92	67.56	17.03		130.0	
		Z	5.48	66.99	16.66		130.0	
10626- AAB	IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)	X	5.62	66.65	16.41	0.46	130.0	± 9.6 %
		Y	5.59	66.32	16.26		130.0	
40007			5.46	66.52	16.28		130.0	
AAB	90pc duty cycle)	X	5.86	67.19	16.64	0.46	130.0	± 9.6 %
		<u> </u>	5.87	66.96	16.54		130.0	
10629		Z	<u> </u>	67.07	16.52		130.0	
AAB	90pc duty cycle)	X	5.67	66.78	16.37	0.46	130.0	± 9.6 %
		Y	5.65	66.49	16.24		130.0	
10620-			<u> </u>	66.52	16.18		130.0	
AAB	90pc duty cycle)		5.76	66.87	16.41	0.46	130.0	± 9.6 %
		Y	5.74	66.55	16.26		130.0	
10630-			5.55	66.62	16.22		130.0	
AAB	90pc duty cycle)		6.21	68.41	17.17	0.46	130.0	±9.6 %
		- <u>Y</u>	6.36	68.57	17.26		130.0	
10631-			5.84	67.72	16.78		130.0	
AAB			6.11	68.22	17.27	0.46	130.0	± 9.6 %
		Ť	5.15	68.07	17.21		130.0	
10632-	IFFF 802 11ac WiFi (80MHz MCS6		5.01	67.73	16.97	0.40	130.0	
AAB	90pc duty cycle)		<u></u>	07.20	10.01	0.46	130.0	±9.6%
			0.02	66.98	16.68		130.0	
10633-	IEEE 802.11ac WiFi (80MHz, MCS7	- <u>-</u>	5.73	66.05	10.73	0.46	130.0	
AAB	90pc duty cycle)		5.70	00.95	10.40	0.46	130,0	±9.6 %
		- 7	5.72	66 74	16.35		130.0	
10634- AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	X	5.72	66.98	16.56	0.46	130.0	± 9.6 %
		Y	5.70	66.65	16.41	-	130.0	
		Z	5.52	66.78	16.40		130.0	<u> </u>
10635- AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	X	5.60	66.32	15.97	0.46	130.0	± 9.6 %
		Y	5.59	66.03	15.84	·	130.0	
40000		Z	5.39	66.04	15.76		130.0	
10636- AAC	IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	X	6.03	67.02	16.50	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	6.02	66.74	16.37		130.0	
10627		Z	5.89	66.87	16.36		130.0	
AAC	90pc duty cycle)	X	6.19	67.40	16.66	0.46	130.0	±9.6 %
	<u> </u>	Y	6.19	67.15	16.56		130.0	
10638		Z	6.02	67.21	16.51		130.0	
AAC	90pc duty cycle)	X	6.19	67.38	16.63	0.46	130.0	±9.6 %
		Y	6.19	67.12	16.52		130.0	
	<u> </u>	<u>Z</u>	6.03	67.21	16.49		130.0	

10639-	IEEE 802 11ac WiEi (160MHz MCS2							
AAC	90pc duty cycle)		6.18	67.36	16.66	0.46	130.0	± 9.6 %
<u> </u>		<u> </u>	6.17	67.09	16.55		130.0	<u>+···−</u>
10640-			6.00	67.13	16.50	<u> </u>	130.0	<u>+−</u> −
AAC	90pc duty cycle)	X	6.19	67.39	16.62	0.46	130.0	± 9.6 %
<u> </u>		Y	<u>6.20</u>	67.16	16.53		130.0	1
10641-		<u></u>	5.99	67.11	16.43		130.0	—
	90pc duty cycle)	X	6.21	67.22	16.56	0.46	130.0	± 9.6 %
		<u> Y</u>	6.20	66.94	16.44		130.0	
10642-		- 2	6.05	67.08	<u>16.4</u> 3		130.0	
AAC	90pc duty cycle)		6.27	67.52	16.87	0.46	130.0	± 9.6 %
		<u>Y</u>	6.26	67.23	16.75		130.0	
10643-	IFEE 802 1120 M/IEI (160MHz MOOZ	+	6.09	67.31	<u>16.72</u>		130.0	
AAC	90pc duty cycle)	×	6.10	67.19	16.61	0.46	130.0	± 9.6 %
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	6.09	66.93	16.50		130.0	
10644-		<u> </u>	5.93	67.00	16.46		130.0	
AAC	90pc duty cycle)	X	6.29	67.77	16.92	0.46	130.0	± 9.6 %
		<u>Y</u>	6.32	67.61	16.86		130.0	
10645			6.02	67.30	16.63		130.0	
<u>AAC</u>	90pc duty cycle)	X	6.72	68.61	17.29	0.46	130.0	±9.6 %
		<u> </u>	6.81	68.60	17.31		130.0	
10646		Z	6.13	67.29	16.58		130.0	
AAE	QPSK, UL Subframe=2,7)	X	26.22	119.06	40.53	9.30	60.0	± 9.6 %
		Y	23.98	116.77	40.23		60.0	
40047		<u></u>	<u>13</u> .39	105.96	36.68		60.0	
10647- <u>A</u> AE	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	X	21.91	115.56	39.67	9.30	60.0	± 9.6 %
		Y	20.79	114.08	39.59		60.0	
		Z	<u>11.12</u>	102.25	35.63		60.0	
		X	0.80	65.60	12.34	0.00	150.0	±9.6 %
		Y	0.65	<u>62.69</u>	10.17		150.0	
40050		<u>Z</u>	0.58	62.96	<u>9</u> .61		150.0	
10652- AAC	LIE-IDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	3.70	67.38	17.08	2.23	80.0	±9.6 %
		<u>Y</u>	3.59	66.56	16.66		80.0	
40050		Z	3.39	66.83	16.41		80.0	
AAC	Clipping 44%)	X	4.17	66.50	17.03	2.23	80.0	± 9.6 %
	<u> </u>	Y	4.11	65.95	16.76		80.0	
10654		Z	3.90	66.02	16.55		80.0	
AAC	Clipping 44%)	X	4.13	66.12	17.00	2.23	80.0	±9.6 %
		Y	4.07	65.60	16.75		80.0	
10655			3.90	65.62	16.55		80.0	
AAD	Clipping 44%)	X	4.19	66.12	17.04	2.23	80.0	±9.6 %
	<u> </u>	Y	4.13	65.62	16.79		80.0	
10659		<u>Z</u>	3.96	65.57	16.58		80.0	
AAA	ruise vvaverom (200Hz, 10%)	X	100.00	111.27	26.15	10.00	50.0	± 9.6 %
		Y	100.00	112.15	26.71		50.0	
40050		Z	14.35	85.50	18.40		50.0	
10659- AAA	Pulse Waveform (200Hz, 20%)	Х	100.00	110.66	24.83	6.99	60.0	± 9.6 %
		Y	100.00	110.25	24.76		60.0	
		Z	100.00	105.29	22.07	—	60.0	

10660- AAA	Pulse Waveform (200Hz, 40%)	X	100.00	112.93	24.53	3.98	80.0	± 9.6 %
·		Y	100.00	108.47	22.64		80.0	
		Z	100.00	104.83	20.58		80.0	
10661- AAA	Pulse Waveform (200Hz, 60%)	X	100.00	118.71	25.68	2.22	100.0	± 9.6 %
		Y	100.00	104.33	19.70		100.0	
		Z	100.00	104.48	19.32		100.0	
10662- 	Pulse Waveform (200Hz, 80%)	X	100.00	138.66	31.49	0.97	120.0	± 9.6 %
		Y	0.19	60.00	4.09		120.0	
		Z	100.00	91.23	12.90		120.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-7488_Jan19

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7488	
Calibration procedure(s)	CALCAL-01 v9, CIA CAL-14 v5, CIA CAL-23 v5, CIA CAL-25.v7 Shov Calibration procedure for dosimetric E-field probes h106(2010	
Calibration date:	January 24, 2019	
This calibration certificate docume The measurements and the uncer	nts the traceability to national standards, which realize the physical units of measurements (SI). tainties with confidence probability are given on the following pages and are part of the certificate.	

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	de Ma
			and from the
Approved by:	Katja Pokovic	Technical Manager	20101
			Ande
			Issued: January 29, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

Accreditation No.: SCS 0108

- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	θ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis
Connector Anale	information used in DASY system to align probe sensor X to the robot coordinate system

Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, v, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR; PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.45	0.49	0.50	± 10.1 %
DCP (mV) ^B	98.9	102.3	99.6	

Calibration Results for Modulation Response

UID	Communication System Name		A	B	С	D	VR	Max	Max_
			dB	dBõV		dB	mV	dev.	Unc⁼
									(k=2)
0	CW	X	0.00	0.00	1.00	0.00	149.5	± 2.7 %	± 4.7 %
		Y	0.00	0.00	1.00		140.8		
		Z	0.00	0.00	1.00		138.2		
10352-	Pulse Waveform (200Hz, 10%)	X	10.21	80.63	15.98	10.00	60.0	± 3.1 %	± 9.6 %
AAA		Y	5.90	74.67	14.18		60.0		
		Z	15.00	89.30	20.53		60,0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	85.88	16.55	6.99	80.0	± 2.1 %	±9.6 %
AAA		Y	15.00	84.35	15.79		80.0		
		Z	15.00	92.51	21.01		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	90.08	17.19	3.98	95.0	± 1.3 %	± 9.6 %
AAA		Y	15.00	83.37	13.66		95.0		
		Z	15.00	104.27	25.33		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	97.36	19.30	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	0.26	60.00	4.43		120.0]	
		Z	15.00	117.38	29.81]	120.0		
10387-	QPSK Waveform, 1 MHz	Х	0.51	60.28	7.04	0.00	150.0	± 3.3 %	±9.6 %
AAA		Y	0.47	60.00	5.79		150.0		
		Z	0.61	61.09	8.42		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.29	69.54	16.64	0.00	150.0	± 1.1 %	± 9.6 %
AAA		Y	1.90	66.64	14.97]	150.0		
		Z	2.23	68.54	16.09		150.0		
10396-	64-QAM Waveform, 100 kHz	X	2.94	72.04	19.55	3,01	150.0	± 0.7 %	± 9.6 %
AAA		Y	2.49	68.13	17.71		150.0		
		ĽΖ	3.35	73.33	20.07		150.0		
10399-	64-QAM Waveform, 40 MHz	Х	3.54	67.80	16.20	0.00	150.0	± 2.2 %	± 9.6 %
AAA		Y	3.42	67.12	15.74]	150.0		
		Z	3.49	67.32	15.92		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.65	65.56	15.55	0.00	150.0	± 4.0 %	± 9.6 %
AAA		Y	4.74	65.87	15.68		150.0		
		7	4 80	65 75	15.62	1	150.0	1	1

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ^{−1}	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	35.2	259.64	34.83	7.55	0.00	5.04	1.52	0.11	1.01
Y	34.3	261.80	36.90	6.01	0.21	5.06	0.00	0.41	1.01
Z	40.7	301.53	35.10	11.37	0.14	5.09	1.94	0.15	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-129.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.77	10.77	10.77	0.56	0.80	± 12.0 %
835	41.5	0.90	10.37	10.37	10.37	0.40	0.93	± 12.0 %
1750	40.1	1.37	8.87	8.87	8.87	0.33	0.84	± 12.0 %
1900	40.0	1.40	8.53	8.53	8.53	0.27	0.84	± 12.0 %
2300	39.5	1.67	8.25	8.25	8.25	0.33	0.85	± 12.0 %
2450	39.2	1.80	7.86	7.86	7.86	0.34	0.90	± 12.0 %
2600	39.0	1.96	7.69	7.69	7.69	0.35	0.86	± 12.0 %
5250	35.9	4.71	5.35	5.35	5.35	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5750	35.4	5.22	5.03	5.03	5.03	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	11.28	11.28	11.28	0.46	0.80	± 12.0 %
835	55.2	0.97	11.03	11.03	11.03	0.46	0.81	± 12.0 %
1750	53.4	1.49	8.68	8.68	8.68	0.38	0.88	± 12.0 %
1900	53.3	1.52	8.37	8.37	8.37	0.38	0.88	± 12.0 %
2300	52.9	1.81	8.21	8.21	8.21	0.42	0.84	± 12.0 %
2450	52.7	1.95	8.07	8.07	8.07	0.35	0.98	± 12.0 %
2600	52.5	2.16	7.94	7.94	7.94	0.25	0.95	± 12.0 %
5250	48.9	5.36	4.82	4.82	4.82	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.09	4.09	4.09	0.50	1.90	± 13.1 %
5750	48.3	5.94	4.32	4.32	4.32	0.50	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc [⊨] (k=2)
0		CW	CW	0.00	±4.7%
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	±9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6%
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6%
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6%
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6%
10028		GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029		EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6%
10030		TEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6%
10031		IEEE 802.15.1 Bluetooth (GESK, DH3)	Bluetooth	1.87	±9.6%
10032		IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6%
10033		IEEE 002.15.1 Bluetooth (P/4-DQPSK, DH1)	Bluetooth	1.74	±9.6%
10034		IEEE 002.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	±9.6%
10030		IEEE 802 15 1 Bluetooth (8 DBSK, DH4)	Bluetoeth	3.83	±9.0%
10030		IEEE 802.15.1 Bluetooth (R DBSK, DH2)	Bluetooth	8.01	±9.6%
10037	CAA	IEEE 802.15.1 Bluetooth (8 DBSK, DH5)	Bluetooth	4.11	$\pm 9.0\%$
10030	CAR	CDMA2000 (1vPTT_PC1)	CDMA2000	4.10	±9.0%
10033		IS-54 / IS-136 EDD (TDMA/EDM_PI/4 DOPSK_Holfroto)		4.07	±9.0%
10042		IS-94/IS-1501 DD (TDM/ATDM, F1/4-DQF3K, Halliale)	AMPS	0.00	±9.0 %
10048	CAA	DECT (TDD TDMA/EDM GESK Full Slot 24)		13.80	+96%
10040	CAA	DECT (TDD, TDMA/EDM, GESK, Double Slot, 12)	DECT	10.00	+96%
10056	CAA	LIMTS-TOD (TD-SCDMA_1 28 Mcps)	TD-SCDMA	11.01	+96%
10058	DAC	EDGE-EDD (TDMA 8PSK TN 0-1-2-3)	GSM	6.52	+96%
10059	CAB	IEEE 802 11b WiEi 2 4 GHz (DSSS 2 Mbns)	WIAN	2.12	+96%
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WIAN	2.83	+9.6%
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6%
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6 %
10067	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
10069	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6%
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6%
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6 %
10075		LIEEE 802.11g WiFI 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6%
10076		IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6%
10077		LIELE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6 %
10081		CDMA2000 (1xR11, RC3)	CDMA2000	3.97	±9.6 %
10082		IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6 %
10090		UNTO EDD (LIDRA, GMSK, IN 0-4)	GSM	6.56	± 9.6 %
10097		UNITO FDD (HSDPA)		3.98	± 9.6 %
10098				3.98	±9.0%
10099	DAU	EUGE-FUU (TUMA, OFON, TN U-4)		9.55	±9.0%
10100		LIE-FUD (OU-FUMA, 100% KB, 20 MHZ, QYSK)		0.0/	±9.0%
10101		LIE-FDD (30-FDWA, 100% RD, 20 MHZ, 10-QAM)		0.42	19.0% 10.0%
10102		LIE-FUD (30-FUMA, 100% RD, 20 MHZ, 04-QAM)		0.00	19.0% 1060/
10103		LIE-IDD (SC-FDWA, 100% RD, 20 MHZ, QFSR)		9.29	19.0% 1060/
10104		1 LTE-TDD (SC-FDMA 100% RB 20 MHz 64.0AM)		10.01	± 9.0 %
10100		TE-TDD (SO-TDWA, 100 / RB 10 MHz, 04° (AW)		5 QA	+060/
	Love			<u> </u>	T 9'0 \0
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
-------	------	--	----------	-------	----------------
10110	CAC	LTE EDD (SC EDMA 400% DD 5 MHZ ODSK)		5.75	+96%
	CAG			0.70	1 0.0 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)		6.44	±9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-EDD (SC-EDMA 100% BB 5 MHz 64-OAM)	I TE-EDD	6.62	+96%
40444	0/10	LEFE 000 14 m (UT Organizated 40 5 Million DDDV/)		0.01	+06%
10114	CAC	TEEE 802.11h (HT Greenfield, 13.5 Wops, BPSK)	WLAN	0.10	± 9.0 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6%
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6 %
10117	CAC	IEEE 802 11p (HT Mixed 13.5 Mbps BPSK)		8.07	+96%
10117				0.07	10.0 %
10118		IEEE 802.11h (HT MIXED, 81 MDps, 16-QAM)	WLAN	8.59	<u> </u>
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
101/1	CAE	LTE-EDD (SC-EDMA 100% BB 15 MHz 64-OAM)		6 53	+96%
	OAL	LTE FDD (00 FDMA, 100% PD 2 MUL (000()		5.00	10.6 %
10142	CAL	LTE-FDD (SC-FDMA, 100% RB, 3 MHZ, QPSK)		5.73	±9.0%
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6%
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAE	LTE-EDD (SC-EDMA 100% RB 14 MHz ODSK)		5.76	+96%
10140		LTE-FDD (30-FDMA, 10078 ND, 1.4 MHz, 40 OAM)		0.70	+0.6.9/
10146		LTE-FDD (SC-FDIMA, 100% KB, 1.4 MHZ, 16-QAM)	LIE-FUU	0.41	± 9.0 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10150		LITE-EDD (SC-EDMA 50% BB 20 MHz 64-0AM)	I TE-EDD	6.60	+96%
10100		LITT TOD (00 TOMA 50% DD 00 MUL 000()		0.00	+0.0 %
10151		LIE-IDD (SC-FDMA, DU% KB, 20 MHZ, QPSK)		9.28	I 9.0 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz. 64-QAM)	LTE-TDD	10.05	±9.6%
10154	CAG	LTE-EDD (SC-EDMA 50% RB 10 MHz OPSK)	I TE-EDD	5 75	+96%
10104				6 40	TOC //
10155		LIE-FUD (SC-FUMA, 50% KB, 10 MHZ, 16-QAM)	LIE-FUU	0.43	I9.0 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	TE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6 %
10159	CAG	1 TE EDD (SC EDMA 50% BB 10 MHz 64-0AM)	I TE-EDD	6.62	+96%
10156	CAG	LTE-FDD (30-FDWA, 30% ND, 10 WH2, 04-QAW)		0.02	100%
10159		LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LIE-FUD	0.50	±9.0%
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6 %
10161	CAE	LTE-EDD (SC-EDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6%
10162		I = EDD (SC = DMA = 50% RB = 15 MHz = 64 OAM)		6.58	+96%
10102	CAE			5.00	10,070
10166		LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)		5.46	± 9.0 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6 %
10168	CAF	LTE-EDD (SC-EDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10160				5 73	+96%
10109				0.10	10.69/
10170		LTE-FDD (SC-FDMA, 1 KB, 20 MHZ, 16-QAM)		0.52	± 9.0 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6 %
10172	CAG	LTE-TDD (SC-EDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
40172		TE TOD (SC EDMA 1 PR 20 MHz 16 OAM)		9/8	+96%
10173	CAG			40.05	10.0 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LIE-IDD	10.25	±9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz 16-QAM)	LTE-FDD	6.52	±9.6 %
10177		TEEDD (SC.EDMA 1 PR 5 MHz ODSK)		5.73	+96%
101/1		$\frac{1}{1} = \frac{1}{100} \frac{1}$		650	±0.0 %
10178	CAG	LIE-FUD (SU-FUMA, TRB, 5 MHZ, 10-QAM)		0.02	<u>± 9.0 %</u>
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10181	CAE	LTE-EDD (SC-EDMA 1 RB 15 MHz OPSK)	I TE-EDD	5.72	±9,6 %
10101				6.52	+96%
10182		LIE-FUD (SU-FUMA, TRB, 15 MHZ, 10-UAM)		0.02	1 9.0 70
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LIE-FDD	6.50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	<u>±9.6</u> %
10185	CAF	LTE-EDD (SC-EDMA 1 RB 3 MHz 16-OAM)	LTE-FDD	6.51	± 9.6 %
10100				6 50	+96%
10186	AAE			0.00	10.0 %
10187		LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)		5.73	±9.6%
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	<u>±</u> 9.6 %
10180		LTE-EDD (SC-EDMA 1 RB 14 MHz 64-OAM)	I TE-EDD	6.50	±9.6 %
10109		LEEF 000 44 (UT Oroanfield & E Mars DDOV)		8 00	+96%
10193		IEEE 802.11n (HI Greentield, 6.5 Mbps, BPSK)		0.09	± 5.0 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	<u>± 9.6</u> %
10196	CAC	IEEE 802 11n (HT Mixed 6.5 Mbps BPSK)	WLAN	8,10	± 9.6 %
10100		IEEE 002.11h (IT Mixed 20 Mines 46 OAM)		812	+96%
10197	LAU			0.10	+0.0 %
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.0 %
10219	CAC	IEEE 802 11p (HT Mixed 7.2 Mbps BPSK)	I WLAN	8.03	±9.6 %

10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6 %
10221	CAC	IEEE 802.11n (HT Mixed 72.2 Mbns 64-OAM)	W/LAN	8 27	+96%
10222	0.00	IEEE 902 11n (UT Mixed 45 Mana DDOI()		0.00	- 0.0 /0
10222		TELE OVZ. TH (TH WIXED, TO MODS, BYSK)	WLAN	8.06	±9.6%
10223		IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	<u>±9.6</u> %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps. 64-QAM)	WLAN	8.08	± 9.6 %
10225	CAR	UMTS-EDD (HSPA+)	WCDMA	5.07	+06%
10220				0.40	19.0 %
10226	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LIE-TDD	9.49	±9.6 %
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6 %
10228	CAA	TE-TDD (SC-EDMA 1 RB 1 4 MHz OPSK)		9.22	+96%
10220	CAC	LTE TOD (SC EDMA 1 PD 2 MHz 16 OAM)		0.22	10.0%
10223	OAC			9.48	±9.0%
10230	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	± 9.6 %
10232	CAE	TE-TOD (SC-EDMA 1 RB 5 MHz 16-OAM)		0.49	+0.6%
40000				9.40	19.0 %
10233	UAr	LTE-TUD (SU-FUMA, TRB, 5 MHZ, 64-QAM)	LIE-IDD	10.25	±9.6%
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10235	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	+9.6%
10236	CAE	LTE TOD (SC EDMA 1 PP 10 MHz 64 OAM)		40.05	
10200				10.25	<u>±9.0 %</u>
10237		LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-TOD	9.21	±9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TOD (SC-EDMA 1 RB 15 MHz 64-OAM)		10.25	+96%
10240				0.04	- 0.0 70
10240			LIE-IDD	9.21	±9.6%
10241	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	± 9.6 %
10242	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6 %
10243	CAA	LITE-TOD (SC-EDMA 50% BB 14 MHZ OPSK)		9.4.6	+06%
10244		LTE TOD (OC FDMA FOR DD ALAL AC ANA		0.40	- 0.0 %
10244	UAU	LTE-TUD (SC-FUMA, 50% KB, 3 MHZ, 16-QAM)	LIE-IDD	10.06	±9.6%
10245	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6 %
10246	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	TE-TDD	9.30	+96%
10247	CAE			0.01	10.6%
10247				9.91	± 9.0 %
10248		LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	±9.6 %
10249	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	±9.6%
10250	CAF	LTE-TDD (SC-EDMA 50% RB 10 MHz 16-OAM)		9.81	+96%
10260	CAF			40.47	- 0.0 %
10251		LTE-TDD (SC-FDIVIA, 50% RB, T0 MHZ, 64-QAIVI)	LIE-IDD	10.17	±9.0 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	± 9.6 %
10254	CAE	LTE-TOD (SC-EDMA 50% RB 15 MHz 64-OAM)		10.14	+96%
10204		1 TE TOD (00 FDMA, 50% PD, 45 MHz, 00-0(4)		10.14	1 3.0 %
10255		LTE-TUD (SC-FUMA, 50% RB, 15 MHZ, QPSK)	LIE-IDD	9.20	±9.6%
10256		LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAA	I TE-TOD (SC-EDMA 100% RB 1/ MHz OPSK)		0.34	+06%
10200		1 TE TOD (00 FDMA, 100% DD, 0 MUL, 40 OAM)		9.04	
10259	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LIE-IDD	9.98	±9.6%
10260	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, OPSK)	LTE-TDD	9,24	±9.6 %
10262	CAF	1 TE-TOD (SC-EDMA 100% PB 5 MHz 16 0AM)		0.02	+0.60/
10202		LITE TOD (OO FOMA 4000 OD STALL 24 2440		9.00	1 9.0 70
10263		LIE-IDD (SG-FDMA, 100% RB, 5 MHz, 64-QAM)	LIE-IDD	10.16	±9.6%
10264	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAF	LTE-TDD (SC-FDMA, 100% RB. 10 MHz. 16-QAM)	LTE-TDD	9.92	±9.6%
10266	CAF	1 TE-TDD (SC-EDMA 100% RB 10 MHz 64-0AM)		10.07	+96%
10200		TE TOD (00 TOM/A 100/0 TO, 10 MILE, 09-02/0		10.07	- 0.0 /0
10267	CAF	LTE-TDD (SC-FDMA, 100% KB, 10 MHZ, QPSK)	LIE-IDD	9.30	±9.6%
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	+9.6%
10270		LTE-TOD (SC-EDMA 100% PB 15 MHz ODSK)		0.50	+0.6%
10270				9.00	<u> </u>
10274		UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6%
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10270	CAA	PHS (OPSK BW 88/MH- Palloff 0.5)	DHS	11 04	+060/
102/0			FIIO	11.01	1 3.0 %
10279		PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6%
10291	AAR	CDMA2000 RC3 SO55 Full Rate		3.46	+96%
10000			0000000		
10292	AAB	UDIVIAZUUU, KU3, SU3Z, FUII KATE	CDIVIA2000	3.39	±9.6%
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	± 9.6 %
10207	ΔΔΠ	I TE-EDD (SC-EDMA 50% BB 20 MHz OPSK)		5.81	+96%
10231		LTE FDD (00 FDMA 50% 72 0 MUL 00010)		5.01	
10298	AAD	LTE-FUU (SC-FUMA, 50% KB, 3 MHz, QPSK)	LIE-FDD	5.72	±9.6%
10299	LAAD	LITE-EDD (SC-EDMA 50% RB 3 MHz 16-OAM)		6.39	1 + 96 %

,					
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	±9.6%
10301	ΑΑΑ	IEEE 802 16e WIMAX (29:18 5ms 10MHz OPSK PUSC)	WiMAX	12.03	+9.6%
10001	A A A	IEEE 002.100 WIMPY (20.10, 010, 10MHz, QF 01, F 000)	MAGRAA V	10.67	+0.6 %
10302	AAA	TEEE 802.166 WIMAX (29:18, 5ms, 10WHZ, QPSK, PUSC, 3 CTRL	VVIIVIAX	12.57	±9.0%
		symbols)			
10303	AAA	IEEE 802,16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6 %
10304	ΔΔΔ	IEEE 802 160 WIMAX (29:18 5ms 10MHz 640AM PUSC)	λΛ/ΙΝΔ X	11.86	+96%
10004	<u> </u>			11.00	+ 0.0 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15	WIMAX	15.24	± 9.6 %
		symbols)			
10306	AAA	IEEE 802 16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18	WIMAX	14.67	± 9.6 %
	1000	symbole)			
40007			10/00403/	44.40	
10307	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18	WIMAX	14.49	±9.6%
		symbols)			
10308	AAA	IEEE 802,16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WIMAX	14.46	±9.6%
10300		IEEE 802 160 W/MAX (20:18, 10mc, 10MHz, 160AM, AMC 2v3, 18		14.58	+96%
10303		TELE 002.106 WIMAA (20.10, 10113, 1010112, 100AW, AWO 243, 10	V V II VII VII V	14.00	7 0.0 /0
		sympols)			
10310	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18	WIMAX	14.57	±9.6%
		symbols)			
10311	ΔΔΠ	LTE-EDD (SC-EDMA_100% RB_15 MHz_OPSK)		6.06	+96%
10011				40.54	10.070
10313	AAA	DEN 1:3	IDEN	10.51	±9.6 %
10314	AAA	iDEN 1:6	ÍDEN	<u> 13.48</u>	±9.6 %
10315	AAB	IEEE 802,11b WiFi 2,4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6 %
10316	AAR	IEEE 802 11a WiEi 2.4 GHz (ERP. OFDM & More Gene duty cycle)	ΜΙ ΔΝ	8 36	+96%
40047			10/1 AN1	0.00	1000
10317	AAC	TEEE 802.11a WIFLS GHZ (OFDM, 6 Mbps, 96pc duty cycle)	VVLAN	0.30	± 9.0 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	<u>±9.6 %</u>
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6 %
10354	ΔΔΛ	Pulse Waveform (200Hz 40%)	Generic	3.08	+96%
10334	- MMM		Generic	0.00	13.0 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±96%
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6 %
10387	ΑΑΑ	OPSK Waveform 1 MHz	Generic	5.10	+9.6 %
10001		OBSK Waveform 10 MHz	Conorio	5.22	+96%
10300			Generic	0.22	19.0 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6%
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6 %
10400	ΔΔD	IEEE 802 11ac WiEi (20MHz 64-OAM 99nc duty cycle)	WIAN	8.37	+96%
10400				0.07	+0.0 %
10401	AAD	TEEE 802.11ac WIFT (40MHZ, 64-QAIM, 99pc duty cycle)	WLAN	0.00	<u> </u>
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9,6 %
10404		$CDMA2000 (1 \times E) (-DO Rev(A))$	CDM42000	377	+96%
10404			00101/2000	5.00	10.0%
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMAZUUU	5.22	±9.0 %
10410	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2.3.4.7.8.9. Subframe Conf=4)			
10414	ΔΔΔ	WI AN CODE 64 OAM JONHZ	Generic	8 54	+96%
10414				0.04	10.0 %
10415	AAA	TEEE 802.110 WIFT 2.4 GHZ (USSS, 1 Mbps, 99pc duty cycle)	VVLAIN	1.54	I 9.0 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6%
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM. 6 Mbps. 99pc duty cycle)	WLAN	8.23	±9.6 %
10/10		IEEE 802 11a WIEL2 & GHZ (DSSS-OEDM & Mone 9900 duty cycle	WIAN	8 14	+96%
10410	1000		T T Lor 11 T		
-				0.10	
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.19	± 9.6 %
		Short preambule)		1	
10422	AAR	IEEE 802 11n (HT Greenfield 7 2 Mbps BPSK)	WLAN	8.32	± 9.6 %
10400	100	IEEE 000.44n (UT Oroonfield 42.2 Mbros 46 OAM)		9/7	+06%
10423	AAB	TEEE OUZ.TITI (HT Greenileid, 43.3 MDps, To-QAM)		0.41	1 3.0 %
10424	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10/26		IEEE 802 11n (HT Greenfield 90 Mbns 16-0AM)	WI AN	8 4 5	+96%
40407		IEEE 002.111 (11 Orosefeld 450 Miles 04 OAM)		0.10	10.0%
10427	AAR	IEEE 802.11n (HI Greentieid, 150 MDps, 64-QAM)		0.41	<u> </u>
10430	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	<u> 8.28</u>	± 9.6 %
10431	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10/32				8 34	+96%
10402				0.04	+06%
10433		LTE-FDD (OFDMA, 20 MHZ, E-TM 3.1)		0.34	I 9.0 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)		8.60	<u>± 9.6 %</u>
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
.0400		Subframe=2.3.4.7.8.0)			
				7.50	1000
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)		1.56	±9.6%
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	<u>± 9.6 %</u>
10449	AAC	LTE-EDD (OEDMA, 15 MHz, E-TM 3.1, Clining 44%)	LTE-FDD	7.51	± 9.6 %
10450	1 1 10	1 TE EDD (OEDMA 20 MHz E TM 2.1 (Clipping 44%))		7 / 8	+96%
1 10430	: AAL			1 1.40	1 - 0.0 /0

EX3DV4- SN:7488

10151	A A A		WODMA		
10451		W-CDIVIA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6 %
10456	AAB	IEEE 802.11ac WIFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6 %
10457	AAA	UMTS-EDD (DC-HSDPA)		6.62	+96%
10159	A A A	CDMA2000 (4)(D) Do Dou D 2 comism)		0.02	1 3.0 %
10456		CDIVIA2000 (TXEV-DO, Rev. B, Z carriers)	CDMA2000	0.55	±9.6%
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	+9.6%
10461		TE-TOD (SC-EDMA 1 BB 14 MHz OPSK 1)		7.82	+06%
10401		$(30^{-1} DM, 170, 1.4 WHZ, QF30, 02)$		1.02	I 9.0 %
		Subframe=2,3,4,7,8,9)			
10462	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.30	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10/63				0 66	+06%
10400				0.00	±9.0%
L		Subtrame=2,3,4,7,8,9)			
10464	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2 3 4 7 8 9)			
10465				0.00	
10405			LIE-IDD	8.32	±9.0%
		Subframe=2,3,4,7,8,9)			
10466	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.57	+96%
		Subframe=2 3 4 7 8 9)			
10467				7.00	
10407		LTE-TUD (SC-FDIMA, TRB, 5 MHZ, QPSK, UL	LIE-IDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10468	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.32	+9.6%
		Subframe=2.3.4.7.8.0)		0.02	
10100					
10469		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL	LIE-IDD	8.56	±9.6 %
		Subframe=2,3,4,7,8,9)			
10470	AAF	LTE-TDD (SC-EDMA 1 RB 10 MHz OPSK UI		7.82	+96%
10110		$\frac{1}{2} \frac{1}{2} \frac{1}$		1.02	20.070
10/8/		Subilanie-2,3,4,7,0,9)			
10471	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.32	±9.6%
		Subframe=2,3,4,7,8,9)			
10472		LTE-TOD (SC-EDMA 1 RB 10 MHz 64-OAM LIL		9.57	106%
10412				0.07	1 9.0 %
		Subtrame=2,3,4,7,8,9)			
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL	LTE-TDD	7.82	±9.6 %
		Subframe=2 3 4 7 8 9)			
10474				0.22	+06%
10474				0.32	± 9.0 %
		Subframe=2,3,4,7,8,9)			
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.57	±9.6 %
		Subframe=2 3 4 7 8 9)			
10477	ΔΔΓ			0.00	
10477		LIE-IDD (SC-FDIVIA, I KD, ZU IVITZ, 10-QAIVI, UL		0.3Z	±9.0%
		Subframe=2,3,4,7,8,9)			
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.57	±9.6 %
		Subframe=2 3 4 7 8 9)			
40470				774	1000
10479		LTE-TUD (SU-PUIVIA, 30% RB, 1.4 MITZ, QPSK, UL	LIE-IDD	1.14	±9.0%
		Subframe=2,3,4,7,8,9)			
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.18	+9.6%
	• •	Subframe= 234780			
40404					
10481		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL	LIE-IDD	8.45	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10482	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, OPSK, UI	LTE-TDD	7.71	±9.6 %
	1	Subframe=2.3.4.7.8.9)			, , , , , , , , , , , , , , , , ,
40.402					
10483	I AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL	LIE-TOD	8.39	± 9.6 %
	1	Subframe=2,3,4,7,8,9)			
10484	AAR	TE-TOD (SC-EDMA 50% RB 3 MHz 64-OAM LI	I TE-TOD	8 4 7	+96%
10707	1700			0.47	1 2 3.0 70
	l	Subirame=2,3,4,7,8,9)			
10485	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL	LTE-TDD	7.59	± 9.6 %
	1	Subframe=2.3.4.7.8.9)			
10486		LTE TOD (SC EDMA 50% PB 5 MHz 16 OAM LU		8.38	+96%
10400		(004 DMA, 007 DMA, 077 RD, 0 MHz, 1000 AM, 02		0.00	1 3.0 %
	<u> </u>	Subitalle=2,3,4,7,6,9)			
10487	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.60	± 9.6 %
l		Subframe=2.3.4.7.8.9)			
10/00				7 70	+0.6.0/
10400				1.10	19.070
L		Subtrame=2,3,4,7,8,9)			L]
10489	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
- -		Subframe=2 3 4 7 8 9)	_		· · ·
10400				0 54	+0.00
10490		LIE-IDD (SC-PDIVIA, DU% KB, TU IVITZ, 04-QAM, UL		0.04	T A'O 炎
		Subtrame=2,3,4,7,8,9)			<u> </u>
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
		Subframe=2 3 4 7 8 9)			/~
1	1		1	1	ı

10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.41	± 9.6 %
10493	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.55	±9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
10495	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.37	±9.6 %
10496	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10497	AAA	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.67	± 9.6 %
10498	AAA	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.40	± 9.6 %
10499	AAA	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.68	± 9.6 %
10500	AAB	Subframe=2,3,4,7,8,9)	L TE-TDD	7.67	± 9.6 %
10501		Subframe=2,3,4,7,8,9)		8 44	+96%
10501		Subframe=2,3,4,7,8,9)		0.50	10.0%
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHZ, 64-QAM, UL Subframe=2,3,4,7,8,9)		8.52	± 9.0 %
10503		LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LIE-TDD	7,72	± 9.6 %
10504	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	± 9.6 %
10505	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.54	± 9.6 %
10506	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL LTE-TDD Subframe=2.3.4.7.8.9)		7.74	± 9.6 %
10507	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subtrame=2.3.4.7.8.9)	LTE-TDD	8.36	±9.6 %
10508	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2.3.4.7.8.9)	LTE-TDD	8.55	± 9.6 %
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2.3.4.7.8.9)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2.2.4.7.9.0)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.42	± 9.6 %
10514	AAF	Subtrame=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.45	± 9,6 %
40545		Subframe=2,3,4,7,8,9)	10/1 AN	1.58	+06%
10515		EEE 802.11b WIFI 2.4 GHz (DSSS, 2 Wibps, 39pt duty cycle)		1.50	+96%
10517		IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM. 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cvcle)	WLAN	8.39	±9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6%
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9,6%
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10523	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	± 9.6 %
10524	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10525	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6 %
10528		IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529		IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	VVLAN	8.36	± 9.6 %
10531				0.43	±9.0%
10532	AAB			0.29	±9.0%
10533		IEEE 002.1 Tac WIFI (2014172, WCS0, 9900 duty cycle)		8.45	+96%
1 10004	1 ~~0		1 ** 6.711 *	1 0.70	1 - 0.0 /0

EX3DV4-- SN:7488

10535	AAB	IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6 %
10536	ΔΔΒ	IEEE 802 11ac WiEi (40MHz MCS2, 99pc duty cycle)		8 32	+96%
10000				0.52	1 0.0 %
10537	AAB	IEEE 802.11ac WIFI (40MHZ, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6%
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6 %
10540	AAB	IEEE 802.11ac WIEI (40MHz, MCS6, 99pc duty cycle)	WIAN	8.39	+9.6%
10541		IEEE 902 11 too M/IEI (1011/12, MCCC, 00po duty oyolo)	10/LAN1	0.46	+06%
10041	1 100		VVLAIN	0.40	<u>± 9.0 %</u>
10542		TEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10543	AAB	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	± 9.6 %
10544	AAB	IEEE 802 11ac WiEi (80MHz_MCS0_99pc duty cycle)	W/LAN	847	+96%
10515		IEEE 902 11 as MIE (90MHz, MOOd, Cope duty bysic)		0.55	406%
10545	AAD		VVLAN	0.00	± 9.0 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6 %
10547	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6 %
10548	AAR	IEEE 802 11ac WiEi (80MHz_MCS4_99nc duty cycle)	WI AN	8 37	+96%
40550				0.07	10.0%
10550	AAB		WLAN	8,38	±9.0%
10551	AAB	EEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6 %
10552	AAB	IEEE 802.11ac WIFI (80MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6 %
10553		IEEE 802 11ac WIEI (80MHz, MCS9, 99pc duty cyclo)		8.45	+96%
10000				0.40	2 9.0 %
10554		IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6 %
10555	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6 %
10556	AAC	IEEE 802 11ac WiEi (160MHz_MCS2_99pc duty cycle)	WIAN	8 50	+96%
10557		IEEE 002.11ao MiEi (160MHz, MCC2, 00po duty oyolo)		0.00	106%
10557	AAC	TEEE 802.1 Tac WIFI (TOUNIHZ, MCS3, 99pc duty cycle)	W.AN	0.52	I9.0 %
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6 %
10560	AAC	IEEE 802,11ac WiFi (160MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6 %
10561	1 AAC	IEEE 802 11ac WIEI (160MHz MCS7 99nc duty cycle)	WI AN	8 56	+96%
40500				0.00	+0.0 %
10562		TEEE 802.11ac WIFI (160MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.0 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6 %
10564	AAA	IEEE 802.11a WIEI 2.4 GHz (DSSS-OEDM, 9 Mbps, 99pc duty	WLAN	8.25	+9.6 %
	1,000		1.1	0.20	,.
1000	+			- 0.45	1000
10565		IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty	WLAN	8.45	±9.6%
		cycle)			
10566	AAA	IEEE 802 11a WiEi 2 4 GHz (DSSS-OEDM 18 Mbps, 99pc duty	WLAN	8.13	±9.6 %
40507			34/1 4 51	0.00	106%
10567	AAA	TEEE 802.11g WIFI 2.4 GHZ (DSSS-OFDIM, 24 Mbps, 99pc duty	WLAN	8.00	I9.0%
		cycle)			
10568	I AAA	IEEE 802,11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty	WLAN	8.37	±9.6 %
		cycle)	1		
40500	1	IEEE 000 44 a MIELO 4 OLLA (DECE OEDM 49 Minna 00 na dutu		0.40	+060/
10569		IEEE 802.11g WIFI 2.4 GHZ (DSSS-OFDIN, 48 Mups, 99pc duty	VYLAN	0.10	I 9.0 %
		cycle)			
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty	WLAN	8.30	±9.6 %
		cvcle)			
10574		IEEE 902 11h MIEL2 1 OHz (DSSS 1 Minas 00na duty availa)		1.00	+96%
10071	1 222			1.00	10.0%
10572		TEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6%
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	± 9.6 %
10574		IEEE 802 11h WiEi 2 4 GHz (DSSS 11 Mbns 90nc duty cycle)	WIAN	1.98	+9.6%
10074		IEEE 002.116 VIII 12.1 CH2 (DECC, 11 Mope, cope duty of old)		9.50	+06%
10070	ANA			0.09	± 0.0 /0
L		cycie)			
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty	WLAN	8.60	± 9.6 %
1	1	cvcle)	1		
10677	A A A	IEEE 202 11a M/IEI 2 4 CHz /DSSS OEDM 12 Mbps 00pc duty		8 70	+96%
10577	1 ~~~~		VY LAN	0.70	2 3.0 /0
		cycle)			
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty	WLAN	8,49	± 9.6 %
		cvcle)			
10570		IEEE 802 11a W/iEi 2 4 GHz (DSSS-OEDM 24 Mbps 90pc duty	WIAN	8.36	+96%
10070	1000		110.11	0.00	20.0 %
		Cycle)			
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty	WLAN	8.76	±9.6 %
		cvcle)			
10581		IEEE 802 11a WIEL2 & GHz (DSSS-OEDM 48 Mbps 90pc duty	WLAN	8 35	+96%
				0.00	1 - 0.0 /0
			14/1 - 5.1		1000
10582	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty	WLAN	8.67	± 9.6 %
		cycle)		1	
10583	AAR	IEEE 802.11a/h WIEL5 GHz (OEDM 6 Mbns 90nc duty cycle)	WIAN	8.59	± 9.6 %
10504		IEEE 902 14 a/b M/ELE CHT (OEDM 0 Mbps, 00ps duty syste)		9.00	10604
10564	MAD			0.00	
10585	AAB	LIEEE 802.11a/n WIFI 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	VVLAN	8.70	±9.6%
10586	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	<u>+ 9.6</u> %
10587	AAR	IEEE 802.11a/h WiEi 5 GHz (OEDM 24 Mhps 90nc duty cycle)	WLAN	8.36	± 9.6 %
1 10001					,

EX3DV4- SN:7488

.

40500			34// 434	0 70	
10588	AAB	TEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6 %
10590	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	± 9.6 %
10591	AAR	IEEE 802 11n (HT Mixed 20MHz MCS0 90nc duty cycle)	Μ/Ι ΔΝΙ	8.63	+96%
10502		IEEE 802 11n (HT Mixed, 20MHz, MCS1, 00pe duty cycle)		9.70	+0.6%
10592			VVLAIN	0.19	19.0%
10593	AAB	TEEE 802.11n (H1 Mixed, 20MHz, MCS2, 90pc duty cycle)	WLAN	8,64	±9.6%
10594	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6 %
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6 %
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6 %
10597	AAB	IEEE 802 11n (HT Mixed 20MHz MCS6 90nc duty cycle)	ΜΙ ΔΝΙ	872	+96%
10508	AAB	IEEE 802 11n (HT Mixed, 20MHz, MCC7, 00pc duty cycle)		0.72	+0.6 %
10000				0.00	19.0 %
10599	AAB	TEEE 802.1 In (H1 Mixed, 40MHz, MCSU, 90pc duty cycle)	WLAN	8.79	±9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6 %
10601	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.6 %
10602	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6%
10603	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)	WLAN	9.03	± 9.6 %
10604	AAB	IEEE 802 11n (HT Mixed 40MHz MCS5 90nc duty cycle)	WI ΔΝ	8 76	+96%
10605		IEEE 902.14n /IT Mixed, 40MHz, MOOO, Sope duty cycle)		0.10	100%
10000			VVLAN	0.97	<u>±9.0 %</u>
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	± 9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10609	AAB	IEEE 802,11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6 %
10610	AAR	IEEE 802 11ac WiEi (20MHz MCS3 90nc duty cycle)	W/LΔN	8 78	+96%
10611	AAB	IEEE 802 11ac WiFi (20MHz, MCS4, 90pc duty cyclo)		8 70	+06%
10011				0.70	1 9.0 %
10012		TEEE 802.1 Tac WIFI (2011/Hz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10613		IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	WLAN	8.94	± 9.6 %
10614	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	WLAN	8.59	± 9.6 %
10615	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6 %
10616	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6 %
10617	AAB	IEEE 802 11ac WiEi (40MHz_MCS1_90pc duty cycle)	W/LΔN	8.81	+96%
10618		IEEE 802 11ac WiFi (40MHz, MCS2, 90pc duty cycle)		0.01	+0.6%
10010			VVLAN	0.00	19.0 %
10619	AAB	TEEE 802.1 Tac WIFI (40MHZ, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	± 9.6 %
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6 %
10623	AAB	IEEE 802,11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WIAN	8.82	+9.6%
10624	AAB	IEEE 802 11ac WIEI (40MHz_MCS8_90pc duty cycle)	WI ΔΝ	8.96	+96%
10625		IEEE 802.11ac WiFi (40MHz, MCSO, 00pc duty cyclo)		9.06	+0.6 %
10020		IEEE 002.1140 WIT1 (40WI12, W003, 90pc duty cycle)		0.90	19.0 %
10020			WLAN	8.83	±9.6 %
10627	AAB	TEEE 802.11ac WIFI (80MHz, MCS1, 90pc duty cycle)	WLAN	8.88	± 9.6 %
10628	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6 %
10629	AAB	IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6 %
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6 %
10631	AAB	IEEE 802.11ac WIEI (80MHz_MCS5_90nc duty cycle)	WIAN	8 81	+96%
10632	AAR	IEEE 802 11ac WiEi (80MHz, MCS6, 90pc duty cycle)	WIAN	8 7/	+96%
10633		IEEE 802 1100 WIT (COMINZ, MCCO, JOPO duty cycle)		0.14	± 0.0 %
10000				0.00	+ 0.0 %
10034	AAD		VVLAIN	8.80	±9.6%
10635	AAB	IEEE 802.11ac WIFI (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6%
10636		IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	± 9.6 %
10637	AAC	IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10638	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8,86	±9.6 %
10639	AAC	IEEE 802 11ac WiFi (160MHz, MCS3, 90nc duty cycle)	WIAN	8.85	+96%
10640		IEEE 802 11ac WIEI (160MHz MCS4, 90pc duty cyclo)		2 02	+0.6%
10644		IEEE 002 1100 WITH (100WITZ, MOOH, 3000 duty 0yold)		0.50	
10041	AAC		VVLAIN	9.00	<u> </u>
10642	AAC	TEEE 802.11ac WIFI (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6%
10643		IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6%
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6%
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6 %
10646	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, OPSK, UI, Subframe=2.7)		11.06	+96%
10647	AAF	LTE-TDD (SC-EDMA 1 RB 20 MHz OPSK UL Subframe-2.7)		11 06	+96%
10041		$\frac{1}{2} \frac{1}{2} \frac{1}$		0.45	10.0%
10040				3.45	19.0%
10652		LIE-TUD (OFDIMA, 5 MHZ, E-TM 3.1, Clipping 44%)	LIE-IDD	6.91	±9.6%
10653	AAD	LIE-IDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6 %
10654	AAD	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6%

EX3DV4-- SN:7488

January 24, 2019

10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	+96%
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	± 9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	± 9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst С

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test Certificate No: EX3-7417_Feb19

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7417			
Calibration procedure(s)	OA CAL-01 -9 - QA CAL-23 v5, QA CAL-25 v7 Calbration procedure for desimetric E-field probes			
Calibration date:	February 19, 2019	q		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.				

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	-		
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Claudio Leubler	Laboratory Technician	
			VE
Approved by:	Katja Pokovic	Technical Manager	Jel UG-
			Issued: February 20, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- S Servizio svizzero di taratura
 - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR:* PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.54	0.43	0.53	± 10.1 %
DCP (mV) ⁸	98.7	97.4	100.4	

Calibration Results for Modulation Response

UID	Communication System Name		A	В	С	D	VR	Max	Max
	_		dB	dBõV		dB	mV	dev.	Unc ^E
									(k=2)
0	CW	X	0.00	0.00	1,00	0.00	144.6	± 3.3 %	±4.7 %
		Y	0.00	0.00	1.00		149.7		
:		Z	0.00	0.00	1.00		143.1		
10352-	Pulse Waveform (200Hz, 10%)	X	15.00	88.38	19.65	10.00	60.0	± 3.3 %	±9.6 %
AAA		Y	4.33	71.38	13.30		60.0		
		Z	7.40	77.44	14.95		60.0		
10353-	Pulse Waveform (200Hz, 20%)	X	15.00	92.19	20.43	6.99	80.0	± 2.2 %	± 9.6 %
AAA		Y	5.53	76.01	13.64		80.0		
		Z	15.00	85.74	16.43		80.0		
10354-	Pulse Waveform (200Hz, 40%)	X	15.00	107.68	26.54	3.98	95.0	± 1.3 %	±9.6 %
AAA		Y	9.05	79.53	12.66		95.0		
		Z	15.00	90.71	17.41		95.0		
10355-	Pulse Waveform (200Hz, 60%)	X	15.00	127.17	33.83	2.22	120.0	± 1.2 %	± 9.6 %
AAA		Y	0.26	60.00	4.45		120.0	1	
		Z	15.00	99.84	20.30		120.0		
10387-	QPSK Waveform, 1 MHz	X	0.56	60.62	7.74	0.00	150.0	± 3.6 %	± 9.6 %
AAA		Y	0,42	60.00	4.69		150.0		
		Z	0.44	60.00	5.48		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.27	69.09	16.46	0.00	150.0	± 1.3 %	± 9.6 %
AAA		Y	1.94	67.43	15.43		150.0	1	
		Z	2.06	68.27	16.05		150.0	1	
10396-	64-QAM Waveform, 100 kHz	X	3.15	72.71	19.95	3.01	150.0	± 2.5 %	±9.6 %
AAA		Y	2.04	67.08	18.19		150.0	1	
		Z	2.07	66.03	16.88		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.52	67.53	16.10	0.00	150.0	± 2.4 %	± 9.6 %
AAA		Υ	3.32	66.83	15.68		150.0		
		Z	3.38	67.15	15.89		150.0		
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.80	65.90	15.74	0.00	150.0	±4.4 %	± 9.6 %
AAA		Y	4.58	65.58	15.59		150.0	1	
		7	4.60	65.76	15.65	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

	C1	C2	α	T1	T2	Т3	T4	T5	Т6
	fF	fF	V ⁻¹	ms.V ^{−2}	ms.V ⁻¹	ms	V-2	V ⁻¹	
X	37.6	279.10	35.33	9.45	0.00	5.09	1.69	0.14	1.01
Y	29.6	227.60	37.50	5.19	0.43	5.04	0.00	0.16	1.01
Z	28.8	214.34	35.37	6.91	0.00	5.04	0.00	0.24	1.00

Sensor Model Parameters

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	120.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.36	10.36	10.36	0.54	0.99	± 12.0 %
835	41.5	0.90	10.07	10.07	10.07	0.48	0.84	± 12.0 %
1750	40.1	1.37	8.39	8.39	8.39	0.38	0.85	± 12.0 %
1900	40.0	1.40	8.11	8.11	8.11	0.39	0.84	± 12.0 %
2300	39.5	1.67	7.73	7.73	7.73	0.30	0.93	± 12.0 %
2450	39.2	1.80	7.46	7.46	7.46	0.39	0.95	± 12.0 %
2600	39.0	1.96	7.17	7.17	7.17	0.31	1.05	± 12.0 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The Frequency validity above solv MHz of \pm 100 MHz only applies for DAST V4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	10.35	10.35	10.35	0.63	0.84	± 12.0 %
835	55.2	0.97	10.11	10.11	10.11	0.43	0.84	± 12.0 %
1750	53.4	1.49	8.21	8.21	8.21	0.43	0.88	± 12.0 %
1900	53.3	1.52	7.86	7.86	7.86	0.43	0.87	± 12.0 %
2300	52.9	1.81	7.64	7.64	7.64	0.41	0.93	± 12.0 %
2450	52.7	1.95	7.51	7.51	7.51	0.40	0.95	± 12.0 %
2600	52.5	2.16	7.37	7.37	7.37	0.33	1.05	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-7417_Feb19

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-7417_Feb19

Conversion Factor Assessment

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0		CW	CW	0.00	±4.7 %
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	±9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6%
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6%
10030		TEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6 %
10031		TEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6%
10032		TEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6 %
10033		IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034		1EEE 802.15.1 Bluetooth (P1/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035		IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	±96%
10030		IEEE 002.15.1 Didelootin (8-DPSK, DH1)	Bluetooth	8.01	$\pm 9.6\%$
10037		IEEE 002.15.1 Didelootin (0-DPSK, DHS)	Bluetooth	4.77	± 9.6 %
10030			Bluetooth	4.10	± 9.6 %
10035		IS 54 / IS 126 EDD (TDMA/EDM BI/A DODSK Holfrete)		4.57	± 9.6 %
10042		13-34713-130 FDD (1DWA/FDW, PI/4-DQPSK, Hallfale)	AMPS	7.78	±9.6 %
10044		DECT (TDD TDM/EDM GESK Evil Stat 24)	AIVIPS	0.00	± 9.0 %
10040		DECT (TDD, TDMA/EDM, GESK, Puil Slot, 24)	DECT	13.80	± 9.6 %
10056		LIMTS-TOD (TD SCDMA 1 28 Mone)		10.79	<u>19.0%</u>
10050		EDGE-EDD (TDMA 889K TN 0.1.2.3)	COM	6.50	<u>±9.0%</u>
10059	CAB	IEEE 802 11h W/iEi 2.4 GHz (DSSS 2 Mbps)		0.02	<u>±9.0 %</u>
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)		2.12	± 9.0 %
10061	CAB	IEEE 802.11b WIFF2.4 GHz (DSSS_11 Mbps)		2.00	+96%
10062	CAC	IEEE 802 11a/b WiFi 5 GHz (DEDM_6 Mbps)	WLAN	8.68	+96%
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM 9 Mbps)	WI AN	8.63	+96%
10064	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 12 Mbps)	WIAN	9.00	+96%
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	+9.6%
10066	CAC	IEEE 802.11a/h WIFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
10067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6 %
10068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6 %
10069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6 %
10071	CAB	IEEE 802.11g WiFI 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6 %
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6 %
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6 %
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6 %
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6 %
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6%
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6 %
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6 %
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	±9.6 %
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6 %
10097		UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6 %
10098		UMIS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6 %
10099		EDGE-FDD (IDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6 %
10100		LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	±9.6 %
10101		LIE-FUD (SC-FUMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10102		LTE-FUD (SU-FUMA, 100% RB, 20 MHz, 64-QAM)		6.60	±9.6 %
10103		LTE-TUD (SG-FUMA, 100% RB, 20 MHz, QPSK)	LIE-IDD	9.29	± 9.6 %
10104		LTE-TUD (SU-FUMA, 100% RB, 20 MHZ, 16-QAM)		9.97	±9.6%
10100	CAG	LIE-IDD (30-FDIVIA, 100% KB, 20 MHZ, 54-QAM)		10.01	± 9.0 %
		LETET DD (00-TDIVIA, 100% RD, 101VIAZ, QFOR)		0.00	エヨ.0 %

EX3DV4- SN:7417

February 19, 2019

10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6%
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6,44	± 9.6 %
10111		LTE_EDD (SC_EDMA_100% RB_10 MHz 64_0AM)		6.59	±9.6%
10112		LTE EDD (SC EDMA 100% DR 5 MU7 64 OAM)		6.62	+96%
10113	CAG	LIE-FUD (OU-FUNNA, 100% ND, 0 MINZ, 04-WANN)		8 10	+06%
10114	CAC	IEEE 802.11n (HT Greentield, 13.5 Mbps, BPSK)		0.10	<u>±9.0 %</u>
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	VVLAN	0.40	± 9.0 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps. 64-QAM)	WLAN	8.13	±9.6 %
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-EDD (SC-EDMA, 100% RB, 3 MHz, OPSK)	I TE-FDD	5.73	±9.6%
10142		LTE EDD (SC-EDMA 100% PB 3 MHz 16 0AM)		6.35	+96%
10143		LTE-FDD (SC-FDMA, 100% RD, 3 MHZ, 10-QAM)		6 65	+96%
10144		LIE-FUU (SU-FUWA, 100% KB, 3 MHZ, 04-QAM)		5.00	<u> </u>
10145	CAF	LTE-FUD (SC-FDMA, 100% KB, 1.4 MHz, QPSK)		0.76	<u> </u>
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LIE-FDD	0.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LIE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6 %
10152	CAG	LTE-TDD (SC-EDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10152	CAG	LTE-TDD (SC-EDMA 50% RB 20 MHz 64-OAM)	LTE-TDD	10.05	±9.6%
10153		LTE-EDD (SC-EDMA 50% RB 10 MHz OPSK)	I TE-FDD	5.75	±9.6 %
10104		$\frac{1}{1} = \frac{1}{1} $		6 43	+96%
10105		LIE-FUD (30-FUNA, 30% RD, 10 MIL, 10-QAW)		5 70	+96%
10156		LIE-FUD (SC-FUMA, 50% KB, 5 MHZ, QPSK)		0.10	± 3.0 %
10157	CAG	LIE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)		0.49	19.0%
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)		0.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz. 64-QAM)	LTE-FDD	6.58	± 9.6 %
10166	CAF	LTE-EDD (SC-EDMA, 50% RB, 1.4 MHz, OPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-EDD (SC-EDMA 50% RB 14 MHz 16-OAM)	LTE-FDD	6.21	± 9.6 %
10107		1 TE-EDD (SC-EDMA 50% RB 1.4 MHz R4-OAM)	I TE-FDD	6.79	±9.6%
10100		LIETED (SCEDMA 1 PP 20 MU- OPEV)		5 72	+96%
10169		LIE-FUD (30-FUNA, 1 ND, 20 MID, 46 OAM)		6.52	+06%
10170				6.02	10.0 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)		0.49	I J.O %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)		9.21	± 9.0 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAL	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-EDD (SC-EDMA 1 RB 5 MHz 16-OAM)	LTE-FDD	6.52	± 9.6 %
10170		1 TE-EDD (SC-EDMA 1 RB 10 MHz 64-0AM)	LTE-FDD	6.50	±9.6%
10179				6.50	±9.6%
08101				5.00	+96%
10181				6.50	+06%
10182		LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)		0.02	<u>1 3.0 %</u>
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)		0.50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LIE-FDD	5./3	± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	<u>± 9.6 %</u>
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAF	I TE-EDD (SC-EDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10120		LTE-EDD (SC-EDMA 1 RB 14 MHz 64-OAM)	LTE-FDD	6.50	± 9.6 %
10109		IEEE 802 11p (HT Greenfield 6.5 Mbns RPSK)	WLAN	8.09	± 9.6 %
10193		IFFF 902.11n (IT Greenfield 30 Mbrs. 16 OAM)	WIAN	8 12	+96%
10194		LEEE 002.1111 (TT Greenheid, 39 Wubs, 10-QAW)		8.24	+96%
10195	CAC	IEEE 802.11n (HI Greentield, to MDps, 64-QAW)		0.21	+06%
10196	CAC	IEEE 802.11n (H1 Mixed, 6.5 Mbps, BPSK)		0.10	<u>19.0%</u>
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	VVLAN	0.13	1 29.0%
10198	CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	± 9.6 %
10219	CAC	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	± 9.6 %

10220	CAC	IEEE 802 11n (HT Mixed 43.3 Mbns 16-0AM)	10/1 ANI	0 1 2	+06%
10221		IEEE 002.11m (ITT Mixed, 40.0 Mbps, 10-QAM)		0.13	±9.0 %
10221		TEEE 802.1111 (H1 WIXed, 72.2 WIDPS, 64-QAW)	WLAN	8.27	±9.6%
10222	CAC	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6 %
10224		IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	5.97	± 9.6 %
10226	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	+96%
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1 4 MHz, 64-QAM)		10.26	+96%
10228	CAA	LTE-TDD (SC-EDMA 1 BB 14 MHz OPSK)		0.20	+06%
10229	CAC	1 TE-TDD (SC-EDMA 1 DB 2 MH- 16 OAM)		9.22	± 9.0 %
10220		LTE TOD (SC EDMA 4 DP 2 MUL CA OAM)		9.40	±9.0 %
10230	OAC -	LTE-TDD (SC-FDWA, TRB, 3 MHZ, 64-QAM)		10.25	±9.6 %
10231		LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-TDD	9.19	±9.6 %
10232		LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10233	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	10.25	±9.6 %
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-TDD	9.21	±9.6 %
10235	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	±9.6 %
10236	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-TDD	10.25	+96%
10237	CAF	LTE-TDD (SC-EDMA, 1 RB, 10 MHz, OPSK)		9.21	+96%
10238	CAE	LTE-TDD (SC-EDMA 1 BB 15 MHz 16 OAM)		0.49	+069/
10230		1 TE TDD (SC EDMA 4 DB 45 MUz, 64 OAM)		9.40	<u>±90%</u>
10200				10.25	±9.0 %
10240		LTE-TDD (SC-FDMA, TRB, 15 MHZ, QPSK)	LIE-IDD	9.21	±9.6 %
10241		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	<u>±9.6 %</u>
10242	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6 %
10243	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	±9.6 %
10246	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, OPSK)	LTE-TDD	9.30	+96%
10247	CAF	LTE-TDD (SC-EDMA 50% BB 5 MHz 16-0AM)		0.00	+0.6 %
10248	CAE	LTE-TDD (SC-EDMA 50% RB 5 MHz 64-0AM)		10.00	10.0%
10240		LTE TDD (SC EDMA, 50% RB, 5 MHz, 04-QAM)		10.09	± 9.0 %
10249	OAF	LTE-TDD (30-FDMA, 50% RD, 5 MILZ, QPSK)		9.29	± 9.0 %
10250	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LIE-IDD	9.81	<u>±9.6 %</u>
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	<u>±9.6 %</u>
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	±9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	+9.6 %
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	+96%
10258	CAA	LTE-TDD (SC-EDMA 100% RB 14 MHz, OPSK)		0.00	+96%
10250	CAC	LTE TOD (SC EDMA 400% PR 2 MHz 16 0AM)		0.09	10.6 %
10200		LTE TOD (SCH DMA, 100% ND, 3 MHZ, 10-QAM)		9,90	19.0 %
10200	CAC	LTE-TDD (SC-FDIMA, 100% RB, 3 MHZ, 64-QAM)		9.97	±9.6 %
10261	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LIE-IDD	9.24	± 9.6 %
10262	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	±9.6 %
10263	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	±9.6 %
10264	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	±9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	±9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-OAM)	LTE-TDD	10.06	±9.6 %
10269	CAF	LTE-TDD (SC-EDMA 100% RB 15 MHz 64-0AM)		10.00	+96%
10200		LTE TOD (SC FDMA 100% PR 15 MUZ OPSK)		0.50	+060/
10270				3.00	190%
10214		UNTO FOD (HOURA, OUDESED, JOPP REID. 10)		4.8/	<u><u> </u></u>
10275	CAB	UNITS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	±9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	±9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	±9.6%
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	±96%
10293	AAB	CDMA2000 RC3 SO3 Full Rate	CDMA2000	3.50	+96%
10205	ΔΔR	CDMA2000 RC1 SO3 1/8th Rate 25 fr	CDMA2000	12/0	+0.6%
10207		TE EDD (20 EDMA 50% DD 20 MU- 000K)		12.49 E 04	+0.0 %
10297				0.01	<u> </u>
10298		LIE-FUD (SU-FUMA, SU% KB, 3 MHZ, QPSK)		0.72	±9.0%
10299	I AAD	I LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LIE-FDD	6.39	±9.6%

				0.00	
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LIE-FDD	6.60	± 9.6 %
10301	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	± 9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL	WIMAX	12.57	±9.6 %
		symbols)			
10303	AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6 %
10304	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6 %
10305	AAA	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15	WIMAX	15.24	±9.6 %
		symbols)			
10306	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18	WIMAX	14.67	± 9.6 %
		symbols)			
10307	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18	WIMAX	14.49	±9.6 %
		symbols)			
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6 %
10309	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18	WIMAX	14.58	±9.6 %
		symbols)			
10310	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18	WIMAX	14.57	± 9.6 %
		symbols)			
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6 %
10313	AAA	IDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	±9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS. 1 Mbps. 96pc duty cycle)	WLAN	1.71	±9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM. 6 Mbps. 96pc duty cycle)	WLAN	8.36	±9.6 %
10317	AAC	IEEE 802 11a WIFI 5 GHz (OEDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10352		Pulse Waveform (200Hz 10%)	Generic	10.00	±9.6 %
10352		Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6%
10353		Pulse Waveform (200Hz, 20%)	Generic	3,98	$\pm 9.6\%$
40255		Duleo Wayeform (200Hz, 4070)	Generic	2.00	+96%
10300		Fuise Waveform (200Hz, 00%)	Generic	0.97	+96%
10306			Generic	5 10	+96%
10387			Conorio	5.10	+06%
10388			Generic	6.07	10.0%
10396		64-QAM Waveform, 100 KHz	Generic	0.27	19.0%
10399		64-QAM Waveform, 40 MHz	Generic	0.27	I J O %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)		8.37	± 9.0 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	VVLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	±9.6 %
10410	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9, Subframe Conf=4)		L	
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.14	± 9.6 %
	}	Long preambule)			
10419	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle,	WLAN	8.19	± 9.6 %
		Short preambule)			
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps. 16-QAM)	WLAN	8.47	± 9.6 %
10424	AAR	IEEE 802 11n (HT Greenfield, 72,2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10424	AAR	IEEE 802 11n (HT Greenfield, 15 Mbns, BPSK)	WLAN	8.41	± 9.6 %
10420		IEEE 802.11n (HT Greenfield 90 Mbns 16-0AM)	WLAN	8.45	± 9.6 %
10420		IEEE 802.11n (HT Greenfield, 50 Mbps, 10-QAM)	WIAN	8,41	± 9.6 %
10427		TEEL 002.1 III (TT Greenieu, 100 Mbps, 07-0/10)		8 28	+9.6%
10430	AAD			8 38	+96%
10431		LTE FDD (OFDIMA, 10 MILZ, E-1 MI 3.1)		8 34	+96%
10432				8 34	+96%
10433	AAC	LTE-FDD (OFDMA, 20 MHZ, E-1M 3.1)		0.04	+060/
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)		0.00	1000
10435	AAF	LTE-TOD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL		1.02	т 9.0 %
	<u> </u>	Subtrame=2,3,4,7,8,9)		7 50	+060/
10447	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)		1.50	19.0%
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)		1.53	± 9.6 %
10449	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)		1.51	± 9.0 %
10450	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	/ .48	± 9.6 %

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.82	±9.6%
		Subframe=2,3,4,7,8,9)			
10462	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.30	±9.6 %
40.400		Subframe=2,3,4,7,8,9)			
10463		LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.56	± 9.6 %
40404		Subtrame=2,3,4,7,8,9)	1 75 755		
10404		LTE-TDD (SC-FDIMA, TRB, 3 MHZ, QPSK, UL Subframer 2.2.4.7.8.0)	LIE-IDD	7.82	±9.6%
10465		UTE TDD (SC EDMA 1 DD 2 MU- 16 OAM 11		0.00	1000
10400		$12^{-1}DD$ (30 ⁻¹ DMA, 11(D, 3 MHz, 10 ⁻⁰ AM, 02 Subframe=2.3.4.7.8.9)	LIE-IDD	0.32	I9.0 %
10466	AAB	LTE-TDD (SC-EDMA_1 RB_3 MHz_64-OAM_III		8 57	+96%
	1,0,0	Subframe=2.3.4.7.8.9)		0.07	1 3.0 76
10467	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL	LTE-TDD	7.82	+9.6 %
		Subframe=2,3,4,7,8,9)			
10468	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10469	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.56	±9.6 %
		Subframe=2,3,4,7,8,9)			
10470	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	±9.6%
1.0.100.1		Subframe=2,3,4,7,8,9)			
10471	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.32	±9.6%
40470		Subtrame=2,3,4,7,8,9)		0.53	
10472		LTE-TDD (SC-FDMA, 1 RB, 10 MHZ, 64-QAM, UL	LIE-IDD	8.57	±9.6%
10473				7 00	+06%
10410		Subframe=2.3.4.7.8.0		1.02	19.0 %
10474	AAF	TE-TDD (SC-EDMA 1 RB 15 MHz 16-OAM UI		8.32	+96%
		Subframe=2.3.4.7.8.9)		0.02	20.070
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.57	±9.6 %
		Subframe=2,3,4,7,8,9)			
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.32	±9.6 %
	ļ	Subframe=2,3,4,7,8,9)			
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
	<u> </u>	Subframe=2,3,4,7,8,9)			
10479	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
10190		Subframe=2,3,4,7,8,9) $1 = 1000000000000000000000000000000000$		0.40	
10480		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHZ, 16-QAM, UL Subframer 2.3.4.7.8.0)	LIE-IDD	8.18	±9.6%
10481		LTE-TDD (SC-EDMA 50% RB 14 MHz 64-0AM LI		8.45	+96%
	1,000	Subframe=2.3.4.7.8.9)		0.40	1 3.0 %
10482	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL	LTE-TDD	7.71	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10483	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.39	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.47	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10485	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL	LTE-TDD	7.59	± 9.6 %
10/00		Subframe=2,3,4,7,8,9)			
10486		LTE-TDD (SC-FDMA, 50% RB, 5 MHZ, 16-QAM, UL	LIE-IDD	8.38	±9.6%
10/197		UTE TOD (SC EDMA 50% PB 5 MHz 64 OAM 11)		9 60	+06%
10407		Subframe=2.3.4.7.8.9)		0.00	T 2.0 %
10488	AAF	LTE-TDD (SC-EDMA, 50% RB, 10 MHz, OPSK, LII		7 70	+96%
		Subframe=2.3.4.7.8.9)			20.0 /0
10489	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	±9.6 %
		Subframe=2,3,4,7,8,9)			
10490	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.54	±9.6 %
L		Subframe=2,3,4,7,8,9)			
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
1	1	Subframe=2,3,4,7,8,9)	1		

EX3DV4-- SN:7417

February 19, 2019

10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.41	± 9.6 %
10402	۸۸۲	Subtrame=2,3,4,7,8,9)		8.55	+96%
10493	AAE	Subframe=2.3.4.7.8.9)		0.00	1 3.0 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL	LTE-TDD	7.74	±9.6 %
		Subframe=2,3,4,7,8,9)			
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.37	±9.6 %
10.100		Subframe=2,3,4,7,8,9)		0.54	1069/
10496		LTE-1DD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL	LIE-IDD	0.04	± 9.0 %
10497	ΔΔΔ	TE-TOD (SC-FDMA 100% RB 1 4 MHz OPSK UL	LTE-TDD	7.67	±9.6 %
		Subframe=2,3,4,7,8,9)			
10498	AAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.40	± 9.6 %
		Subframe=2,3,4,7,8,9)		0.00	100%
10499		L1E-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL	LIE-IDD	8.68	±9.0%
10500	AAR	T Subiranie-2,3,4,7,0,9)	LTE-TDD	7.67	± 9.6 %
10000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Subframe=2,3,4,7,8,9)			
10501	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.44	± 9.6 %
		Subframe=2,3,4,7,8,9)		0.50	
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL	LIE-IDD	8.52	±9.6%
10503		UTE-TDD (SC-EDMA 100% RB 5 MHz OPSK 11		7.72	± 9.6 %
10000		Subframe=2.3.4.7.8.9)			
10504	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.31	±9.6 %
		Subframe=2,3,4,7,8,9)			
10505	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10506		Subtrame=2,3,4,7,8,9)		7 74	+96%
10000		Subframe=2.3.4.7.8.9)		1.14	
10507	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.36	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10508	AAE	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.55	±9.6 %
40500		Subtrame=2,3,4,7,8,9)		7 99	+96%
10509		LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QFSR, 0LSubframe=2.3.4.7.8.9)		1.50	T 0.0 /0
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.49	±9.6 %
		Subframe=2,3,4,7,8,9)			
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.51	± 9.6 %
40540		Subframe=2,3,4,7,8,9)		7.74	+06%
10512	AAF	L1E-1DD (SG-FDIMA, 100% RB, 20 MITZ, QFSR, 0L Subframe=2 3 4 7 8 9)		1.74	1 9.0 /0
10513	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.42	±9.6 %
10010		Subframe=2,3,4,7,8,9)			
10514	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.45	± 9.6 %
10515		Subframe=2,3,4,7,8,9)		1 50	+06%
10515		IEEE 802.11D WIFI 2.4 GHZ (DSSS, 2 Mbps, 99pc duty cycle)		1.50	+96%
10510		IEEE 802.11b WIFI 2.4 GHz (DSSS, 3.5 Mbps, 99bc duty cycle)	WLAN	1.58	$\pm 9.6\%$
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10521	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10523		IEEE 802.11a/n WIFI 5 GHZ (OFDM, 48 Mbps, 99pc duty cycle)		0.00	+96%
10524	AAB AAR	IEEE 802.11an WIFI J GFZ (UFDW, 54 W0ps, 39pc duty cycle)	WLAN	8.36	± 9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)	WLAN	8.42	± 9.6 %
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN	8.21	± 9.6 %
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)		8.36	$\pm 9.6\%$
10531		IEEE 802.11ac WIFI (20MHz, MCS6, 99pc duty cycle)		8.20	± 9.0 % + 9.6 %
10532	AAB	IEEE 002.11ac WIFI (20MHz, MCS8, 99pc duty cycle)	WIAN	8.38	± 9.6 %
10533		IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	± 9.6 %

EX3DV4- SN:7417

40505					
10535	AAB	IEEE 802.11ac WIFI (40MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6 %
10536	AAB	IEEE 802.11ac WIFI (40MHz, MCS2, 99pc duty cycle)	WLAN	8.32	+96%
10527				0.02	2.0.0 %
10557	AAD	IEEE 802. Tac WIFI (40MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6%
10538	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6 %
105/0	AAB	IEEE 802 1120 WIEI (40MHz, MCS6, 00pg duty availa)		0.20	1001
10040	17010		AAFWIN	0.39	<u>± 9.0 %</u>
10541	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6 %
10542	AAB	IFEE 802 11ac WIEI (40MHz, MCS8, 99pc duty cycle)	WI AN	8.65	+96%
405 (0	110.0			0.00	10.070
10543	AAB	THEE 802.11ac WIFI (40MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6 %
10544	AAB	IEEE 802.11ac WIFI (80MHz, MCS0, 99pc duty cycle)	WLAN	8 4 7	+96%
40E4E				0.11	. 0.0 %
10545	AAD	TEEE 802. Trac WIFI (800/HZ, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6 %
10546	AAB	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6%
10547		IEEE 802 1100 WIEI (80MHz, MCC2, 00mg duty supp.)	14/1 4 61	0.40	- 0 0 0/
10347	AAD		WLAN	8,49	±9.6 %
10548	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10550	AAR	IFFE 802 11ac WIEI (80MHz, MCS6, 99pc duty cycla)	M/LAN	0.20	+06%
10000	700		WLAN	0.00	1 9.0 %
10551	AAB	IEEE 802.11ac WIFI (80MHz, MCS7, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10552	AAB	IFEE 802 11ac WIEI (80MHz, MCS8, 99pc duty cycle)	10/1 AN	8/2	+96%
10002	1010		WVL/NN	0.42	<u> </u>
10553	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10554	AAC	IFEE 802 11ac WIEI (160MHz_MCS0_99pc duty cycle)	W/LAN	8 4 8	+96%
40555	10			0.40	10.0 %
10555	AAC	IEEE 802.11ac WIFI (160MHZ, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6 %
10556	AAC	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	WLAN	8.50	± 9.6 %
10557		IEEE 002 1100 WIEI (160MLH- MCC2, 00po duty oyolo)		0.00	1000
10007	AAC		WLAN	0.52	±9.0%
10558	AAC	IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cvcle)	WLAN	8.61	±9.6 %
10560	AAC	IEEE 802 11ac WiEi (160MHz MCSS 00no dutu quala)	10/1 0.01	0 70	+060/
10000	100		VVLAIN	0.13	I 9.0 %
10561	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6 %
10562	1000	IEEE 802 11 pp WIEI (160MHz, MCS8, 00 pp duty ougle)	AAL ANI	0 60	+069/
10302	100		VYLAN	0.09	I 9.0 %
10563	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)	I WLAN	8.77	±9.6 %
10564	ΔΔΔ	IFEE 802 11a WiFi 2.4 GHz (DSSS-OEDM 9 Mbps 99pc duty	MILAN	8.25	+06%
10004	1 ~~~~	There was a set of the	VVL/AIN	0.25	± 9.0 %
		cycle)			
10565		IFEE 802 11g WIFI 2 4 GHz (DSSS-OEDM 12 Mbps 99pc duty	WLAN	845	+96%
	1.000	auto)	V V 6/ \l \	0.40	- 0.0.70
10566	AAA	IEEE 802.11a WiFi 2.4 GHz (DSSS-OEDM, 18 Mbps, 99nc duty	WIAN	8 13	+96%
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty	WLAN	8.00	± 9.6 %
	}	cycle)			
10500	<u> </u>				
10568	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty	WLAN	8.37	±9.6 %
		cycle)		· ·	ļ
40500					
10569	AAA	IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty	WLAN	8.10	±9.6%
		cycle)			
10570	1	LEEE 800 44 a WIELD 4 CHE (DOOD OF DM 54 Mhose DOne duty	14/1 4 1	0.00	1069/
10570		TEEE 802.11g WIFI 2.4 GHZ (DSSS-OFDIN, 54 Mbps, 99pc duty	WLAN	8.30	±9.6%
		cycle)			
10571	A A A	IEEE 802 11h WIEL2 & CHz (DSSS 1 Mbns 90ns duty syste)		1.00	+06%
10071		TELE 602. The WIFT 2.4 GHZ (D333, TWDps, supe duty cycle)	VYLAN	1.55	1 9.0 %
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6 %
10573	ΔΔΔ	IEEE 802 11h WIEL2 4 GHz (DSSS 5.5 Mbps 90nc duty cycle)	M/LAN	1 08	+96%
10070	1.72.		VV LL/NN	1.00	
10574	AAA	ILEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	<u>±9.6 %</u>
10575	AAA	IEEE 802,11g WIFI 2.4 GHz (DSSS-OFDM 6 Mbps 90pc duty	WLAN	8.59	±9.6 %
1.00.0				0.00	_ 5.5 /0
		cycle)		ļ	
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM. 9 Mbps, 90pc dutv	WLAN	8.60	±9.6 %
108	+ • • • •				
10577	AAA	I IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty	WLAN	8.70	± 9.6 %
	ł	cvcle)			
10570	1		10/2 0.01	0.40	
10578	AAA	THEE OUZ.TTG WIFT Z.4 GHZ (DSSS-OFDM, 18 Mbps, 90pc duty	I WLAN	8.49	1 1 9 0 %
		cycle)			
10570	۸۸۸	IEEE 802 114 WIEL 2 / CH- /DOOD OEDM 24 Mhos Office date		0.00	+0.6.0/
100/9	1 ~~~			0.30	T 2.0 %
L	1	cycle)			
10580		IEEE 802 11a WIEi 2 4 GHz (DSSS-OEDM 36 Mone 90ne duty	WLAN	8 76	+96%
10000	' ⁽ ()		******	0.10	- 0.0 /0
		сусіе)			
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty	WLAN	8.35	± 9.6 %
1				1	
				_	
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM. 54 Mbps. 90pc dutv	WLAN	8.67	±9.6 %
-		nucle)			
	+				
10583	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	<u>±9.</u> 6 %
10584	AAR	IEEE 802 11a/h WIEL5 GHz (OEDM 9 Mhps 90nc duty cycle)	WI AN	00.8	+96%
10004	1			0.00	
10585	AAB	IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	± 9.6 %
10586	AAR	IEEE 802,11a/h WIFi 5 GHz (OFDM 18 Mbps, 90pc duty cycle)	WLAN	8.49	± 9.6 %
40505					10.0 %
10587	I AAB	IEEE 802.11a/n WIF15 GHZ (OFDM, 24 Mbps, 90pc duty cycle)	I WLAN	8.36	± 9.6 %

EX3DV4-SN:7417

10588	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6 %
10589	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6 %
10590	AAB	IEEE 802 11a/h WIEi 5 GHz (OEDM 54 Mbps, 90pc duty cycle)	WIAN	8.67	+9.6%
10501	AAR	IEEE 802.11n /HT Mixed 20MHz MCS0 90nc duty cyclo)		863	+96%
10591		IEEE 002.1111 (IT Mixed, 20MHz, MCS0, sope duty cycle)		0.00	+060/
10592	AAD			0.79	<u>±9.0 %</u>
10593	AAB	TEEE 802.11n (HT Mixed, 200/HZ, MCS2, 90pc duty cycle)		8.04	<u>±9,0 %</u>
10594	AAB	IEEE 802.11n (H1 Mixed, 20MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6%
10595	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6 %
10596	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6 %
10597	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6 %
10598	AAB	IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)	WLAN	8.50	± 9.6 %
10599	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle)	WLAN	8.79	± 9.6 %
10600	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6 %
10601	AAB	IEEE 802 11n (HT Mixed 40MHz MCS2 90nc duty cycle)	WIAN	8.82	+96%
10602	AAR	IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc duty cycle)		8 94	+96%
10602		IEEE 802.11m (ITT Mixed, 40MHz, MCS4, 90pc duty cycle)		0.07	±0.6 %
10003				9.03	± 9.0 %
10604		TEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6%
10605	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6%
10606	AAB	IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9,6 %
10607	AAB	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6 %
10608	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	WLAN	8.77	±96%
10609	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6 %
10610	AAB	IEEE 802,11ac WIFi (20MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6 %
10611	AAB	IEEE 802,11ac WiFi (20MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6 %
10612	AAB	IEEE 802 11ac WiFi (20MHz, MCS5, 90pc duty cycle)	WLAN	8.77	+9.6%
10613		IEEE 802 11ac WiFi (20MHz, MCS6, 90pc duty cycle)	ΙΛ/Ι ΔΝΙ	8 94	+96%
10614		IEEE 902.11ac Wirt (20MHz, MCS7, 90pc duty cycle)		8 50	+0.6%
10014				0.00	19.0%
10015				0.02	±9.0 %
10616	AAB	IEEE 802.11ac WIFI (40MHZ, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6%
10617	AAB	IEEE 802.11ac WIFI (40MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6%
10618	AAB	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6 %
10619	AAB	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6 %
10620	AAB	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6 %
10621	AAB	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	WLAN	8.77	± 9.6 %
10622	AAB	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6 %
10623	AAB	IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6%
10624	AAB	IEEE 802 11ac WiEi (40MHz_MCS8_90pc duty cycle)	WLAN	8.96	+96%
10625	AAB	IEEE 802 11ac WiEi (40MHz MCS9, 90pc duty cycle)	WLAN	8 96	+96%
10626		IEEE 802 11 ac WiFi (80MHz, MCS0, 90 pc duty cyclo)		8.83	+06%
10020		IEEE 002.11ac Willie (00MHz, MCS0, 90pc duty cycle)		0.00	19.0%
10027	AAD			0,00	±9.0 %
10628	AAB	TEEE 802.11ac WIFI (80MHZ, MCS2, 90pc duty cycle)	VVLAN	8.71	±9.6 %
10629	AAB	IEEE 802.11ac WIFI (80MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6%
10630	AAB	IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6 %
10631	AAB	IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6 %
10632	AAB	IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6 %
10633	AAB	IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6 %
10634	AAB	IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6 %
10635	AAB	IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6%
10636	AAC	IEEE 802,11ac WiFi (160MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9,6%
10637	AAC	IEEE 802,11ac WiFi (160MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6 %
10638	AAC	IEEE 802 11ac WiFi (160MHz, MCS2, 90pc duty cycle)	WLAN	8.86	+96%
10630		IEEE 802.11ac WIEI (160MHz, MOS2, 00pc duty cycle)		0.00 2 2 F	+06%
10000				0.00	10.070
10040				0.90	I 9.0 %
10641	AAC		VVLAIN	9.06	± 9.6 %
10642	AAC	IEEE 802.11ac WiFI (160MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6%
10643	AAC	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	WLAN	8.89	± 9.6 %
10644	AAC	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	WLAN	9.05	± 9.6 %
10645	AAC	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6 %
10646	AAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2.7)	LTE-TDD	11.96	± 9.6 %
10647	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2.7)	LTE-TDD	11.96	± 9.6 %
10648	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	+9.6%
10652		TE-TDD (OEDMA 5 MHz E-TM 3.1 Clipping 44%)		6.01	+96%
10652		1 TE-TDD (OEDMA 10 MHz E-TM 3.1 Clipping 44%)		7 42	+96%
10654		[TE-TDD (OEDMA, 15 MHz, E-TM 2.1, Olipping 44%)]		6.06	+0.6 %
10004	INNU	L1L-100 (0F01004, 13 1002, E-1013.1, 01000094476)		08.00	I J J O 70

EX3DV4-- SN:7417

February 19, 2019

10655	AAE	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6 %
10658	AAA	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6 %
10659	AAA	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6 %
10660	AAA	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6 %
10661	AAA	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6 %
10662	AAA	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6 %
10670	AAA	Bluetooth Low Energy	Bluetooth	2.19	± 9.6 %

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

		COIL	ιροδιτιο	n or the	; 1122ne	≠ ⊑quive		allei				
Frequency (MHz)	750	750	835	835	1750	1750	1900	1900	2450	2450	5200 - 5800	5200 - 5800
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)												
Bactericide			0.1	0.1								
DGBE					47	31	44.92	29.44		26.7		
HEC	See page	Saa maga 2	1	1					Saa maaa 4		Saa maaa 5	Saa maga 6
NaCl	2-3	See page 2	1.45	0.94	0.4	0.2	0.18	0.39	See page 4	0.1	see page 5	See page o
Sucrose			57	44.9								
Water			40.45	53.06	52.6	68.8	54.9	70.17		73.2		

Table D-I Composition of the Tissue Equivalent Matter

	FCC ID: ZNFQ720QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	04/24/19 - 05/21/19	Portable Handset			Page 1 of 6
© 201	9 PCTEST Engineering Laboratory,	Inc.			REV 21.2 M 12/05/2018

2 Composition / Information on ingredients

I he Item is composed of	the following ingredients:
H ₂ O	Water, 35 – 58%
Sucrose	Sugar, white, refined, 40 – 60%
NaCl	Sodium Chloride, 0 – 6%
Hydroxyethyl-cellulose	Medium Viscosity (CAS# 9004-62-0), <0.3%
Preventol-D7	Preservative: aqueous preparation, (CAS# 55965-84-9), containing
	5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone
	0.1 – 0.7%
	Relevant for safety; Refer to the respective Safety Data Sheet*.

Figure D-1 Composition of 750 MHz Head and Body Tissue Equivalent Matter

Note: 750MHz liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Zeughau Phone + info@sp	41 44 eag.co	se 43, 1 245 97 m, http	8004 Z 00, Fa: ://www	urich, s x +41 4 w.spea	Switzer 14 245 g.com	fland 9779											
Meas	urem	ent C	ertif	icate	/ Ma	terial	Test										
Item Na	ame		Body	Tissu	e Sim	ulating	Liquid (N	ASL75	0V2)								
Produc	t No.		SL AA	M 075	5 AA (E	Batch:	170608-1))									
Manuta	icturer		SPEA	G													
Measu	remen	t Meth	nod														
TSL die	electric	: parar	neters	meas	ured u	ising ca	alibrated D	AK pro	be.								
Catur	Volida	tion															
Validat	ion res	ults w	ere wi	thin +	2.5% t	owards	the target	t value	s of Me	hanol.							_
Vandaa	1011100	onto m	010 111				and the get										
Target	Parar	neters	1														
Target	param	eters	as def	ined ir	the IE	EEE 15	28 and IEC	C 6220	9 comp	liance	stand	ards.					_
Test C	onditi	~															
Ambie	onalu	on	Envir	nmen	t temr	eratur	(22 + 3)°C	and h	umidity	< 70%							_
TSL Te	empera	ature	22°C	Junion	t tomp	orator	(22 2 0) 0	carra m	annunty								
			00 1.	n 17													
Test D	ate		20-JU	n-17													
Test D Operat	ate tor		CL	n-17													
Operat	ate tor		20-30 CL	n-17													
Additi	ate tor onal Ir	nforma	CL ation	n-17	1												
Additie	ate tor onal Ir ensity	nforma	20-50 CL ation 1.212	g/cm ³	1*K)												
Addition TSL D	ate tor onal Ir ensity eat-ca	nforma pacity	20-50 CL 1.212 3.006	g/cm ³ kJ/(kg	g*K)												
Addition TSL D TSL H	ate or onal Ir ensity eat-ca Measu	pacity	20-30 CL 1.212 3.006	g/cm ³ kJ/(kg	g*K)	Diff.to T	arget [%]										
Additie TSL D TSL H	ate tor onal Ir ensity eat-ca Measu e'	pacity red e"	20-30 CL 1.212 3.006 sigma	g/cm ³ kJ/(kg Target	g*K) sigma	Diff.to T ∆-eps	arget [%] Δ-sigma	~	10.0								
Additie TSL D TSL H 1 [MHz] 600	ate tor onal Ir ensity eat-ca Measu e' 57.3	nforma pacity red e'' 25.02	20-30 CL 1.212 3.006 sigma 0.84	g/cm ³ kJ/(kg Target 56.1	sigma 0.95	Diff.to T A-eps 2.2	arget [%] Δ-sigma -12.2	vity %	10.0 7.5 5.0								
Additi TSL D TSL H f[MHz] 600 625	onal Ir ensity eat-ca Measu e' 57.3 57.1	red e" 25.02 24.67	20-JU CL 1.212 3.006 sigma 0.84 0.86	g/cm ³ kJ/(kg Target eps 56.1 56.0	sigma 0.95 0.95	Diff.to T Δ-eps 2.2 1.9	arget [%] Δ-sigma -12.2 -10.1	mittivity %	10.0 7.5 5.0 2.5								
Additi TSL D TSL H f [MHz] 600 625 650 675	ate or onal Ir ensity eat-ca Measu e' 57.3 57.1 56.8 56.6	nforma pacity rred 25.02 24.67 24.32 24.02	20-30 CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90	g/cm ³ kJ/(kg Target eps 56.1 56.0 55.9 55.8	sigma 0.95 0.96 0.96	Diff.to T <u>∆-eps</u> 2.2 1.9 1.6 1.3	arget [%] <u>∆-sigma</u> -12.2 -10.1 -8.0 -5.8	Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5	• • •							
Test D Operat Additi TSL D TSL H f(MHz) 600 625 650 675 700	ate or onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 56.3	nforma pacity red 25.02 24.67 24.32 24.02 23.71	20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92	g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7	sigma 0.95 0.96 0.96 0.96	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1	arget [%] <u>∆-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8	iev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0								
Test D Operat Additi TSL D TSL D TSL H 600 625 650 675 700 725	ate or onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1	red e" 25.02 24.67 24.32 24.02 23.71 23.48	ation 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95	g/cm ³ kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6	sigma 0.95 0.96 0.96 0.96 0.96	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8	arget [%] Δ-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5	•							
fest D Operat Additi TSL D TSL H f(MHz) 600 625 650 675 700 725 750	ate onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25	20-30 CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97	g/cm ³ kJ/(kg target eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5	sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96	Diff.to T <u>∆-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6	arget [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700	750	800	850	900	950	10
fest D Operat Additi TSL D TSL D TSL H f(MHz) 600 625 650 675 700 725 750	ate tor ensity eat-ca for for for for for for for for for for	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04	20-Ju CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99	g/cm ³ kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4	sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3	arget [%] ∆-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700	750 Freq	800 juency 1	850 MHz	900	950	10
fest D Operat Additi TSL D TSL D TSL H f(MHz) 600 625 650 675 700 725 750 775 800	ate tor onal Ir ensity eat-ca e* 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.4	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82	20-30 CL 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02	g/cm ³ kJ/(kg eps 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4 55.3	sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1	arget [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	Dev. Permittivity %	10.0 7.5 5.0 2.5 -2.5 -5.0 -7.5 -10.0 600	650	700	750 Freq	800 juency l	850 MHz	900	950	10
fest D Operat Additi TSL D TSL D TSL H (00) (25) 650 675 700 725 750 775 800 825	ate tor onal Ir ensity eat-ca eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.4 55.2 55.2	red 25.02 24.67 24.32 24.02 23.71 23.48 23.25 23.04 22.82 22.65 23.04	20-30 CL ation 1.212 3.006 sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04	g/cm ³ kJ/(kg 56.1 56.0 55.9 55.8 55.7 55.6 55.5 55.4 55.3 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.97	Diff.to T <u>∆-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.2	arget [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 € 9	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -7.5 -5.0 -7.5 -10.0 600	650	700	750 Freq	800 uency l	850 MHz	900	950	10
fest D Additi TSL D TSL D TSL H f(MHz) 600 625 650 675 700 725 750 775 800 825 838	Attention onal Ir ensity eat-ca Measu e' 57.3 57.1 56.8 56.6 56.3 55.6 55.4 55.2 55.1	red 25.02 24.67 24.32 23.71 23.48 23.25 23.04 22.82 22.65 22.65 22.65 22.65	20-30 CL ation 1.212 3.006 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	g/cm ³ kJ/(kg eps 56.1 55.9 55.8 55.7 55.6 55.5 55.4 55.2 55.2 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.98 0.98	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4	arget [%] Δ-sigma -12.2 -10.1 -8.0 -5.8 -1.5 0.7 2.9 5.0 6.3 6.9 5.5	Dev. Permittivity %	10.0 7.5 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700	750 Freq	800 B00	850 MHz	900	950	10
fest D Additi TSL D TSL D TSL H f(MHz) 600 625 650 675 700 725 775 800 825 838 850 875	Are and a for a second	red e" 25.02 24.67 24.32 24.42 23.71 23.48 23.25 23.04 22.82 22.56 22.55 22.56 22.47 22.34	20-30 CL ation 1.212 3.006 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	g/cm ³ kJ/(kd eps 56.1 56.0 55.9 55.8 55.7 55.6 55.7 55.6 55.7 55.4 55.2 55.2 55.2 55.2 55.2 55.2 55.2	*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.99 0.98	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7	arget [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7	% Dev. Permittivity %	10.0 7.5 5.0 2.5 5.0 -2.5 -5.0 -7.5 10.0 600	650	700	750 Freq	800 Rulency I	850 MHz	900	950	10
fest D Operat Additi TSL D TSL D TSL D f(MHz) 600 625 650 675 700 725 750 775 800 825 838 850 875 900	ate lor onal Ir ensity eat-cal fr.a fr.a fr.a fr.a fr.a fr.a fr.a fr.a	nforma pacity 25.02 24.67 24.32 24.67 24.32 23.71 23.48 23.25 22.65 22.65 22.47 22.34 22.24	sigma 0.84 0.84 0.86 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.09 1.11	g/cm ³ kJ/(kd eps 56.1 56.0 55.9 55.8 55.7 55.6 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	*K) sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.99 0.98 0.99 1.02	Diff.to 1	arget [%] Δ-sigma -12.2 -10.1 -8.0 -5.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7 5.9	vity % Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 10.0 600	650	700	750 Freq	800 uuency l	850 MHz	900	950	10
Itest D Operal Operal Operal TSL D TSL D TSL D TSL D f(MHz) 600 625 650 675 700 725 750 775 800 825 838 850 875 900 925	ate lor onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 55.4 55.6 55.4 55.2 55.4 55.2 55.4 55.2 55.4 55.2 55.4 55.4	nforma pacity 25.02 24.67 24.32 24.62 23.71 23.48 23.25 22.82 22.8	sigma 0.84 0.84 0.86 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.09 1.11 1.14	g/cm ³ kJ/(kg eps 56.1 55.9 55.8 55.7 55.6 55.5 55.4 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.98 0.99 1.02 1.05	Diff.to T A-ops 2.2 1.9 1.6 1.3 1.1 0.8 0.6 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3	arget [%] ▲-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7 5.9 6.9	luctivity % Dev. Permittivity %	10.0 7.5 5.0 2.5 5.0 2.5 5.0 600 10.0 7.5 5.0 2.5 0.0 600	650	700	750 Freq	800 Juency I	850 MHz	900	950	10
Test D Operat Operat Operat Operat Operat Additi TSL D TSL TSL D f(MHz) 600 625 650 675 700 725 750 775 800 825 838 850 875 900 925 950	ate lor onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 55.4 55.9 55.6 55.4 55.2 55.1 54.9 54.7 54.5 54.3 54.3	nforma pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.74 22.85 22.56 22.56 22.56 22.56 22.56 22.54 22.65 22.54 22.65 22.54 22.65 22.54 22.65 22.54 22.65 22.54 22.54 22.55	sigma 0.84 0.86 0.88 0.90 0.92 0.95 0.97 0.99 1.02 1.04 1.05 1.06 1.09 1.11 1.14	g/cm ³ kJ/(kg eps 56.1 55.9 55.8 55.7 55.6 55.5 55.4 55.3 55.2 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.98 0.99 1.02 1.05 1.05 1.06	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 1.3 1.1 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3 -1.6 -0.3 -0.4 -0.7 -0.9 -1.3 -1.4 -0.5 -	arget [%] A-sigma -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 9 6.9 7.9	conductivity % Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -2.5 -5.0 -2.5 -0.0 -2.5 -0.0 -2.5 -0.0 -2.5 -0.0 -2.5 -0.0 -0.0 -0.0 -0.0 -0.5 -0.0 -0.5 -0.0 -0.5 -0.0 -0.5 -0.0 -0.5 -0.0 -0.5 -0.0 -0.5 -0.5	650	700	750 Freq	800 Juency I	850 MHz	900	950	1(
Test D Operat Additi TSL D TSL D f(MHz) 600 625 650 675 775 775 775 800 825 838 850 925 950 975	ate lor onal Ir ensity eat-ca 57.3 57.1 56.8 56.6 56.3 56.1 55.9 55.6 55.4 55.2 55.1 54.9 54.7 54.3 54.1 54.3 54.1 54.3	nforma pacity red 25.02 24.67 24.32 24.02 23.71 23.48 23.74 22.85 22.65 22.65 22.65 22.56 22.25 22.56 22.25 22.56 22.25 22.56 22.25 21.95	sigma 0.84 0.84 0.86 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	g/cm ³ kJ/(kg eps 56.1 55.9 55.8 55.7 55.6 55.7 55.2 55.2 55.2 55.2 55.2 55.2 55.2	sigma 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 1.02 1.05 1.06 1.08	Diff.to T <u>A-eps</u> 2.2 1.9 1.6 1.3 1.1 0.8 0.3 0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -1.3 -1.6 -1.9	arget [%] <u>A-sigma</u> -12.2 -10.1 -8.0 -5.8 -3.8 -1.5 0.7 2.9 5.0 6.3 6.9 7.5 6.7 5.9 6.9 7.5 9 7.9 9.1	v. Conductivity % Dev. Permittivity %	10.0 7.5 5.0 2.5 5.0 2.5 5.0 2.5 5.0 600 10.0 7.5 5.0 600	650	700	750 Freq	800 Juency I	850 MHz	900	950	10

Figure D-2 750MHz Body Tissue Equivalent Matter

	FCC ID: ZNFQ720QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	04/24/19 - 05/21/19	Portable Handset			Page 2 of 6
© 20′	9 PCTEST Engineering Laboratory,	Inc.			REV 21.2 M 12/05/2018

Schmid & Partner Engineering AG	S	p	е	а	g	
Zeughausstrasse 43, 8004 Zurich, Switzerland						

Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HSL750V2)
Product No.	SL AAH 075 AA (Batch: 170612-4)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Setup Validation Validation results were within $\pm 2.5\%$ towards the target values of Methanol.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient	Environment temperatur $(22 \pm 3)^{\circ}$ C and humidity < 70%.
TSL Temperature	22°C
Test Date	20-Jun-17
Operator	CL

Additional Information

TSL Density 1.284 g/cm³ TSL Heat-capacity 2.701 kJ/(kg*K)

1.4	Measu	ured		Targe	t	Diff.to T	arget [%]	
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0
600	45.6	22.97	0.77	42.7	0.88	6.7	-13.1	
625	45.2	22.73	0.79	42.6	0.88	6.2	-10.6	1 25
650	44.9	22.49	0.81	42.5	0.89	5.6	-8.2	E 0.0
675	44.5	22.27	0.84	42.3	0.89	5.1	-5.8	a -2.5 -
700	44.2	22.05	0.86	42.2	0.89	4.6	-3.5	\$ -5.0
725	43.8	21.88	0.88	42.1	0.89	4.2	-1.0	-7.5
750	43.5	21.72	0.91	41.9	0.89	3.8	1.4	-10.0
775	43.2	21.55	0.93	41.8	0.90	3.4	3.7	600
800	42.9	21.38	0.95	41.7	0.90	2.9	6.0	
825	42.6	21.24	0.97	41.6	0.91	2.4	7.5	
838	42.5	21.17	0.99	41.5	0.91	2.2	8.2	
850	42.3	21.09	1.00	41.5	0.92	2.0	8.9	10.0 -
875	42.0	20.98	1.02	41.5	0.94	1.2	8.3	≥ 7.5 -
900	41.7	20.87	1.05	41.5	0.97	0.5	7.7	£ 5.0 -
925	41.5	20.76	1.07	41.5	0.98	0.0	8.7	13 2.5
950	41.2	20.64	1.09	41.4	0.99	-0.6	9.7	B 0.0
975	40.9	20.55	1.11	41.4	1.00	-1.1	10.9	5 -2.5
1000	40.6	20.46	1.14	41.3	1.01	-1.7	12.1	0 -75

Figure D-3 750MHz Head Tissue Equivalent Matter

	FCC ID: ZNFQ720QM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	04/24/19 - 05/21/19	Portable Handset			Page 3 of 6
© 20′	9 PCTEST Engineering Laboratory,	Inc.			REV 21.2 M 12/05/2018

3 Composition / Info	rmation on in	ngredients
The Item is composed of the	ne following ingre	dients:
Water	50 - 73 %	
Non-ionic detergents	25 - 50 %	polyoxyethylenesorbitan monolaurate
NaCl	0 - 2%	
Preservative	0.05 - 0.1%	6 Preventol-D7
Safety relevant ingredients	:	
CAS-No. 55965-84-9	< 0.1 %	aqueous preparation, containing 5-chloro-2-methyl-3(2H)- isothiazolone and 2-methyyl-3(2H)-isothiazolone
CAS-No. 9005-64-5 According to international g marked by symbols.	<50 % guidelines, the pr	polyoxyethylenesorbitan monolaurate oduct is not a dangerous mixture and therefore not required to be

Figure D-4 Composition of 2.4 GHz Head Tissue Equivalent Matter

Note: 2.4 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Schmid	i & Part	ther Er	gineer	ing AG						s	р		e	é	3		g			_
Zeugha Phone info@sp	+41 44 peag.co	sse 43, 245 9 om, htt	8004 700, Fa p://ww	Zurich, ax +41 w.spe	Switz 44 249 ag.com	erland 5 9779 1														
Meas	uren	nent	Certi	ficat	e / Ma	aterial	Test													
ltern N Produc Manufa	ame ct No. acture	r	Head SL A SPE/	AH 19 G	ue Sin 6 AB (Batch:	Liquid (170619-1	HBBL1	900-	3800	/3)									
Measu	iremei	nt Met	hod																	
TSL di	electri	c para	meter	s mea	sured	using c	alibrated [DAK pr	obe.			-			_	-	_	-		
Setup Validat	Validation res	ation sults v	vere w	ithin ±	2.5%	towards	s the targe	et value	is of	Metha	inol.					_		_		
Targel	Para	meter																		
Target	paran	neters	as de	fined i	n the l	EEE 15	28 and IE	C 6220	09 co	mplia	nce sta	nda	ds.							_
Test C	onditi	ion				_						_				_		_	_	
Ambie TSL T	nt emper	ature	Envir 22°C	onme	nt tem	peratur	(22 ± 3)°C	C and h	umid	fity < 7	0%.									
Test D	ate		20-Ju	in-17																
operat	iut .		UL	_	-				_	-								_	_	
Additi TSL D	onal Ir ensitv	nform	ation 1.054	a/cm	3				-	-	_	_				_				
TSL H	eat-ca	pacity	3.389	kJ/(k	g*K)	Differ	areat for a					_	_		_	_	_	_	_	_
f [MHz]	e'	e"	sigma	eps	sigma	Δ-eps	Δ-sigma		10.0	-	C				-	-				_
1900	41.8	12.2	1.3	40.0	1.4	4.5	-8.2	*	7.5											
2000	41.4	12.4	1.4	40.0	1.4	3.6	-1.3	1 Me	2.5	-		-	-							
2050	41.2	12.6	1.4	39.9	1.4	3.3	-0.9	Pea	0.0			-	-	-						
2150	40.9	12.8	1.5	39.7	1.5	2.9	-0.2	n S	-5.0						-	~	-	-		
2200	40.7	12.9	1.6	39.6	1.6	2.7	0.2		-7.5											-
2300	40.4	13.2	1.7	39.5	1.7	2.3	1.1		-10.0	1900 21	00 2300	2500	2700	2900	3100	330	0 35	00 3	3700	390
2350 2400	40.2	13.3	1.7	39.4 39.3	1.7	2.1	1.5					Fn	quenc	y MHa						
2450	39.8	13.5	1.8	39.2	1.8	1.6	2.6					-			-	-			-	_
2500 2550	39.7 39.5	13.7	1.9	39.1 39.1	1.9	1.3	2.6					-			-	-		-	-	-
2600	39.3	13.9	2.0	39.0	2.0	0.8	2.5		10.0			26								
2650 2700	39.1 39.0	14.0	2.1	38.9	2.0	0.5	2.6	12	5.0	-								-		
2750	38.7	14.3	2.2	38.8	2.1	-0.2	2.6	ductiv	2.5		1	~	****			-				
2800 2850	38.6	14.4	2.2	38.8	22	-0.4	2.5	S	-2.5	1										
2900	38.2	14.6	2.3	38.6	2.3	-1.0	2.6	Der 1	-5.0	t										
3000	37.9	14.8	2.5	38.5	2.4	-1.7	2.6		-10.0		00.0000	0504	0700	0000						
3060 3100	37.7	14.8	2.5	38.4	2.5	-2.0	2.8			1900 21	00 2300	200	2700	2800	3100	330	10 30	00 3	100	390
3150	37.3	15.0	2.6	38.3	2.6	-2.6	2.9					F	reque	ncy MP	łz					
3200 3250	37.1	15.1	2.7	38.3	2.6	-3.0	2.9	1												
3300	36.8	15.2	2.8	38.2	2.7	-3.6	3.1													
3400	36.4	15.3	2.9	38.0	2.8	-4.2	3.2													
3450	36.3	15.4	3.0	38.0	2.9	-4.5	3.4													
3550	36.0	15.5	3.1	37.9	3.0	-5.0	3.6	1												
3600 3650	35.8 35.7	15.6	3.1	37.8	3.0	-5.3	3.8 3.7													
3700	35.5	15.7	3.2	37.7	3.1	-5.8	3.9													
3750 3800	35.4	15.8 15.9	3.3	37.6	3.2	-6.1 -6.3	3.9 4.1													
3850	35.1	15.9	3.4	37.5	3.3	-6.6	4.1													

Figure D-5 2.4 GHz Head Tissue Equivalent Matter

	FCC ID: ZNFQ720QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager		
	Test Dates:	DUT Type:			APPENDIX D:		
	04/24/19 - 05/21/19	Portable Handset			Page 4 of 6		
© 201	9 PCTEST Engineering Laboratory,	Inc.			REV 21.2 M		
					12/05/2018		

2 Composition / Information on ingredients

The Item is composed of the following ingredients:Water50 - 65%Mineral oil10 - 30%Emulsifiers8 - 25%Sodium salt0 - 1.5%

Figure D-6

Composition of 5 GHz Head Tissue Equivalent Matter

Note: 5 GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Zeophusustase 43, 8062 Zurch, Switzerland, Prome 414 245 25970; Ammonian Constraints and State 25000 State 11 and State 2500 State 11 and 2500 State 11 and 2500 State 11 and 2500 State 11 and State 2500 State 11 and State 2500 State 11 and 2500 State 11 and 12 and 3500 State 11 and 3	Schmi	d & Par	tner Er	nginee	ring A(3					S	р	е	а		g	
Measurement Certificate / Material Test Item Name Kead Tissue Simulating Liquid (HBBL3500-5800V5) Product No. SL AAH 502 AG (Batch: 170613-1) Measurement Method T TESL delectic parameters measured using calibrated DAK probe. Setup Validation Setup Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters Target Parameters Environment Itemperatur (22 ± 3)°C and humidity < 70%.	Zeugha Phone info@s	ausstra +41 44 peag.c	sse 43 1 245 9 om, htt	, 8004 700, F p://wv	Zurich ax +41 vw.spe	, Switz 44 24 ag.com	erland 5 9779 n										
Name Product No. Head Tissue Simulating Liquid (HBBL3500-5800V5) SL AAH 502 AG (Batch: 170613-1) Manufacture Valuation: SPEAG Measurement Method SPEAG ISL deletric parameters measured using calibrated DAK probe. Setup Validation Setup Validation Setup Validation Validation: Environment temperatur (22 ± 3)*C and humidity < 70%. Test Condition Environment temperatur (22 ± 3)*C and humidity < 70%. Test Date 20-Jun-17 Operator CL Additional Information Target Setup Validation TSL. Temperature 20-Jun-17 Operator CL Addition 3000 301 1400 302 78 302 15 1 51, 513 303 Measured Target Set 15 0.02 263 15 0.02 16 0.03 Monol 375 1560 360 37 1 383 1.3 3.63 13 3.63 13 3.63 Monol 375 1560 360 37 1 383 1.3 3.64 13 3.36 14 400 360 371 383 1.3 3.64 Monol 375 1560 360 371 383 1.3 3.64 38 3.64 1.1 3.56 38 3.64 1.1 3.56 38 3.64 1.1 3.56 Monol 386 1563 444 38 36.1 47 3.6 3.6 3.77 38 3.6 3.6 3.77 38 3.6 3.6 3.77 <t< td=""><td>Meas</td><td>suren</td><td>nent</td><td>Certi</td><td>ficat</td><td>e/M</td><td>ateria</td><td>l Test</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Meas	suren	nent	Certi	ficat	e/M	ateria	l Test									
Product No. SL AAH 502 AG (Batch: 170613-1) Manufacturer Measurement Method TSL delectric parameters measured using calibrated DAK probe. Setup Validation Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters Target Parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters Target Parameters Target Parameters Target Parameters Test Condition Validation Information TSL Heat-capacity 3.385 kJ/(kg*K) Measure Target Parameters Sta Density 0.895 g/cm ³ TSL Heat-capacity 3.383 kJ/(kg*K) Measure Target Parameter Measure Target Parameter Starden 374 1561 324 375 322 14 4 -13 380 385 1500 282 373 32 14 -23 375 150 360 377 1524 300 0371 153 440 133 374 343 15 -24 400 376 1500 360 377 1534 440 243 35 -10 -34 400 376 1500 360 371 353 440 02 -73 -34 380 385 1530 418 344 430 11 -3 43 380 386 1550 433	Item N	lame		Head	l Tiss	ue Sir	nulatin	g Liquid ((HB	BL350	0-5800	V5)	-				
Measurement Method TSL dielectric parameters measured using calibrated DAK probe. Setup Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Knibent Environment temperatur (22 ± 3)°C and humidity < 70%.	Produ Manuf	ct No. acture	r	SL A	AH 50 AG	12 AG	(Batch:	170613-	1)								
Measurement Method Setup Validation Validation results were within ± 2.5% towards the target values of Methanol. Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Arribient Environment temperatur (22 ± 3)°C and humidity < 70%. TSL Temperature 22°C Colspan="2">Colspan="2"					10				_	_							
Setup Validation Validation results were within ± 2.5% towards the target values of Methanol. Target Parameters Carget parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Marget parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Contition Marget parameters Colspan="2">Colspan="2"Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="	TSL d	ielectri	nt Met c para	meter	s mea	sured	using c	alibrated	DAł	<pre>c probe</pre>							
Value of Methanol. Target Parameters Target Parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Ambient Environment temperatur (22 ± 3)°C and humidity < 70%. Test Condition Additional Information Test Date 20-Jun-17 Operator CL Additional Information Target Off to Target 16: Till to a 284 300 37.8 120 2.84 300 37.8 302 13 - 0.5 3000 383 1426 300 37.7 312 13 - 1.5 - 1.1 3800 386 11500 2.80 37.8 302 11 - 5 - 0.3 3000 383 1426 300 37.7 312 13 - 3.4 12.2 3000 383 1426 300 37.7 312 13 - 3.4 12.2 3000 381 1426 300 37.7 13 302 13 - 3.4 12.2 3000 381 1426 300 37.7 13 302 13 - 3.4 12.2 3000 381 1426 300 37.7 13 303 13 - 3.6 12.2 3000 381 1426 300 37.7 13 - 3.6 3.2 1.4 - 1.9 3000 381 1426 300 37.7 13 - 3.8 3.2 1.4 - 3.5 3.3 3.7 4 - 3.5 3.3 3.7 4 - 4.2 3.4 4.2 3.5 3.3 3.7 4 - 4.2 3.4 4.2 3.5 3.3 3.7 4 - 4.2 3.4 4.2 3.5 3.3 3.7 4 - 4.2 3.4 4.2 3.5 3.3 3.7 4 - 4.2 3.4 4.2 3.5 3.3 3.7 4 - 4.2 3.4 4.2 3.5 3.3 3.7 4 - 4.2 3.4 4.2 3.5 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.4 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 4.2 3.5 5.3 3.3 3.7 4 - 3.5 5.3 3.3 3.7 4 - 3.5 5.3 3.3 3.7 4 - 3.5 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	Setun	Valid	ation														
Target parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Test Condition Conditi	Valida	tion re	sults v	vere w	ithin ±	: 2.5%	toward	s the targ	et v	alues o	f Meth	anol.					
Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards. Test Condition Environment temperatur (22 ± 3)°C and humidity < 70%. TSL Temperature 22°C Test Date 20-Jun-17 Deprator CL Additional Information Target Diff to Target (%) Number of the standards Target Diff to Target (%) Measured Target of sigma 0 eps sigma 0.985 g/cm³ SLL Heat-capacity 3.383 kJ/(kg*K) 1.1 0.985 g/cm³ Mode 38.6 15.00 2.84 340.0 36.6 37.0 12.1 1.1 Mode 38.6 15.00 2.84 340.0 37.8 3.02 1.1 5.0 M000 38.1 14.98 3.00 37.8 3.02 1.3 3.6 M000 37.6 15.00 3.60 37.0 3.23 3.4 3.44 M000 37.1 3.68 3.4 4.42 5.0 3.7 M000 37.6 15.00 3.60 3.7 3.83	Targe	t Para	meter	s													
Test Condition Ambient Environment temperatur (22 ± 3)°C and humidity < 70%. SI: Temperatur CL Additional Information Tist: Heat-capacity 0.985 g/cm³ Tist: Density 0.986 g/cm³ Tist: Heat-capacity 3.938 kJ/k(rg 'K) Tist: Heat-capacity Target Offit to Target (%) Mitto are are ignmed Areign 3000 338 18 Mitto Target Offit to Target (%) Mitto Target (Target	parar	neters	as de	fined i	in the	EEE 15	528 and IE	EC 6	62209 c	omplia	ance stan	dards.				
Amblent Environment temperatur (22 ± 3)*C and humidity < 70%. Tisl. Temperatur 220-Jun-17 Operator CL Additional Information Traget Tisl. Density 0.985 g/cm³ TSL. Heat-capacity 3.833 kJ/(kg*K) Image: State	Test C	ondit	ion														
Test Date 20-Jun-17 Operator CL Additional Information TSL Density 0.985 g/cm³ TSL Heat-capacity 3.383 kJ/(kg*K) Measured Target Diff to Target [%] 3800 38.5 15.00 2.81 15 0.3 3800 38.5 15.00 2.81 15 0.3 3800 38.5 15.00 2.82 3.92 1.3 0.2 3900 38.0 1.49 3.24 3.75 3.21 1.4 -2.5 4000 37.6 1.50 3.02 1.3 0.2 3.5 3.64 4000 37.6 1.50 3.03 3.73 3.4 3.5 3.4 4000 37.6 1.50 3.03 3.73 3.5 3.4 4.4 3.5 4000 37.6 1.50 3.03 3.71 3.5 3.4 4.1 3.5 4000 37.6 1.50 3.6 3.6 3.6 3.6 3.6 3.6 4000 36.6 <td>Ambie</td> <td>nt emper</td> <td>ature</td> <td>Envir 22°C</td> <td>onme</td> <td>nt tem</td> <td>peratur</td> <td>(22 ± 3)°(</td> <td>C ar</td> <td>nd humi</td> <td>idity <</td> <td>70%.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ambie	nt emper	ature	Envir 22°C	onme	nt tem	peratur	(22 ± 3)°(C ar	nd humi	idity <	70%.					
CL Additional Information Stall Density 0.985 gbcm ³ TSL Density 0.985 gbcm ³ Measured Target Diff.to Target [%] Measured Target Diff.to Target [%] Mass 18:00 2.84 3.85 1.50 3000 385 15:00 2.81 1.5 0.21 3000 38.1 14:96 3.06 3.76 1.50 2.81 1.5 0.23 3000 38.1 14:96 3.02 3.78 3.02 1.5 0.23 3000 38.1 14:96 3.02 1.5 0.23 0.02 1.5 0.24 4000 3.79 14:86 3.81 3.74 3.43 1.5 2.85 4000 3.76 15:00 3.50 3.71 3.65 3.75 1.00 3.66 1.44 3.54 4000 3.71 1.3 3.85 1.64 4.82 3.60 3.90 4.400 4.00	Test D	ate	and 0	20-Ju	un-17												
Additional Information SUB Cerrolsy 0. 388 sU(kg/t) Target Diff.o Target [%]. Measured 0. 3.88 sU(kg/t) Measured 0. 281 15 0.1 380 sU(kg/t) 000 385 1800 282 37.9 281 15 0.3 000 385 1800 282 37.9 281 15 0.3 000 385 1468 5.00 37.8 3.02 1.1 3 0.5 0.116 0.5 0.0 37.0 3.02 1.1 4 0.13 300 381 1468 5.00 37.8 3.02 1.1 4 0.13 0.116 0.5 0.0 37.0 37.0 3.0 3.1 4 0.2 300 381 1468 5.00 37.7 3.1 3.5 4000 37.1 15.0 3.60 37.7 13.63 300 38.1 14.48 3.04 1.1 3.5 4000 37.1 15.2 3.00 3.60 37.7 13.63 307.0 15.29 4.00 36.6 4.14 1.2 3.5 4000 37.1 15.2 3.00 3.64 4.25 1.0 3.4 4000 37.1 15.2 4.00 36.6 4.14 4.25 1.0 3.4 4000 37.1 15.2 4.00 36.6 4.14 4.25 1.0 3.4 4000 38.1 15.2 4.00 36.6 4.14 4.25 1.0 3.4 4000 38.1 15.2 4.00 36.6 4.14 4.25 1.0 3.4 4000 38.1 15.2 4.00 36.6 4.14 4.25 1.0 3.4 4000 38.1 15.2 4.00 36.6 4.14 4.25 1.0 4.3 500 38.1 15.2 4.00 35.0 4.07 3.8 500 38.	Opera	tor		CL													
USL Density 0.985 g/cm² IM-052:vred Target Off to Target [%] 1000 3.883 kJ/k(g² K) 2400 38.6 15.00 2.84 3.00 2.84 3.00 2.84 3.00 2.84 3.00 2.84 3.00 2.84 3.00 2.84 3.00 2.84 3.00 2.84 3.00 2.84 3.00 3.83 1.49 3.00 3.83 1.49 3.00 3.83 1.49 3.00 3.83 1.49 3.00 3.83 3.74 <td>Additi</td> <td>onal I</td> <td>nform</td> <td>ation</td> <td></td> <td>3</td> <td></td>	Additi	onal I	nform	ation		3											
Measured Target Diff to Target [%] 100 366 15.0 2.4 3400 386 15.0 2.4 3400 386 15.0 2.4 3400 386 15.0 2.4 3400 386 15.0 2.4 3400 386 15.0 2.4 3400 386 15.0 2.4 3400 386 15.0 2.4 3400 387.8 3.02 1.3 0.5 3000 383 14.94 3.16 37.6 3.2 1.4 1.9 2.5 3.5 3.7 3.2 1.4 1.9 2.5 3.5 3.7 1.3 3.5 3.6 3.7 3.0 3.6 3.5 3.7 1.3 3.5 3.6 3.6 3.6 3.6 3.6 7.5 5.0 3.6 3.6 3.6 3.6 3.6 3.6 7.5 5.0 3.6 3.6 3.6 7.5 3.0 3.6 3.6 3.6 7.5 5.0 3.6 <td>TSL D</td> <td>ensity eat-ca</td> <td>pacity</td> <td>0.985</td> <td>5 g/cm 3 kJ/(k</td> <td>g*K)</td> <td></td>	TSL D	ensity eat-ca	pacity	0.985	5 g/cm 3 kJ/(k	g*K)											
Mesures Target Diff to Target [5] UHz of error error eigme of cost cost eigme of cost </td <td></td> <td></td> <td></td> <td></td> <td>la.</td> <td></td>					la.												
3400 3860 1300 2.84 1300 2.84 1300 2.84 15 1.1 3600 385 16.90 2.82 3790 3.82 14.28 3.00 377 3.12 1.3 -0.5 3600 381 14.28 3.00 377 3.12 1.3 -1.2 3900 380 14.98 3.03 3.7 3.12 1.4 -2.5 3000 378 1.96 3.33 3.4 3.5 -3.6 4100 376 1.50 3.50 3.7 1.3 -3.6 4300 37.5 15.05 3.80 3.44 -3.5 4400 37.4 1.51 3.63 -3.4 -3.5 4500 37.7 1.58 3.80 -1.4 -3.5 4500 37.1 1.58 3.64 -1.4 -3.5 4500 37.1 1.58 3.64 -1.4 -3.5 4500 36.5 1.59 4.24 3.60 -3.6 -5.6 5500	f [MHz]	Measu e'	e"	sigma	eps	t sigma	Diff.to 1 ∆-eps	A-sigma	1	10.	0						_
3300 3300 3301 15 0.3 3300 380 1400 200 377 312 1.5 0.3 3700 382 1486 300 37.8 302 1.5 0.5 3700 382 1486 300 37.8 322 1.4 1.9 3900 380 1496 3.8 37.4 3.13 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.7 1.3 6.3 4.0 3.6 4	3400	38.6	15.03	2.84	38.0	2.81	1.5	1.1	1	8 7.5 À 6.1	5						
3700 382 1496 3.00 377 3.12 1.3 1.2 3800 380 1496 3.61 376 3.22 1.4 1.5 3800 380 1496 3.33 37.4 3.43 1.5 -2.8 4000 37.6 1.80 3.63 3.7.4 3.43 1.5 -3.8 4000 37.6 1.80 3.63 3.7.1 3.6.8 -3.5 4000 37.4 1.8 3.84 1.4 -3.5 4000 37.4 1.8 3.84 1.1 -3.5 4000 36.6 1.53 4.14 -3.5 4000 36.6 1.53 4.14 -3.5 4000 36.6 1.53 4.14 -3.6 4000 36.6 1.53 4.14 -3.6 5000 36.5 1.53 4.14 -3.6 5000 36.5 1.54 4.33 8.0 -9.7 <t< td=""><td>3600</td><td>38.5</td><td>14.98</td><td>3.00</td><td>37.9</td><td>3.02</td><td>1.5</td><td>-0.5</td><td></td><td>Malin 2.</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	3600	38.5	14.98	3.00	37.9	3.02	1.5	-0.5		Malin 2.	5						
0.000 0.000 14.98 3.24 3.75 1.24 1.9 1.9 0.000 380 14.98 3.24 3.75 3.21 1.4 4.25 0.000 37.9 14.98 3.83 3.74 3.43 1.5 2.8 0.000 37.6 15.00 3.50 3.71 3.63 3.4 3.45 0.000 37.6 15.00 3.50 3.71 3.63 3.4 3.45 0.000 37.01 15.28 3.94 1.1 3.5 3.46 3.45 0.000 37.01 15.28 3.94 1.1 3.5 3.46 3.5 0.000 36.6 15.33 4.14 3.4 3.6 3.6 0.000 36.6 15.33 4.14 3.4 3.6 3.6 0.000 36.6 15.33 4.44 3.43 0.9 3.6 0.000 36.6 15.33 4.44 3.6 0.9 3.6 0.000 36.6 15.33 4.44 3.6 0.9 3.6 </td <td>3700</td> <td>38.2</td> <td>14.96</td> <td>3.08</td> <td>37.7</td> <td>3.12</td> <td>1.3</td> <td>-1.2</td> <td></td> <td>N. Per</td> <td>2</td> <td></td> <td></td> <td></td> <td>*****</td> <td>*******</td> <td>******</td>	3700	38.2	14.96	3.08	37.7	3.12	1.3	-1.2		N. Per	2				*****	*******	******
4000 37.9 14.96 3.8 37.4 3.43 1.5 -2.8 4000 37.6 15.00 3.60 3.51 1.5 -2.8 4200 37.6 15.00 3.60 37.1 3.63 1.3 -3.6 4200 37.7 15.00 3.60 37.0 3.73 1.3 -3.6 4300 37.4 15.01 3.60 3.70 3.73 1.3 -3.6 4400 37.4 15.21 3.00 36.8 3.94 1.1 -3.5 4500 37.0 15.24 3.00 36.6 1.4 -3.5 4700 37.0 15.24 4.00 3.66 1.4 -3.5 4700 37.0 15.24 4.00 3.66 1.1 -3.6 4850 36.8 15.35 4.14 3.44 4.25 1.0 -3.6 5000 36.5 15.34 4.34 3.61 0.9 -5.6 5000 36.5 15.34 4.43 3.62 4.56 0.6 -3.7 5000 36.1 15.55 4.58 3.59 4.71 0.5 -3.7 5000 36.1 15.58 <t< td=""><td>3900</td><td>38.0</td><td>14.95</td><td>3.24</td><td>37.5</td><td>3.32</td><td>1.4</td><td>-2.5</td><td></td><td>G -5.0</td><td></td><td></td><td>_</td><td></td><td>_</td><td></td><td></td></t<>	3900	38.0	14.95	3.24	37.5	3.32	1.4	-2.5		G -5.0			_		_		
400 376 150 350 37.1 3.63 37.1 3.63 3.64 3.75 3.53 4.73 3.63 4.70 37.2 15.11 3.70 3.69 3.84 1.4 3.5 4.70 37.2 15.11 3.70 3.69 3.84 1.4 3.5 4.70 37.0 15.21 3.00 36.6 4.14 1.2 3.5 4.70 37.0 15.24 3.00 36.6 4.14 2.5 1.0 3.44 4.25 1.0 3.44 1.2 3.44 4.25 1.0 3.44 1.2 3.44 4.25 1.0 3.44 4.25 1.0 3.44 1.2 3.44 4.25 1.0 3.44 1.2 3	4000	37.9	14.95 14.96	3.33	37.4	3.43	1.5	-2.8		-7.5	5						
 4300 4311 435 4400 4311 435 4400 432 4411 435 4400 4450 442 4450 4450 4450 4450 446 4450 446 4450 450 450 460 460	4200	37.6	15.00	3.50	37.1	3.63	1.3	-3.6		-10.1	3400	3900	440	0 490	00	5400	5900
 4000 4721 1818 380 388 384 11 3.5 4700 37.0 15.29 4.00 36.6 4.14 1.2 3.4 4.20 3.5 4.7 4.8 4.8 4.8 4.4 4.3 1.1 2.4 4.3 4.4 4.3 1.1 2.4 4.4 4.30 1.1 3.5 4.4 4.4 4.30 1.1 2.4 4.4 4.30 1.4 3.4 4.4 4.30 4.4 4.30 4.4 4.5 4.8 4.5 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.6 4.7 4.7 4.6	4300 4400	37.5	15.05 15.11	3.60	37.0	3.73 3.84	1.3	-3.5 -3.5					Fre	quency MH	iz		
 4000 370 1526 4.03 03.0 4.04 12 3.5 4000 370 1526 4.03 03.6 4.14 12 3.4 4000 368 15.30 4.10 36.4 4.12 1.2 3.4 4000 368 15.30 4.10 36.4 4.25 1.0 3.4 4000 36.7 15.38 4.19 36.3 4.30 1.1 3.6 4000 36.5 15.42 4.29 36.2 4.45 0.8 3.6 5000 36.5 15.42 4.29 36.2 4.45 0.8 3.6 5000 36.5 15.42 4.29 36.2 4.45 0.9 3.6 5000 36.6 15.44 4.39 8.1 4.55 0.8 3.6 5150 365 15.54 4.33 36.1 4.65 0.8 3.6 5200 36.5 15.54 4.33 36.1 4.65 0.8 3.6 5150 365 15.54 4.33 36.1 4.60 0.7 3.8 5200 36.1 15.55 4.83 35.8 4.81 0.5 3.7 550 36.7 15.56 4.83 35.8 4.81 0.5 3.7 550 36.7 15.56 4.83 35.8 4.81 0.5 3.7 550 36.7 15.64 4.39 38.1 4.81 0.5 3.7 550 36.7 15.64 4.33 38.1 4.80 0.4 3.7 550 36.7 15.64 8.38 36.4 4.90 0.4 3.7 550 36.7 15.64 8.33 5.4 4.91 0.2 3.6 510 36.4 15.64 8.33 5.5 1.2 0.4 3.6 510 36.5 15.64 8.33 5.5 1.2 0.4 3.6 510 36.5 15.64 8.33 5.5 1.2 0.4 3.6 510 36.4 15.76 4.83 35.5 1.2 0.4 3.6 510 36.4 15.64 8.33 5.5 1.2 0.4 3.6 510 36.5 15.64 8.33 5.5 1.2 0.4 3.6 510 36.5 15.64 8.33 5.5 1.2 0.4 3.6 510 36.4 15.78 5.45 1.3 3.5 4.20 0.3 3.7 510 36.5 15.86 8.35 5.5 1.2 0.4 3.6 510 36.4 15.78 5.45 1.3 5.5 4.0 0.3 3.7 510 36.5 15.86 8.35 5.5 1.2 0.4 3.6 510 36.5 15.86 8.35 5.5 1.2 0.4 3.6 510 36.4 15.78 5.48 3.5 5.40 0.0 3.7 510 36.4 15.78 5.58 5.5	4500	37.2	15.18	3.80	36.8	3.94	1.1	-3.5									
4800 480 153 4.10 36.4 425 1.0 -3.4 436 1.10 -3.6 4.850 36.8 15.3 4.14 36.4 4.30 1.1 -3.6 4.850 36.8 15.39 4.24 36.3 4.40 0.9 -3.6 5.50 36.5 15.44 4.29 36.2 4.450 0.8 -3.6 5.50 36.5 15.46 4.39 36.1 4.55 0.8 -3.6 5.50 36.5 15.50 4.64 3.9 4.55 0.9 -3.6 5.510 36.5 15.50 4.64 3.9 4.55 0.8 -3.6 5.550 36.5 15.50 4.63 3.50 4.66 0.5 -3.7 5.55 3.57 1.55 4.63 35.8 4.81 0.5 -3.7 5.550 35.7 1.556 4.63 35.8 4.81 0.5 -3.7 5.550 35.7 1.556 4.78 35.8 4.81 0.5 -3.7 5.550 35.7 1.556 4.78 35.8 4.81 0.5 -3.7 5.550 35.7 1.556 4.78 35.8 4.81 0.5 -3.7 5.550 35.7 1.556 4.78 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 5.550 35.7 1.56 4.83 35.8 4.81 0.5 -3.7 4.83 35.8 4.81 0.5 -3.7 4.83 35.8 4.81 0.5 -3.7 4.83 35.8 4.81 0.5 -3.7 4.84 4.84 4.84 4.84 4.84 4.84 4.84 4.	4600	37.1	15.24	4.00	36.7	4.04	1.2	-3.5		10.	0						
 Bello 36 Boli 15.0 Boli 15.0<	4800	36.8	15.35	4.10	36.4	4.25	1.0	-3.4		3 5J	5						
4950 886 15.39 4.24 38.3 4.40 0.9 -3.6 5000 88.5 15.42 4.29 38.2 4.56 0.9 -3.6 5050 36.5 15.42 4.29 38.2 4.56 0.9 -3.6 5050 36.5 15.44 4.33 36.2 4.60 0.9 -3.6 5150 36.5 15.84 4.33 36.0 4.66 0.7 -3.6 5200 36.1 15.53 4.54 35.0 4.71 0.5 -3.7 5300 36.1 15.54 4.58 35.0 4.71 0.5 -3.7 5400 350 15.57 4.68 35.8 4.84 0.4 -3.7 5500 357 15.74 4.83 3.64 0.4 -3.7 5500 357 15.74 4.83 35.5 0.7 0.2 -3.7 5500 357 15.74 4.83 35.5	4900	36.7	15.38	4.19	36.3	4.35	1.0	-3.6		Alivitz 2	5						
5050 805 1543 434 382.2 456 0.9 3.6 5100 364 1548 4.39 362.1 456 0.8 3.6 5050 362 1546 4.39 362.0 460.0 7.3.6 5050 362 1550 458 369.0 4.70 5.0 5050 362 1550 458 359.0 4.71 5.0 3.5 5050 361 1555 4.58 359.0 4.71 5.0 3.7 5050 361 1555 4.58 35.8 4.81 0.4 3.7 5050 361 1556 4.83 3.6.5 5.07 0.2 3.7 5050 357 1564 35.8 3.55 5.07 0.2 3.7 5050 357 1572 4.68 35.5 5.07 0.2 3.7 5050 357 1572 4.68 35.5 5.17 0.2	4950 5000	36.6	15.39 15.42	4.24	36.3	4.40	0.9	-3.6		npuo 2	5	and the second					
5100 864 15.40 4.30 861.4 4.55 0.8 -3.6 5100 862 15.64 4.33 0.40 0.7 -3.6 5200 862.1 15.50 4.84 36.0 4.60 0.7 -3.6 5250 36.1 15.55 4.54 36.0 4.64 36.0 -3.6 5250 36.1 15.55 4.54 35.9 4.71 0.5 -3.5 5350 36.0 15.56 4.68 35.8 4.86 0.4 -3.7 5450 35.8 15.64 4.88 36.6 -0.7 -3.7 5600 35.6 15.66 4.88 36.6 -0.7 -3.7 5600 35.6 15.66 4.89 35.5 -1.0 -3.7 5600 35.6 15.66 4.89 35.5 -1.0 -3.6 5700 35.4 15.76 4.94 5.2 -1.0 -3.4 5800<	5050	36.5	15.43	4.34	36.2	4.50	0.9	-3.6		0.5	0						
S200 B42 15.00 4.48 36.0 4.66 0.6 -3.8 5205 B42 15.50 4.68 3.6. -3.8 3400 3900 4400 4900 5400 5900 5205 B41 15.50 4.68 3.7 -3.5 -3.7	5100 5150	36.4	15.46 15.48	4.39	36.1	4.55	0.8	-3.6 -3.8		-10.	31						
Decord Decord <thdecord< th=""> <thdecord< th=""> <thdecord< td="" th<=""><td>5200</td><td>36.2</td><td>15.50</td><td>4.48</td><td>36.0</td><td>4.66</td><td>0.6</td><td>-3.8</td><td></td><td></td><td>3400</td><td>3900</td><td>440 Fre</td><td>0 490 quency MH</td><td>iz 00</td><td>5400</td><td>5900</td></thdecord<></thdecord<></thdecord<>	5200	36.2	15.50	4.48	36.0	4.66	0.6	-3.8			3400	3900	440 Fre	0 490 quency MH	iz 00	5400	5900
S350 S350 IS.57 A.68 S.8 A.80 O.5 -3.7 5400 35.9 IS.57 A.68 S.8 A.86 O.4 -3.7 5600 35.8 IS.59 A.73 35.6 IS.69 -3.7 5600 35.8 IS.64 A.73 35.6 -0.4 -3.7 5600 35.6 IS.64 A.73 35.6 5.01 0.3 -3.7 5600 35.6 IS.64 A.73 35.6 5.01 0.3 -3.7 5600 35.6 IS.64 A.83 5.01 0.3 -3.7 5600 35.6 IS.64 A.83 5.5 5.02 -3.7 5600 35.6 IS.70 4.93 5.12 0.4 -3.6 5700 35.5 IS.70 35.4 5.47 0.2 -3.6 5750 35.4 IS.76 5.48 35.5 5.22 0.1 -3.4 5800	5250 5300	36.1	15.53	4.54	35.9	4.71	0.5	-3.5									
umou solution table <	5350	36.0	15.56	4.63	35.8	4.81	0.5	-3.7									
5500 35.8 15.8 17.8 25.8 49.6 0.4 -3.7 5500 35.7 15.6 4.80 35.6 5.07 0.2 -3.7 5600 35.6 15.66 4.80 35.5 5.12 0.4 -3.6 5700 35.6 15.72 4.98 35.5 5.12 0.4 -3.6 5750 35.4 15.72 4.98 35.5 5.12 0.4 -3.6 5750 35.4 15.72 4.98 35.4 5.27 0.1 -3.4 6800 35.4 15.78 4.90 35.4 5.27 0.1 -3.4 6800 35.4 15.16 5.14 3.5.3 5.49 0.0 -3.7 6900 35.4 15.87 1.69 35.4 3.5.4 3.5.3 5.47 0.0 -3.4 6900 35.3 15.87 1.57 0.00 -3.7 -3.4	5400 5450	35.9	15.57	4.68	35.8	4.86	0.4	-3.7									
Norm Norm <th< td=""><td>5500</td><td>35.8</td><td>15.61</td><td>4.78</td><td>35.6</td><td>4.96</td><td>0.4</td><td>-3.7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	5500	35.8	15.61	4.78	35.6	4.96	0.4	-3.7									
5460 35.6 115.70 4.98 35.5 5.12 0.4 -3.6 5700 35.6 15.70 4.98 35.4 5.17 0.2 -3.6 5700 35.4 15.27 5.04 35.4 5.22 0.1 -3.4 5800 35.3 15.81 5.14 35.3 5.27 0.3 -3.4 5800 35.3 15.81 5.14 35.3 5.24 0.0 -3.4 5800 35.3 15.81 5.14 35.3 5.40 0.0 -3.8 5900 36.31 15.84 5.45 5.40 0.0 -3.4	5600	35.6	15.66	4.83	35.5	5.01	0.3	-3.7									
Store Store <th< td=""><td>5650 5700</td><td>35.6</td><td>15.70</td><td>4.93</td><td>35.5</td><td>5.12</td><td>0.4</td><td>-3.6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	5650 5700	35.6	15.70	4.93	35.5	5.12	0.4	-3.6									
5800 35.4 115.78 5.09 35.3 5.27 0.3 -3.4 5850 35.3 15.81 5.14 35.3 5.44 0.0 -3.7 5000 365.3 15.82 5.19 35.3 5.44 0.0 -3.9	5750	35.4	15.76	5.04	35.4	5.22	0.2	-3.6									
5900 35.3 15.82 5.19 35.3 5.40 0.0 -3.9	5800	35.4	15.78	5.09	35.3	5.27	0.3	-3.4									
	5900	35.3	15.82	5.19	35.3	5.40	0.0	-3.9									

Figure D-7 5 GHz Head Tissue Equivalent Matter

	FCC ID: ZNFQ720QM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D:
	04/24/19 - 05/21/19	Portable Handset			Page 5 of 6
© 20′	9 PCTEST Engineering Laboratory,	Inc.			REV 21.2 M 12/05/2018