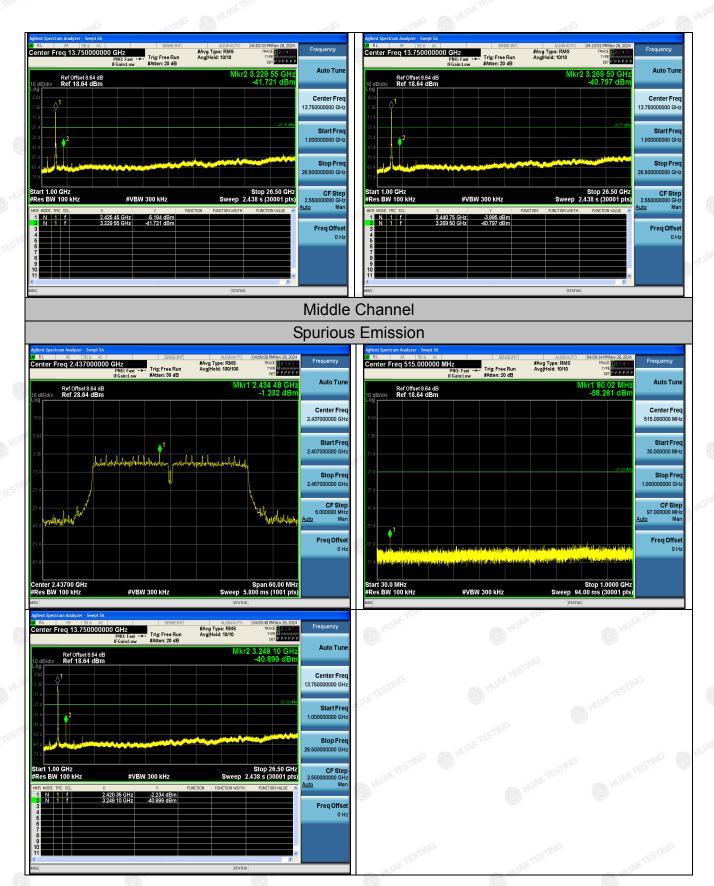

802.11n (HT20) Modulation

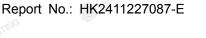
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

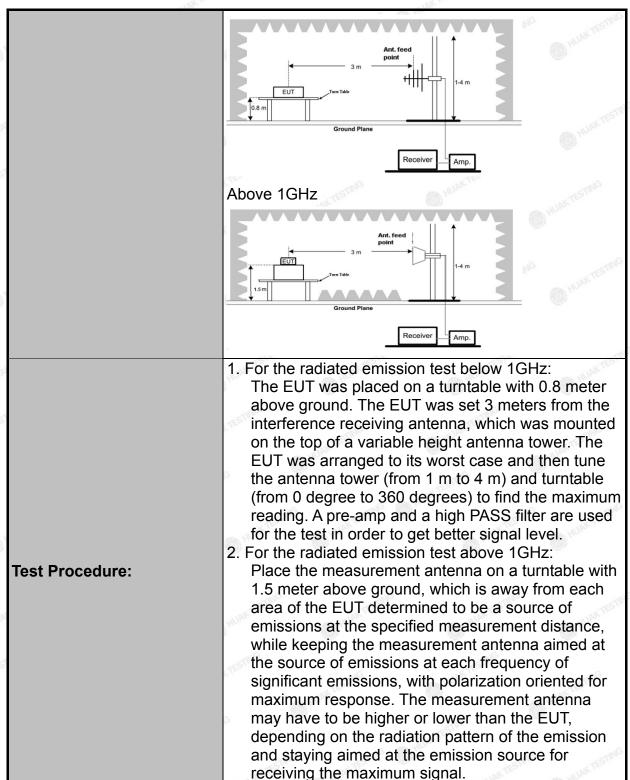


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

802.11n (HT40) Modulation

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


4.7 Radiated Spurious Emission Measurement

Test Specification

O: 2013 GHz Vertical mode v Detect Quasi-p Quasi-p Quasi-p Peak	with tor eak eak	modulati RBW 200Hz 9kHz	On VBW 1kHz 30kHz	Quas	Remark i-peak Value
Detection Quasi-p Quasi-p Quasi-p Peal	with tor eak eak	RBW 200Hz 9kHz	VBW 1kHz	Quas	. 150
Detect Quasi-p Quasi-p Quasi-p Peal	with tor eak eak	RBW 200Hz 9kHz	VBW 1kHz	Quas	. 1100
Detect Quasi-p Quasi-p Quasi-p Peal	with tor eak eak	RBW 200Hz 9kHz	VBW 1kHz	Quas	. 1100
Detect Quasi-p Quasi-p Quasi-p Peal	eak eak	RBW 200Hz 9kHz	VBW 1kHz	Quas	. 1100
Quasi-p Quasi-p Quasi-p Peal	eak eak eak	200Hz 9kHz	1kHz	Quas	. 100
Quasi-p Quasi-p Peal	eak eak	9kHz	985,5797		i-peak Value
Quasi-p Peal	eak	-	30kHz	Quas	
Peal	15.4				i-peak Value
	-allo	120KHz	300KHz	Quas	i-peak Value
Peak	(SIII)	1MHz	3MHz	Pe	eak Value
	(1MHz	10Hz	Ave	rage Value
Frequency		Field Strength (microvolts/meter)		Measurement Distance (meters)	
0.009-0.490				300	
0.490-1.705			KHz)	ATTEN Y	30
1.705-30			MG.		30
30-88					3
88-216 216-960				TING	3
107			MAKTE	5	3
Above 960 500 3					
/	Field Strength (microvolts/meter)		Distan	се	Detector
- W HUAK	5	500	JUAN 3	ĺ	Average
12	5	000	3		Peak
	705 30 8 16 60 960	705 30 8 16 60 960 Field (microve	2400/F(K 705 24000/F(K 705 24000/F(K 30 30 30 8 100 16 150 160 200 160 500 160	.490 2400/F(KHz) .705 24000/F(KHz) .30 30 8 100 16 150 60 200 960 500 Field Strength (microvolts/meter) Measure Distan (meter) 17 500 3	2400/F(KHz) 2400/F(KHz) 30 30 30 8 100 6 150 60 200 960 500

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. 6. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the

minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Report No.: HK2411227087-E

Test Results:

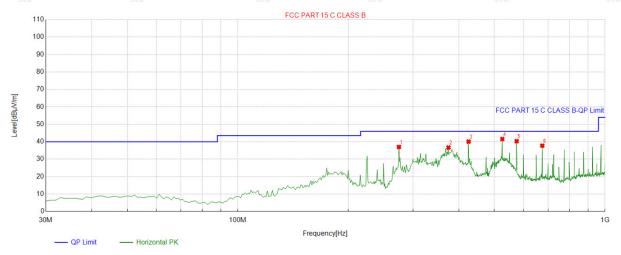
PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Test Instruments

	Rad	iated Emission	Test Site (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026
Horn Antenna	Schewarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	/ TESTING	OKTESTING (1)
RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	O HUR	1

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

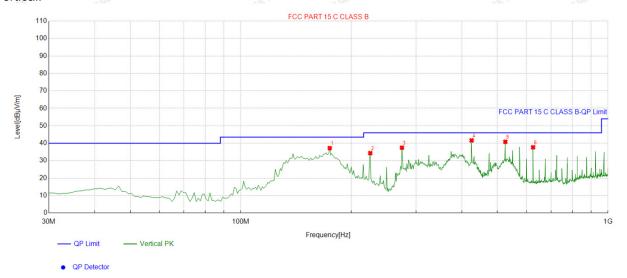


Test Data

All the test modes completed for test. Only the worst result was reported as below:

Below 1GHz

Horizontal:



Suspe	Suspected List											
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle				
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	274.68468	-12.70	49.71	37.01	46.00	8.99	100	36	Horizontal			
2	374.69469	-9.88	46.55	36.67	46.00	9.33	100	339	Horizontal			
3	425.18518	-8.84	48.92	40.08	46.00	5.92	100	188	Horizontal			
4	525.19519	-6.94	48.51	41.57	46.00	4.43	100	325	Horizontal			
5	574.71471	-5.48	45.80	40.32	46.00	5.68	100	317	Horizontal			
6	674.72472	-4.70	42.45	37.75	46.00	8.25	100	298	Horizontal			

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Vertical:

	Suspe	Suspected List										
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
ð	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
Š	1	174.67467	-16.85	54.06	37.21	43.50	6.29	100	253	Vertical		
	2	225.16516	-13.91	48.26	34.35	46.00	11.65	100	338	Vertical		
	3	274.68468	-12.70	50.17	37.47	46.00	8.53	100	324	Vertical		
	4	425.18518	-8.84	50.48	41.64	46.00	4.36	100	359	Vertical		
	5	525.19519	-6.94	47.76	40.82	46.00	5.18	100	280	Vertical		
	6	625.20520	-5.45	43.15	37.70	46.00	8.30	100	272	Vertical		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

	Frequency (MHz)	Level@	3m (dBµV/m)	Limit@3m (dBµV/m)		
MG		TING		TING		
	-TING	JAKTES	TING	- WAKTES	-TING	
	WAKTES		WAKTES	.	WAKTES	
	.	-6	9			

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:

TIOTIZOTICAL.	Di. Viv	All No. Yes	All	ASS	N. Pri	400h Y-1
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.32	-3.64	48.68	74	-25.32	peak
4824	43.01	-3.64	39.37	54	-14.63	AVG
7236	48.96	-0.95	48.01	74	-25.99	peak
7236	41.25	-0.95	40.3	54	-13.7	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

		10407	10,4607			100007
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.26	-3.64	48.62	74	-25.38	peak
4824	44.89	-3.64	41.25	54	-12.75	AVG
7236	49.21	-0.95	48.26	74	-25.74	peak
7236	42.04	-0.95	41.09	54	-12.91	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	52.23	-3.51	48.72	74	-25.28	peak
4874	43.47	-3.51	39.96	54	-14.04	AVG
7311	49.5	-0.82	48.68	74	-25.32	peak
7311	39.93	-0.82	39.11	54	-14.89	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	54.48	-3.51	50.97	74	-23.03	peak
4874	42.75	-3.51	39.24	54	-14.76	AVG
7311	49.78	-0.82	48.96	74	-25.04	peak
7311	39.55	-0.82	38.73	54	-15.27	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

AFICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.49	-3.43	50.06	74	-23.94	peak
4924	43.85	-3.43	40.42	54	-13.58	AVG
7386	49.30	-0.75	48.55	74	-25.45	peak
7386	42.75	-0.75	42	54	-12	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

		103322	12897		100 100 100 1	1000
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52.71	-3.43	49.28	74	-24.72	peak
4924	46.01	-3.43	42.58	54	-11.42	AVG
7386	51.72	-0.75	50.97	74	-23.03	peak
7386	41.76	-0.75	41.01	54	-12.99	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

WESTIN ON TESTING

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	52.16	-3.64	48.52	74	-25.48	peak
4824	42.96	-3.64	39.32	54	-14.68	AVG
7236	48.56	-0.95	47.61	74	-26.39	peak
7236	37.99	-0.95	37.04	54	-16.96	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	49.88	-3.64	46.24	74	-27.76	peak
4824	41.15	-3.64	37.51	54	-16.49	AVG
7236	49.14	-0.95	48.19	74	-25.81	peak
7236	40.28	-0.95	39.33	54	-14.67	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.73	-3.51	53.22	74	-20.78	peak
4874	42.67	-3.51	39.16	54	-14.84	AVG
7311	52.28	-0.82	51.46	74	-22.54	peak
7311	42.61	-0.82	41.79	54	-12.21	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.44	-3.51	51.93	74	-22.07	peak
4874	43.62	-3.51	40.11	54	-13.89	AVG
7311	53.02	-0.82	52.2	74	-21.8	peak
7311	42.94	-0.82	42.12	54	-11.88	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.56	-3.43	52.13	74	-21.87	peak
4924	43.89	-3.43	40.46	54	-13.54	AVG
7386	52.98	-0.75	52.23	74	-21.77	peak
7386	42.02	-0.75	41.27	54	-12.73	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	52	-3.43	48.57	74	-25.43	peak
4924	43.2	-3.43	39.77	54	-14.23	AVG
7386	52.11	-0.75	51.36	74	-22.64	peak
7386	42.52	-0.75	41.77	54	-12.23	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.84	-3.64	53.2	74	-20.8	peak
4824	45.26	-3.64	41.62	54ax	-12.38	AVG
7236	49.76	-0.95	48.81	74	-25.19	peak
7236	43.44	-0.95	42.49	54 ESTING	-11.51	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	54.7	-3.64	51.06	74	-22.94	peak
4824	40.5	-3.64	36.86	54	-17.14	AVG
7236	52.57	-0.95	51.62	74	-22.38	peak
7236	42.15	-0.95	41.2	54	-12.8	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

AL

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.28	-3.51	47.77	74	-26.23	peak
4874	40.65	-3.51	37.14	54	-16.86	AVG
7311	51.04	-0.82	50.22	74	-23.78	peak
7311	39.98	-0.82	39.16	54	-14.84	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	50.15	-3.51	46.64	74	-27.36	peak
4874	42.21	-3.51	38.70	54	-15.30	AVG
7311	48.94	-0.82	48.12	74	-25.88	peak
7311	39.94	-0.82	39.12	54	-14.88	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator - Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- WAK TESTIN
4924	55.49	-3.43	52.06	74	-21.94	peak
4924	43.81	-3.43	40.38	54	-13.62	AVG
7386	52.21	-0.75	51.46	74	-22.54	peak
7386	39.57	-0.75	38.82	54	_© -15.18	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Dottotto: Typo
4924	55.32	-3.43	51.89	74	-22.11	peak
4924	41.76	-3.43	38.33	54	-15.67	AVG
7386	53.81	-0.75	53.06	74	-20.94	peak
7386	40.49	-0.75	39.74	54	-14.26	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	_ Detector Type
4844	53.90	-3.63	50.27	74	-23.73	peak
4844	41.06	-3.63	37.43	54	-16.57	AVG
7266	50.45	-0.94	49.51	74	-24.49	peak
7266	41.34	-0.94	40.4	54	-13.6	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	W TEST
4844	54.57	-3.63	50.94	74	-23.06	peak
4844	41.60	-3.63	37.97	54	-16.03	AVG
7266	54.02	-0.94	53.08	74	-20.92	peak
7266	41.43	-0.94	40.49	54	-13.51	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	TOTAL TEST
4874	53.99	-3.51	50.48	74	-23.52	peak
4874	40.67	-3.51	37.16	54	-16.84	AVG
7311	50.01	-0.82	49.19	74	-24.81	peak
7311	37.93	-0.82	37.11	54	-16.89	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	NK TESTIN
4874	51.46	-3.51	47.95	74	-26.05	peak
4874	43.33	-3.51	39.82	54	-14.18	AVG
7311	48.83	-0.82	48.01	74	-25.99	peak
7311	40.98	-0.82	40.16	54	-13.84	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- MAKTESTIN
4904	53.53	-3.43	50.1	74	-23.9	peak
4904	41.23	-3.43	37.8	54	-16.2	AVG
7356	52.98	-0.75	52.23	74	-21.77	peak
7356	42.93	-0.75	42.18	54	-11.82	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	W TESTIN
4904	54.15	-3.43	50.72	74	-23.28	peak
4904	44.26	-3.43	40.83	54	-13.17	AVG
7356	52.08	-0.75	51.33	74	-22.67	peak
7356	39.72	-0.75	38.97	54	-15.03	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Result of Radiated Spurious at Band edges

All modes have been tested. Only the worst result was reported as below:

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal:

	7	-611				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	,,,,
2310.00	52.8	-5.81	46.99	74	-27.01	peak
2310.00	42.84	-5.81	37.03	54	-16.97	AVG
2390.00	52.14	-5.84	46.3	74	-27.7	peak
2390.00	44.05	-5.84	38.21	54	-15.79	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	54.37	-5.81	48.56	74	-25.44	peak
2310.00	42.56	-5.81	36.75	54	-17.25	AVG
2390.00	53.69	-5.84	47.85	74	-26.15	peak
2390.00	42.91	-5.84	37.07	54	-16.93	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
JAY	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAK TES
	2483.50	53.67	-5.81	47.86	74	-26.14	peak
Ego,	2483.50	42.98	-5.81	37.17	54	-16.83	AVG
	2500.00	52.94	-6.06	46.88	74	-27.12	peak
	2500.00	41.3	-6.06	35.24	54	-18.76	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	_ Detector Type
2483.50	53.76	-5.81	47.95	74	-26.05	peak
2483.50	44.1 م ^{الات}	-5.81	38.29	54	-15.71	AVG
2500.00	53.53	-6.06	47.47	74	-26.53	peak
2500.00	41.08	-6.06	35.02	54	-18.98	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

AFICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAKTES
2310.00	56.64	-5.81	50.83	74	-23.17	peak
2310.00	44.05	-5.81	38.24	54	-15.76	AVG
2390.00	52.29	-5.84	46.45	74	-27.55	peak
2390.00	41.73	-5.84	35.89	54 _{TESTIV}	-18.11	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAKTE
2310.00	56.1	-5.81	50.29	74	-23.71	peak
2310.00	42.97	-5.81	37.16	54	-16.84	AVG
2390.00	52.75	-5.84	46.91	74	-27.09	peak
2390.00	41.38	-5.84	35.54	54	-18.46	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAK TES
2483.50	51.58	-5.65	45.93	74	-28.07	peak
2483.50	44.1	-5.65	38.45	54	-15.55	AVG
2500.00	51.64	-5.65	45.99	74	-28.01	peak
2500.00	43.08	-5.65	37.43	54	-16.57	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	T					1
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	MHUAK I
2483.50	53.57	-5.65	47.92	74	-26.08	peak
2483.50	43.08	-5.65	37.43	54	-16.57	AVG
2500.00	54.92	-5.65	49.27	74	-24.73	peak
2500.00	43.03	-5.65	37.38	54	-16.62	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAK TES
2310.00	56.26	-5.81	50.45	74	-23.55	peak
2310.00	42.58	-5.81	36.77	54	-17.23	AVG
2390.00	53.81	-5.84	47.97	74	-26.03	peak
2390.00	41.36	-5.84	35.52	54 TESTIN	-18.48	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
Jan	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	MUAN
1730	2310.00	53.07	-5.81	47.26	74	-26.74	peak
	2310.00	45.24	-5.81	39.43	54	-14.57	AVG
	2390.00	53.12	-5.84	47.28	74	-26.72	peak
	2390.00	42.06	-5.84	36.22	54	-17.78	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
N.	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAKTES
7.	2483.50	52.58	-5.65	46.93	74	-27.07	peak
9	2483.50	40.56	-5.65	34.91	54	-19.09	AVG
	2500.00	50.64	-5.65	44.99	74	-29.01	peak
	2500.00	41.1	-5.65	35.45	54	-18.55	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

100	Frequency	Reading Result	Factor	Emission Level	Simits Limits	Margin	Detector Type
S.	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	O HOM
TEST	2483.50	52.58	-5.65	46.93	74	-27.07	peak
	2483.50	43.76	-5.65	38.11	54	-15.89	AVG
3	2500.00	53.22	-5.65	47.57	74	-26.43	peak
	2500.00	43.51	-5.65	37.86	54	-16.14	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAKTES
2310.00	53.87	-5.81	48.06	74	-25.94	peak
2310.00	-STING /	-5.81	1 STING	54	TEST /	AVG
2390.00	51.36	-5.84	45.52	74	-28.48	peak
2390.00	1	-5.84	1	54 TESTIM	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	O HUAK TE
2310.00	53.83	-5.81	48.02	74	-25.98	peak
2310.00	ESTING /	-5.81	IN TESTING	54 MUNI	1	AVG
2390.00	53.11	-5.84	47.27	74	-26.73	peak
2390.00	ME MUS	-5.84	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

AL.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2452MHz)

Horizontal:

	Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
ONK.	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	MUAK IL
CTING	2483.50	52.15	-5.65	46.5	74	-27.5	peak
	2483.50	ESTING /	-5.65	A TESTING	54	1	AVG
	2500.00	53.69	-5.65	48.04	74	-25.96	peak
	2500.00	I MU	-5.65	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	56.06	-5.65	50.41	74 HUAV	-23.59	peak
2483.50	1	-5.65	HUAK	54	1	AVG
2500.00	53.26	-5.65	47.61	74	-26.39	peak
2500.00	W. IESTING W	-5.65	ING I NY TESTIN	54	TESTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark

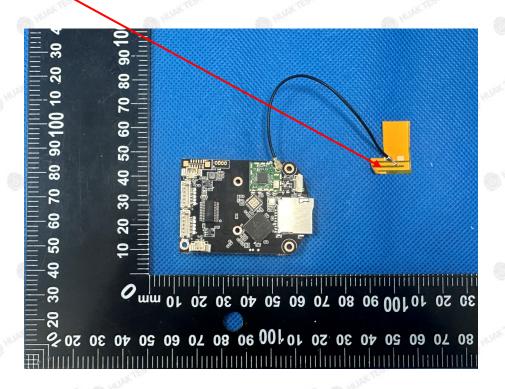
- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.8 Antenna Requirement

Standard Applicable

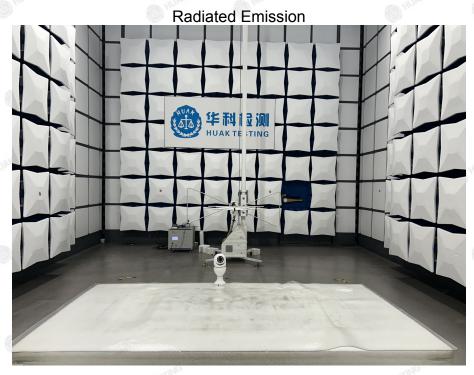
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a FPC Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 2dBi.


WIFI ANTENNA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Photographs of Test

1|-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.