

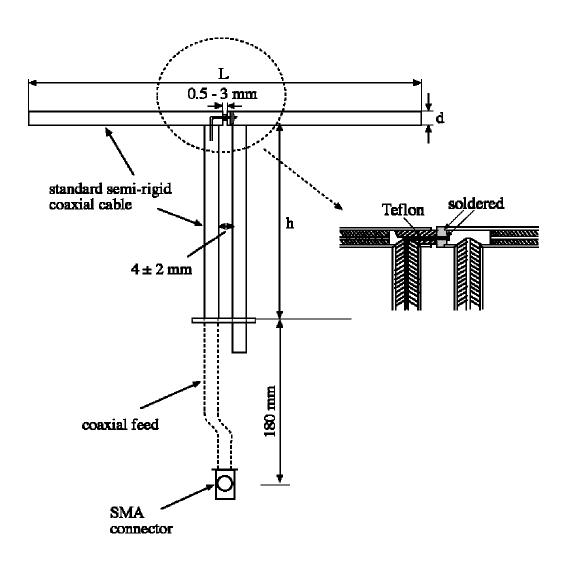
Test Report S/N:	102604KBC-T577-S24G
Test Date(s):	December 01-02, 2004
Test Type:	FCC/IC SAR Evaluation

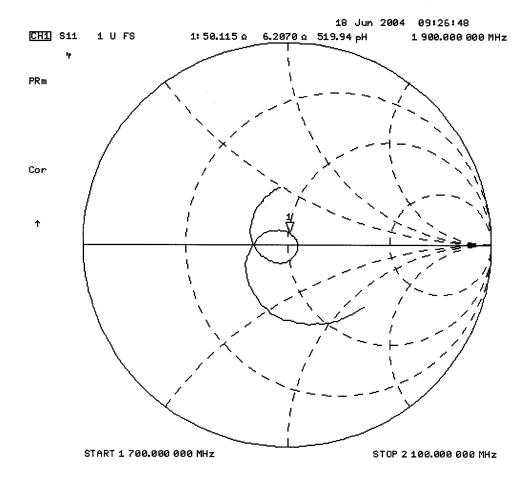
APPENDIX E - SYSTEM VALIDATION

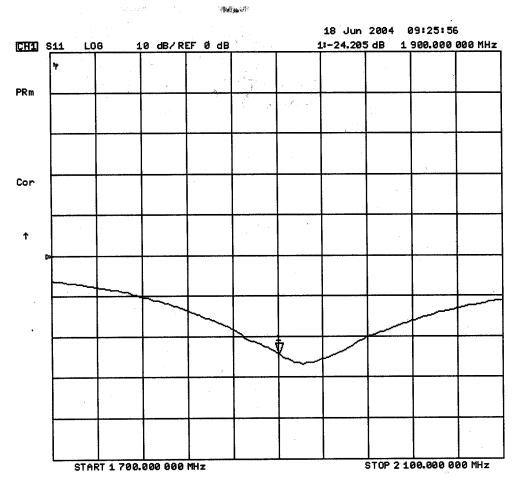
Applicant:	Itronix Corporation	FCC ID:	KBCIX100XA775WLBT	IC ID:	1943A-IX100Xe	Model:	IX100XA775WLBT
Rugged Handheld PC with Dual-Band GSM GPRS/EDGE Modem & 802.11b/Bluetooth Combo Transmitter							
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 44 of 47							

1900 MHz SYSTEM VALIDATION DIPOLE

Type:	1900 MHz Validation Dipole
Serial Number:	151
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	June 18, 2004
Celltech Labs Inc. hereby certifies that this devi	ice has been calibrated on the date indicated above
Calibrated by:	Spenser Watson
Approved by:	Mussell W. Rupe


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 1900MHz $Re{Z} = 50.115\Omega$

 $Im{Z} = 6.2070\Omega$

Return Loss at 1900MHz -24.205dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ **Filling Volume:** Approx. 20 liters

Dimensions: 50 cm (W) x 100 cm (L)

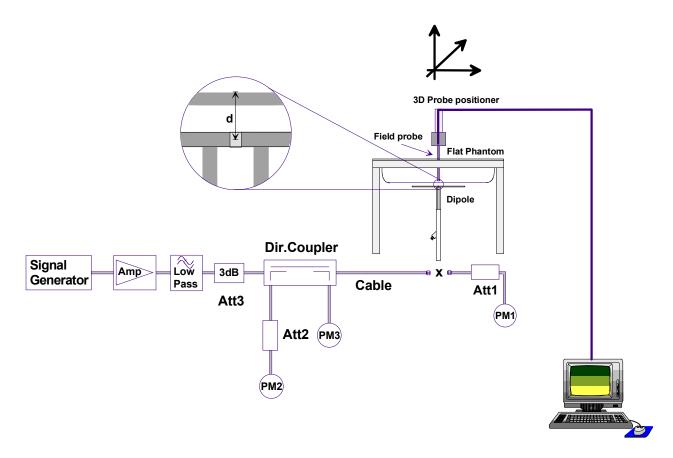
1900 MHz System Validation Setup

1900 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 1900 MHz brain simulating tissue.

Relative Permittivity: 38.3


Conductivity: 1.43 mho/m
Ambient Temperature: 24.0 °C
Fluid Temperature: 22.6 °C
Fluid Depth: \geq 15.0 cm
Barometric Pressure: 103.0 kPa
Humidity: 37%

The 1900 MHz tissue simulant consists of the following ingredients:

Ingredient	Percentage by weight
Water	55.85%
Glycol	44.00%
Salt	0.15%
Target Dielectric Parameters at 22 °C	$\epsilon_{\rm r} = 40.0$ $\sigma = 1.40 \; {\rm S/m}$

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	10.1	40.40	5.30	21.20	17.4
Test 2	9.93	39.72	5.21	20.84	17.2
Test 3	9.98	39.92	5.23	20.92	17.3
Test 4	9.99	39.96	5.21	20.84	17.4
Test 5	9.97	39.88	5.22	20.88	17.4
Test 6	9.90	39.60	5.20	20.80	17.1
Test 7	9.93	39.72	5.21	20.84	17.2
Test 8	9.96	39.84	5.20	20.80	17.3
Test 9	9.94	39.76	5.20	20.80	17.2
Test 10	9.96	39.84	5.21	20.84	17.2
Average	9.966	39.864	5.219	20.876	17.27

The results have been normalized to 1W (forward power) into the dipole.

1g/10g Averaged Average Measured SAR @ 1W Input		IEEE Target SAR @ 1W Input	Deviation (%)
1 gram	39.864	39.7	+ 0.413
10 gram	20.876	20.5	+ 1.835

1900 MHz System Validation - June 18, 2004

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151

Ambient Temp: 24.0°C; Fluid Temp: 22.6°C; Barometric Pressure: 103.0 kPa; Humidity: 37%

Communication System: CW

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 ($\sigma = 1.43 \text{ mho/m}$; $\varepsilon_r = 38.3$; $\rho = 1000 \text{ kg/m}^3$)

- Probe: ET3DV6 SN1387; ConvF(5.25, 5.25, 5.25); Calibrated: 18/03/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 14/05/2004
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 112

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 96.9 V/m; Power Drift = 0.1 dB

1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.9 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.3 mW/g

1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = 0.0 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.2 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.23 mW/g

1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = 0.001 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.2 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.22 mW/g

1900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.9 mW/g; SAR(10 g) = 5.2 mW/g

1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.1 V/m; Power Drift = -0.007 dB

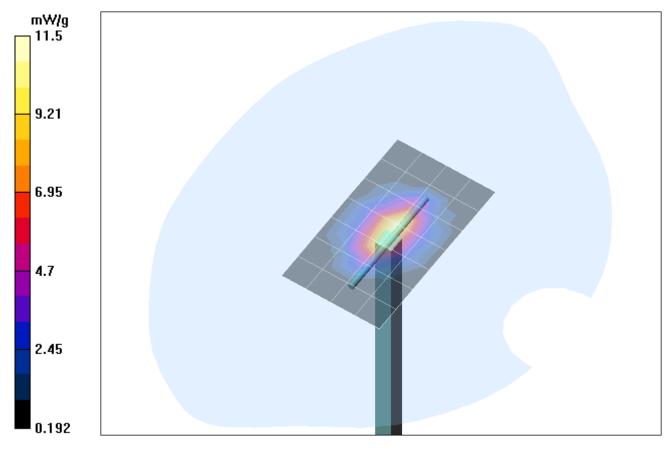
Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.2 mW/g

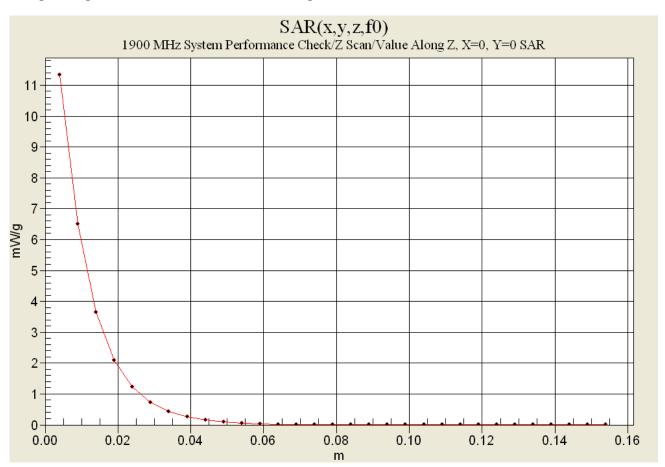
1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.7 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.2 W/kg


SAR(1 g) = 9.94 mW/g; SAR(10 g) = 5.2 mW/g

1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.1 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.21 mW/g

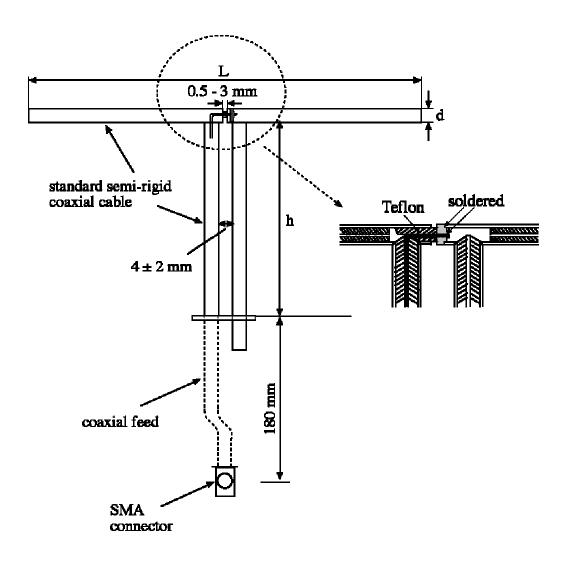
1 g average of 10 measurements: 9.966 mW/g 10 g average of 10 measurements: 5.219 mW/g

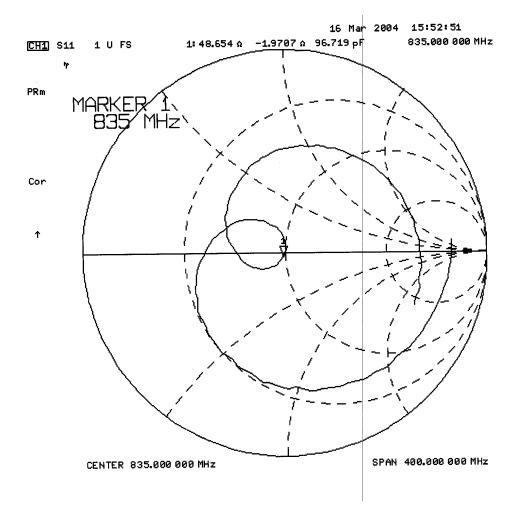
1900 MHz System Validation Measured Fluid Dielectric Parameters (Brain) June 18, 2004

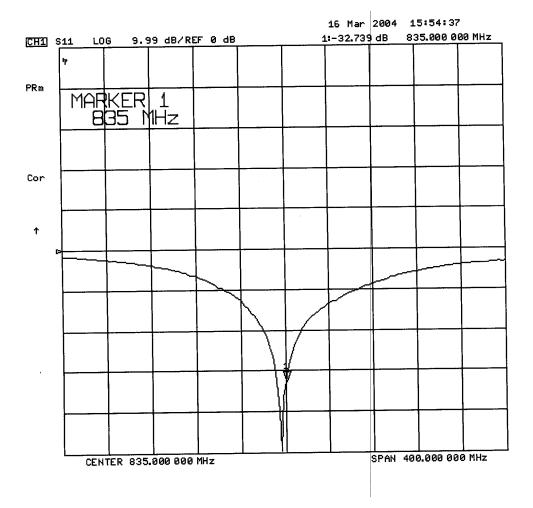
Frequency	e'	e"
1.800000000 GHz	38.7685	13.2945
1.810000000 GHz	38.7232	13.3253
1.820000000 GHz	38.6647	13.3519
1.830000000 GHz	38.6047	13.3737
1.840000000 GHz	38.5593	13.4078
1.850000000 GHz	38.5136	13.4244
1.860000000 GHz	38.4736	13.4289
1.870000000 GHz	38.4328	13.4399
1.880000000 GHz	38.3934	13.4856
1.890000000 GHz	38.3637	13.4872
1.900000000 GHz	38.3205	13.5178
1.910000000 GHz	38.2981	13.5327
1.920000000 GHz	38.2590	13.5755
1.930000000 GHz	38.2344	13.5976
1.940000000 GHz	38.2172	13.6297
1.950000000 GHz	38.1838	13.6574
1.960000000 GHz	38.1575	13.6807
1.970000000 GHz	38.1070	13.6962
1.980000000 GHz	38.0516	13.7296
1.990000000 GHz	38.0093	13.7634
2.000000000 GHz	37.9485	13.7978

835 MHz SYSTEM VALIDATION DIPOLE

Type:	835 MHz Validation Dipole
Serial Number:	411
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	March 16, 2004
Celltech Labs Inc. hereby certifies that this devi	ice has been calibrated on the date indicated above
Calibrated by:	Spencer Watson
Approved by:	Russell W. Ryse


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 835MHz $Re{Z} = 48.654\Omega$

 $\text{Im}\{Z\} = -1.9707\Omega$

Return Loss at 835MHz -32.739dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 20 liters

Dimensions: 50 cm (W) x 100 cm (L)

835 MHz System Validation Setup

835 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 835 MHz brain simulating tissue.

Relative Permittivity: 42.6

Conductivity: 0.94 mho/m

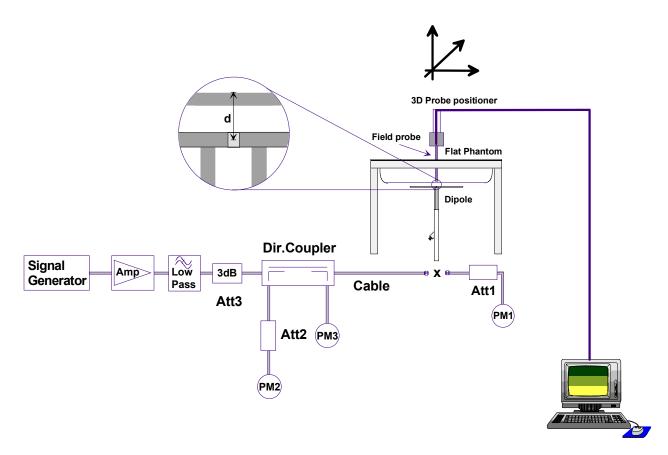
Ambient Temperature: 24.6 °C

Fluid Temperature: 21.9 °C

Fluid Depth: \geq 15.0 cm

Barometric Pressure: 101.6 kPa

Humidity: 31%


The 835 MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight
Water	40.71%
Sugar	56.63%
Salt	1.48%
HEC	0.99%
Dowicil 75	0.19%
Target Dielectric Parameters at 22 °C	$\varepsilon_{\rm r} = 41.5$ $\sigma = 0.90 \; {\rm S/m}$

Measurements were taken in the flat section of the SAM phantom using a dosimetric E-field probe ET3DV6 (s/n: 1590, conversion factor 7.0).

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	2.46	9.84	1.61	6.44	3.56
Test 2	2.45	9.80	1.60	6.40	3.56
Test 3	2.45	9.80	1.61	6.44	3.56
Test 4	2.44	9.76	1.60	6.40	3.55
Test 5	2.43	9.72	1.60	6.40	3.53
Test 6	2.44	9.76	1.60	6.40	3.53
Test 7	2.44	9.76	1.60	6.40	3.55
Test 8	2.44	9.76	1.60	6.40	3.54
Test 9	2.47	9.88	1.62	6.48	3.58
Test10	2.47	9.88	1.62	6.48	3.62
Average Value	2.45	9.80	1.61	6.42	3.56

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 9.80 mW/g

Averaged over 10cm (10g) of tissue: 6.42 mW/g

835 MHz System Validation - March 16, 2004

DUT: Dipole 835 MHz; Type: D835V2; Serial: 411

Ambient Temp: 24.6°C; Fluid Temp: 21.9°C; Barometric Pressure: 101.6 kPa; Humidity: 31%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 (σ = 0.94 mho/m; ϵ_r = 42.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(7, 7, 7); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

835 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

835 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

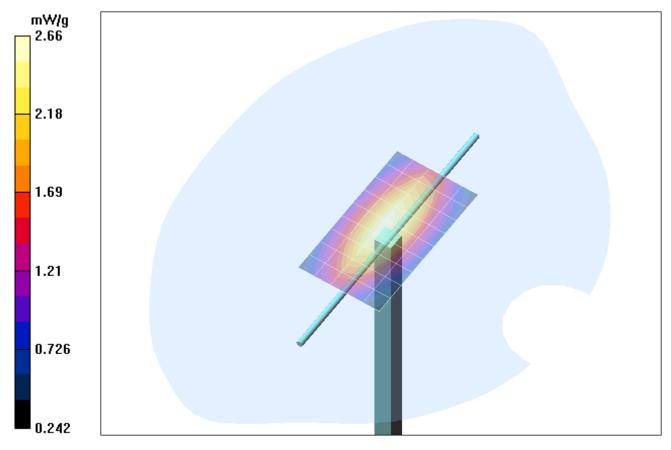
Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

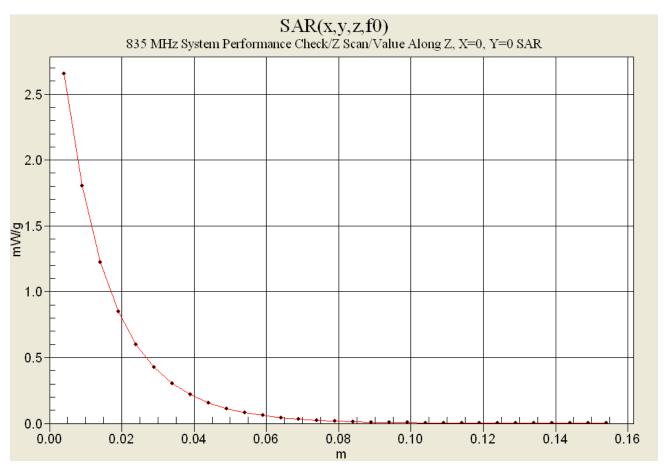
835 MHz System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.58 W/kg


SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

835 MHz System Validation/Zoom Scan 12 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

1 g average of 10 measurements: 2.449 mW/g 10 g average of 10 measurements: 1.606 mW/g

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) March 16, 2004

Frequency	e'	e"
735.000000 MHz	43.8577	20.6938
745.000000 MHz	43.6899	20.6481
755.000000 MHz	43.5341	20.5840
765.000000 MHz	43.4161	20.5576
775.000000 MHz	43.3026	20.5312
785.000000 MHz	43.2065	20.5122
795.000000 MHz	43.1067	20.5061
805.000000 MHz	43.0154	20.4762
815.000000 MHz	42.8927	20.4182
825.000000 MHz	42.7420	20.3806
835.000000 MHz	42.6206	20.2993
845.000000 MHz	42.4357	20.2595
855.000000 MHz	42.2984	20.1872
865.000000 MHz	42.1422	20.1432
875.000000 MHz	42.0082	20.1253
885.000000 MHz	41.8996	20.1110
895.000000 MHz	41.8514	20.0192
905.000000 MHz	41.7550	20.0083
915.000000 MHz	41.6535	19.9701
925.000000 MHz	41.5521	19.9380
935.000000 MHz	41.4477	19.9175