

0659

FCC Radio Test Report FCC ID: IR5DH8

Report No. : BTL-FCCP-1-2205T007 Equipment : HANDHELD COMPUTER

Model Name : DH8

Brand Name : MilDef Crete Inc.
Applicant : MilDef Crete Inc.

Address : 7F, No.250, Sec.3, PeiShen Rd., Shen Keng District, New Taipei City,

Taiwan

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C Measurement : ANSI C63.10-2013

Measurement Procedure(s)

r rocedure(s)

Date of Receipt : 2022/5/16 Date of Test : 2022/5/16 ~ 2022/6/10

Issued Date : 2022/8/2

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by :

 \bigcap

Jerry Chuang, Supervisor

BTL Inc.

Approved by

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2205T007 Page 1 of 47 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2205T007 Page 2 of 47 Report Version: R00

CONTENTS

1	SUMMA	RY OF TEST RESULTS	5
1.1	TEST	FACILITY	6
1.2	MEAS	SUREMENT UNCERTAINTY	6
1.3	TEST	ENVIRONMENT CONDITIONS	6
1.4	TABL	E OF PARAMETERS OF TEST SOFTWARE SETTING	6
2	GENER/	AL INFORMATION	7
2.1	DESC	CRIPTION OF EUT	7
2.2	TEST	MODES	9
2.3	BLOC	CK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.4		PORT UNITS	11
3	AC POW	/ER LINE CONDUCTED EMISSIONS TEST	12
3.1	LIMIT		12
3.2	TEST	PROCEDURE	12
3.3		ATION FROM TEST STANDARD	12
3.4	TEST	SETUP	13
3.5	TEST	RESULT	13
4	RADIATI	ED EMISSIONS TEST	14
4.1	LIMIT		14
4.2		PROCEDURE	15
4.3		ATION FROM TEST STANDARD	15
4.4	TEST	SETUP	16
4.5		OPERATING CONDITIONS	17
4.6	TEST	RESULT – BELOW 30 MHZ	17
4.7	TEST	RESULT – 30 MHZ TO 1 GHZ	17
4.8	_	RESULT – ABOVE 1 GHZ	17
5	OUTPUT	Γ POWER TEST	18
5.1	LIMIT		18
5.2		PROCEDURE	18
5.3		ATION FROM STANDARD	18
5.4	_	SETUP	18
5.5		OPERATION CONDITIONS	18
5.6		RESULTS	18
6		MEASURING EQUIPMENTS	19
7		ST PHOTO	20
8	EUT PH	OTOS	20
APPENI	DIX A	AC POWER LINE CONDUCTED EMISSIONS	21
APPENI		RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	26
APPENI		RADIATED EMISSIONS - ABOVE 1 GHZ	29
APPENI	DIX D	OUTPUT POWER	46

Report No.: BTL-FCCP-1-2205T007

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2205T007	R00	Original Report.	2022/8/2	Valid

Project No.: 2205T007 Page 4 of 47 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	NOTE (3)	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	NOTE (3)	Pass	
15.247 (a)(1)	Hopping Channel Separation	NOTE (3)	Pass	
15.247 (a)(1)	Bandwidth	NOTE (3)	Pass	
15.247 (b)(1)	Output Power	APPENDIX D	Pass	
15.247(d)	Antenna conducted Spurious Emission	NOTE (3)	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.
- (3) This is to request a Class II permissive change for FCC ID: IR5DH8 (This FCC ID is change ID based on Intel Mobile Communications, the original application information follow as model: AX210NGW, FCC ID: PD9AX210NG, approved on 05/25/2022)

The major change filed under this application is disable RLAN 5 GHz (U-NII 2a, U-NII 2c, U-NII 3) and U-NII 6 GHz.

Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report, for other test data can be refer report No.: 200611-03.TR05.

(4) After spot check, this revision does not change original radio parameters.

Project No.: 2205T007 Page 5 of 47 Report Version: R00

Report No.: BTL-FCCP-1-2205T007

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

 $oxed{oxed}$ C05 $oxed{\Box}$ CB08 $oxed{\Box}$ CB11 $oxed{oxed}$ CB15 $oxed{\Box}$ CB16

⊠ SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)	
Output Power	0.3659	

NOTE

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	19 °C, 51 %	AC 120V	Ronald Kao
Radiated emissions below 1 GHz	Refer to data	AC 120V	Eddie Lee
Radiated emissions above 1 GHz	Refer to data	AC 120V	Eddie Lee
Output Power	22.3 °C, 52 %	AC 120V	Angela Wang

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software	DRTU V22.21090.0.0				
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate	
GFSK	16	16	16	1 Mbps	
π/4-DQPSK	16	16	16	2 Mbps	
8DPSK	16	16	10	3 Mbps	

Project No.: 2205T007 Page 6 of 47 Report Version: R00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

	HANDHELD COMPUTER
Equipment	
Model Name	DH8
Brand Name	MilDef Crete Inc.
Model Difference	N/A
Dower Course	#1 DC voltage supplied from External Power Supply.
Power Source	#2 Supplied from battery.
	#1
	I/P: 100-240V~50-60Hz 1.5A MAX.
Power Rating	O/P: 5.0V==3.0A 15.0W or 9.0V==3.0A 27.0W or 12.0V==3.0A 36.0W or
Ŭ	15.0V==3.0A 45.0W or 20.0V==3.0A 60.0W
	#2 7.2V2500mAh/18Wh
Does to a to October 1	1 * Adapter: ADAPTER TECH / CDP060A1-P200
Products Covered	1 * Battery: BDH82A
WIFI+BT Module	Intel / AX210NGW
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
	1 Mbps: 10.14 dBm (0.0103 W)
Maximum Output Power	2 Mbps: 9.74 dBm (0.0094 W)
·	3 Mbps: 9.74 dBm (0.0094 W)
Test Model	DH8
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Project No.: 2205T007 Page 7 of 47 Report Version: R00

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacture	Part Number	Туре	Connector	Frequency Range (MHz)	Gain (dBi)
WLAN&BT					2400	-1.46
Antenna	N/A	G983190000	PIFA	N/A	2450	2.33
Antenna					2500	0.19

Report No.: BTL-FCCP-1-2205T007

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Output Power	1/2/3 Mbps	00/39/78	-

NOTE:

- (1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.
- (2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (3) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.

Project No.: 2205T007 Page 9 of 47 Report Version: R00

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC Power Line Conducted Emissions Test

Radiated Emissions Test

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	ADAPTER TECH	CDP060A1-P200	N/A	Supplied by test requester.

ш						
	Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
	1	N/A	N/A	1.8m	Power Cord	Supplied by test requester.

Report No.: BTL-FCCP-1-2205T007

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dΒμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	ı	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2205T007 Page 12 of 47 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

Report No.: BTL-FCCP-1-2205T007

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)		Emissions V/m)	Measurement Distance
(IVIHZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2205T007 Page 14 of 47 Report Version: R00

Report No.: BTL-FCCP-1-2205T007

4.2 TEST PROCEDURE

a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)

- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)

i. For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.
4.3 DEVIATION FROM TEST STANDARD
No deviation.

Project No.: 2205T007 Page 15 of 47 Report Version: R00

4.4 TEST SETUP

9 kHz to 30 MHz

30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Report No.: BTL-FCCP-1-2205T007

5 OUTPUT POWER TEST

5.1 LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(1)	Maximum peak conducted output power	0.125 Watts (20.97 dBm)	2400-2483.5	PASS			

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with method 9 b) of FCC KDB 558074 D01 DTS Meas Guidance.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter
	T OWER WICKER

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2205T007 Page 18 of 47 Report Version: R00

6 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	2022/3/29	2023/3/28				
2	Test Cable	EMCI EMCCFD300-BM 17071		170714	2022/5/2	2023/5/1				
3	EMI Test Receiver	R&S	ESR 7	101433	2021/11/24	2022/11/23				
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A				

	Radiated Emissions								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC02325	980217	2022/4/6	2023/4/5			
2	Preamplifier	EMCI	EMC012645B	980222	2022/4/6	2023/4/5			
3	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5			
4	Test Cable	EMCI	EMC104-SM-100 0	180809	2022/4/6	2023/4/5			
5	Test Cable	EMCI EMC104-SM-SM- 2500 160413		160413	2022/4/6	2023/4/5			
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2022/4/6	2023/4/5			
7	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24			
8	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31			
9	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-1333	2021/11/18	2022/11/17			
10	Horn Ant	Schwarzbeck	BBHA 9170	340	2021/7/9	2022/7/8			
11	Trilog-Broadband Antenna	I Schwarzbeck I VULB 9168 I		9168-352	2021/8/11	2022/8/10			
12	5dB Attenuator	EMCI	EMCI EMCI-N-6-05		2021/8/11	2022/8/10			
13	Measurement Software	EZ	EMCI-N-6-05 AT-N0625 EZ_EMC (Version N/A NB-03A1-01)		N/A	N/A			

	Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Power Meter	Anritsu	ML2487A	6K00004714	2021/8/15	2022/8/14				
2	Power Sensor	Anritsu	MA2491A	034138	2021/8/15	2022/8/14				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

7 EUT TEST PHOTO							
Please refer to document Appendix No.: TP-2205T007-FCCP-1 (APPENDIX-TEST PHOTOS).							
8 EUT PHOTOS							
Please refer to document Appendix No.: EP-2205T007-1 (APPENDIX-EUT PHOTOS).							
Please relet to document Appendix No.: EF-22031007-1 (AFFENDIX-EO1 FRO103).							

Project No.: 2205T007 Page 20 of 47 Report Version: R00

APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2205T007 Page 21 of 47 Report Version: R00

Test Mode	Normal	Tested Date	2022/5/27
Test Frequency	-	Phase	Line

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1522	47.10	9.67	56.77	65.88	-9.11	QР	
2		0.1522	33.50	9.67	43.17	55.88	-12.71	AVG	
3		0.2220	29.60	9.67	39.27	62.74	-23.47	QΡ	
4		0.2220	5.80	9.67	15.47	52.74	-37.27	AVG	
5		0.2985	30.90	9.66	40.56	60.28	-19.72	QР	
6		0.2987	17.00	9.66	26.66	50.28	-23.62	AVG	
7		0.3997	24.80	9.67	34.47	57.86	-23.39	QΡ	
8		0.3997	12.90	9.67	22.57	47.86	-25.29	AVG	
9		2.5778	16.50	9.83	26.33	56.00	-29.67	QP	
10		2.5778	4.20	9.83	14.03	46.00	-31.97	AVG	
11		3.1514	16.70	9.86	26.56	56.00	-29.44	QP	
12		3.1514	3.60	9.86	13.46	46.00	-32.54	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Normal	Tested Date	2022/5/27
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1522	47.10	9.67	56.77	65.88	-9.11	QP	
2		0.1522	34.00	9.67	43.67	55.88	-12.21	AVG	
3		0.1864	33.50	9.66	43.16	64.20	-21.04	QР	
4		0.1864	10.90	9.66	20.56	54.20	-33.64	AVG	
5		0.2513	31.00	9.65	40.65	61.71	-21.06	QР	
6		0.2513	18.30	9.65	27.95	51.71	-23.76	AVG	
7		0.3502	25.10	9.66	34.76	58.96	-24.20	QР	
8		0.3502	13.50	9.66	23.16	48.96	-25.80	AVG	
9		0.5595	18.70	9.69	28.39	56.00	-27.61	QP	
10		0.5595	9.10	9.69	18.79	46.00	-27.21	AVG	
11		2.6115	17.00	9.83	26.83	56.00	-29.17	QР	
12		2.6115	4.50	9.83	14.33	46.00	-31.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

٦	Test Mode	Idle	Tested Date	2022/5/27
П	est Frequency	-	Phase	Line

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1522	47.30	9.67	56.97	65.88	-8.91	QP	
2	0.1522	33.90	9.67	43.57	55.88	-12.31	AVG	
3	0.1995	37.80	9.67	47.47	63.63	-16.16	QP	
4	0.1995	23.70	9.67	33.37	53.63	-20.26	AVG	
5	0.3030	31.70	9.65	41.35	60.16	-18.81	QP	
6	0.3030	20.10	9.65	29.75	50.16	-20.41	AVG	
7	0.4087	24.70	9.67	34.37	57.67	-23.30	QP	
8	0.4087	12.60	9.67	22.27	47.67	-25.40	AVG	
9	0.6673	16.80	9.70	26.50	56.00	-29.50	QP	
10	0.6673	3.60	9.70	13.30	46.00	-32.70	AVG	
11	2.5013	15.10	9.83	24.93	56.00	-31.07	QP	
12	2.5013	4.20	9.83	14.03	46.00	-31.97	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2022/5/27
Test Frequency	-	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1 *	0.1522	47.20	9.67	56.87	65.88	-9.01	QP	
2	0.1522	34.00	9.67	43.67	55.88	-12.21	AVG	
3	0.1793	36.30	9.66	45.96	64.52	-18.56	QP	
4	0.1793	14.00	9.66	23.66	54.52	-30.86	AVG	
5	0.2063	37.20	9.66	46.86	63.35	-16.49	QP	
6	0.2063	21.10	9.66	30.76	53.35	-22.59	AVG	
7	0.2962	30.50	9.65	40.15	60.35	-20.20	QP	
8	0.2962	15.30	9.65	24.95	50.35	-25.40	AVG	
9	0.6765	15.30	9.70	25.00	56.00	-31.00	QP	
10	0.6765	2.30	9.70	12.00	46.00	-34.00	AVG	
11	2.7938	18.00	9.84	27.84	56.00	-28.16	QP	
12	2.7938	5.50	9.84	15.34	46.00	-30.66	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2205T007 Page 26 of 47 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2205T007 Page 29 of 47 Report Version: R00

	Test Mo			Mbps)		Test Date			2/5/24
Te	st Frequ			2MHz		Polarization	า		zontal
1000 11	Temp		2:	2°C		Hum.		66	5%
130.0 di	BuV/m								
120									
110					<u>.</u>				
100									
90					\parallel				
80									
70									
60		1							5
50 	fagers et er en en en en	1	charge (har now the land all the	waterway with	herman hausdhilder en	hali palatan mana da mangan da man	ok haveler to service all the shallow	Almoranosithenan	HAMA MANAGANA
40		2 X							6
30									×
20									
10.0									
2302.0	00 2322.0	0 2342.00	2362.00	2382.00	2402.00 24	422.00 24	42.00 246	2.00	2502.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2345.167	26.22	31.07	57.29	74.00	-16.71	peak	
2		2345.167	13.24	31.07	44.31	54.00	-9.69	AVG	
3	Χ	2402.000	72.83	31.24	104.07	74.00	30.07	peak	NoLimit
4	*	2402.000	72.36	31.24	103.60	54.00	49.60	AVG	NoLimit
5		2498.580	26.31	31.56	57.87	74.00	-16.13	peak	
6		2498.580	3.02	31.56	34.58	54.00	-19.42	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BT(1	Mbps)		Test Date		2022	2/5/24	
•	Test Frequ	iency		0MHz		Polarization)		zontal	
	Temp		2:	2°C		Hum.		66%		
30.0	dBuV/m									
20										
10 📙										
_					Ж					
00 -					Щ					
o -										
.										
0										
o 🗀										
0 1					5					
u 1	Manager March 1980	haran dan makanan	ومساورة أواليا ومعاور والماران ومراور سالون	Jan	and Brownshaw	han hadan dirik dari	de Maria de Caracter de la compansión de	promondofense. Nicholandon	water but briefly for	
io										
					×					
V Z										
0										
o										
0.0										
	0.000 2400.0	0 2420.00	2440.00	2460.00	2480.00 25	500.00 252	20.00 25 4	0.00	2580.00 MF	
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
		•	Level	Factor	ment					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2382.460	25.17	31.18	56.35	74.00	-17.65	peak		
2		2382.460	2.83	31.18	34.01	54.00	-19.99	AVG		
3	Χ	2480.000	75.07	31.50	106.57	74.00	32.57	peak	NoLimit	
4	*	2480.000	74.75	31.50	106.25	54.00	52.25	AVG	NoLimit	
5		2483.647	26.85	31.50	58.35	74.00	-15.65	peak		
6		2483.647	14.23	31.50	45.73	54.00	-8.27	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

-	Test Mo	de	BT(3	BMbps)		Test Date		2022	2/5/24
Tes	st Frequ	ency	240	2MHz		Polarization	n	Horiz	zontal
	Temp		2	2°C		Hum.		66	6%
130.0 dB	uV/m								
120									
110									
					8				
100					$-\mathbb{A}$				
90					_{ }				
					- } \				
BO									
70					/ \				
60				1	$f \mid \setminus$				_
I .	المرار والمعاملات وا	4-14-14-14-14-14-14-14-14-14-14-14-14-14	and blood warmen	remarke water	W have	parameter the traffic and	and the second second	de marine de la company	Lange Home Marie
50		1 11 11 11 11 11		2					
40				×					
•									6 X
30									
20									
10.0									
	0 2322.0	0 2342.00	2362.00	2382.00	2402.00 2	2422.00 24	42.00 246	52.00	2502.00 M
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	72.00	2502.00 14
110.	IVIIX.	1 104.	Level	Factor	ment		0 701		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.100	27.53	31.20	58.73	74.00	-15.27	peak	
2		2388.100	13.48	31.20	44.68	54.00	-9.32	AVG	
3	Х	2402.000	72.31	31.24	103.55	74.00	29.55	peak	NoLimit
4	*	2402.000	70.12	31.24	101.36	54.00	47.36	AVG	NoLimit
5		2498.933	26.09	31.56	57.65	74.00	-16.35	peak	
6		2498.933	3.15	31.56	34.71	54.00	-19.29	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test D			2/5/24
Te	est Frequ				2MHz		Polariza			rtical
400.0	Temp)		22	2°C		Hun	າ.	6	6%
130.0	dBuV/m									
120										
110 -										
100 -										
90										
во										
70 <u> </u>										
SO										
50										
40 <u> </u>		1 X 2								
30		×								
20										
10.0										
1000.	000 3550.0	00 6100.0	0 8650	.00	11200.00	13750.00	16300.00	18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.	Read Lev		Correct Factor	Measure ment	e- Lim	it Ove	er	
		MHz	dBı		dB	dBuV/n	n dBuV	/m dB	Detector	Comment
1		4804.00			-0.09	43.44	74.0			
2	*	4804.00			-0.09	34.83	54.0			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode					Mbps					Test Da					2/5/24	
Te	est Frequency					2MHz				Р	olariza					zontal	
	Temp	כ			22	2°C					Hum				6	6%	
130.0	dBuV/m															1	_
120																	
110																	-
100																	_
90																	4
80																	
<u> </u>																	4
70																	1
60																	+
50																	1
40		1 X															
30		2 X															
20																	1
10.0	000 3550.	00 6100	1 00	8650		11200	00	1270	50.00	10	300.00	1885	0.00	21400.0	10	26500.0	
No.	иии зээи. Mk.	Freq			ding	Cor			easur		Limit		Over		10	Z6300.U	UMHZ
140.	IVIIX.	1109	•		vel	Fac			ment	,		•	OVCI				
		MHz	<u>-</u>	dB	uV	dl			3uV/n	า	dBuV/	m	dB	D	etector	Comme	ent
1		4804.0			.03	-0.			13.94		74.00		-30.00		peak		
2	*	4804.0	000	32	.94	-0.	09	3	32.85		54.00)	-21.1	5	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

т.	Test M					lbps)				est Da				2/5/24
16	est Fred Tem			2	441 <u>N</u> 22°				P	olarizat Hum.	ion			tical 6%
130.0 c	BuV/m	ıρ			22	C				nuiii.			O	J 70
120														
110														
110														
100														
90														
80														
70														
60														
-														
50		1 X												
40		2 X												
30														
20														
10.0	200 2550	00 010		0050.00		1200 00	1075	0.00	100	00.00	10050 (10 01	400.00	20500 00 111
No.	000 3550 Mk.	.00 6100 Freq		8650.00		1200.00 Correct	1375	asure		00.00 Limit	18850.0	Over	400.00	26500.00 MH
INO.	IVIK.	rieq		Readin Level	y	Factor		asure nent	-	LIIIIII	,	JVEI		
		MHz	<u> </u>	dBuV		dB		3uV/m	(dBuV/n	n	dB	Detector	Comment
1		4882.0	000	45.37		0.06		5.43		74.00		28.57	peak	
2	*	4882.0	000	37.23		0.06	3	37.29		54.00		16.71	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mode					Mbps)				est Da				2/5/24
Te	est Frequ			:		1MHz			Po	olarizat				zontal
	Temp)			22	2°C				Hum.			66	6%
130.0	dBuV/m													
120														
110														
100														
90														
80														
70														
60														
50		1 X												
40		X 2												
30		x												
20														
10.0	000 2550 (00 6100.	00	8650.0	_	11200.00	1375	0.00	100	00.00	10050.00	21.6	100.00	26500.00 MHz
No.	000 3550.0 Mk.	Freq.		Readi		Correct		asure		Limit	18850.00	ver	100.00	26300.00 MH2
INO.	IVIIX.	ı ıeq.		Leve		Factor		nent		LIIIII	O	VGI		
		MHz		dBu\	V	dB		3uV/m		dBuV/r	n c	dΒ	Detector	Comment
1		4882.00	00	45.3	3	0.06	4	5.39		74.00	-28	3.61	peak	
2	*	4882.00	00	34.7	5	0.06	3	4.81		54.00	-19	9.19	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			T(1Mbps)		Test Date			2/5/24
Т	est Frequ		2	480MHz		Polarizatio	on		tical
130.0	Temp)		22°C		Hum.		66	6%
130.0	aba 47 iii								
120									
110									
100									
90									
80									
70									
60									
50		1							
40		1 X							
30		2 X							
20									
10.0									
1000.	000 3550.0	0 6100.0	0 8650.00	11200.00	13750.00	16300.00 1	8850.00 21	400.00	26500.00 MHz
No.	Mk.	Freq.	Readir Leve		Measure ment	- Limit	Over		
		MHz	dBu√		dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.00			45.09	74.00	-28.91	peak	
2	*	4960.00		0.20	35.33	54.00	-18.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(1	Mbps)		Te	est Dat	te		2022	2/5/24
Te	est Freq	uency			248	0MHz		Po	larizati	on		Horiz	zontal
	Tem	р			22	2°C			Hum.			66	6%
130.0 d	BuV/m												
120													
110													
100													
30													
30													
0													
:0													
50		-											
10		X											
		2 X											
30													
20 —													
0.0													
	000 3550.			8650.		11200.00		1630		18850.00		0.00	26500.00 MI
No.	Mk.	Freq	•	Read		Correct Factor	easure ment	-	Limit	Ove	er		
		MHz	<u>. </u>	dBı		dB	BuV/m	d	lBuV/m	n dE	3	Detector	Comment
1		4960.0	000	45.	84	0.20	46.04		74.00	-27.	96	peak	
2	*	4960.0	000	34.	07	0.20	 34.27		54.00	-19.	73	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					Mbps)					Test Da				2/5/24
Te	est Fred					2MHz				P	<u>olarizat</u>				ertical
30.0 c	Tem dBuV/m	р			2	2°C					Hum.			(66%
30.0 0	38AA\W														
20															
10															
00															
0 -															
:0															
, <u> </u>															
0															
o 📙															
		1 ×													
0		2 X													
0		^													
:0															
0.0															
	000 3550			8650		11200.0		1375				18850		1400.00	26500.00 MI
No.	Mk.	Freq		Rea Le		Corre Fact			asure nent)-	Limit		Over		
		MHz	7	dB		dB			3uV/m)	dBuV/r	n	dB	Detector	Comment
1		4804.0	000	44.	48	-0.0	9	4	4.39		74.00		-29.61	peak	
2	*	4804.0	000	33.	53	-0.0	9	3	3.44		54.00)	-20.56	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	ode			BT(3	Mbps)		Te	est Dat	te		2022	2/5/24
Te	est Freq	luency			240	2MHz		Po	larizati	ion			zontal
	Tem	р			2	2°C			Hum.			60	6%
30.0 c	BuV/m												
20													
10													
00													
90													
:0													
o													
0													
io													
.0		1 X											
		2 X											
io		^											
20													
0.0													
	000 3550.			8650		11200.00	50.00	1630		18850.00	21400).00	26500.00 MI
No.	Mk.	Freq	-	Rea Le		Correct Factor	easure ment	-	Limit	Ove	er		
		MHz	7	dB		dB	BuV/m	C	BuV/m	n dB	3	Detector	Comment
1		4804.0	000	43.	.57	-0.09	43.48		74.00	-30.		peak	
2	*	4804.0	000	32.	.77	-0.09	32.68		54.00	-21.3	32	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Te	Test Mest Free						Mbp:				F	Test D					2/5/24 tical	
	Ten						2°C					Hun					5%	
130.0 d	BuV/m																	
120																		
110																		-
100																		-
90																		-
80																		-
70																		
60																		-
50			1 X															1
40			2															-
30			×															
20																		
10.0																		
	000 3550	0.00	6100).00	8650		1120			0.00		300.00		50.00		00.00	26500.0	0 MHz
No.	Mk.		Freq	-		ding vel		rrect ctor		easur ment		Lim	it	Ove	er			
			MHz	<u> </u>	dB	uV	(ΙB	dl	3uV/r	n	dBuV	/m	dE	}	Detector	Commo	ent
1			4882.0			.42	0	.06		14.48		74.0		-29.		peak		
2	*		4882.0	000	34	.63	0	.06	3	34.69		54.0	0	-19.3	31	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test Date			2/5/24
Т	est Frequ				1MHz		Polarization	n		zontal
130.0	Temp)		- 22	2°C		Hum.		66	6%
130.0	aba v / III									
120										
110										
100										
90										
80										
70										
60										
50		1								
40		X								
30		2 X								
20										
10.0										
1000.	000 3550.0	0 6100.0	00	8650.00	11200.00	13750.00		850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	٦	Reading Level	Correct Factor	Measure ment	- Limit	Over		_
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	00	44.49	0.06	44.55	74.00	-29.45	peak	
2	*	4882.00	00	34.03	0.06	34.09	54.00	-19.91	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)					Test Da				2/5/24
Te	est Freq					0MHz				Р	<u>olarizat</u>				rtical
30.0 c	Temp dBuV/m	ρ			22	2°C					Hum.	ı		6	6%
30.0 0	38AA\W														
20															
10															
00 -															
10															
:0															
_															
0															
0 —															
io 🗀															
_		X X													
0		2 X													
0		•													
o															
0.0															
1000.0	000 3550.	00 6100).00	8650	.00	11200.0	0	13750	0.00	163	00.00	18850	.00 2	1400.00	26500.00 MI
No.	Mk.	Freq	•	Read Lev		Corre Facto			asure nent	-	Limit		Over		
		MHz	<u>.</u>	dB		dB	<u>, </u>		uV/m		dBuV/r	n	dB	Detector	Comment
1		4960.0		44.		0.20)		4.83		74.00		-29.17	peak	
2	*	4960.0	000	34.	42	0.20)	3	4.62		54.00)	-19.38	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode			BT(3	Mbps)					Test Da	ate			2022	2/5/24	
Te	est Freq					0MHz				Р	olarizat	tion				zontal	
	Tem)			2	2°C					Hum.				66	3%	
130.0 c	dBuV/m																1
120																	
110																	
110																	ĺ
100 -																	
30 <u> </u>																	
30																	
0																	1
io —																	1
50																	1
10		X X															
		2 X															
io		••															1
20																	ł
0.0																	
	000 3550.			8650		11200.		1375			300.00	18850		1400.00		26500.00	MH
No.	Mk.	Freq	•	Rea Le		Corre Fact			easure ment) -	Limit		Over				
		MHz	<u> </u>	dB		dB			3uV/m	1	dBuV/r	m	dB	Dete	ector	Comme	nt
1		4960.0	000	44.	95	0.2	0		5.15		74.00)	-28.85		ak		
2	*	4960.0	000	33.	42	0.2	0	3	33.62	_	54.00)	-20.38	A۱	/G		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX D OUTPUT POWER

Project No.: 2205T007 Page 46 of 47 Report Version: R00

Report No.: BTL-FCCP-1-2205T007

Test Mod	de :	BT(1 Mbps)	Tested Date	2022/5/30
----------	------	------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	10.14	0.0103	20.97	0.1250	Pass
2441	10.09	0.0102	20.97	0.1250	Pass
2480	9.92	0.0098	20.97	0.1250	Pass

Test Mode :	BT(2 Mbps)	Tested Date	2022/5/30
	- · (- ·····- · · ·)		

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.63	0.0092	20.97	0.1250	Pass
2441	9.74	0.0094	20.97	0.1250	Pass
2480	9.67	0.0093	20.97	0.1250	Pass

Test Mode :	BT(3 Mbps)	Tested Date	2022/5/30
-------------	------------	-------------	-----------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.67	0.0093	20.97	0.1250	Pass
2441	9.74	0.0094	20.97	0.1250	Pass
2480	9.16	0.0082	20.97	0.1250	Pass

End of Test Report