

EMC

TEST REPORT

REPORT NO. MODEL NO. DATE OF TEST DATE OF RECEIT

: <u>F88082304A</u>
: <u>5141</u> I
: Nov. 14, 2000
: <u>Nov. 9, 2000</u>

PREPARED FOR: BEHAVIOR TECH COMPUTER CORP.

ADDRESS : 2F, 51, TUNG HSING RD., TAIPEI, TAIWAN, R.O.C.

PREPARED BY:

ADVANCE DATA TECHNOLOGY CORPORATION

11F, NO.1, SEC.4, NAN-KING EAST RD., TAIPEI, TAIWAN, R.O.C.

This test report consists of 15 pages in total. It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of our laboratory. It should not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. government. The test result in the report only applies to the tested sample.

TABLE OF CONTENTS

1.	CERTIFICATION
2.	GENERAL INFORMATION
	 2.1 GENERAL DESCRIPTION OF EUT
3.	TEST INSTRUMENTS
4	 3.1 TEST INSTRUMENTS (EMISSION)
4.	TEST RESULTS (EMISSION)
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION WITH MINIMUM MARGIN13
6.	APPENDIX - INFORMATION OF THE TESTING LABORATORY15

1.

CERTIFICATION

Issue Date: Nov. 17, 2000 Reference No.: 89110902

Product	:	KEYBOARD
Trade Name	:	BTC
Model No.	:	5141I
Applicant	:	BEHAVIOR TECH COMPUTER CORP.
Standard	:	FCC Part 15, Subpart B, Class B
		ANSI C63.4-1992
		CISPR 22: 1997, Class B

We hereby certify that one sample of the designation has been tested in our facility on Nov. 14, 2000. The test record, data evaluation and Equipment Under Test (EUT) configurations represent herein are true and accurate representation of the measurements of the sample's EMC characteristics under the conditions herein specified.

The test results show that the EUT as described in this report is in compliance with the Class B limits of conducted and radiated emission of applicable standards

TESTED BY : Bruce Shian, DATE: (1/17/2000) (Bruce Shian)

topie	JU
(Vicki	e ¥u)

ADVANCE DATA TECHNOLOGY CORPORATION

CHECKED BY : 12 / 1 , DATE: 1/17 /2000

APPROVED BY : ______, DATE: ______, DATE: _______, Mike Su)

Accredited Laboratory

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product	:	KEYBOARD
Model No.	:	5141I
Power Supply	:	DC 5V (from PC)
Data Cable	:	Non-shielded (1.8 m)

Note: This report is prepared for FCC Class II Change. The original report has been issued on Aug. 26, 1999 and granted on Oct. 13, 1999.

The main changes are as the following:

- ? Added some software functions to the function keys F1 ~ F12.
- ? Metal plate is changed to membrane. On the rear side of membrane circuit braid wire is added.

For more detailed features description, please refer to manufacturer's specification or User's Manual.

2.2 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories are used to form representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1	PERSONAL COMPUTER	IBM	2187-12W	1S218714ABN A0002	FCC DoC
2	19"COLOR MONITOR	HP	D2842A	KR93473113	BEJCB910
3	MOUSE	LOGITECH	M-S43	LZE000703132	DZL211106
4	MODEM	ACEEX	1414	980020531	IFAXDM1414
5	PRINTER	HP	2225C+	2936856294	DSI6XU2225

No.	Signal cable description
1	NA
2	1.8 m braid shielded wire, terminated with VGA connector via metallic frame, w/o core.
3	1.5 m foil shielded wire, terminated with PS2 connector via drain wire, w/o core.
4	1.2 m braid shielded wire, terminated with DB25 and DB9 connector via metallic frame, w/o core.
5	1.2m braid shielded wire, terminated with DB25 and Centronics connector via metallic frame, w/o core.

Note: All power cords of the above support units are non shielded (1.8m).

2.3 TEST METHODOLOGY AND CONFIGURATION

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4: 1992. Radiated testing was performed at an antenna to EUT distance of 10 m on an open area test site.

Please refer to the photos of test configuration in Item 5.

3. TEST INSTRUMENTS

3.1 TEST INSTRUMENTS (EMISSION)

CONDUCTED EMISSION MEASUREMENT

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
ROHDE & SCHWARZ Test	ESCS30	834115/016	Feb. 22, 2001
Receiver	ESC350	834113/010	160. 22, 2001
ROHDE & SCHWARZ	ESH2-Z5	892107/003	July 11 2001
Artificial Mains Network	сэп2-25	892107/003	July 11, 2001
ROHDE & SCHWARZ	ENY41	835154/007	Apr 26, 2001
4-wire ISN	EIN I 41	855154/007	Apr. 26, 2001
EMCO L.I.S.N.	3825/2	9504-2359	July 11, 2001
Shielded Room	Site 3	ADT-C03	NA

Note: 1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

RADIA I ED ENIISSION NIEASURENIEN I						
Description & Manufacturer	Model No.	Serial No.	Calibrated until			
HP Spectrum Analyzer	8590L	3544A00941	Dec. 05, 2000			
HP Pre-Amplifier	8447D	2944A08312	March 12, 2001			
HP Preamplifier	8449B	3008A01201	Dec. 14, 2000			
R&S Receiver	ESVS10	844594/010	Oct. 2, 2001			
SCHWARZBECK Tunable	VHA 9103	E101051	Nov. 23, 2000			
Dipole Antenna	UHA 9105	E101055	Nov. 25, 2000			
ROHDE & SCHWARZ TEST	ESMI	839013/007	Aug. 3, 2001			
RECEIVER	LOMI	839379/002	Aug. 3, 2001			
CHASE BILOG Antenna	CBL6111A	1500	Aug. 31, 2001			
EMCO Double Ridged Guide	3115	9312-4192	March 29, 2001			
Antenna	5115	JJ12-4172	Water 27, 2001			
EMCO Turn Table	1060-04	1196	NA			
EMCO Tower	1051	1264	NA			
Open Field Test Site	Site 1	ADT-R01	Aug. 25, 2001			

RADIATED EMISSION MEASUREMENT

Note: 1. The measurement uncertainty is less than +/- 3dB, which is calculated as per NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months.

And the calibrations are traceable to NML/ROC and NIST/USA.

3.2 LIMITS OF CONDUCTED AND RADIATED EMISSION

LIMIT OF RADIATED EMISSION OF CISPR 22

FREQUENCY	Class A (at 10m) *	Class B (at 10m) *
(MHz)	dBuV/m	dBuV/m
30 - 230	40	30
230 - 1000	47	37

* Detector Function: Quasi-Peak

LIMIT OF RADIATED EMISSION OF FCC PART 15, SUBPART B FOR FREQUENCY ABOVE 1000 MHz

FREQUENCY	Class A (dBu	V/m) (at 3m)	Class B (dBu	1V/m) (at 3m)
(MHz)	Peak Average		Peak	Average
Above 1000	80.0	60.0	74.0	54.0

Note: (1) The lower limit shall apply at the transition frequencies.

(2) Emission level (dBuV/m) = 20 log Emission level (uV/m).

(3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

LIMIT OF CONDUCTED EMISSION OF CISPR 22

FREQUENCY	Class A (dBuV)		Class B	(dBuV)
(MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Note: (1) The lower limit shall apply at the transition frequencies.

- (2) The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz
- (3) All emanation from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4. TEST RESULTS (EMISSION)

4.1 RADIO DISTURBANCE

Frequency Range	:	0.15 - 30 MHz (Conducted Emission)
		30 - 1000 MHz (Radiated Emission)
Input Voltage	:	120 Vac, 60 Hz
Temperature	:	25 Degree C
Humidity	:	75 %
Atmospheric Pressure	:	995 mbar

TEST RESULT	Remarks				
PASS	Minimum passing margin of conducted emission: -2.79 dB at 0.208 MHz				
	Minimum passing margin of radiated emission: -6.1 dB at 216.04 MHz				

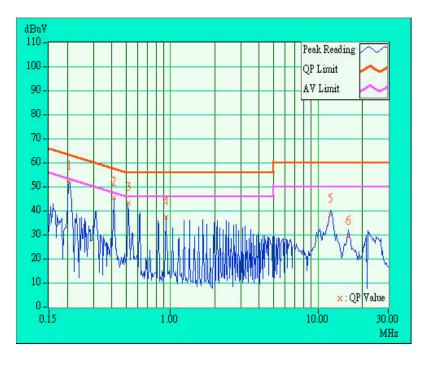
4.2 EUT OPERATION CONDITION

- 1. Turn on the power of all equipment.
- 2. PC reads a test program to enable all functions.
- 3. EUT sends "H" character to PC.
- 4. PC sends "H" messages to monitor and monitor displays "H" patterns on screen.
- 5. PC sends "H" messages to modem.
- 6. PC sends "H" messages to printer, and the printer prints them on paper.
- 7. Repeat steps 3-7.

4.3 TEST DATA OF CONDUCTED EMISSION

EUT: **KEYBOARD**

MODEL: <u>51411</u>


6 dB Bandwidth: 10 kHz

PHASE: LINE (L)

Freq.	Corr.	Readin	g Value	Emissio	n Level	Lir	nit	Mar	gin
[MHz]	Factor	[dB	(uV)]	[dB ([uV)]	[dB ((uV)]	(d]	B)
	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.207	0.20	52.09	-	52.29	-	63.33	53.33	-11.04	-
0.412	0.20	45.48	-	45.68	-	57.60	47.60	-11.92	-
0.519	0.22	43.27	-	43.49	-	56.00	46.00	-12.51	-
0.930	0.29	37.44	-	37.73	-	56.00	46.00	-18.27	-
12.235	0.64	38.42	-	39.06	-	60.00	50.00	-20.94	-
16.025	0.76	29.33	_	30.09	_	60.00	50.00	-29.91	_

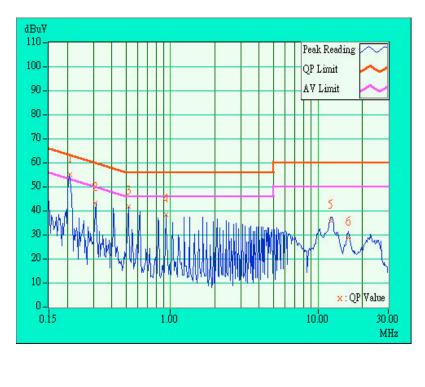
Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Emission Level = Correction Factor + Reading Value.

TEST DATA OF CONDUCTED EMISSION

EUT: **KEYBOARD**

MODEL: <u>51411</u>


6 dB Bandwidth: 10 kHz

PHASE: NEUTRAL (N)

Freq.	Corr.	Readin	g Value	Emissio	on Level	Lir	nit	Mai	rgin
[MHz]	Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
0.208	0.20	55.03	50.31	55.23	50.51	63.30	53.30	-8.07	-2.79
0.311	0.20	43.47	-	43.67	-	59.95	49.95	-16.28	-
0.519	0.22	41.69	-	41.91	-	56.00	46.00	-14.09	-
0.932	0.29	38.66	-	38.95	-	56.00	46.00	-17.05	-
12.189	0.50	36.09	-	36.59	-	60.00	50.00	-23.41	-
16.170	0.55	28.84	-	29.39	-	60.00	50.00	-30.61	-

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Emission Level = Correction Factor + Reading Value.

4.4 TEST DATA OF RADIATED EMISSION

EUT: KEYBOARD

ANT. POLARITY: Horizontal

DETECTOR FUNCTION: Quasi-peak

FREQUENCY RANGE: <u>30-1000</u> MHz

MODEL: <u>51411</u>

6 dB BANDWIDTH: <u>120</u> kHz

MEASURED DISTANCE: 10 M

Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)
46.33	9.1	10.0	19.1	30.0	-10.9	400	85
84.15	7.9	11.0	18.9	30.0	-11.1	400	331
139.75	12.6	7.1	19.7	30.0	-10.3	400	302
196.10	9.6	9.9	19.5	30.0	-10.5	400	313
199.93	9.6	13.6	23.2	30.0	-6.8	400	130
216.13	10.7	11.1	21.8	30.0	-8.2	400	56
399.00	18.0	10.0	28.0	37.0	-9.0	185	211

REMARKS:

1. Emission level (dBuV/m) = Correction Factor (dB)

+ Reading value (dBuV).

2. Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level - Limit value

TEST DATA OF RADIATED EMISSION

EUT: **KEYBOARD**

MODEL: <u>51411</u>

ANT. POLARITY: Vertical

DETECTOR FUNCTION: Quasi-peak

FREQUENCY RANGE: <u>30-1000</u> MHz

6 dB BANDWIDTH: <u>120</u> kHz

MEASURED DISTANCE: 10 M

Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (cm)	Table Angle (Degree)
46.09	9.2	10.3	19.5	30.0	-10.5	100	141
66.33	6.1	14.0	20.1	30.0	-9.9	100	13
143.95	12.1	9.3	21.4	30.0	-8.6	100	88
168.30	10.0	10.0	20.0	30.0	-10.0	100	336
216.04	10.7	13.2	23.9	30.0	-6.1	100	49
225.68	11.3	9.2	20.5	30.0	-9.5	100	304
528.00	21.4	6.0	27.4	37.0	-9.6	325	246

REMARKS:

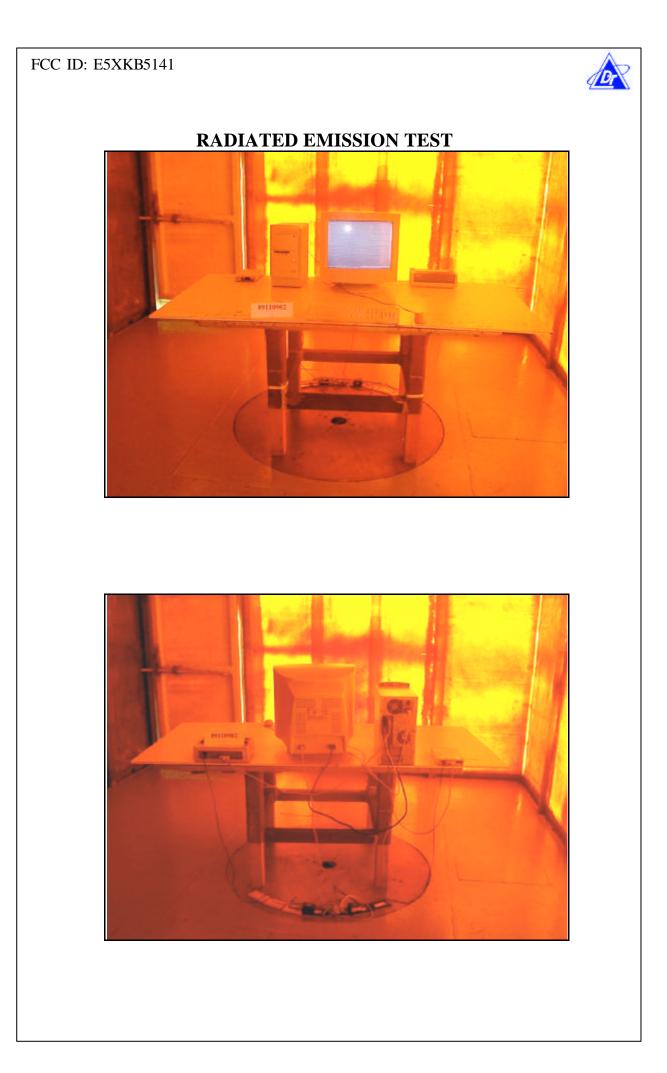
1. Emission level (dBuV/m) = Correction Factor (dB)

+ Reading value (dBuV).

2. Correction Factor (dB) = Ant. Factor (dB)+Cable loss (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level - Limit value


5. PHOTOGRAPHS OF THE TEST CONFIGURATION WITH

MINIMUM MARGIN

CONDUCTED EMISSION TEST

6. APPENDIX - INFORMATION OF THE TESTING LABORATORY

Information of the testing laboratory

We, ADT Corp., are founded in 1988, to provide our best service in EMC and Safety consultation. Our laboratory is accredited by the following approval agencies according to ISO/IEC Guide 25 or EN 45001:

🖉 USA	FCC, NVLAP
🖉 Germany	TUV Rheinland
🗷 Japan	VCCI
🖉 New Zealand	RFS
🗷 Norway	NEMKO, DNV
∠ U.K.	INCHCAPE
∠ R.O.C.	BSMI

Copies of accreditation certificates of our laboratory obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Lin Kou EMC Lab.: Tel: 886-2-26052180 Fax: 886-2-26052943

Lin Kou Safety Lab.: Tel: 886-2-26093195 Fax: 886-2-26093184 Hsin Chu EMC Lab: Tel: 886-35-935343 Fax: 886-35-935342

Design Center: Tel: 886-2-26093195 Fax: 886-2-26093184

E-mail: <u>service@mail.adt.com.tw</u> Web Site: <u>www.adt.com.tw</u>