

FCC Part 15.247

TEST REPORT

For

Actiontec Electronics Inc.

3301 Olcott St. Santa Clara, CA 95054

FCC ID: LNQT3270S

Depart Type	Product Type:				
Report Type:	Bonded VDSL Wireless AC				
Original Report	Gateway Router				
Report Producer : <u>Kaylee</u>	Chiang Kaylee Chiang				
Report Number : <u>RXZ19</u>	0708006-00B				
Report Date : <u>2019-09-17</u>					
Reviewed By: <u>Jerry C</u>	Chang 7				
Prepared By: Bay Area Con	npliance Laboratories Corp.(Taiwan)				
70, Lane 169, 5	Sec. 2, Datong Road, Xizhi Dist.,				
New Taipei Ci	New Taipei City 22183, Taiwan, R.O.C.				
Tel: +886 (2) 2647 6898					
Fax: +886 (2) 2	2647 6895				
www.bacl.com	ı.tw				

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification. Page 1 of 113

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
1.0	RXZ190708006	RXZ190708006-00B	2019-09-17	Original Report	Kaylee Chiang

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 2 of 113

TABLE OF CONTENTS

1 Ge	neral Information	5
1.1	Product Description for Equipment under Test (EUT)	5
1.2	Objective	6
1.3	Related Submittal(s)/Grant(s)	
1.4	Test Methodology	
1.5	Test Facility	
2 Sy	stem Test Configuration	8
2.1	Description of Test Configuration	8
2.2	Equipment Modifications	
2.3	EUT Exercise Software	
2.4	Test Mode	
2.5	Support Equipment List and Details	9
2.6	External Cable List and Details	9
2.7	Block Diagram of Test Setup	10
2.8	Duty Cycle	12
3 Su	mmary of Test Results	15
4 Te	st Equipment List and Details	16
5 FC	CC §15.247(i), §1.1310, § 2.1091 - Maximum Permissible Exposure (MPE)	18
5.1	Applicable Standard	18
6 FC	CC §15.203 – Antenna Requirements	20
6.1	Applicable Standard	20
6.2	Antenna List and Details	20
7 FC	CC §15.207(a) – AC Line Conducted Emissions	21
7.1	Applicable Standard	21
7.2	Measurement Uncertainty	21
7.3	EUT Setup	22
7.4	EMI Test Receiver Setup	
7.5	Test Procedure	
7.6	Corrected Factor & Margin Calculation	
7.7	Environmental Conditions	
7.8	Test Results	
8 FC	CC §15.209, §15.205 , §15.247(d) – Spurious Emissions	26
8.1	Applicable Standard	
8.2	Measurement Uncertainty	
8.3	EUT Setup	
8.4	EMI Test Receiver & Spectrum Analyzer Setup	
8.5	Test Procedure	
8.6	Corrected Factor & Margin Calculation	
8.7	Test Results Summary	
8.8 8.9	Environmental Conditions Test Results	
	CC §15.247(a)(2) – 6 dB Emission Bandwidth	
9.1	Applicable Standard	58
	test report is prepared for the customer shown above and for the device described herein. It may not be duplicate rt without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 3 of	

		50
9.2	Test Procedure	
9.3	Environmental Conditions	
9.4	Test Results	59
10 FC	CC §15.247(b)(3) – Maximum Output Power	
10.1	Applicable Standard	
10.2	Test Procedure	
10.3	Environmental Conditions	
10.4	Test Results	
11 FC	CC§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge	
11.1		
	Applicable Standard	80
11.1		
11.1 11.2	Applicable Standard Test Procedure	
11.1 11.2 11.3 11.4	Applicable Standard Test Procedure Environmental Conditions	80 80 80 80 81
11.1 11.2 11.3 11.4	Applicable Standard Test Procedure Environmental Conditions Test Results	80 80 80 81 94
11.1 11.2 11.3 11.4 12 FC	Applicable Standard Test Procedure Environmental Conditions Test Results	80 80 80 81 94
11.1 11.2 11.3 11.4 12 FC 12.1	Applicable Standard Test Procedure Environmental Conditions Test Results CC §15.247(e) – Power Spectral Density Applicable Standard.	80 80 80 81 94 94 94

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 4 of 113

1 General Information

1.1 Product Description for Equipment under Test (EUT)

Applicant	Actiontec Electronics Inc.		
	3301 Olcott St. Santa Clara, CA 95054		
Manufacturer	Actiontec Electronics Inc.		
	3301 Olcott St. Santa Clara, CA 95054		
Brand(Trade) Name	Actiontec		
Product (Equipment)	Bonded VDSL Wireless AC Gateway Router		
Main Model Name	T3270S		
Series Model Name	T3270		
	The major electrical and mechanical constructions of series models are identical to the basic model, except T3270S has 1 of		
Model Discrepancy	SFP interface, and T3270 has it removed. The model, T3270S is		
inouci Discrepuley	the testing sample, and the final test data are shown on this test		
	report.		
	IEEE 802.11b/g / IEEE 802.11n HT20 Mode: 2412 ~ 2462 MHz		
Frequency Range	IEEE 802.11n HT40 Mode: 2422 ~ 2452 MHz		
	IEEE 802.11b Mode: 29.39 dBm (0.869W)		
Transmit Power	IEEE 802.11g Mode: 29.19 dBm (0.830W)		
Transmit Power	IEEE 802.11n HT20 Mode: 29.62 dBm (0.916W)		
	IEEE 802.11n HT40 Mode: 27.47 dBm (0.558W)		
	IEEE 802.11b Mode: DSSS		
Modulation Technique	IEEE 802.11g Mode: OFDM		
Wodulation reeninque	IEEE 802.11n HT20 Mode: OFDM		
	IEEE 802.11n HT40 Mode: OFDM		
	IEEE 802.11b Mode: 1~11 Mbps		
Transmit Data Rate	IEEE 802.11g Mode: 6~54 Mbps		
Transmit Data Nati	IEEE 802.11n HT 20 Mode: MCS 0~7		
	IEEE 802.11n HT 40 Mode: MCS 0~7		
Number of Channels	IEEE 802.11b/g / IEEE 802.11n HT20 Mode: 11 Channels		
	IEEE 802.11n HT40 Mode: 7 Channels		

Bay Area Compliance Laboratories	Corp.(Taiwan)
----------------------------------	---------------

No.: RXZ190708006-00B

	Ant1: PIFA Antenna / 4.41 dBi
Antenna Specification	Ant2: PIFA Antenna / 4.85 dBi
	Ant3: PIFA Antenna / 4.86 dBi
	AC 120V/60Hz
	Adapter
	Brand: Actiontec
	Model: CDS024T-W120U
	I/P: 120Vac, 50/60Hz, 0.58A
	O/P: 12Vdc, 2A
Power Operation	By AC Power Cord
(Voltage Range)	Dec PoE
	DC Type
	Battery
	DC Power Supply
	External from USB Cable
	External DC Adapter
	Host System
Received Date	Jul 08, 2019
Date of Test	Jul 15, 2019 ~ Aug 01, 2019

*All measurement and test data in this report was gathered from production sample serial number: 190708006 (Assigned by BACL, Taiwan).

1.2 Objective

This report is prepared on behalf of *Actiontec Electronics Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules. The objective is to determine compliance with FCC Part 15.247 rules for Output Power, Antenna Requirements, 6 dB Bandwidth, Power Spectral Density, 100 kHz Bandwidth of Band Edges Measurement, Conducted and Radiated Spurious Emissions.

1.3 Related Submittal(s)/Grant(s)

FCC Part 15.407 NII submission with FCC ID: LNQT3270S

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 558074 D01 DTS Meas Guidance v05r02

1.5 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Taiwan) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.
68-3, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (Taiwan) Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3180) and the FCC designation No.TW3180 under the Mutual Recognition Agreement (MRA) in FCC Test. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 974454. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

2 System Test Configuration

2.1 Description of Test Configuration

For WIFI mode, there are totally 11 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

For 802.11 b/g/n20 Modes were tested with channel 1, 6 and 11.

For 802.11n40 Mode were tested with channel 3, 6 and 9.

SISO mode and MIMO mode have the same power level setting and base on output power testing, MIMO

mode power than SISO mode large, MIMO mode was selected for full testing.

The device supports MIMO (CDD) at all modes.

2.2 Equipment Modifications

No modification was made to the EUT.

2.3 EUT Exercise Software

The EUT was programmed to be in continuously transmitting mode.

Engineering M	ode	Chain 0			
Test Frequency	,	Low	Mid	High	
	B Mode MIMO(CDD)	21	24	21	
Power Level	G Mode MIMO(CDD)	20	24	20	
Setting	N20 Mode MIMO(CDD)	20.5	24	20	
	N40 Mode MIMO(CDD)	20	22	19	
Engineering M	ode	Chain 1			
Test Frequency	r	Low	Mid	High	
	B Mode MIMO(CDD)	21	24	21	
Power Level	G Mode MIMO(CDD)	20	24	20	
Setting	N20 Mode MIMO(CDD)	20.5	24	20	
	N40 Mode MIMO(CDD)	20	22	19	

Bay Area Compliance Laboratories Corp.(Taiwan)

No.: RXZ190708006-00B

Engineering Me	Engineering Mode Chain 2			
Test Frequency		Low Mid High		High
	B Mode MIMO(CDD)	21	24	21
Power Level	G Mode MIMO(CDD)	20	24	20
Setting	N20 Mode MIMO(CDD)	20.5	24	20
	N40 Mode MIMO(CDD)	20	22	19

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations.

802.11b: 1Mbps

802.11g: 6Mbps

802.11n ht20 MIMO: MCS0

802.11n ht40 MIMO: MCS0

2.4 Test Mode

Pre-Scan

Mode 1: Full System (model: T3270S) for all test item.

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available.

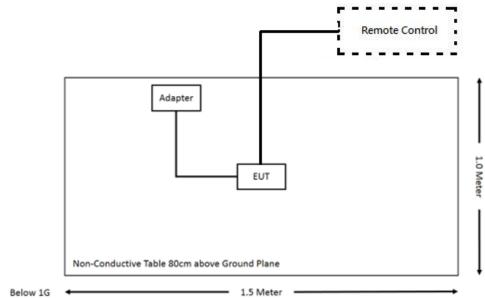
Final Test

Mode 1: Full System (model: T3270S) for all test item.

2.5 Support Equipment List and Details

Description	Manufacturer	Model Number	BSMI	FCC ID	S/N
Adapter	Actiontec	CDS024T-W120U	N/A	N/A	N/A

2.6 External Cable List and Details

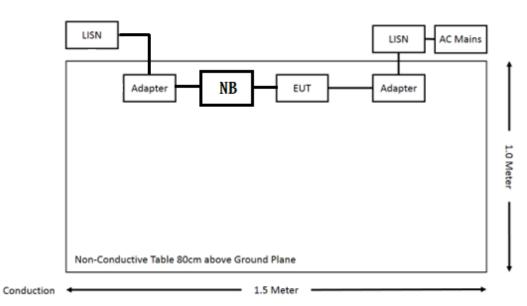

Cable Description	Length (m)	From	То
N/A	N/A	N/A	N/A

2.7 Block Diagram of Test Setup


See test photographs attached in setup photos for the actual connections between EUT and support equipment.

Radiation:

Below 1GHz:



Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 10 of 113

No.: RXZ190708006-00B

Conduction:

2.8 Duty Cycle

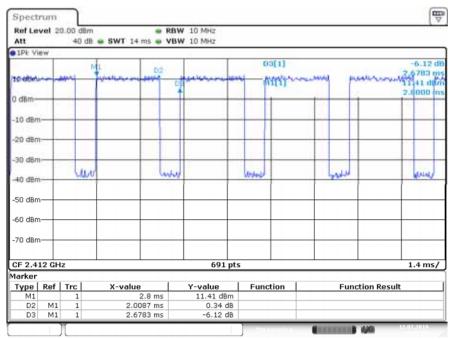

According to KDB 558074 D01 15.247 Meas Guidance v05r02 section 6.0:

All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximumpower transmission duration, T, are required for each tested mode of operation.

Radio Mode	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
802.11b	8.43	8.46	99	0.04
802.11g	2.00	2.67	80	0.97
802.11n20	1.88	2	94	0.27
802.11n40	0.869	0.985	88	0.56

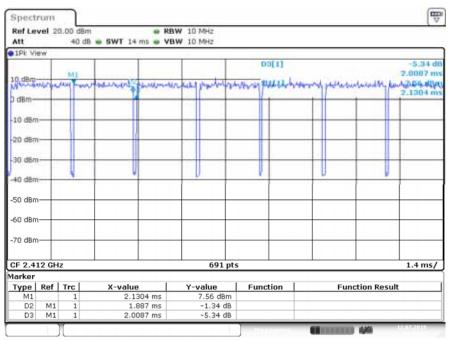
Note: Duty Cycle Correction Factor = 10*log(1/duty cycle)

Please refer to the following plots.


B Mode

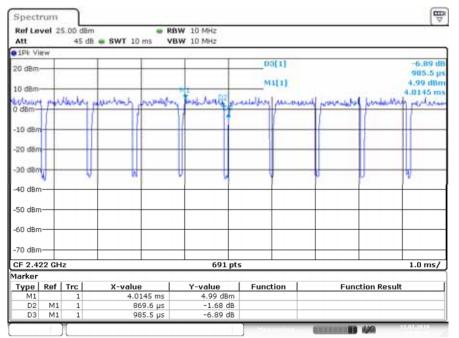
Date: 12.JUL.2019 14:34:00

Bay Area Compliance Laboratories Corp.(Taiwan)


No.: RXZ190708006-00B

Date: 12.JUL.2019 14:37:21

N20 Mode



Date: 12.JUL.2019 14:39:23

Bay Area Compliance Laboratories Corp.(Taiwan)

No.: RXZ190708006-00B

Date: 12.JUL.2019 14:46:46

3 Summary of Test Results

FCC Rules	Description of Test	Results
§15.247(i), §1.1310, §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 15 of 113

4 Test Equipment List and Details

Description	Manufacturer Model		Serial	Calibration	Calibration	
AC Line Conduction Room (CON-A)						
LISN	Rohde & Schwarz	ENV216	101612	2018/02/22	2019/02/21	
LISN	Rohde & Schwarz	ENV216	101248	2019/06/26	2020/06/25	
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2018/10/23	2019/10/22	
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2018/08/03	2019/08/02	
RF Cable	EMEC	EM-CB5D	001	2019/07/01	2020/06/30	
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R	
		Radiated Room (96	6-A)	1		
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/1554 2_01	2018/12/11	2019/12/10	
Horn Antenna	EMCO	SAS-571	1020	2019/04/17	2020/04/16	
Horn Antenna	ETS-Lindgren	3116	62638	2018/08/29	2019/08/28	
Preamplifier	Sonoma	310N	130602	2019/06/26	2020/06/25	
Preamplifier	EM Electronics Corp.	EM01G18G	060657	2018/12/07	2019/12/06	
Microware Preamplifier	EM Electronics Corporation	EM18G40G	060656	2019/01/11	2020/01/10	
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2018/10/23	2019/10/22	
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2019/02/13	2020/02/12	
Micro flex Cable	UTIFLEX	FSCM 64639 / (2M)	93D0127	2018/07/31	2019/07/30	
Micro flex Cable	UTIFLEX	UFA210A-1-3149 -300300	MFR64639 226389-001	2019/07/01	2020/06/30	
Micro flex Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2019/03/04	2020/03/03	
Micro flex Cable	ROSNOL	K1K50-UP0264- K1K50-80CM	160309-2	2019/01/16	2020/01/15	
Turn Table	Champro	TT-2000	060772-T	N.C.R	N.C.R	
Antenna Tower	Champro	AM-BS-4500-B	060772-A	N.C.R	N.C.R	
Controller	Champro	EM1000	60772	N.C.R	N.C.R	
Software	Farad	EZ_EMC	BACL-03A1	N.C.R	N.C.R	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 16 of 113

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date
		Conducted Roor	n		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2018/11/22	2019/11/21
Cable	WOKEN	SFL402	S02-160323-0 7	2019/02/11	2020/02/10
Power Sensor	KEYSIGHT	U2021XA	MY54080018	2019/03/06	2020/03/05
Attenuator	MINI-CIRCUITS	BW-S10W5+	N/A	2019/03/07	2020/03/07

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 17 of 113

5 FCC §15.247(i), §1.1310, § 2.1091 - Maximum Permissible Exposure (MPE)

5.1 Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

	(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)		
0.3-1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f ²)	30		
30–300	27.5	0.073	0.2	30		
300-1500	/	/	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor,

is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_i}{S_{Limit,i}} \leq 1$$

Bay Area Compliance Laboratories Corp.(Taiwan)

RF Exposure Evaluation Result

MPE evaluati	MPE evaluation:							
Frequence		Ante	enna Gain	Target	Power	Evaluation	Power	MPE
Mode	Range (MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm ²)	Limit (mW/cm ²)
2.4G WIFI	2412-2462	4.85	3.055	30	1000	30	0.2701	1.0
5G WIFI B1	5150-5250	5.52	3.565	29.5	891.251	30	0.2809	1.0
5G WIFI B2	5250-5350	5.83	3.828	24	251.189	30	0.0850	1.0
5G WIFI B3	5470-5725	4.85	3.055	24	251.189	30	0.0678	1.0
5G WIFI B4	5725-5825	4.85	3.055	30	1000	30	0.2701	1.0

Note: the maximum antenna gain was used for evaluation.

MPE evaluation for simultaneous transmission:

2.4G WIFI and 5G WIFI can transmit at the same time, MPE evaluation is as below formula: PD1/Limit1+PD2/Limit2+..... < 1, PD (Power Density)

MPE evaluation=MPE of 2.4G WIFI/1 + MPE of 5G WIFI/1= 0.2701/1+0.2809/1=0.551 < 1.0

Result: MPE evaluation of single and simultaneous transmission meet 30cm the requirement of standard.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 19 of 113

6 FCC §15.203 – Antenna Requirements

6.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna does not exceed 6dBi.

Frequency Range	Р	PCB No. and Gain (dBi)				
(MHz)	DB1	DB2	DB3	(dBi)		
2400	-5.5	2.6	0.1	4.41		
2450	-9.0	2.5	2.5	4.85		
2500	-9.8	3.1	2.1	4.86		

6.2 Antenna List and Details

The EUT has three internal antenna arrangement, which was permanently attached, fulfill the requirement of this section.

Result: Compliance

7 FCC §15.207(a) – AC Line Conducted Emissions

7.1 Applicable Standard

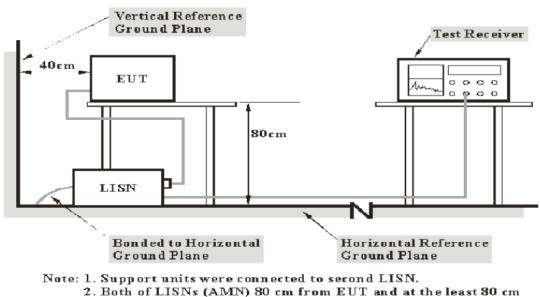
According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 2}		
0.5-5	56	46		
5-30	60	50		

Note 1: Decreases with the logarithm of the frequency.

Note 2: A linear average detector is required


7.2 Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN/ISN and receiver, LISN/ISN voltage division factor, LISN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Taiwan) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Port	Expanded Measurement uncertainty
AC Mains	2.71 dB (k=2, 95% level of confidence)

7.3 EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

7.4 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

7.5 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

7.6 Corrected Factor & Margin Calculation

The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

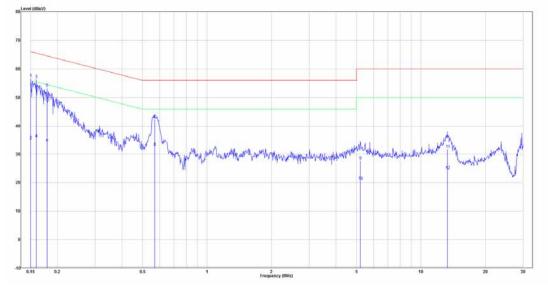
Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line

7.7 Environmental Conditions

Temperature:	26
Relative Humidity:	40 %
ATM Pressure:	1010 hPa


The testing was performed by Tom Hsu on 2019-07-31.

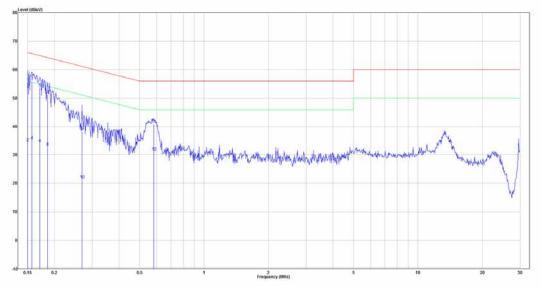
No.: RXZ190708006-00B

7.8 Test Results

Test Mode: Transmitting

Main: AC120 V, 60 Hz, Line

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.150	47.08	9.60	56.68	66.00	-9.32	QP
2	0.150	25.32	9.60	34.92	56.00	-21.08	Average
3	0.159	46.78	9.60	56.38	65.50	-9.12	QP
4	0.159	26.02	9.60	35.62	55.50	-19.88	Average
5	0.179	43.68	9.59	53.27	64.55	-11.28	QP
6	0.179	24.40	9.59	33.99	54.55	-20.56	Average
7	0.570	32.76	9.61	42.37	56.00	-13.63	QP
8	0.570	22.84	9.61	32.45	46.00	-13.55	Average
9	5.216	18.01	9.76	27.77	60.00	-32.23	QP
10	5.216	10.85	9.76	20.61	50.00	-29.39	Average
11	13.313	21.96	9.85	31.81	60.00	-28.19	QP
12	13.313	14.49	9.85	24.34	50.00	-25.66	Average


Note:

Level = Read Level + Factor

Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Main: AC120 V, 60 Hz, Neutral

No.	Frequency	Reading	Correct	Result	Limit	Over limit	Remark
	(MHz)	(dBµV)	Factor(dB)	(dBµV)	(dBµV)	(dB)	
1	0.150	45.96	9.61	55.57	66.00	-10.43	QP
2	0.150	24.79	9.61	34.40	56.00	-21.60	Average
3	0.157	46.23	9.61	55.84	65.63	-9.79	QP
4	0.157	25.53	9.61	35.14	55.63	-20.49	Average
5	0.171	43.89	9.60	53.49	64.92	-11.43	QP
6	0.171	24.38	9.60	33.98	54.92	-20.94	Average
7	0.186	41.65	9.60	51.25	64.22	-12.97	QP
8	0.186	23.09	9.60	32.69	54.22	-21.53	Average
9	0.269	28.75	9.59	38.34	61.16	-22.82	QP
10	0.269	11.66	9.59	21.25	51.16	-29.91	Average
11	0.582	31.23	9.61	40.84	56.00	-15.16	QP
12	0.582	21.38	9.61	30.99	46.00	-15.01	Average

Note:

Level = Read Level + Factor

Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 25 of 113

8 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

8.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
$\begin{array}{c} 0.090-0.110\\ 0.495-0.505\\ 2.1735-2.1905\\ 4.125-4.128\\ 4.17725-4.17775\\ 4.20725-4.20775\\ 6.215-6.218\\ 6.26775-6.26825\\ 6.31175-6.31225\\ 8.291-8.294\\ 8.362-8.366\\ 8.37625-8.38675\\ 8.41425-8.41475\\ 12.29-12.293\\ 12.51975-12.52025\\ 12.57675-12.57725\\ 13.36-13.41\\ \end{array}$	$\begin{array}{c} 16.42 - 16.423\\ 16.69475 - 16.69525\\ 25.5 - 25.67\\ 37.5 - 38.25\\ 73 - 74.6\\ 74.8 - 75.2\\ 108 - 121.94\\ 123 - 138\\ 149.9 - 150.05\\ 156.52475 - 156.52525\\ 156.7 - 156.9\\ 162.0125 - 167.17\\ 167.72 - 173.2\\ 240 - 285\\ 322 - 335.4\\ 399.9 - 410\\ 608 - 614\\ \end{array}$	$\begin{array}{r} 960-1240\\ 1300-1427\\ 1435-1626.5\\ 1645.5-1646.5\\ 1660-1710\\ 1718.8-1722.2\\ 2200-2300\\ 2310-2390\\ 2483.5-2500\\ 2690-2900\\ 3260-3267\\ 3.332-3.339\\ 33458-3358\\ 3.600-4.400\\ \end{array}$	$\begin{array}{c} 4.5-5.15\\ 5.35-5.46\\ 7.25-7.75\\ 8.025-8.5\\ 9.0-9.2\\ 9.3-9.5\\ 10.6-12.7\\ 13.25-13.4\\ 14.47-14.5\\ 15.35-16.2\\ 17.7-21.4\\ 22.01-23.12\\ 23.6-24.0\\ 31.2-31.8\\ 36.43-36.5\\ Above 38.6 \end{array}$

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional

radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 26 of 113

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).

8.2 Measurement Uncertainty

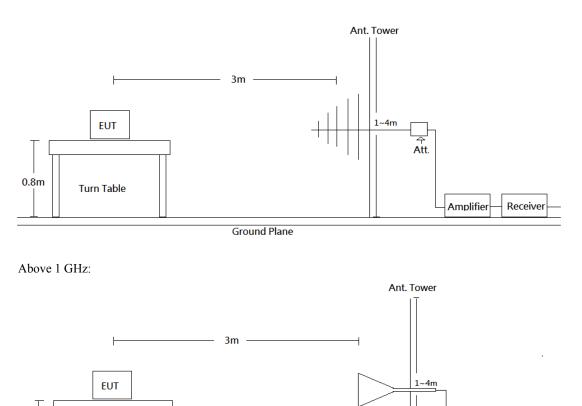
All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Taiwan) is shown in below table. And the uncertainty will not be taken into consideration for the test data recorded in the report.

Frequency	Measurement uncertainty
30 MHz~200 MHz	3.75 dB (k=2, 95% level of confidence)
200 MHz~1 GHz	4.21 dB (k=2, 95% level of confidence)
1 GHz~6 GHz	4.83 dB (k=2, 95% level of confidence)
6 GHz~18 GHz	5.18 dB (k=2, 95% level of confidence)
18 GHz~26 GHz	4.55 dB (k=2, 95% level of confidence)
26 GHz~40 GHz	4.67 dB (k=2, 95% level of confidence)

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 27 of 113

Receiver


Amplifier

8.3 EUT Setup

Below 1 GHz:

1.5m

Turn Table

ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

8.4 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Ground Plane

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the

Frequency Range	RBW	VBW	Detector	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	QP		QP
	1 MHz	3 MHz	РК		РК
Above 1 GHz	1 MHz	3 MHz	RMS	>98%	Ave
	1 MHz	1/T	РК	<98%	Ave

8.5 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

8.6 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Result – Limit

8.7 Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.209 Limit.

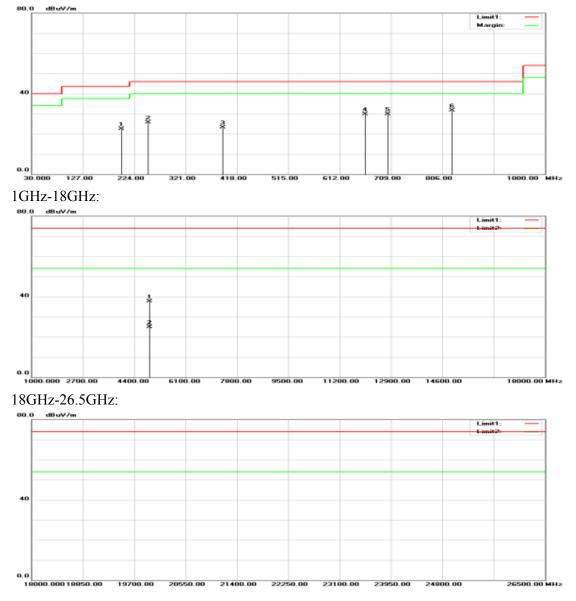
8.8 Environmental Conditions

Radi	ation	Conducted		
Temperature:	25	Temperature:	25.3	
Relative Humidity:	61 %	Relative Humidity:	44 %	
ATM Pressure:	1010 hPa	ATM Pressure:	1010 hPa	

The Radiation Spurious Emissions testing was performed by David Lee on 2019-07-15 ~ 2019-07-17.

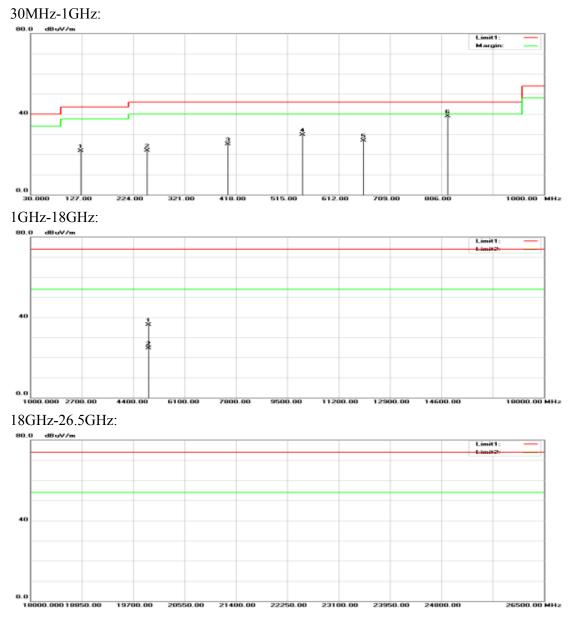
The Conducted Spurious Emissions testing was performed by Tom Hsu on 2019-08-01.

No.: RXZ190708006-00B


8.9 Test Results

Test Mode: Transmitting

(Pre-scan with three orthogonal axis, and worse case as Z axis.)


Horizontal (worst case is Wi-Fi N40 mode high channel)

30MHz-1GHz:

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 30 of 113

Vertical (worst case is Wi-Fi N40 mode high channel)

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 31 of 113

Below 1GHz

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
B Mode Middle channel									
250.1900	35.74	-10.22	25.52	46.00	-20.48	100	299	QP	
392.7800	28.66	-6.15	22.51	46.00	-23.49	100	180	QP	
544.1000	28.04	-4.11	23.93	46.00	-22.07	100	134	QP	
609.0900	28.60	-3.40	25.20	46.00	-20.80	100	301	QP	
655.6500	31.97	-2.85	29.12	46.00	-16.88	100	132	QP	
702.2100	32.09	-2.32	29.77	46.00	-16.23	100	124	QP	
			G Mode Mi	ddle channel					
250.1900	34.43	-10.22	24.21	46.00	-21.79	100	310	QP	
386.9600	28.01	-6.26	21.75	46.00	-24.25	100	353	QP	
553.8000	28.64	-4.02	24.62	46.00	-21.38	100	101	QP	
612.0000	27.59	-3.38	24.21	46.00	-21.79	100	315	QP	
655.6500	32.25	-2.85	29.40	46.00	-16.60	100	127	QP	
805.0300	33.26	-0.41	32.85	46.00	-13.15	100	146	QP	
		-	N20 Mode M	liddle channe					
250.1900	35.98	-10.22	25.76	46.00	-20.24	100	310	QP	
385.0200	28.81	-6.31	22.50	46.00	-23.50	100	172	QP	
549.9200	28.64	-4.06	24.58	46.00	-21.42	100	95	QP	
657.5900	32.40	-2.83	29.57	46.00	-16.43	100	121	QP	
704.1500	33.25	-2.30	30.95	46.00	-15.05	100	131	QP	
803.0900	33.28	-0.43	32.85	46.00	-13.15	100	139	QP	
			N40 Mode M	liddle channe	1				
199.7500	31.36	-8.81	22.55	43.50	-20.95	100	233	QP	
250.1900	35.93	-10.22	25.71	46.00	-20.29	100	303	QP	
391.8100	29.39	-6.18	23.21	46.00	-22.79	100	173	QP	
660.5000	32.74	-2.79	29.95	46.00	-16.05	100	126	QP	
703.1800	32.25	-2.30	29.95	46.00	-16.05	100	126	QP	
824.4300	31.98	-0.20	31.78	46.00	-14.22	100	293	QP	

Result = Reading + Correct Factor Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported.

Vertical											
Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark			
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)				
B Mode Middle channel											
125.0600	31.45	-9.27	22.18	43.50	-21.32	100	145	QP			
200.7200	30.50	-8.93	21.57	43.50	-21.93	100	344	QP			
250.1900	32.05	-10.22	21.83	46.00	-24.17	100	2	QP			
425.7600	31.52	-5.59	25.93	46.00	-20.07	100	324	QP			
539.2500	33.59	-4.14	29.45	46.00	-16.55	100	261	QP			
816.6700	38.65	-0.28	38.37	46.00	-7.63	100	22	QP			
			G Mode Mi	ddle channel							
125.0600	31.58	-9.27	22.31	43.50	-21.19	100	302	QP			
201.6900	29.09	-9.17	19.92	43.50	-23.58	100	230	QP			
250.1900	30.95	-10.22	20.73	46.00	-25.27	100	340	QP			
412.1800	30.57	-5.83	24.74	46.00	-21.26	100	310	QP			
551.8600	36.28	-4.04	32.24	46.00	-13.76	100	293	QP			
815.7000	38.19	-0.30	37.89	46.00	-8.11	100	210	QP			
			N20 Mode M	iddle channe	l						
125.0600	31.64	-9.27	22.37	43.50	-21.13	100	154	QP			
203.6300	29.95	-9.63	20.32	43.50	-23.18	100	225	QP			
250.1900	31.26	-10.22	21.04	46.00	-24.96	100	0	QP			
554.7700	33.87	-4.00	29.87	46.00	-16.13	100	285	QP			
700.2700	30.50	-2.33	28.17	46.00	-17.83	100	42	QP			
816.6700	38.74	-0.28	38.46	46.00	-7.54	100	203	QP			
		-	N40 Mode M	iddle channe	el						
125.0600	30.98	-9.27	21.71	43.50	-21.79	100	128	QP			
250.1900	32.13	-10.22	21.91	46.00	-24.09	100	359	QP			
403.4500	31.04	-5.97	25.07	46.00	-20.93	100	322	QP			
544.1000	33.80	-4.11	29.69	46.00	-16.31	100	358	QP			
659.5300	29.74	-2.81	26.93	46.00	-19.07	100	311	QP			
818.6100	39.11	-0.28	38.83	46.00	-7.17	100	241	QP			
	dima Cam										

Vertical

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported.

Above 1GHz

Horizontal

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark			
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)				
B Mode, Low channel											
2390.000	52.56	-3.87	48.69	74.00	-25.31	300	205	peak			
2390.000	39.74	-3.87	35.87	54.00	-18.13	300	205	AVG			
2412.000	102.14	-3.66	98.48	N/A	N/A	300	211	peak			
2412.000	98.96	-3.66	95.30	N/A	N/A	300	211	AVG			
4824.000	35.20	2.04	37.24	74.00	-36.76	100	359	peak			
4824.000	22.72	2.04	24.76	54.00	-29.24	100	359	AVG			
			B Mode, Mi	ddle channel							
2437.000	101.34	-3.39	97.95	N/A	N/A	300	212	peak			
2437.000	98.15	-3.39	94.76	N/A	N/A	300	212	AVG			
4874.000	34.40	2.59	36.99	74.00	-37.01	100	118	peak			
4874.000	25.58	2.59	28.17	54.00	-25.83	100	118	AVG			
			B Mode, H	igh channel							
2462.000	101.20	-3.12	98.08	N/A	N/A	300	263	peak			
2462.000	98.21	-3.12	95.09	N/A	N/A	300	263	AVG			
2483.500	52.00	-2.88	49.12	74.00	-24.88	300	261	peak			
2483.500	39.57	-2.88	36.69	54.00	-17.31	300	261	AVG			
4924.000	33.22	2.81	36.03	74.00	-37.97	100	113	peak			
4924.000	22.82	2.81	25.63	54.00	-28.37	100	113	AVG			

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark		
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)			
B Mode, Low channel										
2390.000	55.44	-3.87	51.57	74.00	-22.43	200	53	peak		
2390.000	42.74	-3.87	38.87	54.00	-15.13	200	53	AVG		
2412.000	105.78	-3.66	102.12	N/A	N/A	200	48	peak		
2412.000	102.56	-3.66	98.90	N/A	N/A	200	48	AVG		
4824.000	33.08	2.04	35.12	74.00	-38.88	100	98	peak		
4824.000	21.67	2.04	23.71	54.00	-30.29	100	98	AVG		
			B Mode, Mi	iddle channel						
2437.000	106.13	-3.39	102.74	N/A	N/A	200	47	peak		
2437.000	103.00	-3.39	99.61	N/A	N/A	200	47	AVG		
4874.000	33.26	2.59	35.85	74.00	-38.15	100	178	peak		
4874.000	23.45	2.59	26.04	54.00	-27.96	100	178	AVG		
			B Mode, H	ligh channel						
2462.000	106.47	-3.12	103.35	N/A	N/A	200	58	peak		
2462.000	103.31	-3.12	100.19	N/A	N/A	200	58	AVG		
2483.500	56.20	-2.88	53.32	74.00	-20.68	200	359	peak		
2483.500	42.69	-2.88	39.81	54.00	-14.19	200	359	AVG		
4924.000	32.82	2.81	35.63	74.00	-38.37	100	334	peak		
4924.000	22.30	2.81	25.11	54.00	-28.89	100	334	AVG		

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss – Amplifier Gain Spurious emissions more than 20 dB below the limit were not reported.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 34 of 113

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
G Mode, Low channel								
2390.000	70.66	-3.87	66.79	74.00	-7.21	300	206	peak
2390.000	46.90	-3.87	43.03	54.00	-10.97	300	206	AVG
2412.000	105.34	-3.66	101.68	N/A	N/A	300	134	peak
2412.000	96.26	-3.66	92.60	N/A	N/A	300	134	AVG
4824.000	33.24	2.04	35.28	74.00	-38.72	100	92	peak
4824.000	21.58	2.04	23.62	54.00	-30.38	100	92	AVG
G Mode, Middle channel								
2437.000	104.27	-3.39	100.88	N/A	N/A	300	141	peak
2437.000	95.05	-3.39	91.66	N/A	N/A	300	141	AVG
4874.000	33.70	2.59	36.29	74.00	-37.71	100	330	peak
4874.000	21.00	2.59	23.59	54.00	-30.41	100	330	AVG
G Mode, High channel								
2462.000	103.06	-3.12	99.94	N/A	N/A	300	141	peak
2462.000	93.85	-3.12	90.73	N/A	N/A	300	141	AVG
2483.500	66.30	-2.88	63.42	74.00	-10.58	300	252	peak
2483.500	42.85	-2.88	39.97	54.00	-14.03	300	252	AVG
4924.000	33.96	2.81	36.77	74.00	-37.23	100	86	peak
4924.000	21.60	2.81	24.41	54.00	-29.59	100	86	AVG

Horizontal

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
G Mode, Low channel								
2390.000	73.18	-3.87	69.31	74.00	-4.69	200	44	peak
2390.000	51.87	-3.87	48.00	54.00	-6.00	200	44	AVG
2412.000	108.22	-3.66	104.56	N/A	N/A	200	4	peak
2412.000	99.11	-3.66	95.45	N/A	N/A	200	4	AVG
4824.000	33.67	2.04	35.71	74.00	-38.29	100	42	peak
4824.000	21.45	2.04	23.49	54.00	-30.51	100	42	AVG
G Mode, Middle channel								
2437.000	108.98	-3.39	105.59	N/A	N/A	200	355	peak
2437.000	99.57	-3.39	96.18	N/A	N/A	200	355	AVG
4874.000	33.52	2.59	36.11	74.00	-37.89	100	217	peak
4874.000	21.51	2.59	24.10	54.00	-29.90	100	217	AVG
G Mode, High channel								
2462.000	106.85	-3.12	103.73	N/A	N/A	200	351	peak
2462.000	97.78	-3.12	94.66	N/A	N/A	200	351	AVG
2483.500	73.91	-2.88	71.03	74.00	-2.97	200	4	peak
2483.500	51.38	-2.88	48.50	54.00	-5.50	200	4	AVG
4924.000	33.71	2.81	36.52	74.00	-37.48	100	164	peak
4924.000	21.62	2.81	24.43	54.00	-29.57	100	164	AVG

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported.

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark	
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)		
N20 Mode, Low channel									
2390.000	73.33	-3.87	69.46	74.00	-4.54	300	359	peak	
2390.000	49.47	-3.87	45.60	54.00	-8.40	300	359	AVG	
2412.000	104.48	-3.66	100.82	N/A	N/A	300	215	peak	
2412.000	95.39	-3.66	91.73	N/A	N/A	300	215	AVG	
4824.000	33.64	2.04	35.68	74.00	-38.32	100	225	peak	
4824.000	21.67	2.04	23.71	54.00	-30.29	100	225	AVG	
N20 Mode, Middle channel									
2437.000	103.48	-3.39	100.09	N/A	N/A	300	144	peak	
2437.000	93.67	-3.39	90.28	N/A	N/A	300	144	AVG	
4874.000	33.76	2.59	36.35	74.00	-37.65	100	106	peak	
4874.000	21.53	2.59	24.12	54.00	-29.88	100	106	AVG	
	N20 Mode, High channel								
2462.000	102.59	-3.12	99.47	N/A	N/A	300	126	peak	
2462.000	93.33	-3.12	90.21	N/A	N/A	300	126	AVG	
2483.500	72.20	-2.88	69.32	74.00	-4.68	300	123	peak	
2483.500	50.47	-2.88	47.59	54.00	-6.41	300	123	AVG	
4924.000	32.74	2.81	35.55	74.00	-38.45	100	232	peak	
4924.000	21.42	2.81	24.23	54.00	-29.77	100	232	AVG	

Horizontal

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
N20 Mode, Low channel								
2390.000	75.15	-3.87	71.28	74.00	-2.72	200	359	peak
2390.000	52.65	-3.87	48.78	54.00	-5.22	200	359	AVG
2412.000	107.63	-3.66	103.97	N/A	N/A	200	330	peak
2412.000	97.49	-3.66	93.83	N/A	N/A	200	330	AVG
4824.000	33.39	2.04	35.43	74.00	-38.57	100	175	peak
4824.000	21.34	2.04	23.38	54.00	-30.62	100	175	AVG
N20 Mode, Middle channel								
2437.000	108.39	-3.39	105.00	N/A	N/A	200	360	peak
2437.000	98.31	-3.39	94.92	N/A	N/A	200	360	AVG
4874.000	33.67	2.59	36.26	74.00	-37.74	100	332	peak
4874.000	21.37	2.59	23.96	54.00	-30.04	100	332	AVG
N20 Mode, High channel								
2462.000	106.49	-3.12	103.37	N/A	N/A	200	41	peak
2462.000	96.88	-3.12	93.76	N/A	N/A	200	41	AVG
2483.500	75.40	-2.88	72.52	74.00	-1.48	200	335	peak
2483.500	51.36	-2.88	48.48	54.00	-5.52	200	335	AVG
4924.000	33.56	2.81	36.37	74.00	-37.63	100	14	peak
4924.000	21.42	2.81	24.23	54.00	-29.77	100	14	AVG

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported.

							_			
Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark		
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)			
			N40 Mode,	Low channel						
2390.000	73.87	-3.87	70.00	74.00	-4.00	300	203	peak		
2390.000	53.16	-3.87	49.29	54.00	-4.71	300	203	AVG		
2422.000	101.55	-3.55	98.00	N/A	N/A	300	213	peak		
2422.000	90.33	-3.55	86.78	N/A	N/A	300	213	AVG		
4844.000	33.33	2.25	35.58	74.00	-38.42	100	187	peak		
4844.000	21.88	2.25	24.13	54.00	-29.87	100	187	AVG		
N40 Mode, Middle channel										
2437.000	101.37	-3.39	97.98	N/A	N/A	300	138	peak		
2437.000	91.40	-3.39	88.01	N/A	N/A	300	138	AVG		
4874.000	33.88	2.59	36.47	74.00	-37.53	100	0	peak		
4874.000	21.96	2.59	24.55	54.00	-29.45	100	0	AVG		
			N40 Mode,	High channel						
2452.000	99.33	-3.22	96.11	N/A	N/A	300	127	peak		
2452.000	89.91	-3.22	86.69	N/A	N/A	300	127	AVG		
2483.500	69.77	-2.88	66.89	74.00	-7.11	300	123	peak		
2483.500	52.92	-2.88	50.04	54.00	-3.96	300	123	AVG		
4904.000	34.82	2.87	37.69	74.00	-36.31	100	148	peak		
4904.000	22.09	2.87	24.96	54.00	-29.04	100	148	AVG		

Horizontal

Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark		
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)			
			N40 Mode,	Low channel						
2390.000	74.62	-3.87	70.75	74.00	-3.25	200	43	peak		
2390.000	55.97	-3.87	52.10	54.00	-1.90	200	43	AVG		
2422.000	106.27	-3.55	102.72	N/A	N/A	200	43	peak		
2422.000	95.69	-3.55	92.14	N/A	N/A	200	43	AVG		
4844.000	34.04	2.25	36.29	74.00	-37.71	100	21	peak		
4844.000	21.83	2.25	24.08	54.00	-29.92	100	21	AVG		
N40 Mode, Middle channel										
2437.000	104.94	-3.39	101.55	N/A	N/A	200	42	peak		
2437.000	95.11	-3.39	91.72	N/A	N/A	200	42	AVG		
4874.000	32.77	2.59	35.36	74.00	-38.64	100	115	peak		
4874.000	21.36	2.59	23.95	54.00	-30.05	100	115	AVG		
			N40 Mode,	High channel						
2452.000	102.16	-3.22	98.94	N/A	N/A	200	46	peak		
2452.000	92.90	-3.22	89.68	N/A	N/A	200	46	AVG		
2483.500	74.59	-2.88	71.71	74.00	-2.29	200	2	peak		
2483.500	55.80	-2.88	52.92	54.00	-1.08	200	2	AVG		
4904.000	33.39	2.87	36.26	74.00	-37.74	100	225	peak		
4904.000	21.87	2.87	24.74	54.00	-29.26	100	225	AVG		

Result = Reading + Correct Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

Spurious emissions more than 20 dB below the limit were not reported.

Test Mode: simultaneous transmissions (2.4G WIFI+5G WIFI)

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
203.6300	31.69	-9.63	22.06	43.50	-21.44	100	163	QP
250.1900	35.69	-10.22	25.47	46.00	-20.53	100	304	QP
391.8100	29.34	-6.18	23.16	46.00	-22.84	100	168	QP
658.5600	32.63	-2.83	29.80	46.00	-16.20	100	125	QP
700.2700	31.63	-2.33	29.30	46.00	-16.70	100	133	QP
806.9700	34.17	-0.38	33.79	46.00	-12.21	100	146	QP
4824.000	32.77	2.04	34.81	74.00	-39.19	100	342	peak
4824.000	22.53	2.04	24.57	54.00	-29.43	100	342	AVG
10360.000	29.87	14.38	44.25	68.23	-23.98	100	248	peak

Horizontal

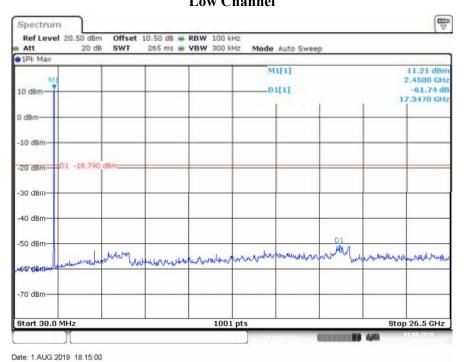
Vertical

Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
(MHz)	(dBµV)	Factor(dB/m)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	
107.6000	33.23	-11.24	21.99	43.50	-21.51	100	1	QP
250.1900	31.66	-10.22	21.44	46.00	-24.56	100	358	QP
544.1000	34.87	-4.11	30.76	46.00	-15.24	100	124	QP
658.5600	30.33	-2.83	27.50	46.00	-18.50	100	304	QP
702.2100	29.82	-2.32	27.50	46.00	-18.50	100	312	QP
814.7300	38.88	-0.30	38.58	46.00	-7.42	100	248	QP
4824.000	32.65	2.04	34.69	74.00	-39.31	100	142	peak
4824.000	21.87	2.04	23.91	54.00	-30.09	100	142	AVG
10360.000	36.12	14.38	50.50	68.23	-17.73	100	129	peak

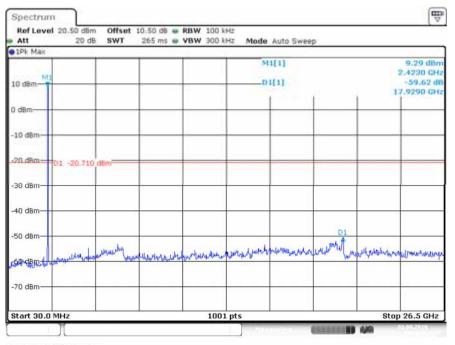
Note: Result = Reading + Factor

Margin = Result – Limit

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

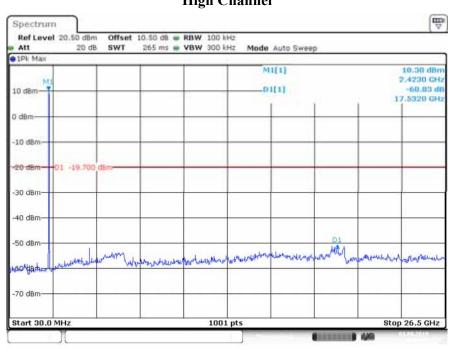

Spurious emissions more than 20 dB below the limit were not reported.

Conducted Spurious Emissions:


Channel	Frequency (MHz)		Delta Peak to Band Emission (dBc)		Limit (dBc)	Result
		Chain 0	Chain 1	Chain 2		
			B Mode			
Low	2412	61.74	59.11	61.89	≥ 30	PASS
Mid	2437	59.62	61.46	60.79	\geq 30	PASS
High	2462	60.83	61.28	62.18	\geq 30	PASS
			G Mode			
Low	2412	61.93	61.88	62.76	\geq 30	PASS
Mid	2437	61.18	61.65	60.53	\geq 30	PASS
High	2462	60.33	61.21	61.86	≥ 30	PASS
			N20 Mode			
Low	2412	61.44	61.06	60.92	\geq 30	PASS
Mid	2437	61.78	60.43	62.32	\geq 30	PASS
High	2462	61.41	60.10	62.37	≥ 30	PASS
			N40 Mode			
Low	2422	60.77	62.15	61.80	\geq 30	PASS
Mid	2437	60.10	60.99	60.12	\geq 30	PASS
High	2452	61.81	60.76	61.05	\geq 30	PASS

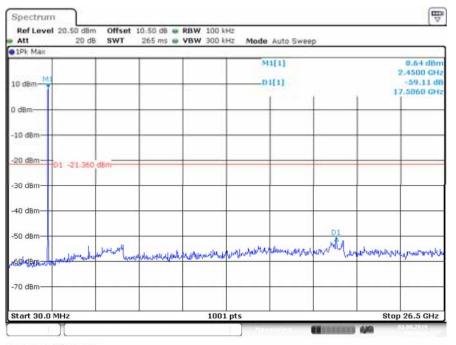
Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 39 of 113

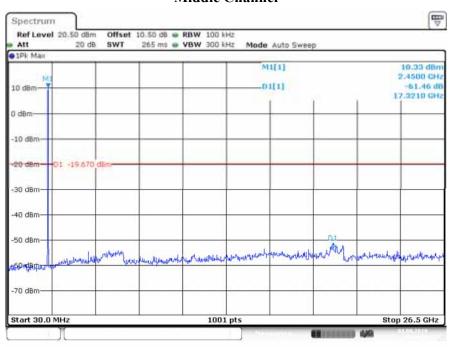
B Mode (Chain 0) Low Channel


Middle Channel

Date: 1.AUG.2019 18:15:46

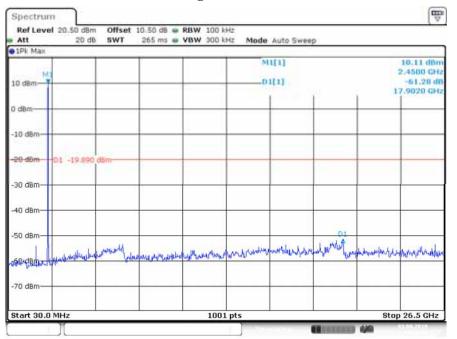
Bay Area Compliance Laboratories Corp.(Taiwan)


No.: RXZ190708006-00B

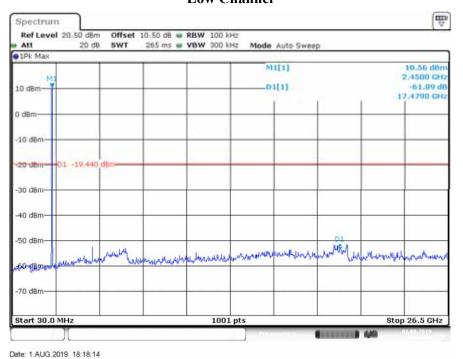

High Channel

Date: 1.AUG.2019 18:16:32

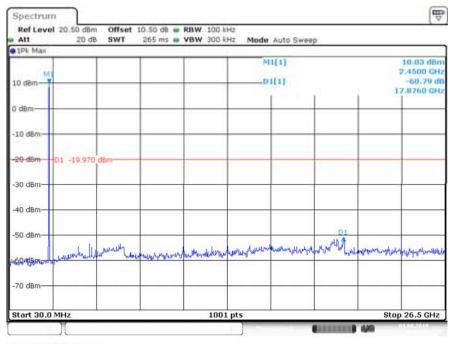
B Mode (Chain 1) Low Channel


Date: 1.AUG.2019 18:16:55

Middle Channel

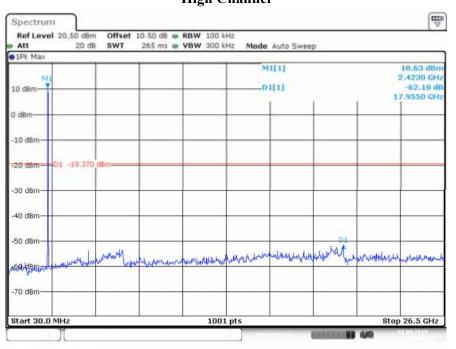

Date: 1.AUG.2019 18:17:15

High Channel



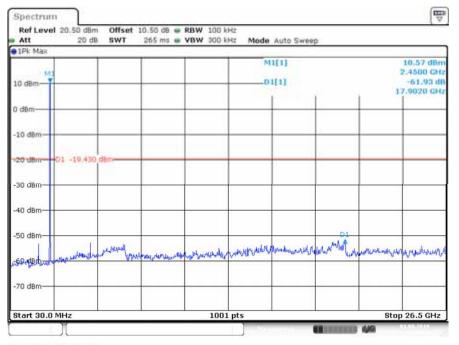
Date: 1.AUG.2019 18:17:43

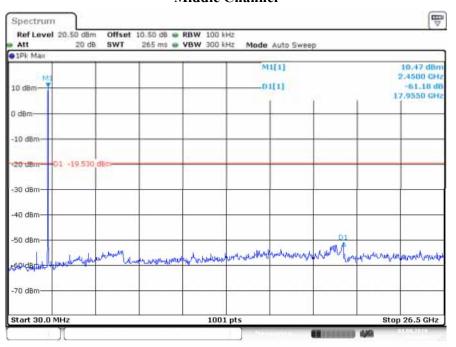
B Mode (Chain 2) Low Channel


Middle Channel

Date: 1.AUG.2019 18:18:44

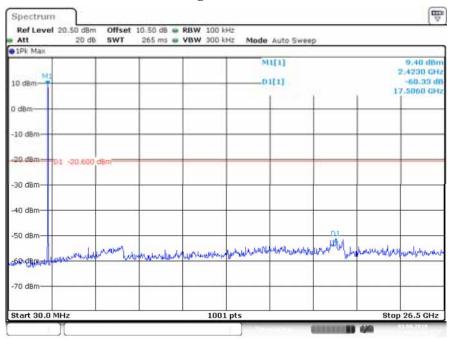
Bay Area Compliance Laboratories Corp.(Taiwan)


No.: RXZ190708006-00B

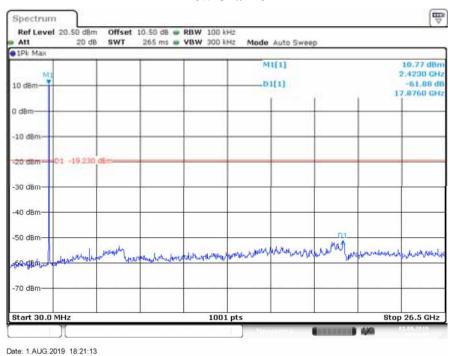

High Channel

Date: 1.AUG.2019 18:19:08

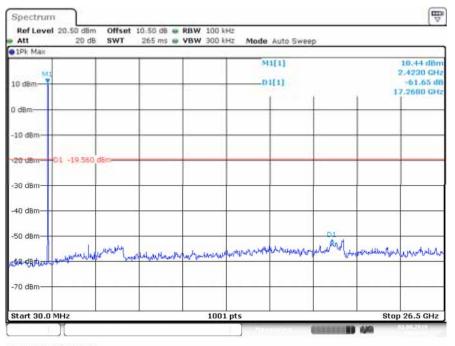
G Mode (Chain 0) Low Channel


Date: 1.AUG.2019 18:19:59

Middle Channel

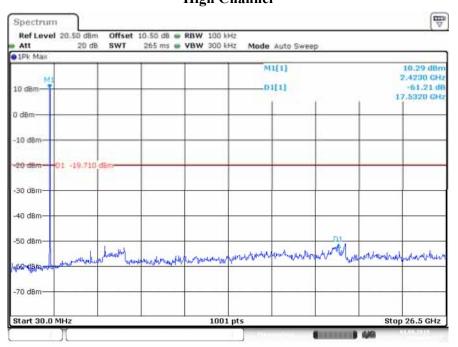

Date: 1.AUG.2019 18:20:20

High Channel



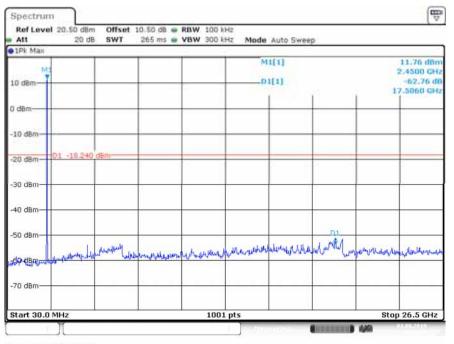
Date: 1.AUG.2019 18:20:42

G Mode (Chain 1) Low Channel

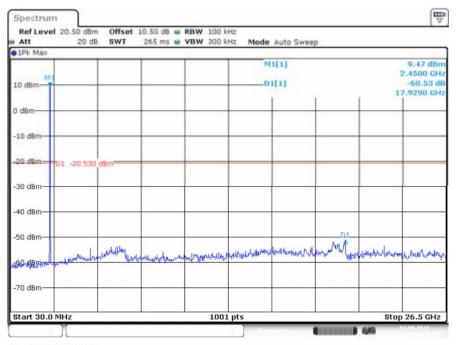


Middle Channel

Date: 1.AUG.2019 18:21:32

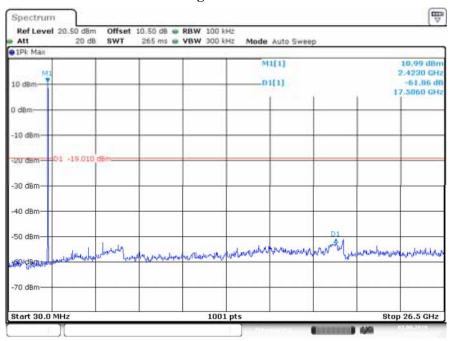

No.: RXZ190708006-00B

High Channel

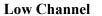

Date: 1.AUG.2019 18:21:59

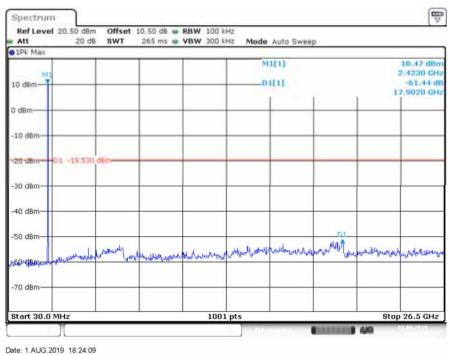
G Mode (Chain 2) Low Channel

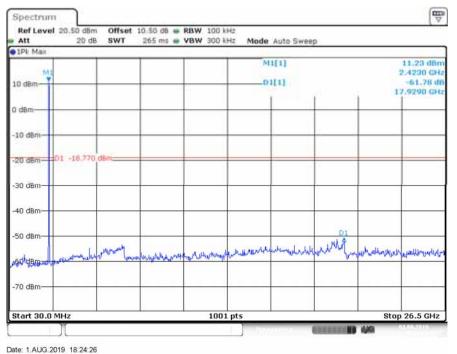
Date: 1.AUG.2019 18:22:58


No.: RXZ190708006-00B

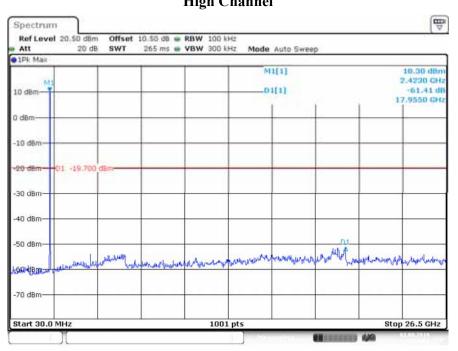
Middle Channel


Date: 1.AUG.2019 18:23:17


High Channel

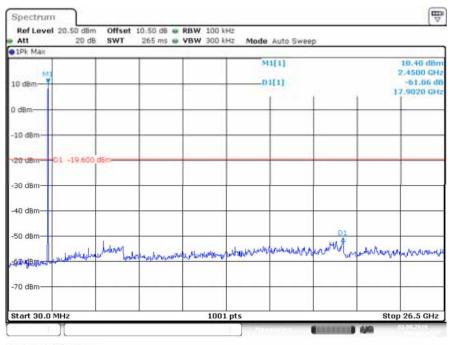

Date: 1.AUG.2019 18:23:35

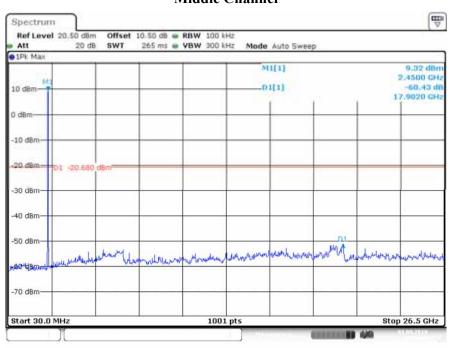
N20 Mode (Chain 0)


Middle Channel

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 49 of 113

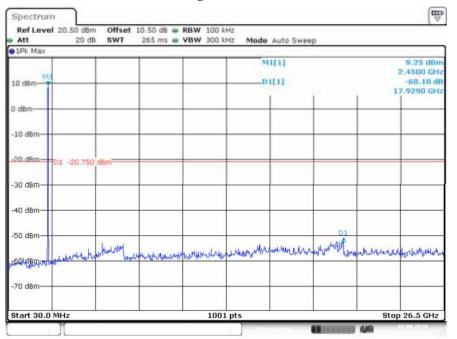
Bay Area Compliance Laboratories Corp.(Taiwan)


No.: RXZ190708006-00B

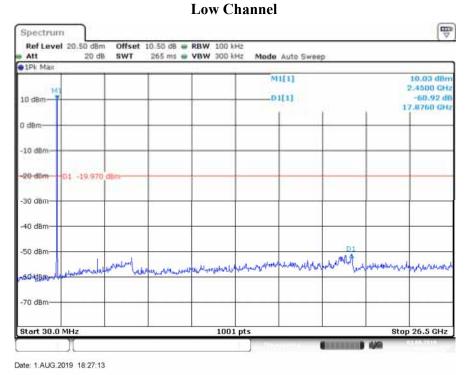

High Channel

Date: 1 AUG 2019 18:24:52

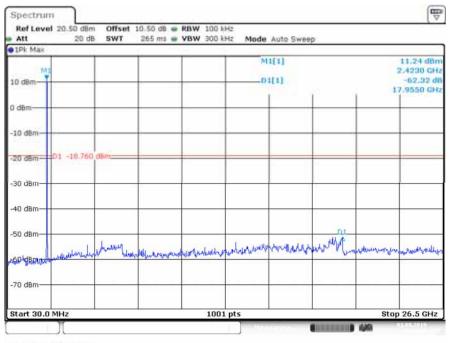
N20 Mode (Chain 1) Low Channel


Date: 1.AUG.2019 18:25:16

Middle Channel

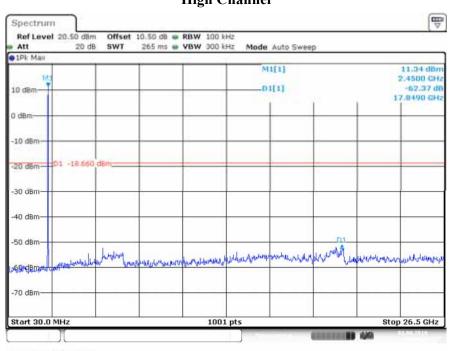

Date: 1.AUG.2019 18:26:03

High Channel



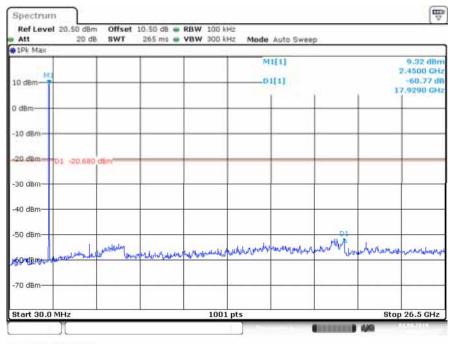
Date: 1.AUG.2019 18:26:38

N20 Mode (Chain 2)

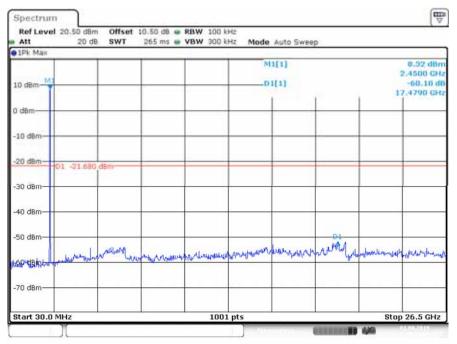

Middle Channel

Date: 1.AUG.2019 18:27:37

Bay Area Compliance Laboratories Corp.(Taiwan)

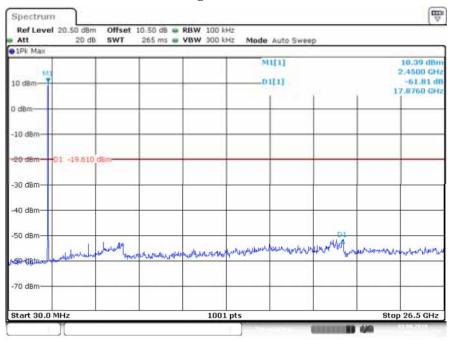

No.: RXZ190708006-00B

High Channel

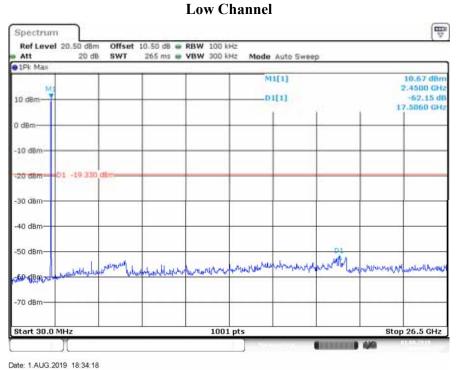

Date: 1.AUG.2019 18:27:55

N40 Mode (Chain 0) Low Channel

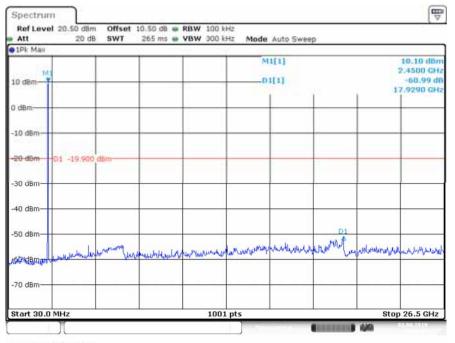
Date: 1.AUG.2019 18:32:36


No.: RXZ190708006-00B

Middle Channel

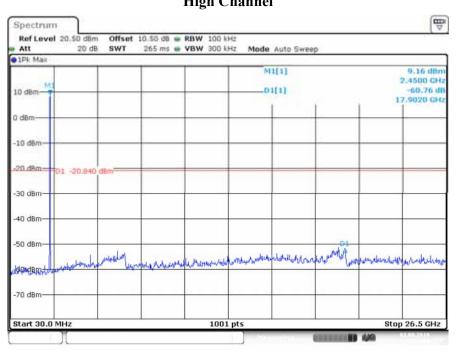

Date: 1.AUG.2019 18:32:59

High Channel



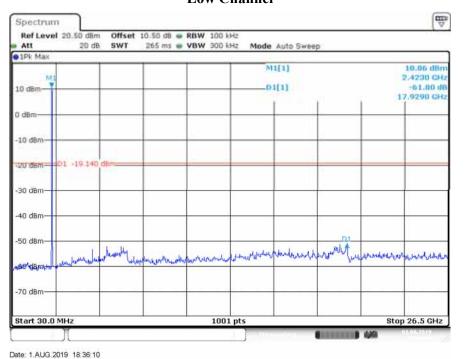
Date: 1.AUG.2019 18:33:30

N40 Mode (Chain 1)

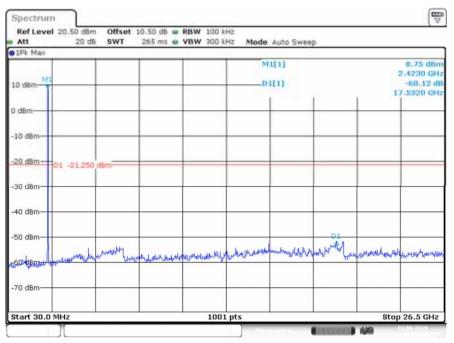

Middle Channel

Date: 1.AUG.2019 18:34:35

Bay Area Compliance Laboratories Corp.(Taiwan)

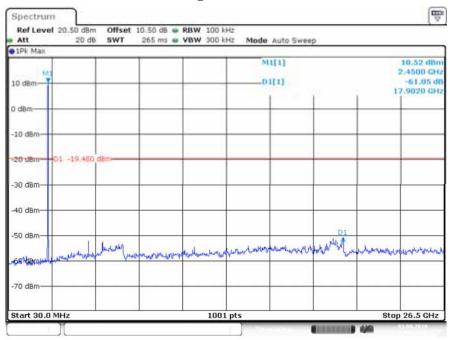

No.: RXZ190708006-00B

High Channel


Date: 1.AUG.2019 18:34:53

N40 Mode (Chain 2) Low Channel

Bate. 17100.2010 10.00.10


No.: RXZ190708006-00B

Middle Channel

Date: 1.AUG.2019 18:36:27

High Channel

Date: 1.AUG.2019 18:37:04

9 FCC §15.247(a)(2) – 6 dB Emission Bandwidth

9.1 Applicable Standard

According to FCC §15.247(a)(2).

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and

5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

9.2 Test Procedure

The steps for the first option are as follows:

a) Set RBW = 100 kHz.

b) Set the VBW \geq [3 \times RBW].

c) Detector = peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

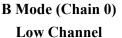
g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

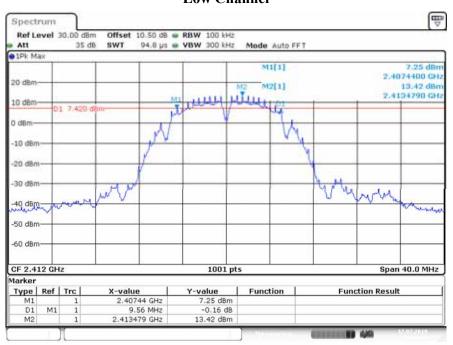
9.3 Environmental Conditions

Temperature:	25.3
Relative Humidity:	44 %
ATM Pressure:	1010 hPa

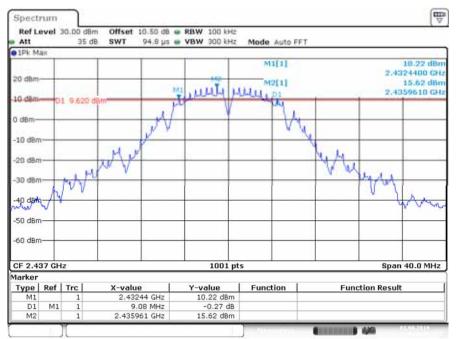
The testing was performed by Tom Hsu on 2019-07-17 ~ 2019-08-01.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 58 of 113

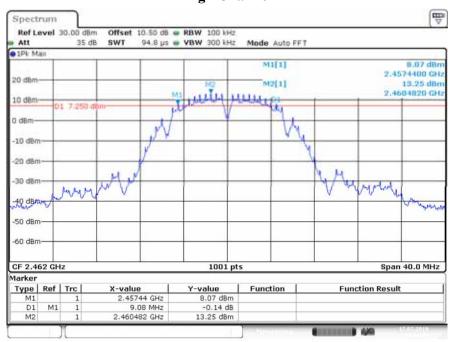

No.: RXZ190708006-00B


Channel	Frequency (MHz)	6 dB	Emission Bandy (MHz)	Limit (kHz)	Result	
	()	Chain 0	Chain 1	Chain 2	()	
			B Mode			
Low	2412	9.56	9.52	9.08	> 500	PASS
Middle	2437	9.08	9.52	9.08	> 500	PASS
High	2462	9.08	9.08	9.56	> 500	PASS
			G Mode			
Low	2412	16.36	16.36	16.4	> 500	PASS
Middle	2437	16.36	15.76	16.36	> 500	PASS
High	2462	16.36	16.32	16.4	> 500	PASS
			N20 Mode			
Low	2412	17.6	17.6	17.6	> 500	PASS
Middle	2437	17.6	17.6	17.56	> 500	PASS
High	2462	17.64	17.56	17.6	> 500	PASS
			N40 Mode			
Low	2422	35.92	35.12	36.32	> 500	PASS
Middle	2437	36.4	36.4	36.4	> 500	PASS
High	2452	36.32	36.32	36.32	> 500	PASS

9.4 Test Results

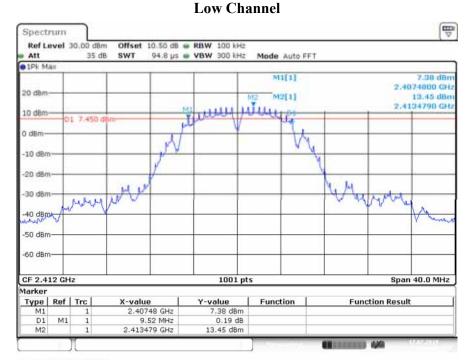

Please refer to the following plots

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 59 of 113



Date: 17.JUL.2019 10:16:10

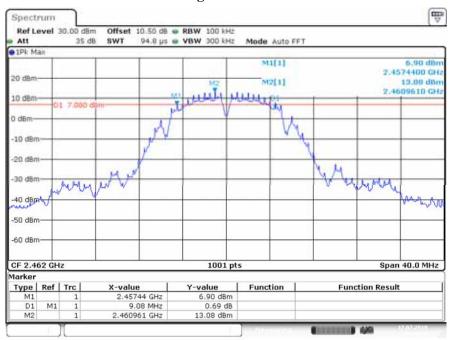
Middle Channel


Date: 1.AUG.2019 15:47:24

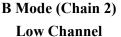

High Channel

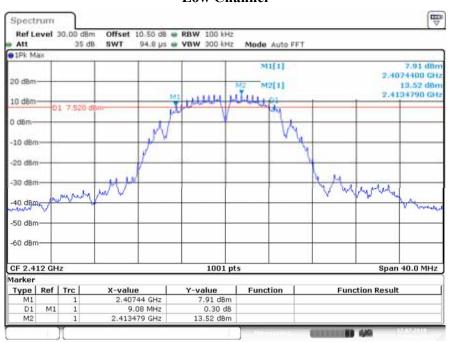
Date: 17.JUL.2019 10:29:14

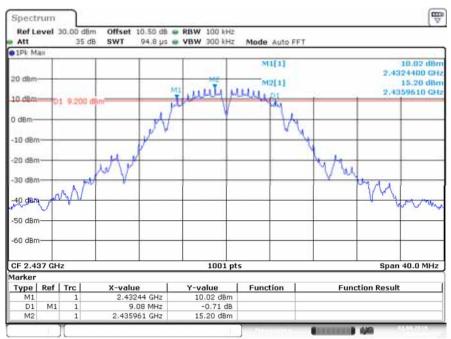
B Mode (Chain 1)


Date: 17.JUL 2019 16:29:17

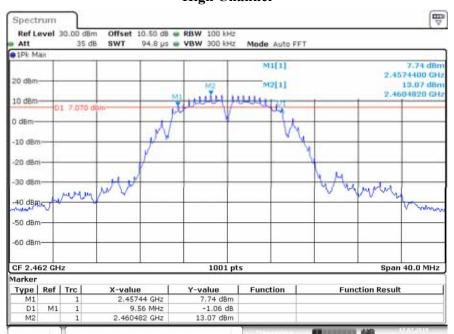
Middle Channel


Date: 1.AUG.2019 15:45:27


High Channel


Date: 17.JUL.2019 16:22:31

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 62 of 113



Date: 17.JUL.2019 16:32:52

Middle Channel

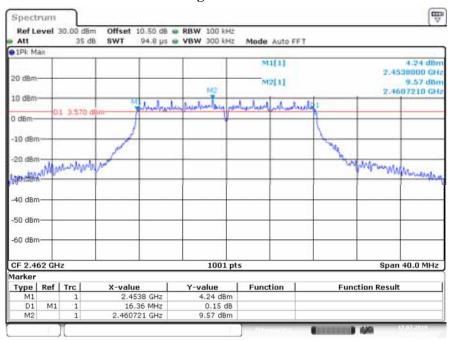
Date: 1.AUG.2019 15:39:46

High Channel

Date: 17.JUL.2019 16:39:09

G Mode (Chain 0) Low Channel

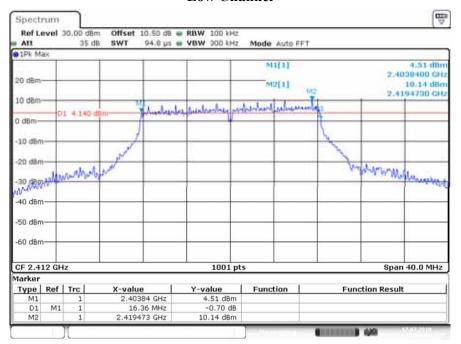
Ŧ Spectrum Ref Level 30.00 dBm Offset 10.50 d8 🖷 RBW 100 kHz Att 35 dB SWT 94.8 µs 👜 VBW 300 kHz Mode Auto FFT IPk Ma M1[1] 3.93 dBn 2,4038000 GH 20 dB M2[1] 10.14 dBr M 2.4144780 GH 10 dBn Judresto hunda 1 4:140 0 dB -10 dBm -20 dBm Manmana www. 63R.881044 -40 dBm -50 dBm -60 dBm-1001 pts Span 40.0 MHz CF 2.412 GHz Marker Y-value 3.93 dBm 1.26 dB 2.4038 GHz Туре Ref | Trc Function **Function Result** M1 D1 16.36 MHz Μ1 10.14 dBm M2 2.414478 GHz


Date: 17.JUL.2019 15:21:31

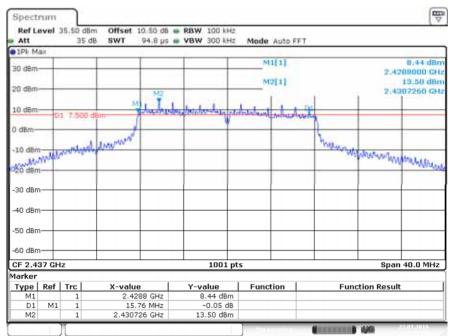
Att	rel 35.50 d 35		 RBW 100 kHz VBW 300 kHz 	Mode Auto FF	т	
1Pk Max	1					
30 dBm-			_	M1[1]		7.11 dBn 2,4288000 GH
				M2[1]		13.41 dBn
20 d&m-	-			NO2		2,4382390 GH
		1000	5 1 A 28 A 1	The second	.1. 1	The second second second
10 d&m	01 7,410	dam Analy	alay threads - then an	that have been all when	ole:	
	1 1 1 1 1 1 1 1 1	1 11	V.			
0 dBm-		And Marchand		-		
10 dBm-	- P.	1 uniter			William	102 (Carton Carton Cart
M.M.	A WAYNAW				and a	WWW.WWWWWWWW
tou dam-	-					- TWO-W
		1 1				
-30 dBm-						
-40 dBm-						
-50 dBm-						
-50 ubiii-						
-60 dBm-						
CF 2.437			1001 pt			Span 40.0 MHz
UF 2.437 Marker	GHZ		1001 pt	.5		opan 40.0 MHz
	Ref Trc	X-value	Y-value	Function	Functi	on Result
1700	1	2.4288 GHz	7.11 dBm	ranotion	runcu	on Rosult
M1	1 1					
M1 D1	M1 1	16.36 MHz	1.21 dB			

Middle Channel

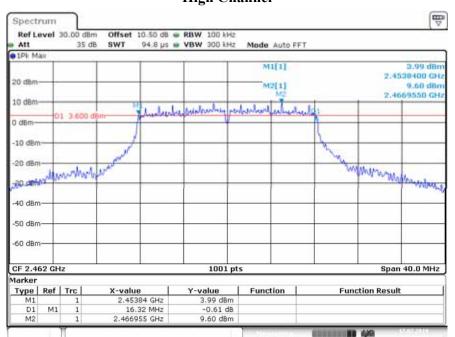
Date: 22.JUL.2019 15:34:38


High Channel

Date: 17.JUL.2019 11:22:35


Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 65 of 113

G Mode (Chain 1) Low Channel



Date: 17.JUL.2019 16:14:40

Middle Channel

Date: 22.JUL.2019 15:31:51

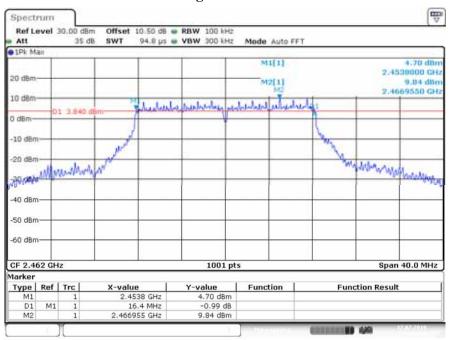
High Channel

Date: 17.JUL.2019 16:19:45

G Mode (Chain 2)

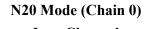
Low Channel

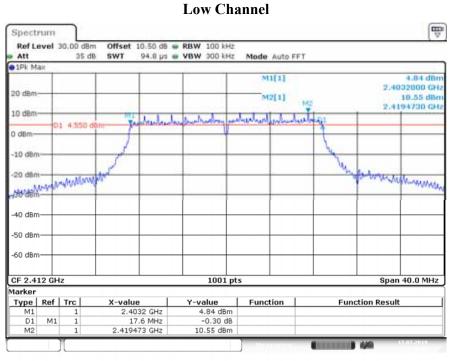
Date: 17.JUL.2019 16:46:29


Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 67 of 113

1Pk Max 30 dBm- 20 dBm- 10 dBm- 0 dBm-	-01 7.230 d	8m		M2	M1[1] M2[1]	e.	7.29 dBm 2.4288000 GH 13.23 dBm 2.4357210 GH
0 dilm		Bum	to but		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
0 dBm		1 0		I BALKING STREET	and that which	de	
				Y		1	
-10 dBm-	Manualitati	Jun Jun				MA	Mahamman Markal Maria
-30 dBm—							
-40 dBm—				++			
-50 dBm—				++			
-60 dBm—							
CF 2.437 Aarker	GHz			1001	pts		Span 40.0 MHz
	ef Trc	X-value	1	Y-value	Function	Fun	ction Result
M1	1		38 GHz	7.29 dBn			
D1 M2	M1 1	16.3 2.43572	6 MHz	0.67 dB			

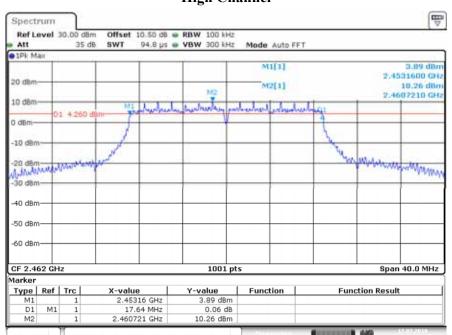
Middle Channel


Date: 22.JUL.2019 15:26:52


High Channel

Date: 17.JUL.2019 16:41:19

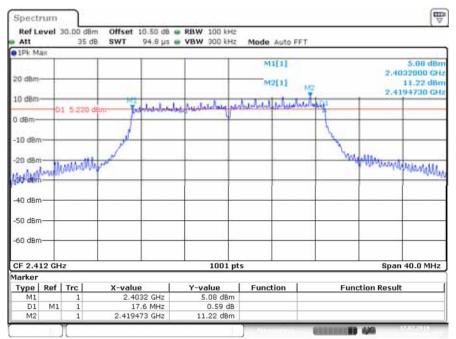
Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 68 of 113



Date: 17.JUL.2019 15:26:51

Att		35 d	B SWT 94.	8 µs 🖷	VBW 300 I	Hz	Mode	Auto FF	T				
IPk Ma	ĸ						_						
30 dBm-	_					-		11[1]			7.45 dBn 2.4282000 GH		
			1 1		1	-		12[1]					3.12 dBn
20 d8m-	-				-			12[1]					2390 GH
					1000	M	2	I and	1		Ť.	200	
10 d&m-	-		MIL	tente	trachestra	1.00	- Carlos	hatert	Anto	-	+		
	01	7,120 d	18 m			V		1				_	
0 dBm-	-	_			-	1		-	-		-	-	
										n.			
-10 dBm-		ALP PROPERTY	ADAS"		-	+		-	_	10M	AND IN COLOR	Million	0000000000
moun	(Married	NY. LANSING	Mahnur			I					1000		mbhala
-20 dBm-	-		+ +		+	+		+			+	-	
								1				- 1	
-30 dBm-													
-40 dBm-													
-40 aBm-													
-50 dBm-													
-30 ubiii-													
-60 dBm-									_				
05.0.40					100								0.0.111-
CF 2.43	/ GH	z			100	1 pts	,					span 4	0.0 MHz
Marker	n-61	T = 1	X-value	1			Fund				ction R		
Type M1	Ref	1	2,4282 (117	<u>Y-value</u> 7,45 di	am	Fund	aion		Fun	COON R	esult	
D1	M1	1	17.6 N		-0.35								
M2	1114	1	2.438239 0		13.12 di								

Date: 22.JUL.2019 15:36:26



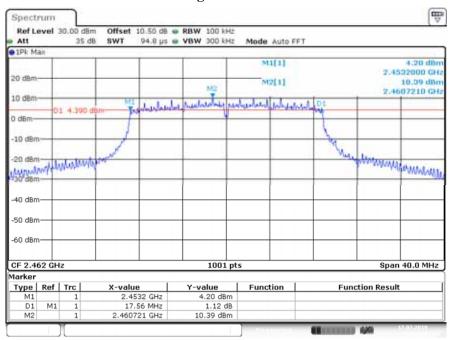
High Channel

Date: 17.JUL.2019 15:31:44

N20 Mode (Chain 1)

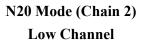
Low Channel

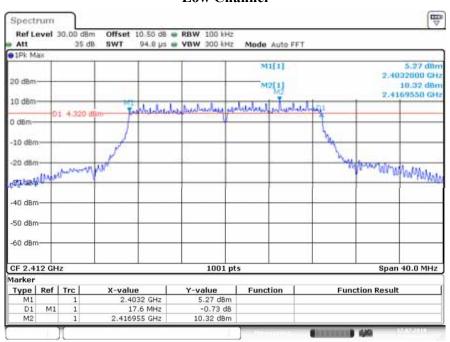
Date: 17.JUL.2019 16:07:57


Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 70 of 113

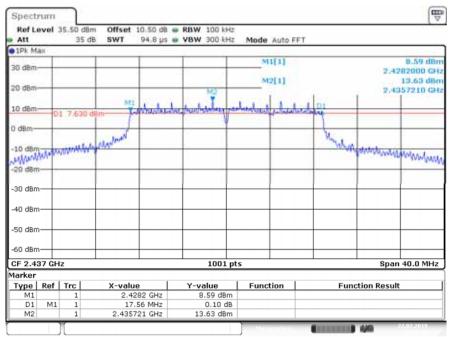
DIPk Ma	ek.	35 d	B SWT	94.8 µs i	WBW 300 kHz	Mode Auto FF	T	
30 dBm- 20 dBm-	-			Mg		M1(1) M2(1)		7.00 dBn 2.4281600 GH 13.78 dBn 2.4307260 GH
10 dēm-	-0	7,780 0	M1	and the first	to producedate por	howhat the last	where a	
0 dBm—					-			-
-19,680	perel V	Martin	Within	-	-		MMM	ator walking we walk with
-20 dBm					+ +			
-30 dBm	+				+ +			
-40 dBm	+							
-50 dBm	+							
-60 dBm	+							
CF 2.43	87 GH	z			1001 pt	s		Span 40.0 MHz
Marker		- 1						
Type	Ref		X-valu	e 16 GHz	Y-value 7.99 dBm	Function	Funct	ion Result
M1 D1	M1	1		7.6 MHz	-0.38 dB			
M2	141	1		26 GHz	13.78 dBm			

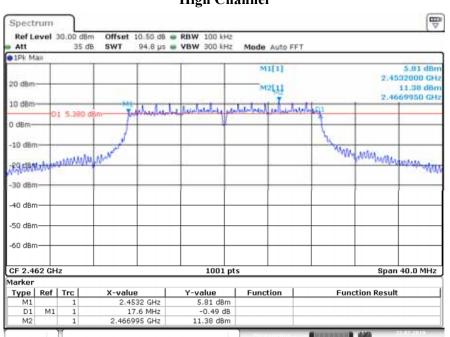
Middle Channel


Date: 22.JUL.2019 15:30:19


High Channel

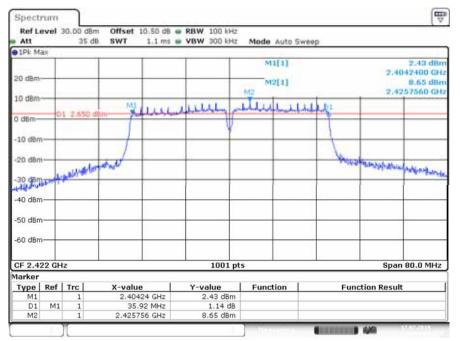
Date: 17.JUL.2019 16:02:10


Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 71 of 113



Date: 17.JUL.2019 16:49:44

Date: 22.JUL.2019 15:28:28

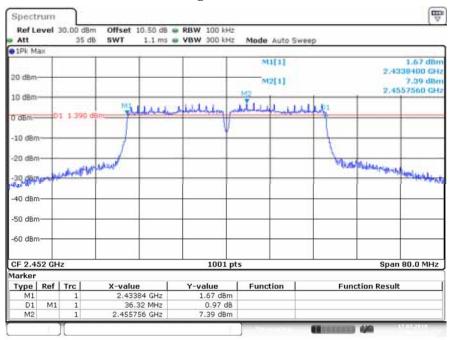


High Channel

Date: 22.JUL.2019 15:12:31

N40 Mode (Chain 0)

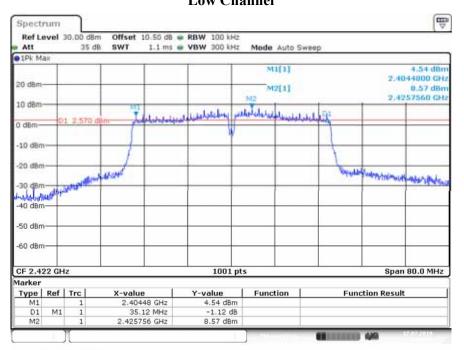
Low Channel



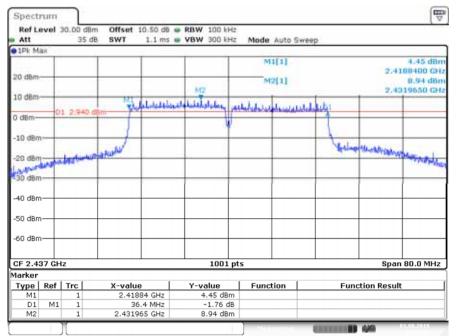
Date: 17.JUL.2019 15:38:51

Att 1Pk Max	35 d	B SWT 1.1 ms (VBW 300 kHz	Mode Auto Swe	ер	
20 dBm				M1[1] M2[1]	12 1	3.65 dBm 2.4188400 GHz 9.77 dBm 2.4407560 GHz
LO dBm	01 3,770 4	"alleson	Allellon on	helphylologland dely	Idda .	
) dBm	01 3.7704	aem			1	
10 dBm		1			Unat	Mander Marting and splan and so
30 denter	ALCONTRACTOR OF	Matura	-			Schweisinger Shire and
30 d8m		<u> </u>	+ +		+ +	
40 dBm						
50 dBm						
60 dBm						
CF 2.437 C	Hz		1001 pt	s		Span 80.0 MHz
larker	Tugl	X-value	Y-value	Function	Fund	tion Result
Type Re M1	Trc 1	2.41884 GHz	3.65 dBm	Function	Funct	tion Result
D1 M		36.4 MHz	-0.11 dB			

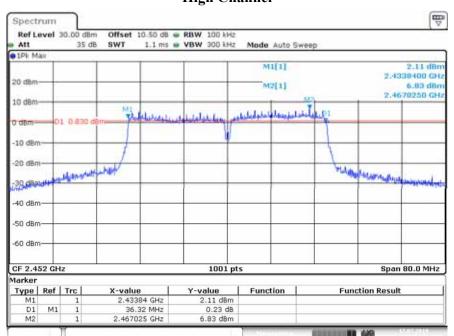
Date: 1.AUG.2019 15:42:09


High Channel

Date: 17.JUL.2019 15:51:38


Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 74 of 113

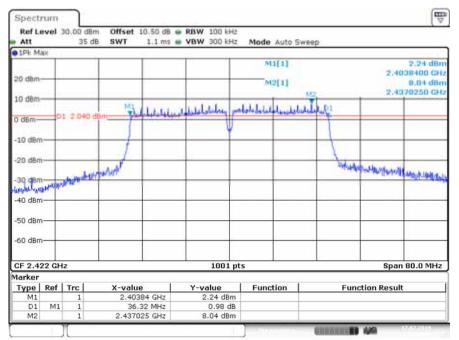
N40 Mode (Chain 1) Low Channel



Date: 17.JUL.2019 15:59:33

Middle Channel

Date: 1.AUG.2019 15:44:15



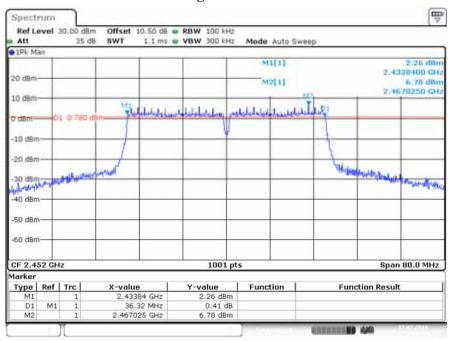
High Channel

Date: 17.JUL.2019 15:54:43

N40 Mode (Chain 2)

Low Channel

Date: 17.JUL.2019 16:56:49


Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 76 of 113

₩. Spectrum Offset 10.50 d8 @ RBW 100 kHz Ref Level 30.00 dBm 1.1 ms 👜 VBW 300 kHz 35 dB Att SWT Mode Auto Sweep IPk Mai M1[1] 3.78 dB 2.4188400 GH 20 dB M2[1] 8.94 dBr 142 2.4345220 GH 10 dBm Helphilada and a later balanter الباجانية بتربيها والبلوا بالبامج 1 2.940 0 dBr -10 dBm Within the Aught places wat maked -20 dBm in house 30 d8m -40 dBm -50 dBm--60 dBm-CF 2.437 GHz Span 80.0 MHz 1001 pts Marker Type Ref Trc M1 1 Y-value 3.78 dBm Function Function Result X-value 2.41884 GHz D1 Μ1 36.4 MHz -1.17 dB M2 2.434522 GHz 8.94 dBm 1 III 446

Middle Channel

Date: 1.AUG.2019 15:49:13

High Channel

Date: 17.JUL.2019 17:06:58

10 FCC §15.247(b)(3) – Maximum Output Power

10.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

10.2 Test Procedure

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

10.3 Environmental Conditions

Temperature:	25.1		
Relative Humidity:	45 %		
ATM Pressure:	1010 hPa		

The testing was performed by Tom Hsu on 2019-07-19.

10.4 Test Results

Conducted Average Output Power

Channel	Frequency (MHz)	Power Chain 0 (dBm)	Power Chain 1 (dBm)	Power Chain 2 (dBm)	Total Power (dBm)	Duty Factor (dB)	Total Power With Duty Factor (dBm)	Total Power (W)	Limit (W)	Result
					ВM	ode				
Low	2412	22.51	21.72	21.89	26.82	0.04	26.86	0.485	1	PASS
Middle	2437	25.04	24.22	24.42	29.35	0.04	29.39	0.869	1	PASS
High	2462	22.37	21.78	22.01	26.83	0.04	26.87	0.486	1	PASS
	G Mode									
Low	2412	19.24	18.78	18.91	23.75	0.97	24.72	0.296	1	PASS
Middle	2437	23.87	23.18	23.27	28.22	0.97	29.19	0.830	1	PASS
High	2462	18.27	17.54	17.61	22.59	0.97	23.56	0.227	1	PASS
					N20	Mode				
Low	2412	21.69	21.1	21	26.05	0.27	26.32	0.429	1	PASS
Middle	2437	25.04	24.29	24.36	29.35	0.27	29.62	0.916	1	PASS
High	2462	19.74	18.7	18.85	23.89	0.27	24.16	0.261	1	PASS
	N40 Mode									
Low	2422	20.55	19.73	19.87	24.84	0.56	25.40	0.347	1	PASS
Middle	2437	22.69	21.82	21.85	26.91	0.56	27.47	0.558	1	PASS
High	2452	18.64	17.51	17.54	22.7	0.56	23.26	0.212	1	PASS

According to FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For power measurements on IEEE 802.11 devices, Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4.

The device have four antenna, so array gain is 0 dB.

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 79 of 113

11 FCC§15.247(d) – 100 kHz Bandwidth of Frequency Band Edge

11.1 Applicable Standard

According to FCC §15.247(d).

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

11.2 Test Procedure

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

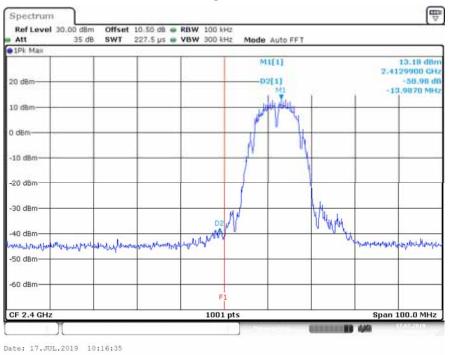
5. Repeat above procedures until all measured frequencies were complete.

11.3 Environmental Condition

Temperature:	25.4		
Relative Humidity:	47 %		
ATM Pressure:	1010 hPa		

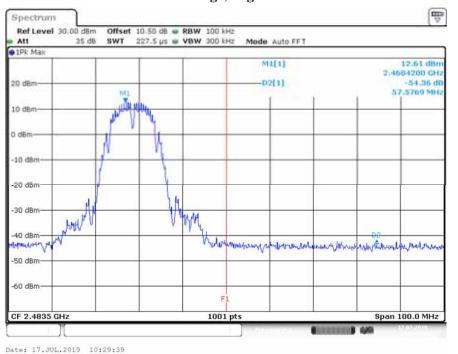
The testing was performed by Tom Hsu on 2019-07-17~2019-07-22

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan)


Channel	Frequency		Delta Peak to Band Emission	Limit	Result			
Channel	(MHz)		(dBc)	(dBc)	Kesuit			
		Chain 0	Chain 1	Chain 2				
	B Mode							
Low	2412	50.98	43.79	48.33	\geq 30	PASS		
High	2462	54.36	54.50	55.51	\geq 30	PASS		
	G Mode							
Low	2412	32.15	33.40	34.56	\geq 30	PASS		
High	2462	41.79	43.64	41.69	\geq 30	PASS		
	N20 Mode							
Low	2412	31.43	30.41	33.64	\geq 30	PASS		
High	2462	37.63	43.53	40.85	\geq 30	PASS		
N40 Mode								
Low	2422	31.49	31.21	32.50	≥ 30	PASS		
High	2452	34.36	32.85	37.92	\geq 30	PASS		

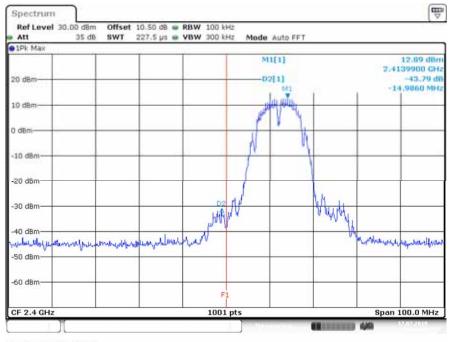
11.4 Test Results

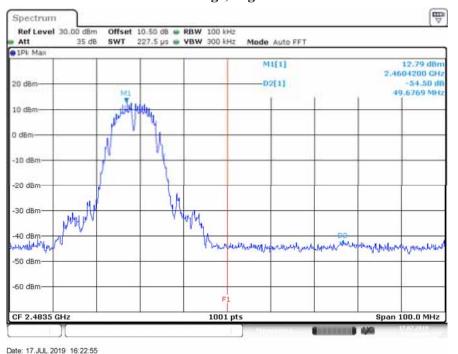
Please refer to the following plots.

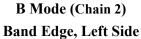

B Mode (Chain 0)

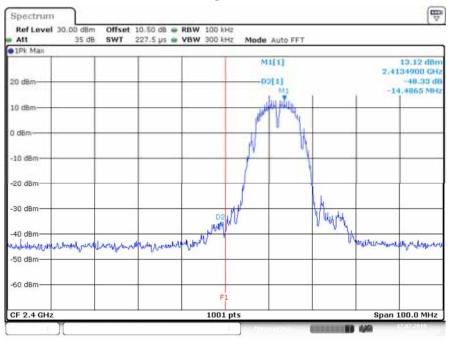
Band Edge, Left Side

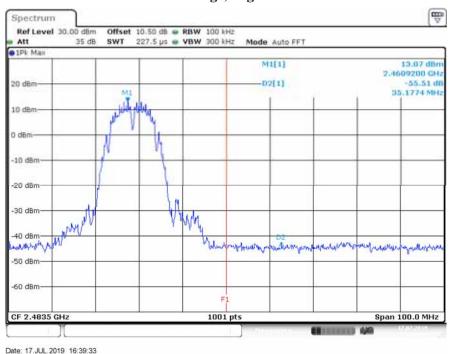
Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 81 of 113

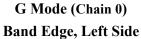

No.: RXZ190708006-00B

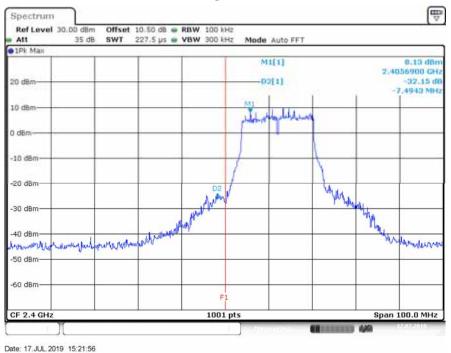

Band Edge, Right Side


B Mode (Chain 1)

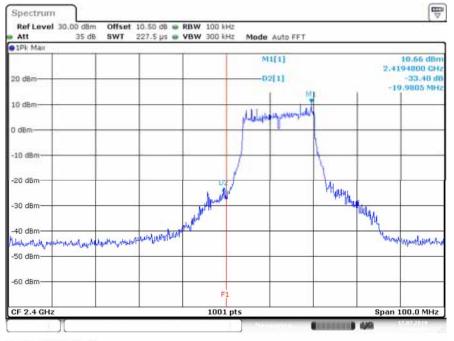

Band Edge, Left Side

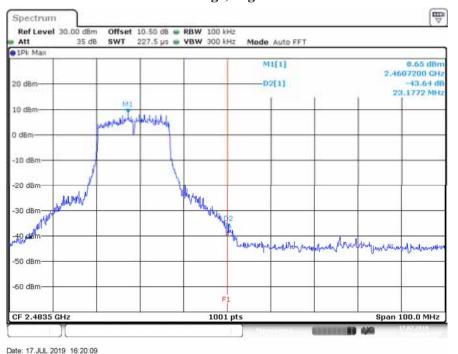

Date: 17.JUL 2019 16:29:42

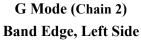


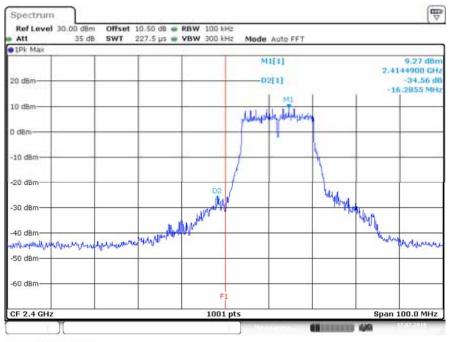


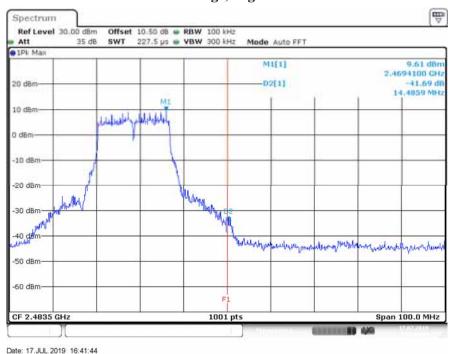
Date: 17.JUL.2019 16:33:17

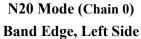


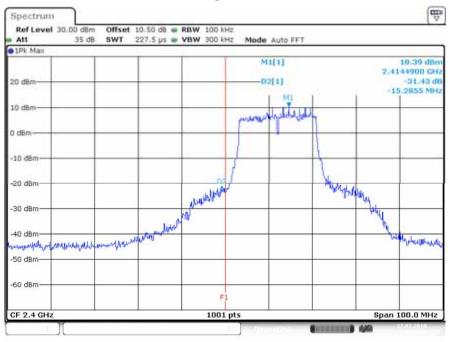

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 84 of 113

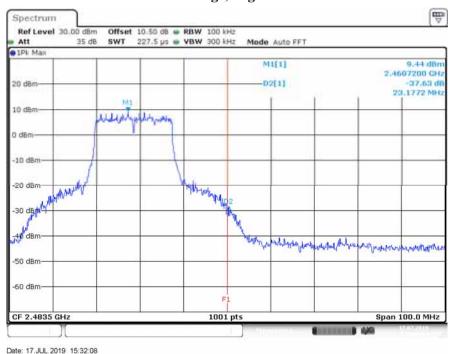


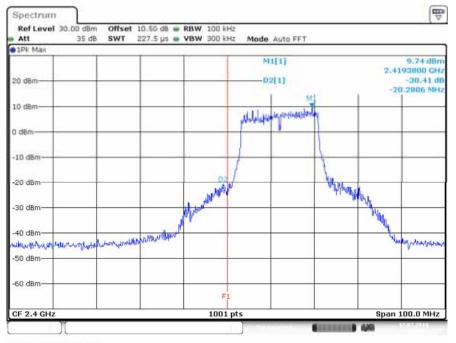

G Mode (Chain 1) Band Edge, Left Side

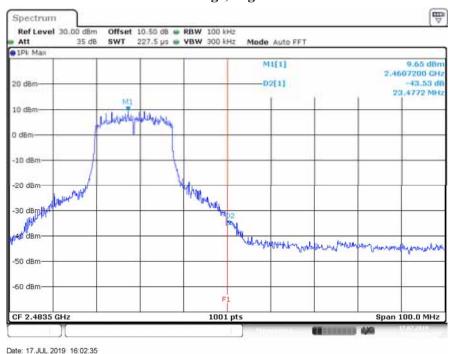

Date: 17.JUL.2019 16:15:04

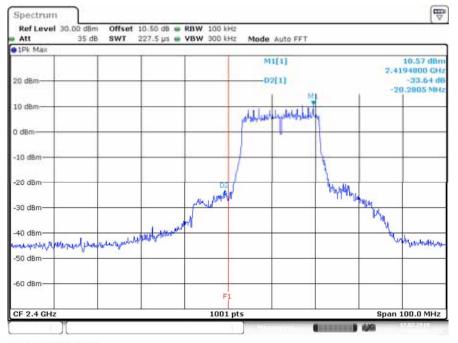


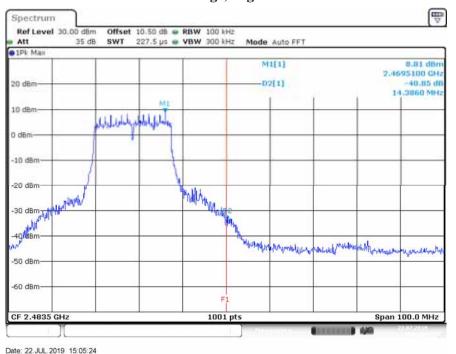


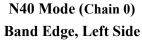

Date: 17.JUL.2019 16:46:54

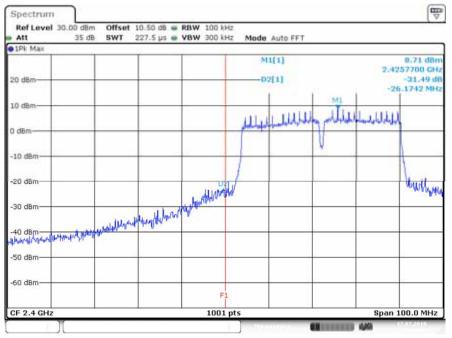


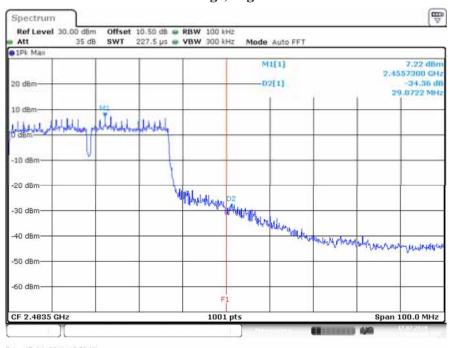

Date: 17.JUL.2019 15:27:15

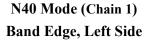

N20 Mode (Chain 1) Band Edge, Left Side


Date: 17.JUL.2019 16:13:26

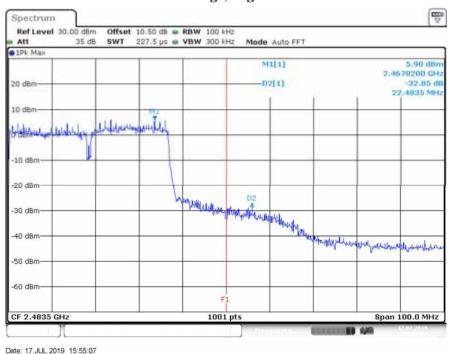



N20 Mode (Chain 2) Band Edge, Left Side

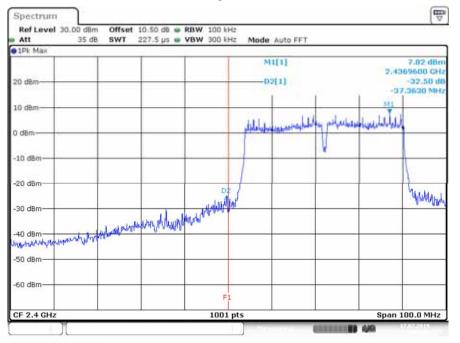

Date: 17.JUL.2019 16:51:23



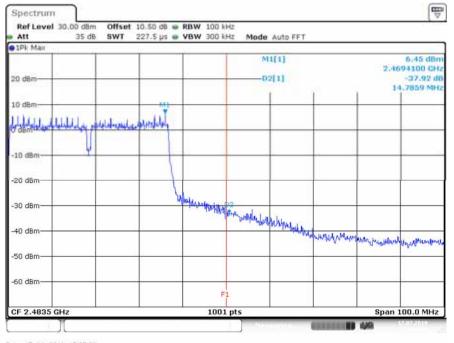
Date: 17.JUL.2019 15:37:50



Date: 17.JUL 2019 15:52:03



Date: 17.JUL.2019 15:59:58



N40 Mode (Chain 2) Band Edge, Left Side

Date: 17.JUL.2019 16:57:14

No.: RXZ190708006-00B

Band Edge, Right Side

Date: 17.JUL 2019 17:07:23

12 FCC §15.247(e) – Power Spectral Density

12.1 Applicable Standard

According to FCC §15.247(e).

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

12.2 Test Procedure

According to ANSI C63.10-2013

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat

12.3 Environmental Conditions

Temperature:	25.3		
Relative Humidity:	44 %		
ATM Pressure:	1010 hPa		

The testing was performed by Tom Hsu on 2019-7-17~2019-8-01.

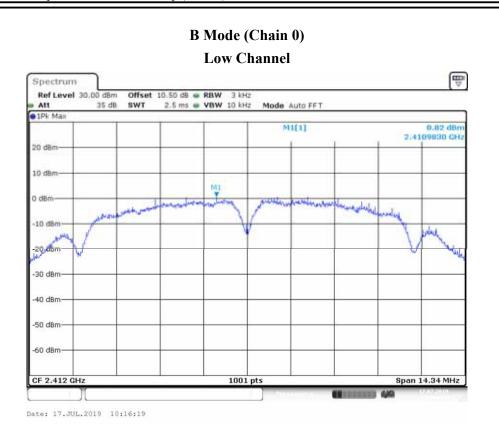
Channel	Frequency (MHz)		Power Spec (dBm/	Limit	Result				
		Chain 0	Chain 1	Chain 2	Total	(dBm/ 3kHz)			
B Mode									
Low	2412	0.82	-0.32	0.70	5.2	8	PASS		
Middle	2437	3.28	3.22	3.03	7.95	8	PASS		
High	2462	-0.50	0.59	0.95	5.16	8	PASS		
			GM	Iode					
Low	2412	-3.51	-4.18	-3.87	0.93	8	PASS		
Middle	2437	-0.77	-1.08	-1.24	3.75	8	PASS		
High	2462	-4.20	-4.37	-4.44	0.44	8	PASS		
	N20 Mode								
Low	2412	-2.12	-2.37	-2.25	2.53	8	PASS		
Middle	2437	0.00	0.11	0.91	5.13	8	PASS		
High	2462	-2.00	-2.47	-2.37	2.5	8	PASS		
N40 Mode									
Low	2422	-4.03	-4.70	-5.21	0.15	8	PASS		
Middle	2437	-4.40	-4.29	-4.19	0.48	8	PASS		
High	2452	-6.40	-6.40	-6.45	-1.65	8	PASS		

12.4 Test Results

The device is a master device. Use the 3 antenna , Unequal antenna gains, with equal transmit powers. For antenna gains

given by G1, G2, ..., GN dBi, per KDB 662911 D01 Multiple Transmitter Output v02r01, for

Power spectral density (PSD) measurements on the devices:

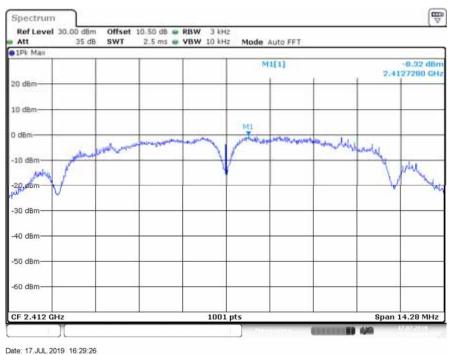

Array Gain = 10 log[(10G1 /20 + 10G2 /20 + ... + 10GN /20)2 /NANT] dBi.

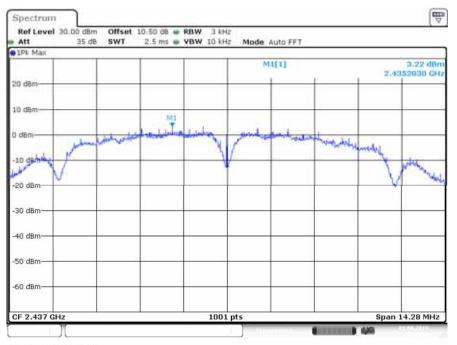
So:

Directional gain = 4.86 dBi

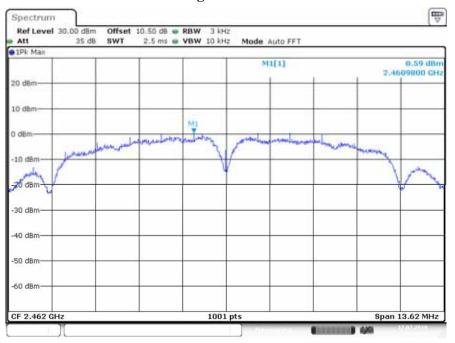
The Power density Limit was reduce 0 dB

Please refer to the following plots

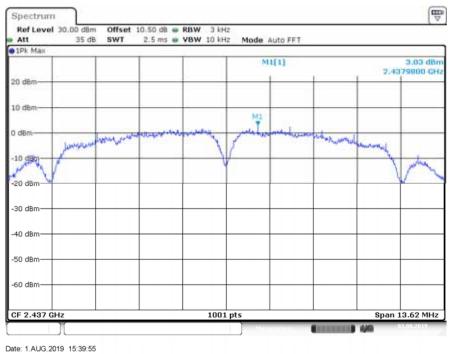

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 96 of 113


No.: RXZ190708006-00B

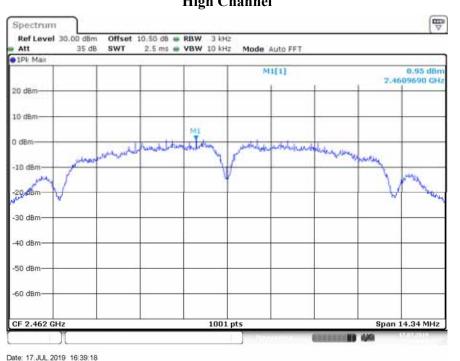
High Channel


B Mode (Chain 1) Low Channel

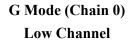



Date: 1.AUG.2019 15:45:36

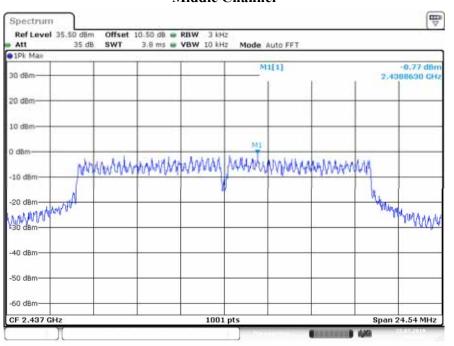
High Channel



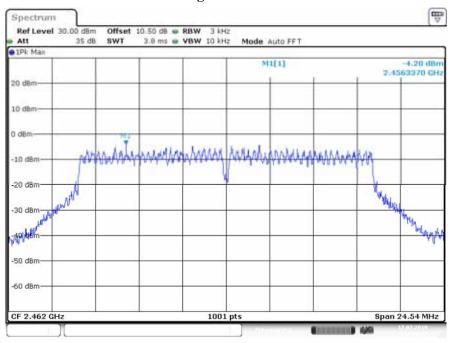
Date: 17.JUL.2019 16:22:40



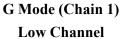
Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 99 of 113

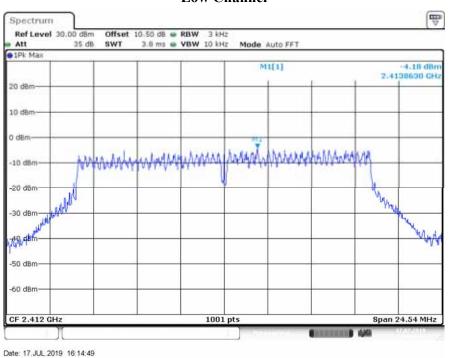


High Channel

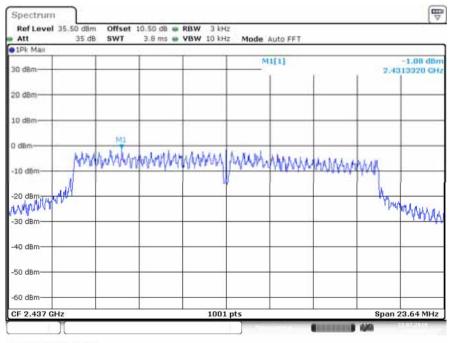


Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 100 of 113

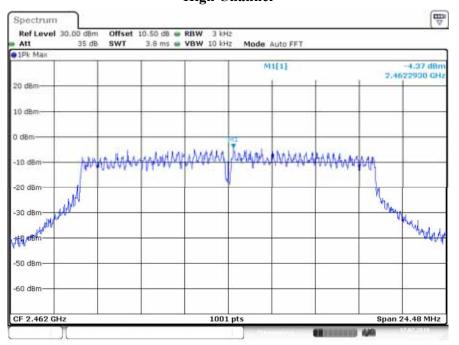



Date: 22.JUL 2019 15:34:47

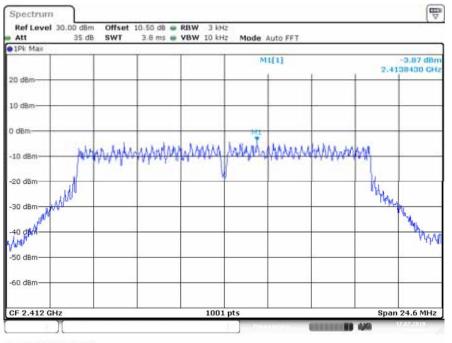
High Channel

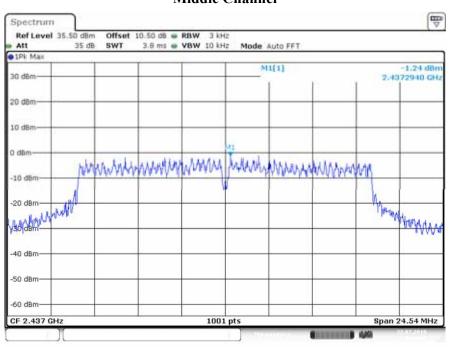


Date: 17.JUL.2019 11:22:44



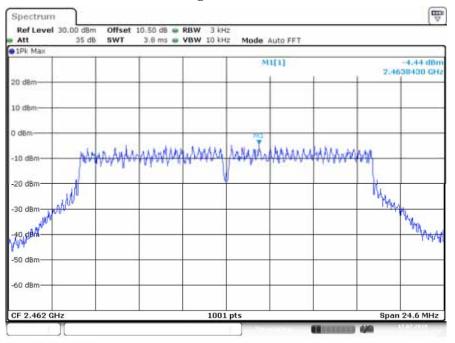
Date: 22.JUL 2019 15:32:00


No.: RXZ190708006-00B


High Channel

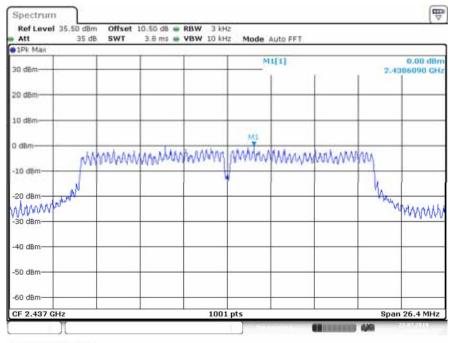
Date: 17.JUL.2019 16:19:54

G Mode (Chain 2) Low Channel



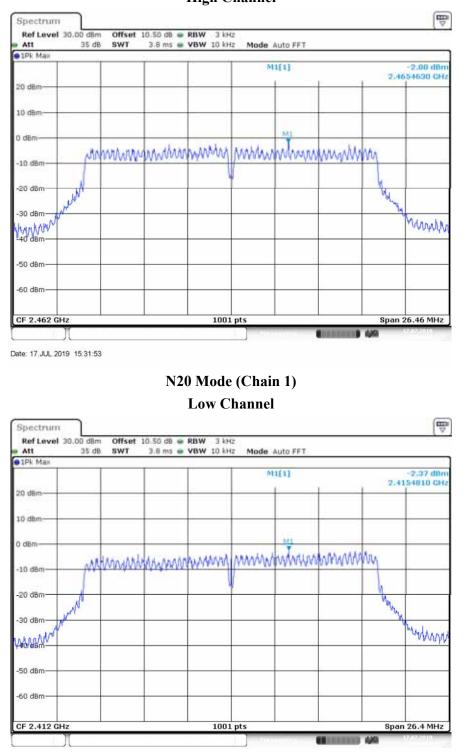
Date: 17.JUL.2019 16:46:38



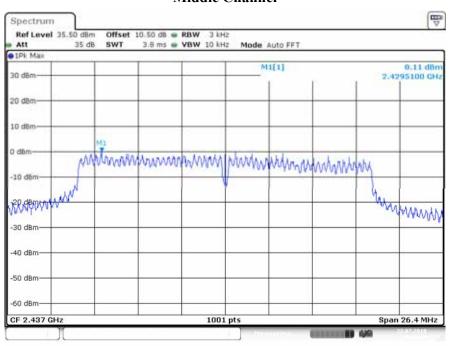

Date: 22.JUL 2019 15:27:01

High Channel

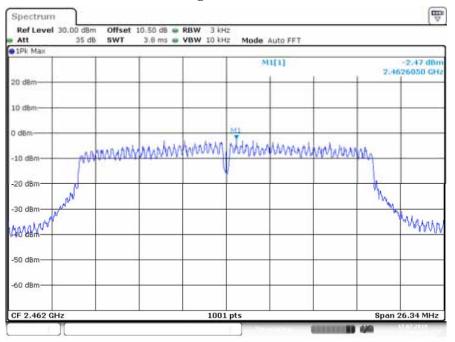
Date: 17.JUL 2019 16:41:28



Date: 22.JUL.2019 15:36:35

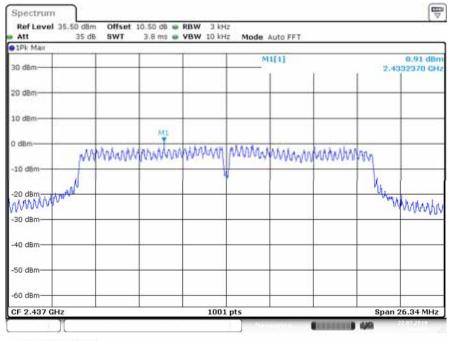

Bay Area Compliance Laboratories Corp.(Taiwan)

No.: RXZ190708006-00B


High Channel

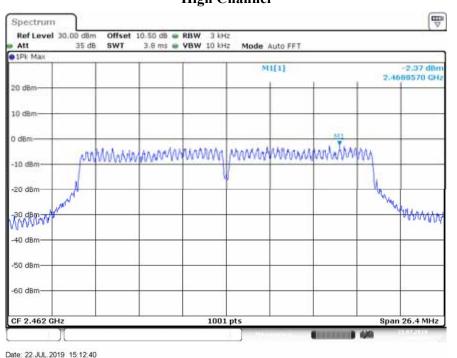
Date: 17.JUL 2019 16:08:06

Date: 22.JUL 2019 15:30:28

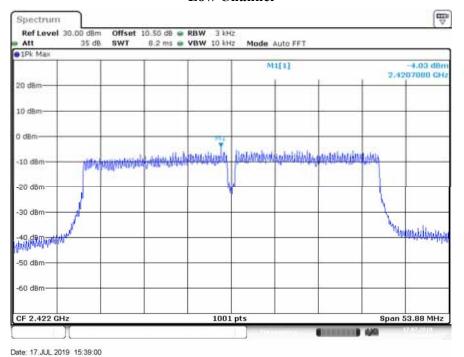

High Channel

Date: 17.JUL 2019 16:02:19

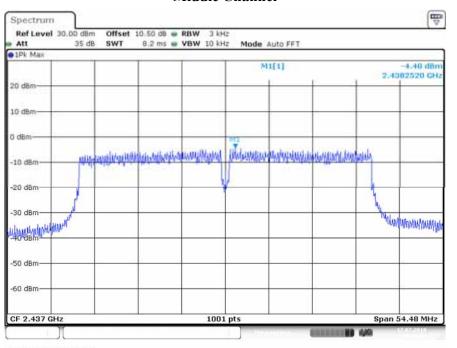
Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 107 of 113



Date: 22.JUL.2019 15:28:37

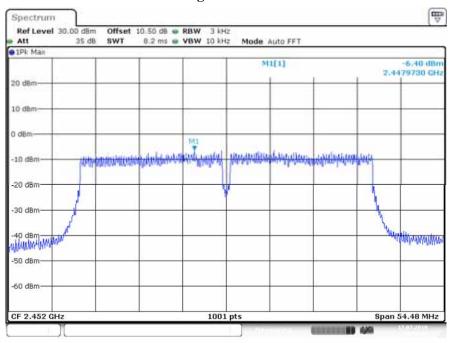

Bay Area Compliance Laboratories Corp.(Taiwan)

No.: RXZ190708006-00B



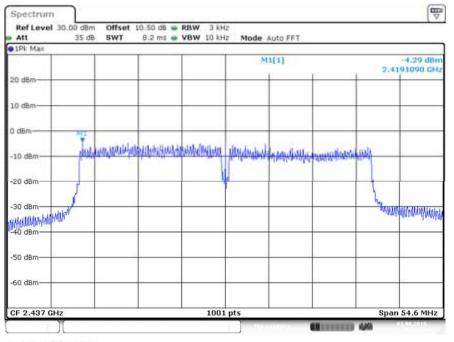
High Channel

N40 Mode (Chain 0) Low Channel



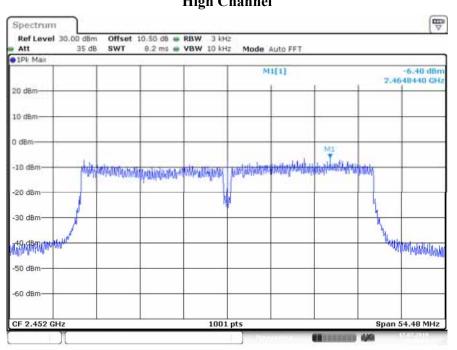
Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 109 of 113




Date: 17.JUL 2019 15:42:44

High Channel

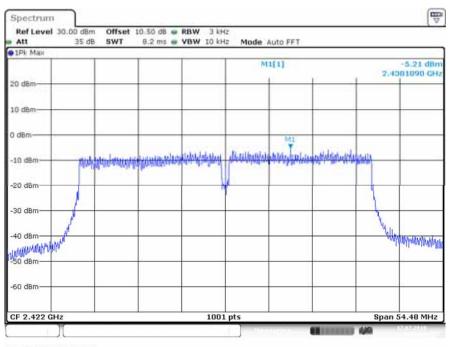
Date: 17.JUL.2019 15:51:47



Date: 1.AUG.2019 15:44:24

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 111 of 113

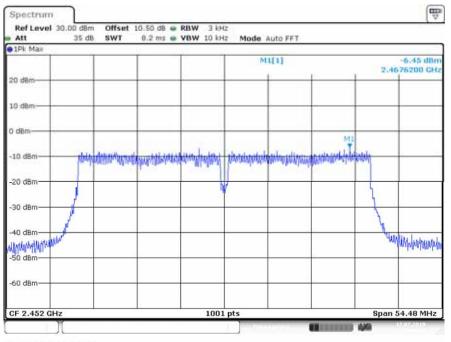
Bay Area Compliance Laboratories Corp.(Taiwan)


No.: RXZ190708006-00B

High Channel

Date: 17.JUL.2019 15:54:52

N40 Mode (Chain 2) Low Channel



Date: 17.JUL 2019 16:56:58

Date: 1.AUG.2019 15:49:22

High Channel

Date: 17.JUL.2019 17:07:07

***** END OF REPORT *****

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Taiwan) Page 113 of 113