

RF TEST REPORT

Report No.: 20240917G17912X-W3

Product Name: Cloud digital signage, Ultra High Brightness Window Displays, LCD

DIGITAL DISPLAY, LCD digital display, Commercial LCD display, High gloss window display sign, LCD multimedia display, Intelligent multimedia display, Interactive LCD display, Digital signage display

Main Model No.: M65SAR

Series Model No.: See page 5

FCC ID: 2AVB8-0010010043963

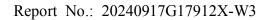
Applicant: Shanghai Goodview Electronics Technology Co., Ltd

Address: Room 118, 1st Floor, No. 2, Lane 3999, Xiupu Road, Pudong

District, Shanghai

Dates of Testing: 09/03/2024 - 10/17/2024

Issued by: CCIC Southern Testing Co., Ltd.


Electronic Testing Building, No.43, Shahe Road, Xili Street,

Lab Location:

Nanshan District, Shenzhen, Guangdong, China.

Tel: 8-755-26627338 **E-Mail:** manager@ccic-set.com

This test report consists of 59 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Cloud digital signage, Ultra High Brightness Window Product:

> Displays, LCD DIGITAL DISPLAY, LCD digital display, Commercial LCD display, High gloss window display sign, LCD multimedia display, Intelligent multimedia

> display, Interactive LCD display, Digital signage display

Trade Name Goodview

Applicant...... Shanghai Goodview Electronics Technology Co., Ltd

Room 118, 1st Floor, No. 2, Lane 3999, Xiupu Road, Applicant Address:

Pudong District, Shanghai

Manufacturer: Shanghai Goodview Electronics Technology Co., Ltd

Room 118, 1st Floor, No. 2, Lane 3999, Xiupu Road, Manufacturer Address:

Pudong District, Shanghai

Test Standards 47 CFR Part 15 Subpart E 15.407

Test Result.....: Pass

Tested by: 2024.10.17

Chuiwang Zhang, Test Engineer

Reviewed by Sun Jiaohui 2024.10.17

Sun Jiaohui, Senior Engineer

Approved by: 2024.10.17

Chris You, Manager

Table of Contents

1. GENERAL INFORMATION	5
1.1. EUT Description	5
1.2. Test Standards and Results	6
1.3. Channel List	7
1.4. Test environment and mode	7
1.5. Table for Supporting Units	7
1.6. Laboratory Facilities	8
2. 47 CFR PART 15E REQUIREMENTS	9
2.1. Antenna requirement	9
2.2. Maximum Conducted Output Power	10
2.3. Power spectral density (PSD)	12
2.4. 26dB Emission Bandwidth and 99% Occupied Bandwidth	14
2.5. Frequency Stability	16
2.6. Radiated Band Edge and Spurious Emission	18
2.7. AC Power Line Conducted Emission	28
3. LIST OF MEASURING EQUIPMENT	32
4. UNCERTAINTY OF EVALUATION	33
APPENDIX A	34

	(Change History
Issue	Issue Date Reason for change	
1.0 2024.10.17 First edition		

1. GENERAL INFORMATION

1.1. EUT Description

	Cloud digital signage,Ultra High Brightness Window Displays, LCD		
D 1 (A)	DIGITAL DISPLAY, LCD digital display, Commercial LCD display, High		
Product Name	gloss window display sign, LCD multimedia display, Intelligent		
	multimedia display, Interactive LCD display, Digital signage display		
	M43SAR, UHB43HD9, M43*******, M55SAR, UHB55HD9,		
	M55*****, M65SAR, UHB65HD9, M65*****, UHB******,		
Models	OM******(where "*" can be represented by 0-9, A-Z, or a blank space		
	to differentiate between different sales regions and channels, which does		
	not affect the product's safety and electromagnetic compatibility)		
EUT supports Radios	WI AND OCH 902 11 / /		
application	WLAN5.0GHz 802.11a/n/ac/ax		
Product Type	Client devices		
	802.11a/n: OFDM (BPSK/QPSK/16QAM/64QAM)		
Modulation Type	802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)		
	802.11ax: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)		
	802.11a: 54/48/36/24/18/12/9/6 Mbps		
Transfer Rate	802.11n: up to 150 Mbps		
Transier Rate	802.11ac: up to 200 Mbps		
	802.11ax: up to 286.765 Mbps		
Frequency Range	UNII-3: 5725 ~ 5850MHz		
Channel Bandwidth	802.11a: 20MHz		
Channel Bandwidth	802.11n/ac/ax: 20MHz/40MHz		
	UNII-3:		
Channel Number	5 for 802.11a, 802.11n(HT20), 802.11ac(VHT20), 802.11ax(HE20)		
	2 for 802.11n(HT40), 802.11ac(VHT40), 802.11ax(HE40)		
Antenna Type	External antenna		
Antenna Gain	2.3dBi		
Output Power (Max.)	13.39dBm		
Power supply	100V-240V~50/60Hz 6.0A		

Note 1: The information of antenna gain and cable loss is provided by the manufacturer and our lab is not responsible for the accuracy of the antenna gain and cable loss information.

1.2. Test Standards and Results

The purpose of the report is to conduct testing according to the following FCC certification standards:

No.	Identity	Document Title		
1	47 CFR Part 15	Padio Fraguency Davisos		
1	Subpart E §15.407	Radio Frequency Devices		
	KDB789033 D02 General	Guidelines for Compliance Testing of Unlicensed National		
2	UNII Test Procedures New Rules v02r01			
		Information Infrastructure (U-NII) Devices Part 15, Subpart E		
2	ANSI C63.10-2020	American National Standard for Testing Unlicensed Wireless		
3		Devices		

Test detailed items/section required by FCC rules and results are as below:

No.	FCC Rule	Description	Result
1	15.203 15.407(a)	Antenna Requirement	PASS
2	15.407(a)(3)(i)	Maximum Conducted Output Power	PASS
3	15.407(a)(12)	26dB Emission Bandwidth 99% Occupied Bandwidth	PASS
4	15.407(e)	6dB Emission Bandwidth	PASS
5	15.407(a)(3)(i)	Power spectral density (PSD)	PASS
6	15.207	AC Power Line Conducted Emission	PASS
7	15.205 15.209 15.407(b)	Radiated Band Edges and Spurious Emission	PASS
8	15.407(g)	Frequency Stability	PASS

1.3. Channel List

Operated band in 5725 MHz ~ 5850MHz

5 channels are provided for 802.11a, 802.11n-HT20, 802.11ac-VHT20 and 802.11ax-HE20.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
149	5745	161	5805
153	5765	165	5825
157	5785		

2 channels are provided for 802.11n-HT40, 802.11ac-VHT40 and 802.11ax-HE40.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
151	5755	159	5795

1.4. Test environment and mode

During the measurement, the environmental conditions were within the listed ranges:

Operating Environment		
Temperature	15°C - 35°C	
Humidity	30% -60%	
Atmospheric Pressure	86kPa-106kPa	
Test mode:		
Continuously transmitting mode Keep the EUT in continuous transmitting with modulation		

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

For Frequency band 5725 ~ 5850 MHz				
T-4 M-1-	Frequency(MHz)			Data mata
Test Mode	LCH	MCH	НСН	Data rate
802.11a	5745	5785	5825	6 Mbps
802.11n-HT20/ac-VHT20/ax-HE20				MCS 0
802.11n-HT40/ac-VHT40/ax-HE40	5755	/	5795	MCS 0

Note: After scanning all modulation types and data rates for all test patterns, the above list was found to be the worst case.

1.5. Table for Supporting Units

No.	Equipment	Brand Name	Model Name	Manufacturer	Serial No.	Note
1	Laptop	HP	TPN-Q221	HP	5CD14347QB	FCC DOC

1.6. Laboratory Facilities

FCC-Registration No.: CN1283

CCIC Southern Testing Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN1283, valid time is until Jun. 30th, 2025.

ISED Registration: 11185A

CCIC Southern Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A on Aug. 04, 2016, valid time is until Jun. 30th, 2025.

CAB number: CN0064

A2LA Code: 5721.01

CCIC-SET is a third party testing organization accredited by A2LA according to ISO/IEC 17025. The accreditation certificate number is 5721.01.

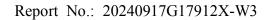
2. 47 CFR Part 15E Requirements

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

According to FCC 15.407(a)(3): For the band 5.725-5.850 GHz, If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


2.1.2. Antenna Information

Antenna General Information:

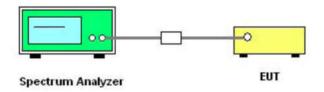
No.	Operating frequency range	Ant. Type	Ant. Gain
1	5725 ~ 5850MHz	external	2.3dBi

2.1.3. Result: comply

The EUT has a unique antenna. Please refer to the EUT internal photos.

2.2. Maximum Conducted Output Power

2.2.1. Limit of Maximum Conducted Output Power

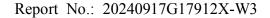

47 CFR Part 15.407(a)(3)(i):

For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

2.2.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.2.3. Test Setup



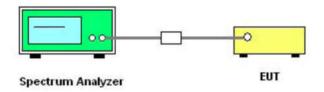
2.2.4. Test Procedures

- 1. The testing follows the of KDB 789033 D02 v02r01 Section II.E.2.b and ANSI C63.10-2020 Section 12.4.2.2.
- 2. The RF output of EUT was connected to spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Power is calculated by integrating over the spectrum of the entire 99% OBW signal using the instrument's band power measurement feature.
- 4. Set span to encompass the entire 99% OBW of the signal.
- 5. Set RBW = 1MHz, $VBW \ge 3MHz$, Sweep time = Auto, Detector = power averaging (RMS).
- 6. Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 7. Trace average at least 100 traces in power averaging (rms) mode.
- 8. Replace the EUT center frequency and repeat steps $3\sim7$.

2.2.5.	Test Results of Maximum Conducted Output Power
Please r	refer to APPENDIX A for detail

2.3. Power spectral density (PSD)

2.3.1. Limit of Power Spectral Density


47 CFR Part 15.407(a)(3)(i):

For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500kHz band.

2.3.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.3.3. Test Setup

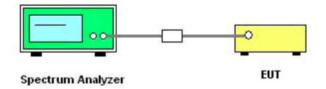
2.3.4. Test Procedures

- 1. The testing follows the of KDB 789033 D02 v02r01 Section II.F and ANSI C63.10-2020 Section 12.6.
- 2. The RF output of EUT was connected to spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set span to encompass the entire 99% OBW of the signal.
- 4. For U-NII-1, U-NII-2a, U-NII-2c Band: Set RBW = 1MHz, VBW ≥ 3MHz, Sweep time = Auto, Detector = power averaging (RMS).
- 5. For U-NII-3 Band: Set RBW = 500kHz, VBW ≥ 3MHz, Sweep time = Auto, Detector = power averaging (RMS).
- 6. Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 7. Trace average at least 100 traces in power averaging (rms) mode.
- 8. Use the peak search function on the instrument to find the peak of the spectrum.
- 9. Replace the EUT center frequency and repeat steps 3~8.

2.3.	5. Test Result of Power Spectral Density
Pleas	se refer to APPENDIX A for detail

2.4. 26dB Emission Bandwidth and 99% Occupied Bandwidth

2.4.1. Limit of 26dB Emission Bandwidth and 99% Occupied Bandwidth


26dB Emission Bandwidth and 99% Occupied Bandwidth no Bandwidth limit.

The minimum 6dB bandwidth of U-NII-3 shall be at least 500 kHz.

2.4.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.4.3. Test Description

2.4.4. Test Procedures

- 1. The testing follows the of KDB 789033 D02 v02r01 Section II.C.D and ANSI C63.10-2020 Section 12.5.
- 2. The RF output of EUT was connected to spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Use the spectrum analyzer "Channel Bandwidth" function to easurement the 26dB EBW, 6dB EBW and 99% OBW.
- 4. Set center frequency to the nominal EUT channel center frequency.
- 5. For 99% OBW Measurement:

Set Span = 1.5 times to 5.0 times the OBW/ RBW = Within 1% to 5% of OBW/VBW \geq 3 × RBW.

6. For 26dB EBW Measurement:

Set Span = 2.0 times to 5.0 times the EBW/ RBW = Within 1% to 5% of EBW/VBW \geq 3 × RBW.

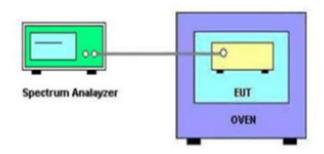
7. For 6dB EBW Measurement:

Set RBW = 100kHz, VBW $\geq 3 \times RBW$.

- 8. Set Detector = Peak, Trace mode = max hold and Sweep time = auto couple.
- 9. Allow the trace to stabilize.
- 10. Replace the EUT center frequency and repeat steps 3~9.

2.4.5.	Test Results of 26dB Emission Bandwidth and 99% Occupied Bandwidth
Please	refer to APPENDIX A for detail

2.5. Frequency Stability

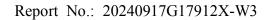

2.5.1. Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

2.5.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.5.3. Test Setup



2.5.4. Test Procedures

- 1. The testing follows the of KDB 789033 D02 v02r01 Section II.A.3 and ANSI C63.10-2020 Section 6.8.
- 2. The EUT is installed in an environment test chamber with external power source, was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set the chamber to operate at 50°C and external power source to output at nominal voltage of EUT.
- 5. A sufficient stabilization period at each temperatures in used prior to each frequency measurement.
- 6. The test shall be performed under -30°C to 50°C and 85% to 115% of the nominal voltage. Change setting of chamber and external power source to complete all conditions.
- 7. Replace the EUT center frequency and repeat steps $3\sim6$.

2.5.5.	Test Result of Frequency Stability
Please	refer to APPENDIX A for detail

2.6. Radiated Band Edge and Spurious Emission

2.6.1. Limit of Radiated Band Edges and Spurious Emission

Radiated emission which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

	FCC Part 15.40	7(b)	
Frequency Band (MHz)	Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength @3m (dBµV/m)
5150 - 5250	Outside of the 5.15~5.35 GHz	-27	68.2
	< 5650	-27	68.2
	5650~5700	-27~10	68.2~105.2
	5700~5720	10~15.6	105.2~110.8
5725 - 5850	5720~5725	15.6~27	110.8~122.2
3723 - 3830	5850~5855	27~15.6	122.2~110.8
	5855~5875	15.6~10	110.8~105.2
	5875~5925	10~-27	105.2~68.2
	> 5925	-27	68.2

Note:

- 1) EIRP[dBm] = E[dB μ V/m] + 20 log (d[m]) 104.77, d is the measurement distance in m.
- 2) $E[dB\mu V/m] = EIRP[dBm] + 95.2 = 68.2 dBuV/m$, for EIPR[dBm] = -27dBm.
 - $E[dB\mu V/m] = EIRP[dBm] + 95.2 = 105.2 dBuV/m$, for EIPR[dBm] = 10dBm.
 - $E[dB\mu V/m] = EIRP[dBm] + 95.2 = 110.8 dBuV/m$, for EIPR[dBm] = 15.6 dBm.
 - $E[dB\mu V/m] = EIRP[dBm] + 95.2 = 122.2 dBuV/m$, for EIPR[dBm] = 27dBm.

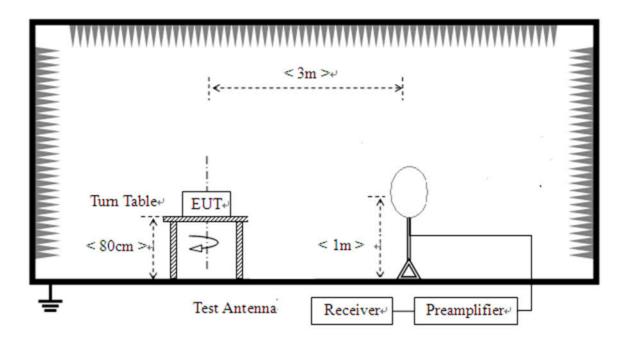
Applicable To	Limit			
KDB 789033 D02 General UNII Test Procedures New Rules v02r01	Field Strength at 3m			
	PK: 68.2(dBμV/m)	AV: 54 (dBμV/m)		

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

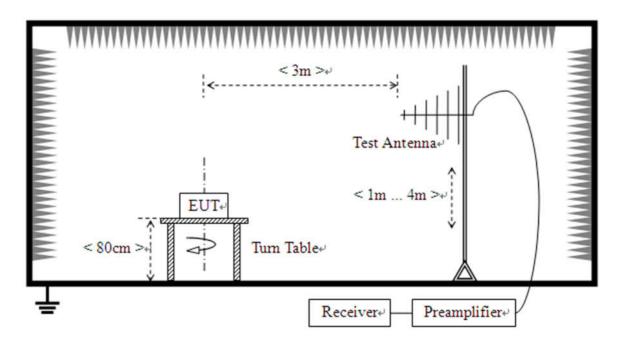
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	775-6.26825 108-121.94 1718.8-1722.2		13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41	1	1	1

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

2.6.2. Measuring Instruments

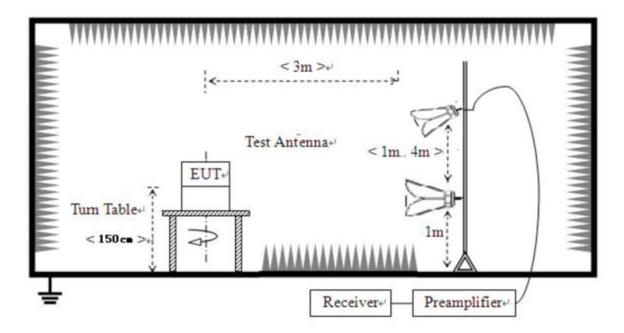

The measuring equipment is listed in the section 3 of this test report.

²Above 38.6.



2.6.3. Test Setup

For radiated emissions from 9 kHz to 30 MHz



For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

2.6.4. Test Procedures

- 1. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- 6. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for

Quasi-peak detection (QP) at frequency below 1 GHz.

2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.

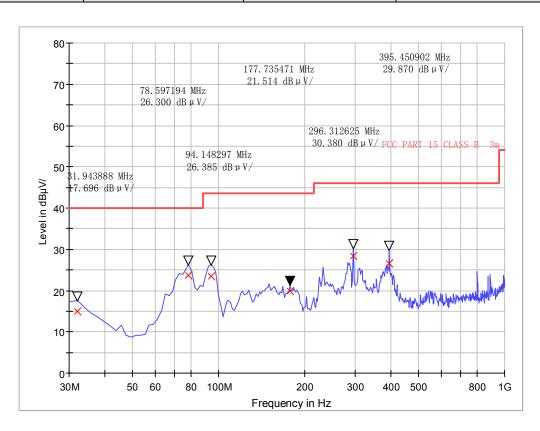
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 5. Only worst-Case mode data provide here, 802.11a (20MHz) 5180MHz for Below 1GHz.

2.6.5. Test Result of Radiated Band Edge and Spurious Emission

For 9 kHz to 30MHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

For 30MHz to 1GHz, All of the EUT Configure mode were tested and found 802.11ac_5745MHz channel is the worst mode, the worst case is recorded in this report.

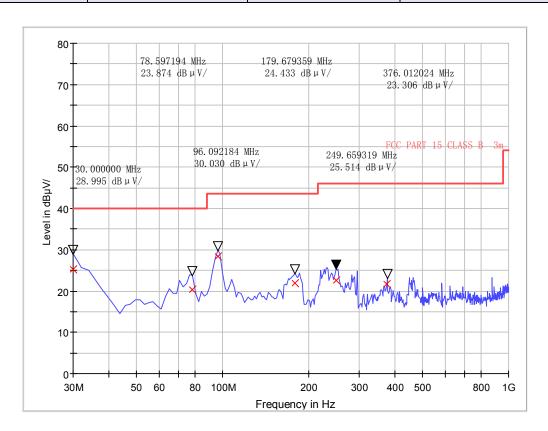
For 1GHz to 18GHz, Only worst-case data is reported.


For above 18GHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

For 30MHz to 1000 MHz

Test site:	te: 3M anechoic chamber Environment:		Temp: 23℃; Humi:48%;101kPa		
Operator:	Operator: Huang Chaoming		2024.10.15		
Test Mode:	,		Pass		

Frequency (MHz)	QuasiPeak (dBμV/m)	Bandwidth (kHz)	Height (cm)	Polarity	Corr. (dB/m)	Margin - QPK (dB)	Limit - QPK (dBμV/m)
31.960000	14.98	120.000	100.0	Н	18.3	25.02	40.0
78.600000	23.66	120.000	100.0	Н	7.7	16.34	40.0
94.160000	23.50	120.000	100.0	Н	9.5	20.00	43.5
177.720000	19.88	120.000	100.0	Н	11.9	23.62	43.5
296.320000	28.40	120.000	100.0	Н	14.9	17.60	46.0
395.440000	26.67	120.000	100.0	Н	16.8	19.33	46.0


Remark:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB).
- **3**. Margin value = Limit value Emission Level.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Only the antenna height (from 1m to 4m) at maximum reading are recorded.

	Test site: 3M anechoic chamber Operator: Huang Chaoming		3M anechoic chamber Environment:	
			Test Date:	2024.10.15
	Test Mode: 5G WIFI - TX		Test Result:	Pass

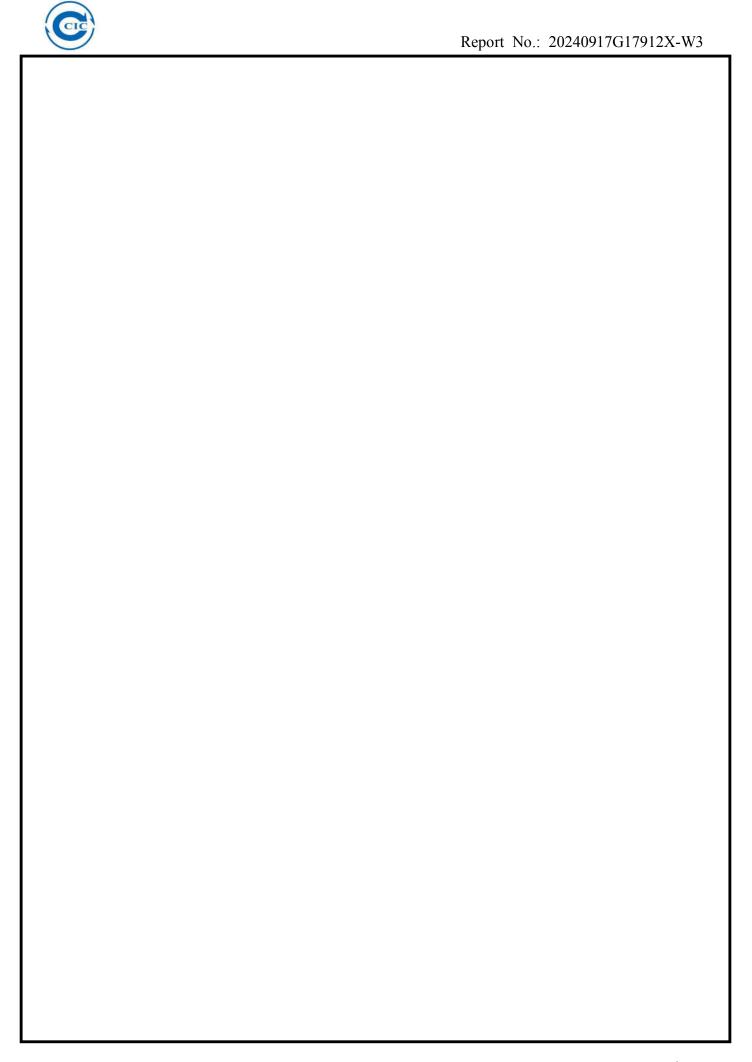
Frequency	QuasiPeak	Bandwidth	Height	Polarity	Corr.	Margin - QPK	Limit - QPK
(MHz)	$(dB\mu V/m)$	(kHz)	(cm)	1 olding	(dB/m)	(dB)	$(dB\mu V/m)$
30.000000	25.20	120.000	100.0	V	19.4	14.80	40.0
78.600000	20.32	120.000	100.0	V	7.7	19.68	40.0
96.080000	28.37	120.000	100.0	V	9.7	15.13	43.5
179.680000	21.95	120.000	100.0	V	11.8	21.55	43.5
249.640000	22.51	120.000	100.0	V	13.5	23.49	46.0
376.000000	21.77	120.000	100.0	V	16.5	24.23	46.0

Remark:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB).
- 3. Margin value = Limit value Emission Level.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Only the antenna height (from 1m to 4m) at maximum reading are recorded.

For 1GHz to 40 GHz

			U	-NII-3_802.1	11a_5745M	Hz			
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5650.00	51.73	68.20	-16.47	1.50	200	50.93	0.80	Horizontal	Peak
5700.00	51.72	105.20	-53.48	1.50	200	50.48	1.24	Horizontal	Peak
5720.00	51.24	110.80	-59.56	1.50	200	49.96	1.28	Horizontal	Peak
5725.00	50.15	122.20	-72.05	1.50	200	48.85	1.30	Horizontal	Peak
11490.00	53.54	68.20	-14.66	1.50	200	41.99	11.55	Horizontal	Peak
11490.00	43.43	54.00	-10.57	1.50	200	31.88	11.55	Horizontal	Average
5650.00	51.45	68.20	-16.75	1.50	160	50.65	0.80	Vertical	Peak
5700.00	50.61	105.20	-54.59	1.50	160	49.37	1.24	Vertical	Peak
5720.00	50.56	110.80	-60.24	1.50	160	49.28	1.28	Vertical	Peak
5725.00	51.96	122.20	-70.24	1.50	160	50.66	1.30	Vertical	Peak
11490.00	53.12	68.20	-15.08	1.50	160	41.57	11.55	Vertical	Peak
11490.00	43.63	54.00	-10.37	1.50	160	32.08	11.55	Vertical	Average
			U	-NII-3_802.1	11a_5825M	Hz			
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5850.00	51.33	122.20	-70.87	1.50	200	49.51	1.82	Horizontal	Peak
5855.00	51.15	110.80	-59.65	1.50	200	49.30	1.85	Horizontal	Peak
5875.00	52.09	105.20	-53.11	1.50	200	50.11	1.98	Horizontal	Peak
5925.00	52.15	68.20	-16.05	1.50	200	50.03	2.12	Horizontal	Peak
11650.00	53.68	68.20	-14.52	1.50	200	42.04	11.64	Horizontal	Peak
11650.00	43.61	54.00	-10.39	1.50	200	31.97	11.64	Horizontal	Average
5850.00	50.84	122.20	-71.36	1.50	160	49.02	1.82	Vertical	Peak
5855.00	51.83	110.80	-58.97	1.50	160	49.98	1.85	Vertical	Peak
5875.00	50.99	105.20	-54.21	1.50	160	49.01	1.98	Vertical	Peak
5925.00	53.19	68.20	-15.01	1.50	160	51.07	2.12	Vertical	Peak
11650.00	53.42	68.20	-14.78	1.50	160	41.78	11.64	Vertical	Peak
11030.00									

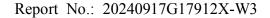

Remark:

1. $Emission \ Level(dBuV/m) = Raw \ Value(dBuV) + Correction \ Factor(dB/m)$

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Tnly the antenna height (from 1m to 4m) and turntable angle (from 0 degrees to 360 degrees) at maximum reading are recorded.



			U-NII	[-3_802.11ax	-HE40_575	55MHz			
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5650.00	51.29	68.20	-16.91	1.50	200	50.49	0.80	Horizontal	Peak
5700.00	51.56	105.20	-53.64	1.50	200	50.32	1.24	Horizontal	Peak
5720.00	53.08	110.80	-57.72	1.50	200	51.80	1.28	Horizontal	Peak
5725.00	50.22	122.20	-71.98	1.50	200	48.92	1.30	Horizontal	Peak
11510.00	54.66	68.20	-13.54	1.50	200	43.10	11.56	Horizontal	Peak
11510.00	43.74	54.00	-10.26	1.50	200	32.18	11.56	Horizontal	Average
5650.00	52.28	68.20	-15.92	1.50	160	51.48	0.80	Vertical	Peak
5700.00	49.52	105.20	-55.68	1.50	160	48.28	1.24	Vertical	Peak
5720.00	50.29	110.80	-60.51	1.50	160	49.01	1.28	Vertical	Peak
5725.00	52.92	122.20	-69.28	1.50	160	51.62	1.30	Vertical	Peak
11510.00	54.12	68.20	-14.08	1.50	160	42.56	11.56	Vertical	Peak
11510.00	43.19	54.00	-10.81	1.50	160	31.63	11.56	Vertical	Average
			U-NII	[-3_802.11ax	-HE40_579	5MHz			
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
5850.00	52.19	122.20	-70.01	1.50	200	50.37	1.82	Horizontal	Peak
5855.00	51.46	110.80	-59.34	1.50	200	49.61	1.85	Horizontal	Peak
5875.00	51.53	105.20	-53.67	1.50	200	49.55	1.98	Horizontal	Peak
5925.00	52.79	68.20	-15.41	1.50	200	50.67	2.12	Horizontal	Peak
11590.00	54.03	68.20	-14.17	1.50	200	42.52	11.51	Horizontal	Peak
11590.00	43.07	54.00	-10.93	1.50	200	31.56	11.51	Horizontal	Average
5850.00	51.09	122.20	-71.11	1.50	160	49.27	1.82	Vertical	Peak
5855.00	51.33	110.80	-59.47	1.50	160	49.48	1.85	Vertical	Peak
5875.00	52.01	105.20	-53.19	1.50	160	50.03	1.98	Vertical	Peak
5925.00	53.78	68.20	-14.42	1.50	160	51.66	2.12	Vertical	Peak
11590.00	53.17	68.20	-15.03	1.50	160	41.66	11.51	Vertical	Peak
11590.00	44.09	54.00	-9.91	1.50	160	32.58	11.51	Vertical	Average

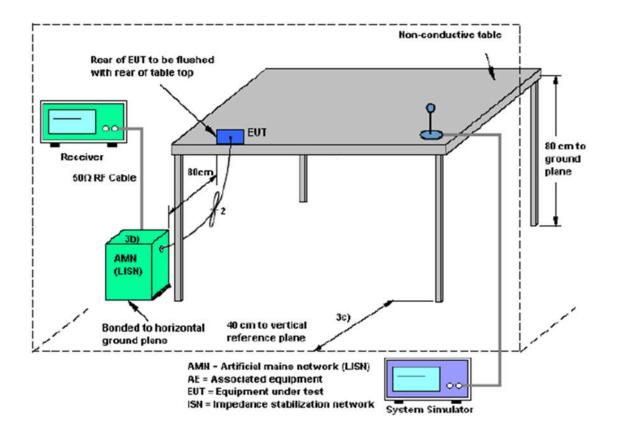
Remark:

- 1. $Emission \ Level(dBuV/m) = Raw \ Value(dBuV) + Correction \ Factor(dB/m)$
- 2. Correction $Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) Pre-Amplifier\ Factor(dB)$
- 3. Margin value = Emission Level Limit value
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Trily the antenna height (from 1m to 4m) and turntable angle (from 0 degrees to 360 degrees) at maximum reading are recorded.

2.7. AC Power Line Conducted Emission

2.7.1. Limit of AC Power Line Conducted Emission

47 CFR Part 15.207:


For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eraguanay ranga (MHz)	Conducted Limit (dBµV)			
Frequency range (MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5	56	46		
5 - 30	60	50		

2.7.2. Measuring Instruments

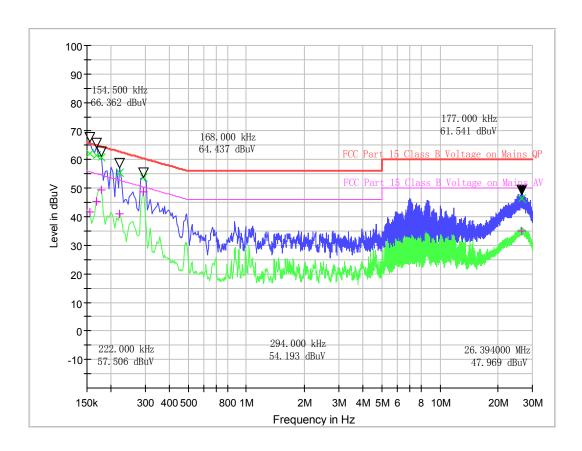
The measuring equipment is listed in the section 3 of this test report.

2.7.3. Test Setup

2.7.4. Test Procedures

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.

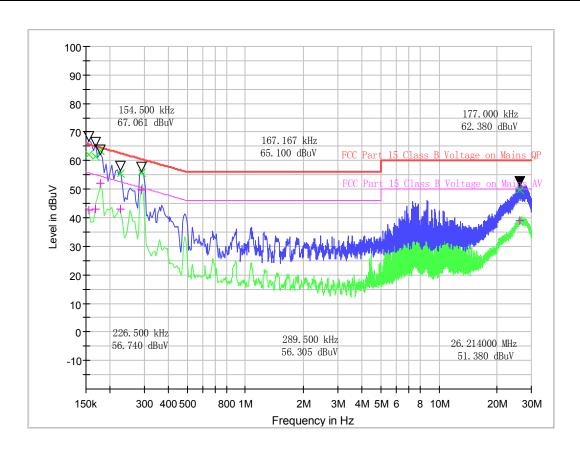
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.


2.7.5. Test Result of AC Power Line Conducted Emission

The EUT configuration of the emission tests is 5G WLAN Link + AC 120V.

All of the EUT Configure mode were tested and found 802.11ac_5745MHz channel is the worst mode, the worst case is recorded in this report.

Test site:	Shield ROOM 1	Environment:	Temp: 23℃; Humi:53%;101kPa
Operator:	LIQINGLONG	Test Date:	2024.10.15
Test Mode:	5G WIFI- TX	Test Part:	L Line

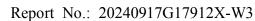

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBμV)	Corr.Factor (dB)	Margin - QPK(dB)	Limit - QPK (dBµV)	Margin - AV (dB)	Limit - AV (dBµV)
0.154500	62.09	41.68	20.4	3.67	65.8	14.08	55.8
0.168000	61.47	45.49	20.4	3.59	65.1	9.57	55.1
0.177000	60.61	49.49	20.4	4.01	64.6	5.13	54.6
0.222000	55.42	40.95	20.4	7.32	62.7	11.79	52.7
0.294000	53.77	48.80	20.4	6.64	60.4	1.61	50.4
26.394000	46.34	35.01	19.6	13.66	60.0	14.99	50.0

Test Result: Pass

Note: Final Level = Receiver Read level + Correction factor.

Test site:	Shield ROOM 1	Environment:	Temp: 23℃; Humi:53%;101kPa
Operator:	LIQINGLONG	Test Date:	2024.09.06
Test Mode:	5G WIFI- TX	Test Part:	N Line

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBμV)	Corr.Factor (dB)	Margin - QPK(dB)	Limit - QPK (dBµV)	Margin - AV (dB)	Limit - AV (dBμV)
0.154500	62.23	42.66	20.2	3.52	65.8	13.09	55.8
0.168000	61.33	43.00	20.1	3.73	65.1	12.06	55.1
0.177000	63.58	52.12	20.1	1.05	64.6	2.50	54.6
0.226500	55.46	42.88	20.1	7.12	62.6	9.69	52.6
0.289500	55.82	49.85	20.2	4.72	60.5	0.69	50.5
26.214000	49.58	38.91	19.5	10.42	60.0	11.09	50.0


Test Result: Pass

Note: Final Level = Receiver Read level + Correction factor.

3. List of measuring equipment

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	5M Anechoic Chamber	Albatross	SAC-5MAC 12.8x6.8x6.4m	A0304210	2022.06.09	2026.06.08
2	EMI Test Receiver	ROHDE&SCHWARZ	ESW26	A180502935	2023.06.08	2024.06.07
3	Loop Antenna	Schwarz beck	HFH2-Z2	A0304220	2022.05.02	2025.05.01
4	Broadband antenna (30MHz~1GHz)	R&S	HL562	A0304224	2023.06.08	2024.06.07
5	EMI Horn Ant. (1-18G)	ETC	1209	A150402241	2021.01.02	2024.01.01
6	Horn antenna (18GHz~26.5GHz)	AR	AT4510	A0804450	2023.06.01	2024.05.31
7	Amplifier 30M~1GHz	MILMEGA	80RF1000-10004	A140101634	2022.12.13	2023.12.12
8	Amplifier 1G~18GHz	MILMEGA	AS0104R-800/400	A160302517	2022.12.13	2023.12.12
9	Spectrum Analyzer	KEYSIGHT	N9030A	A160702554	2023.02.20	2024.02.19
10	Test Receiver	R&S	ESIB7	A0501375	2023.03.16	2024.03.15
11	Broadband Ant.	2786	ETC	A150402240	2021.09.16	2024.03.03
12	3M Anechoic Chamber	Albatross	SAC-3MAC 9*6*6m	A0412375	2019.03.26	2024.03.25
13	Temperature chamber	ESPECA	SU-642	150802409	2023.03.18	2024.03.17
14	Test Receiver	KEYSIGHT	N9038A	A141202036	2023.06.12	2024.06.11
15	LISN	ROHDE&SCHWARZ	ENV216	A140701847	2023.06.08	2024.06.07

4. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of AC Power Line Conducted Emission Measurement (150kHz~30MHz)

,					
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	2.8dB				
Uncertainty of Radiated Emission Measurement (9kF	Hz~30MHz)				
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	3.5dB				
Uncertainty of Radiated Emission Measurement (30N	MHz~1GHz)				
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	3.91dB				
Uncertainty of Radiated Emission Measurement (1GI	Hz~18GHz)				
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	4.5dB				
Uncertainty of Radiated Emission Measurement (180	GHz~40GHz)				
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	4.9dB				
Uncertainty of RF Conducted Measurement (9kHz~40GHz)					
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	1.2dB				

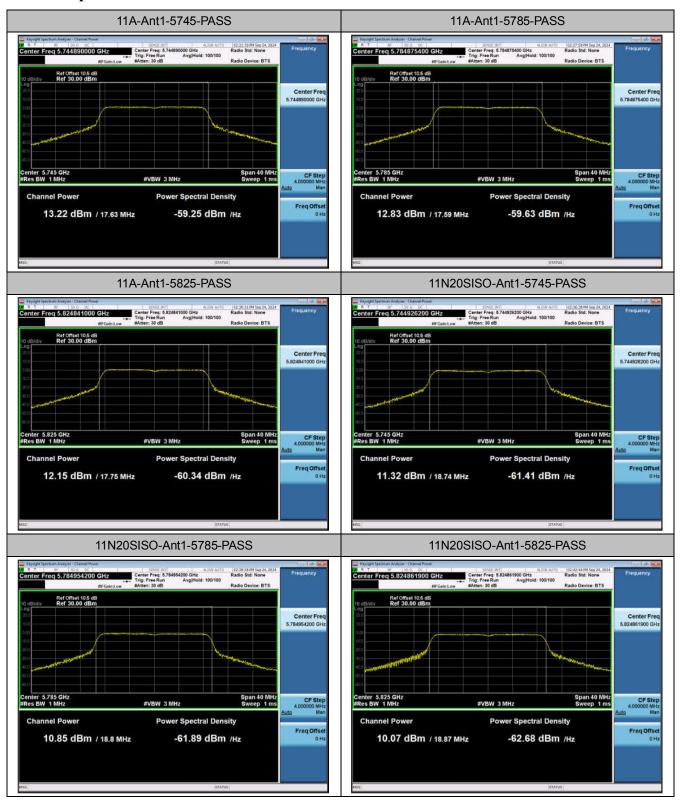
Appendix A

Duty Cycle

Test Result and Data

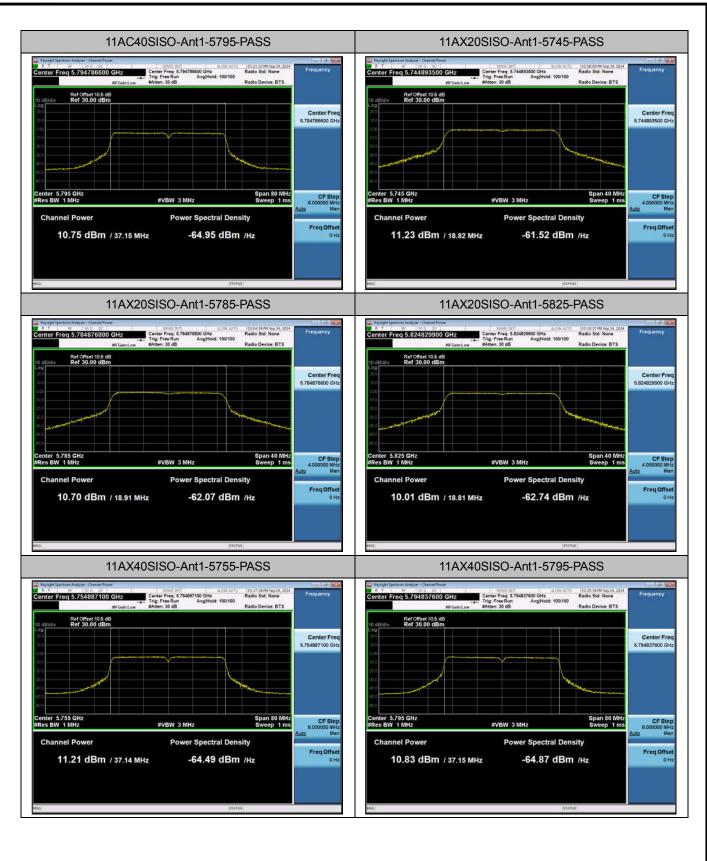
Test Mode	Antenna	Frequency[MHz]	ON Time[ms]	Period[ms]	Duty Cycle[%]	DC Factor
11A	Ant1	5745	1.37	1.54	88.96	0.51
11N20SISO	Ant1	5745	1.27	1.47	86.39	0.64
11N40SISO	Ant1	5755	0.64	0.75	85.33	0.69
11AC20SISO	Ant1	5745	1.28	1.51	84.77	0.72
11AC40SISO	Ant1	5755	0.64	0.76	84.21	0.75
11AX20SISO	Ant1	5745	1.29	1.45	88.97	0.51
11AX40SISO	Ant1	5755	0.64	0.78	82.05	0.86

Maximum Conducted Output Power

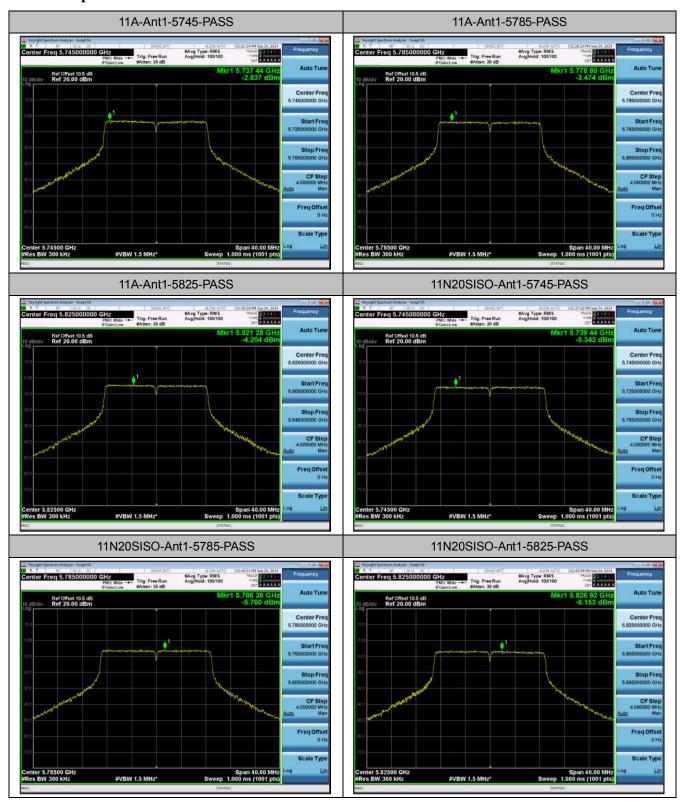

Test Result and Data

Test Mode	Antenna	Frequency [MHz]	Power [dBm]	DC Factor [dBm]	Result [dBm]	Power Limit [dBm]	Verdict
11A	Ant1	5745	13.22	0.51	13.73	≤30.00	PASS
11A	Ant1	5785	12.83	0.51	13.34	≤30.00	PASS
11A	Ant1	5825	12.15	0.51	12.66	≤30.00	PASS
11N20SISO	Ant1	5745	11.32	0.64	11.96	≤30.00	PASS
11N20SISO	Ant1	5785	10.85	0.64	11.49	≤30.00	PASS
11N20SISO	Ant1	5825	10.07	0.64	10.71	≤30.00	PASS
11N40SISO	Ant1	5755	11.41	0.69	12.10	≤30.00	PASS
11N40SISO	Ant1	5795	10.92	0.69	11.61	≤30.00	PASS
11AC20SISO	Ant1	5745	11.25	0.72	11.97	≤30.00	PASS
11AC20SISO	Ant1	5785	10.84	0.72	11.56	≤30.00	PASS
11AC20SISO	Ant1	5825	10.02	0.72	10.74	≤30.00	PASS
11AC40SISO	Ant1	5755	11.22	0.75	11.97	≤30.00	PASS
11AC40SISO	Ant1	5795	10.75	0.75	11.50	≤30.00	PASS
11AX20SISO	Ant1	5745	11.23	0.51	11.74	≤30.00	PASS
11AX20SISO	Ant1	5785	10.70	0.51	11.21	≤30.00	PASS
11AX20SISO	Ant1	5825	10.01	0.51	10.52	≤30.00	PASS
11AX40SISO	Ant1	5755	11.21	0.86	12.07	≤30.00	PASS
11AX40SISO	Ant1	5795	10.83	0.86	11.69	≤30.00	PASS

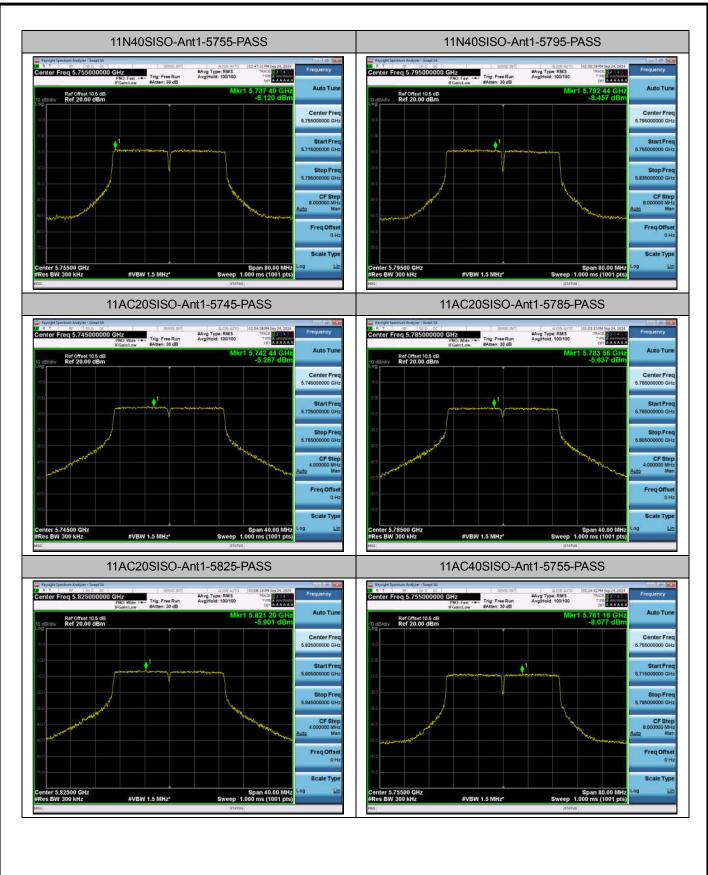
Note: The Duty Cycle Factor is compensated in the graph.


Test Graphs

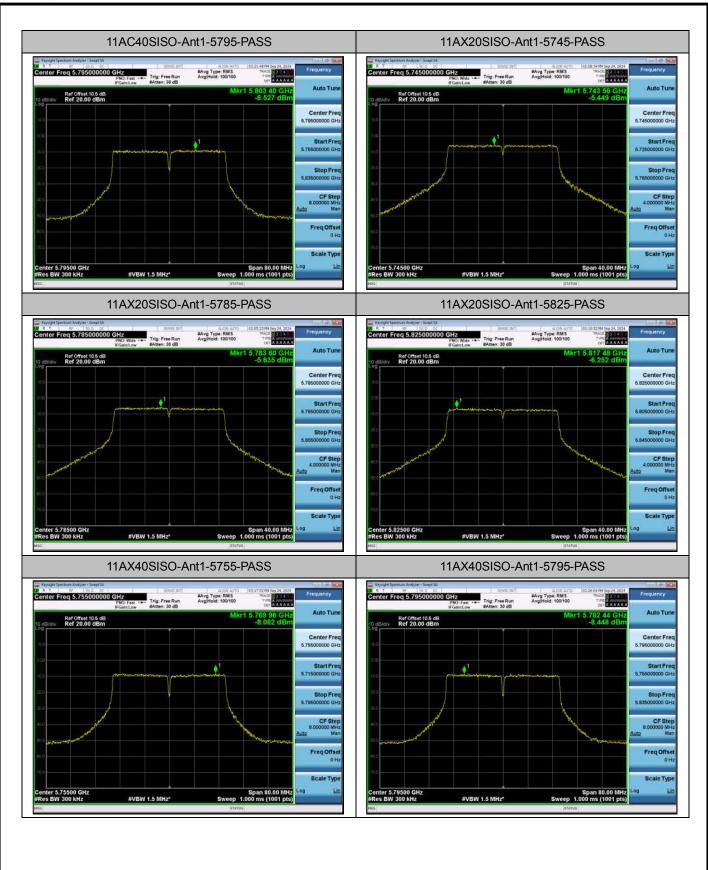
Power Spectral Density

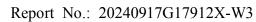

Test Result and Data

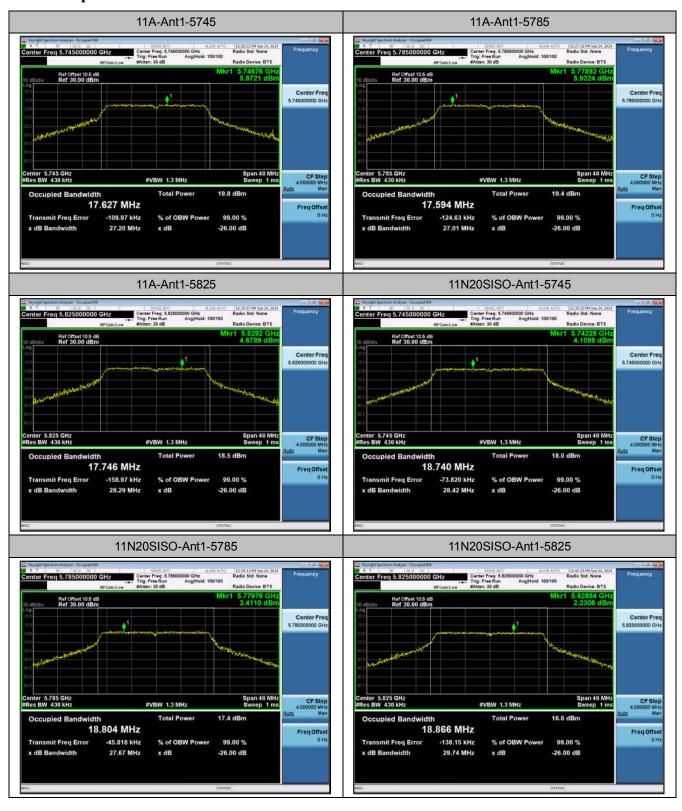
Test Mode	Antenna	Frequency[MHz]	Result[dBm/500kHz]	Limit[dBm/500kHz]	Verdict
11A	Ant1	5745	-0.11	≤30.00	PASS
11A	Ant1	5785	-0.74	≤30.00	PASS
11A	Ant1	5825	-1.47	≤30.00	PASS
11N20SISO	Ant1	5745	-2.48	≤30.00	PASS
11N20SISO	Ant1	5785	-2.90	≤30.00	PASS
11N20SISO	Ant1	5825	-3.29	≤30.00	PASS
11N40SISO	Ant1	5755	-5.21	≤30.00	PASS
11N40SISO	Ant1	5795	-5.55	≤30.00	PASS
11AC20SISO	Ant1	5745	-2.35	≤30.00	PASS
11AC20SISO	Ant1	5785	-2.70	≤30.00	PASS
11AC20SISO	Ant1	5825	-2.96	≤30.00	PASS
11AC40SISO	Ant1	5755	-5.11	≤30.00	PASS
11AC40SISO	Ant1	5795	-5.56	≤30.00	PASS
11AX20SISO	Ant1	5745	-2.72	≤30.00	PASS
11AX20SISO	Ant1	5785	-2.91	≤30.00	PASS
11AX20SISO	Ant1	5825	-3.52	≤30.00	PASS
11AX40SISO	Ant1	5755	-5.00	≤30.00	PASS
11AX40SISO	Ant1	5795	-5.37	≤30.00	PASS

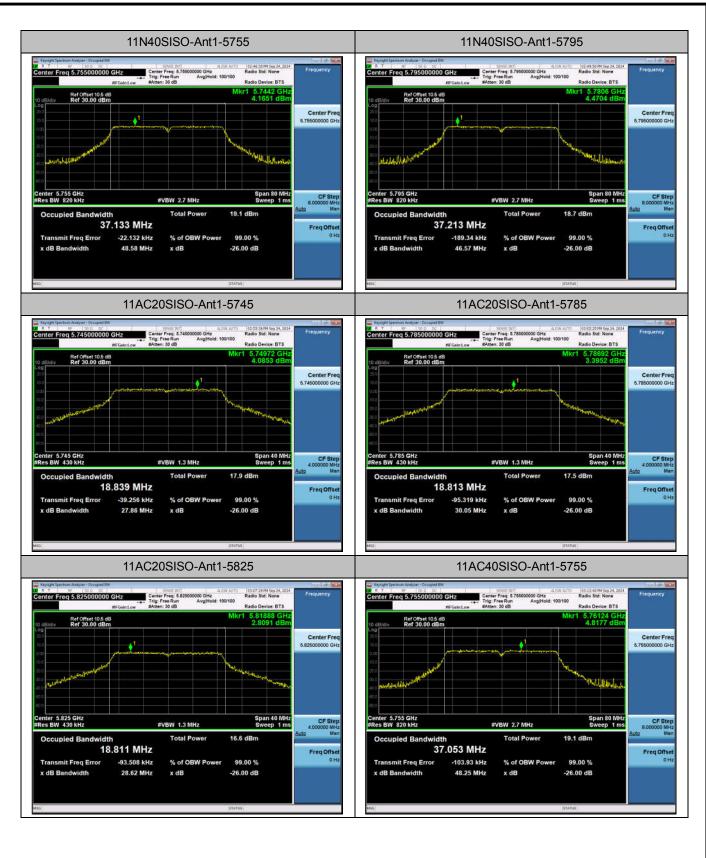

Note: 1.The Result and Limit Unit is dBm/500 kHz in the band 5.725-5.85 GHz.

^{2.} The Duty Cycle Factor and RBW Factor is compensated in the graph.

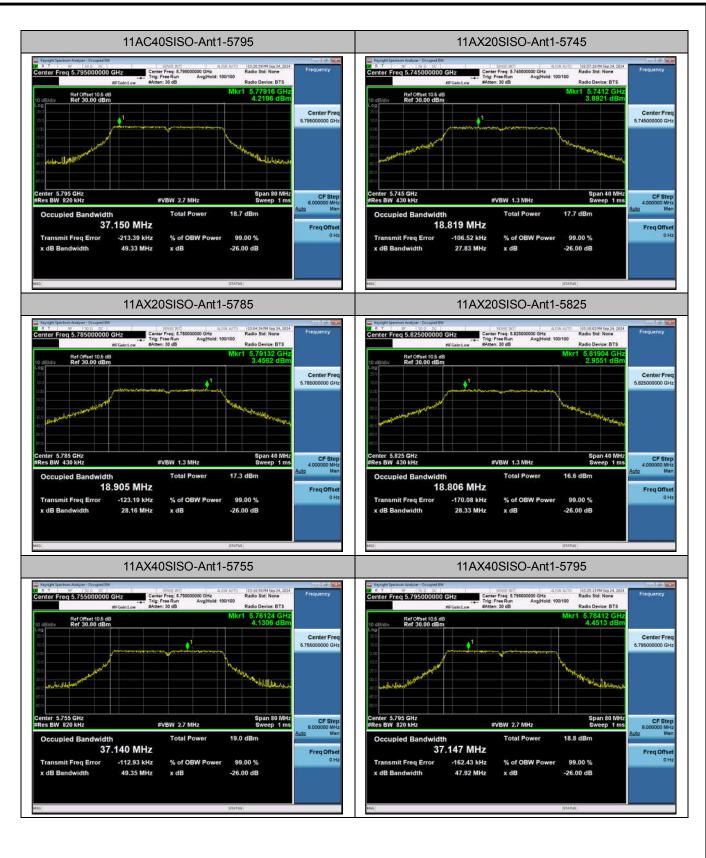


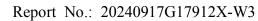





99% Occupied Bandwidth

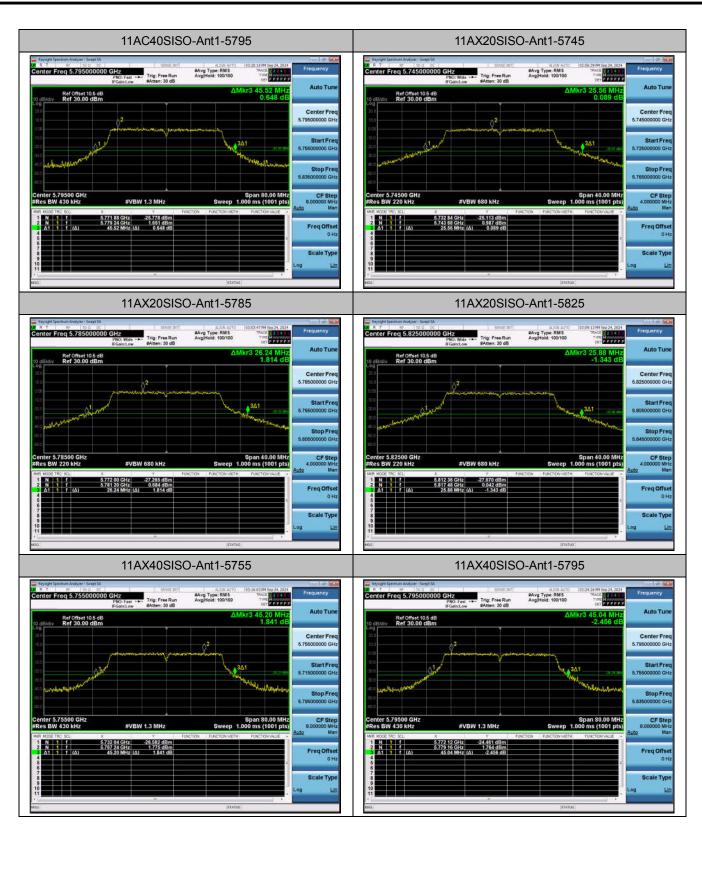
Test Mode	Antenna	Frequency[MHz]	99% OBW[MHz]	Limit[MHz]	Verdict
11A	Ant1	5745	17.627		
11A	Ant1	5785	17.594		
11A	Ant1	5825	17.746		
11N20SISO	Ant1	5745	18.740		
11N20SISO	Ant1	5785	18.804		
11N20SISO	Ant1	5825	18.866		
11N40SISO	Ant1	5755	37.133		
11N40SISO	Ant1	5795	37.213		
11AC20SISO	Ant1	5745	18.839		
11AC20SISO	Ant1	5785	18.813		
11AC20SISO	Ant1	5825	18.811		
11AC40SISO	Ant1	5755	37.053		
11AC40SISO	Ant1	5795	37.150		
11AX20SISO	Ant1	5745	18.819		
11AX20SISO	Ant1	5785	18.905		
11AX20SISO	Ant1	5825	18.806		
11AX40SISO	Ant1	5755	37.140		
11AX40SISO	Ant1	5795	37.147		

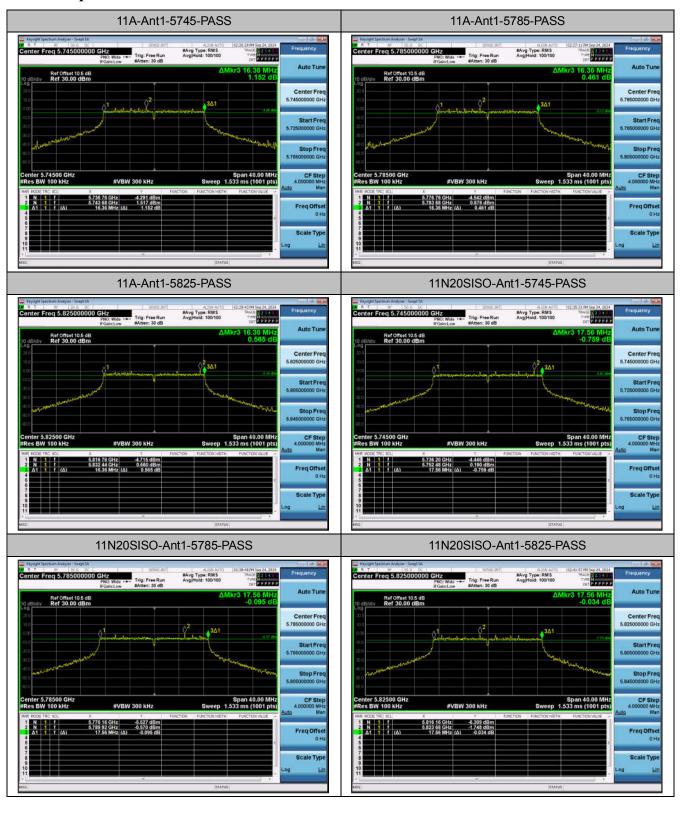


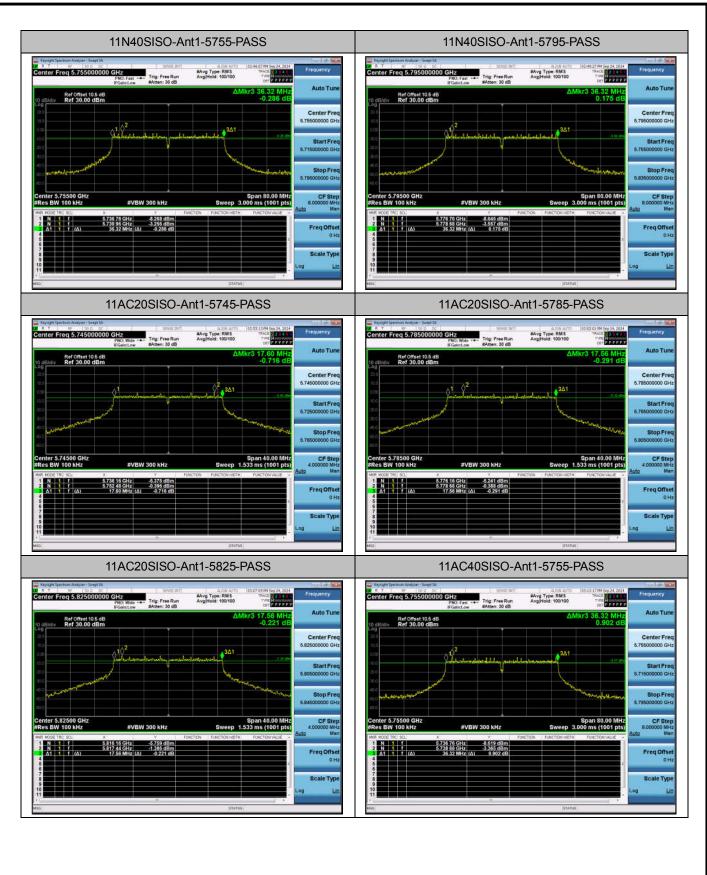



26dB Emission Bandwidth

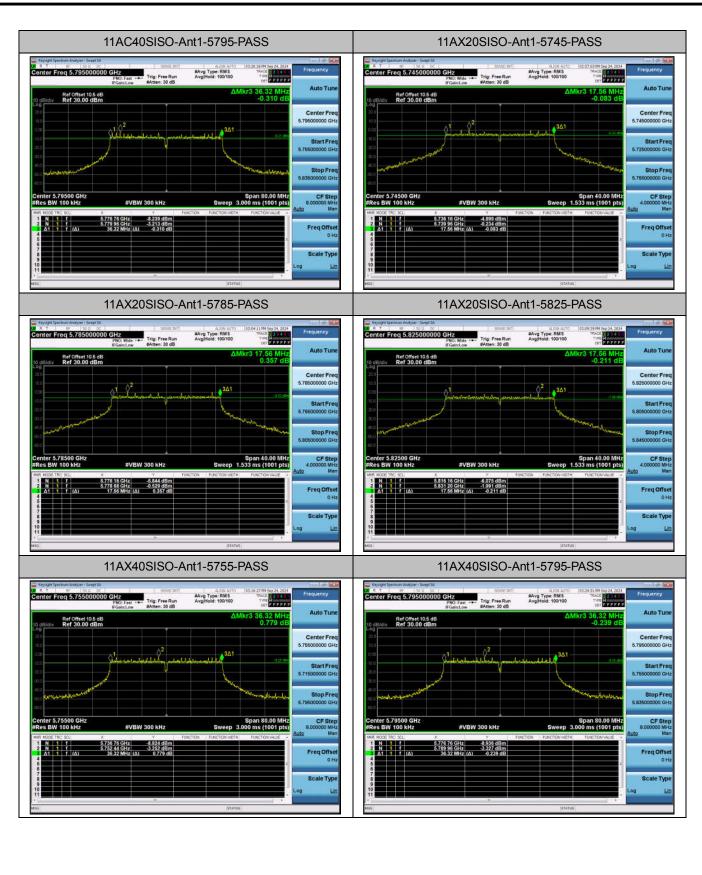
Test Mode	Antenna	Frequency[MHz]	26dB EBW[MHz]	Limit[MHz]	Verdict
11A	Ant1	5745	24.280		
11A	Ant1	5785	24.440		
11A	Ant1	5825	25.600		
11N20SISO	Ant1	5745	24.760		
11N20SISO	Ant1	5785	27.280		
11N20SISO	Ant1	5825	25.440		
11N40SISO	Ant1	5755	45.760		
11N40SISO	Ant1	5795	44.640		
11AC20SISO	Ant1	5745	25.600		
11AC20SISO	Ant1	5785	25.920		
11AC20SISO	Ant1	5825	26.000		
11AC40SISO	Ant1	5755	46.000		
11AC40SISO	Ant1	5795	45.520		
11AX20SISO	Ant1	5745	25.560		
11AX20SISO	Ant1	5785	26.240		
11AX20SISO	Ant1	5825	25.880		
11AX40SISO	Ant1	5755	45.200		
11AX40SISO	Ant1	5795	45.040		

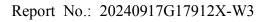





6dB Emission Bandwidth

Test Mode	Antenna	Frequency[MHz]	6dB EBW[MHz]	Limit[MHz]	Verdict
11A	Ant1	5745	16.360	0.5	PASS
11A	Ant1	5785	16.360	0.5	PASS
11A	Ant1	5825	16.360	0.5	PASS
11N20SISO	Ant1	5745	17.560	0.5	PASS
11N20SISO	Ant1	5785	17.560	0.5	PASS
11N20SISO	Ant1	5825	17.560	0.5	PASS
11N40SISO	Ant1	5755	36.320	0.5	PASS
11N40SISO	Ant1	5795	36.320	0.5	PASS
11AC20SISO	Ant1	5745	17.600	0.5	PASS
11AC20SISO	Ant1	5785	17.560	0.5	PASS
11AC20SISO	Ant1	5825	17.560	0.5	PASS
11AC40SISO	Ant1	5755	36.320	0.5	PASS
11AC40SISO	Ant1	5795	36.320	0.5	PASS
11AX20SISO	Ant1	5745	17.560	0.5	PASS
11AX20SISO	Ant1	5785	17.560	0.5	PASS
11AX20SISO	Ant1	5825	17.560	0.5	PASS
11AX40SISO	Ant1	5755	36.320	0.5	PASS
11AX40SISO	Ant1	5795	36.320	0.5	PASS



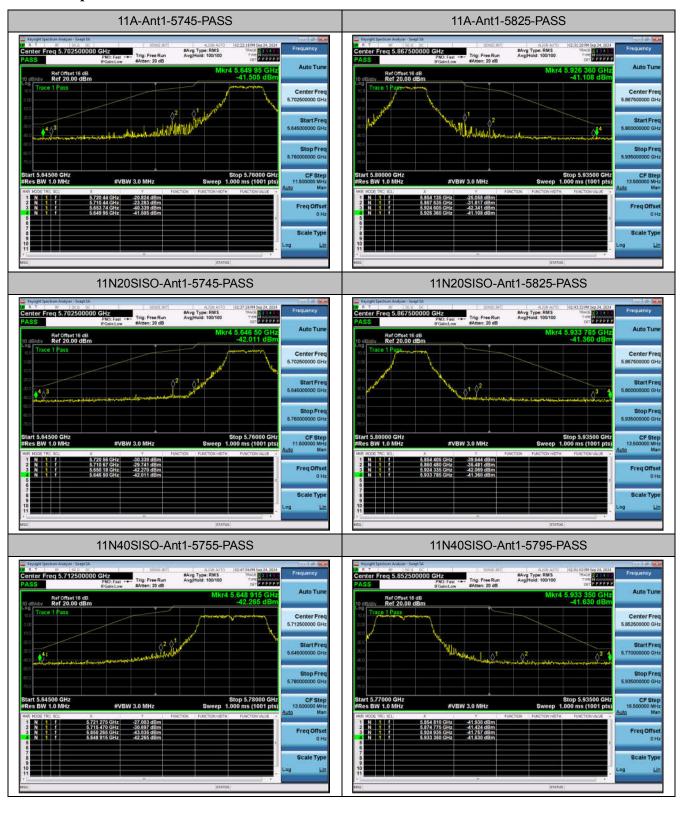


Frequency Stability Test Result and Data

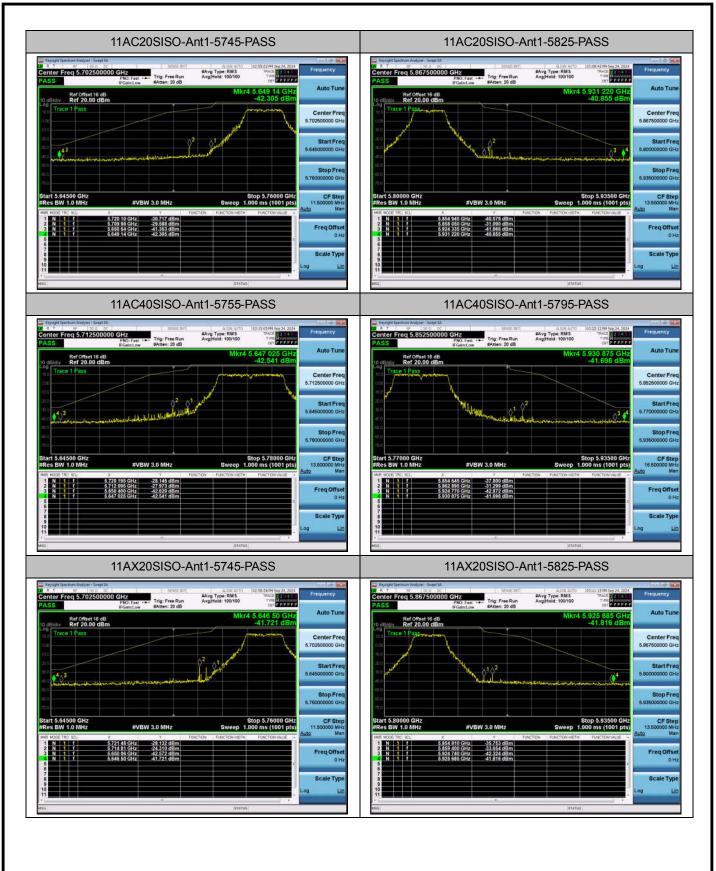
Test Mode	Antenna	Frequency[MHz]	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
11A	Ant1	5745	NV	NT	-60000.00	-10.443864	20	PASS
11A	Ant1	5745	LV	NT	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	HV	NT	-60000.00	-10.443864	20	PASS

Test Mode	Antenna	Frequency[MHz]	Voltage [Vdc]	Temperature (°C)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
11A	Ant1	5745	NV	-30	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	NV	-20	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	NV	-10	-80000.00	-13.925152	20	PASS
11A	Ant1	5745	NV	0	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	NV	10	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	NV	20	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	NV	30	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	NV	40	-40000.00	-6.962576	20	PASS
11A	Ant1	5745	NV	50	-40000.00	-6.962576	20	PASS

Note 1: All of the EUT Configure Mode were tested, the worst case is recorded in this report.


Conducted Band Edges

Test Mode	Antenna	ChName	Frequency[MHz]	Result[dBm]	Limit[dBm]	Verdict
11A	Ant1	Low	5745	-20.82	≤16.60	PASS
11A	Ant1	Low	5745	-23.28	≤12.92	PASS
11A	Ant1	Low	5745	-40.34	≤-24.23	PASS
11A	Ant1	Low	5745	-41.51	≤-27	PASS
11A	Ant1	High	5825	-25.06	≤17.57	PASS
11A	Ant1	High	5825	-31.82	≤12.06	PASS
11A	Ant1	High	5825	-42.34	≤-26.71	PASS
11A	Ant1	High	5825	-41.11	≤-27	PASS
11N20SISO	Ant1	Low	5745	-30.34	≤16.87	PASS
11N20SISO	Ant1	Low	5745	-29.74	≤12.99	PASS
11N20SISO	Ant1	Low	5745	-42.27	≤-26.87	PASS
11N20SISO	Ant1	Low	5745	-42.01	≤-27	PASS
11N20SISO	Ant1	High	5825	-39.64	≤16.96	PASS
11N20SISO	Ant1	High	5825	-35.48	≤14.07	PASS
11N20SISO	Ant1	High	5825	-42.07	≤-26.51	PASS
11N20SISO	Ant1	High	5825	-41.36	≤-27	PASS
11N40SISO	Ant1	Low	5755	-27	≤18.51	PASS
11N40SISO	Ant1	Low	5755	-30.7	≤14.33	PASS
11N40SISO	Ant1	Low	5755	-43.04	≤-26.80	PASS
11N40SISO	Ant1	Low	5755	-42.27	≤-27	PASS
11N40SISO	Ant1	High	5795	-41.93	≤16.03	PASS
11N40SISO	Ant1	High	5795	-41.42	≤10.06	PASS
11N40SISO	Ant1	High	5795	-41.76	≤-26.95	PASS
11N40SISO	Ant1	High	5795	-41.63	≤-27	PASS
11AC20SISO	Ant1	Low	5745	-30.72	≤15.82	PASS
11AC20SISO	Ant1	Low	5745	-29.59	≤12.79	PASS
11AC20SISO	Ant1	Low	5745	-41.35	≤-26.53	PASS
11AC20SISO	Ant1	Low	5745	-42.31	≤-27	PASS
11AC20SISO	Ant1	High	5825	-40.58	≤15.73	PASS
11AC20SISO	Ant1	High	5825	-31.09	≤14.75	PASS
11AC20SISO	Ant1	High	5825	-41.87	≤-26.51	PASS
11AC20SISO	Ant1	High	5825	-40.86	≤-27	PASS
11AC40SISO	Ant1	Low	5755	-28.15	≤16.04	PASS
11AC40SISO	Ant1	Low	5755	-27.97	≤13.39	PASS
11AC40SISO	Ant1	Low	5755	-42.63	≤-26.70	PASS
11AC40SISO	Ant1	Low	5755	-42.54	≤-27	PASS
11AC40SISO	Ant1	High	5795	-37.8	≤16.41	PASS
11AC40SISO	Ant1	High	5795	-31.3	≤13.39	PASS



11AC40SISO	Ant1	High	5795	-42.87	≤-26.83	PASS	l
11AC40SISO	Ant1	High	5795	-41.7	≤-27	PASS	
11AX20SISO	Ant1	Low	5745	-28.13	≤18.96	PASS	
11AX20SISO	Ant1	Low	5745	-24.31	≤14.15	PASS	
11AX20SISO	Ant1	Low	5745	-42.57	≤-26.96	PASS	
11AX20SISO	Ant1	Low	5745	-41.72	≤-27	PASS	
11AX20SISO	Ant1	High	5825	-35.75	≤16.03	PASS	
11AX20SISO	Ant1	High	5825	-33.65	≤14.37	PASS	
11AX20SISO	Ant1	High	5825	-42.32	≤-26.81	PASS	
11AX20SISO	Ant1	High	5825	-41.82	≤-27	PASS	
11AX40SISO	Ant1	Low	5755	-28.31	≤15.74	PASS	
11AX40SISO	Ant1	Low	5755	-27.63	≤15.24	PASS	
11AX40SISO	Ant1	Low	5755	-41.51	≤-26.60	PASS	
11AX40SISO	Ant1	Low	5755	-42.09	≤-27	PASS	
11AX40SISO	Ant1	High	5795	-37.21	≤16.41	PASS	
11AX40SISO	Ant1	High	5795	-33.74	≤12.93	PASS	
11AX40SISO	Ant1	High	5795	-42.26	≤-26.10	PASS	
11AX40SISO	Ant1	High	5795	-40.6	≤-27	PASS	

END OF REPORT