≅ BlackBerry

Document

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW Page 1(103)

Author Data

Andrew Becker

Dates of Test

April 15 – June 13, 2014

Test Report No

RTS-6057-1405-01 Rev 2

L6ARGY180LW

SAR Compliance Test Report

Testing Lab: BlackBerry RTS

RTS **Applicant:**

BlackBerry Limited

440 Phillip Street

2200 University Ave. East Waterloo, Ontario

Waterloo, Ontario Canada N2L 5R9

Canada N2K 0A7 Phone: 519-888-7465

Phone: 519-888-7465 Fax: 519-746-0189

Fax: 519-888-6906

Web site: www.BlackBerry.com

Statement of Compliance:

BlackBerry RTS declares under its sole responsibility that the product to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and

recommended practices.

Device Category:

This BlackBerry® Smartphone is a portable device, designed to be used in direct contact with the user's head, hand and to be carried in approved accessories when

carried on the user's body.

RF Exposure Environment: This device has been shown to be in compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in, FCC 47 CFR Part 2.1093, FCC 96-326, IEEE Std. C95.1-1992, Health Canada's Safety Code 6, as reproduced in RSS-102 issue 4-2010 and has been tested in accordance with the measurement procedures specified in latest FCC OET KDB Procedures, ANSI/IEEE Std. C95.3-2002, IEEE 1528-2013, and RSS 102-issue4-

2010

Daoud Attayi
Compliance Systems Analyst II
(SAR/HAC) Compliance Lead
(Verification and responsible of the Test Report)

Masud S. Attayi Manager, Regulatory Compliance (Approval of the Test Report)

RTS is accredited according to EN ISO/IEC 17025 by:

592

≅ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 2(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

Original report Issue Date: June 18, 2014.

Report was revised to **RTS-6057-1405-01 Rev 2** on July 10, 2014. Updated Table 4.1-1 (Page 75-76): 1800 MHz and 2450 MHz dipole validation results. Updated Appendix A and B: validation plots for 1800 MHz and 2450 MHz and head SAR plots for 802.11b.

 $SAR\ Compliance\ Test\ Report\ for\ the\ BlackBerry \\ {\tt \$}$ **Smartphone Model RGY181LW**

3(103)

Author Data FCC ID: RTS-6057-1405-01 Rev 2 | L6ARGY180LW **April 15 – June 13, 2014** Andrew Becker

Con		
1.0	OPERATING CONFIGURATIONS AND TEST CONDITIONS	
1.1	PICTURE OF DEVICE	
1.2	ANTENNA DESCRIPTION	5
1.3	DEVICE DESCRIPTION	5
1.4	BODY WORN ACCESSORIES (HOLSTERS)	8
1.5	HEADSET	
1.6	BATTERY	8
1.7	PROCEDURE USED TO ESTABLISH TEST SIGNAL	
1.8	HIGHLIGHTS OF THE FCC OET SAR MEASUREMENT REQUIREMENTS	9
	1.8.1 SAR MEASUREMENT PROCEDURES FOR 802.11 A/B/G/N AS PER KDB 248227 D01 V01R02	
	SAR MEASUREMENTS 100 MHZ TO 6 GHZ AS PER KDB 865664 D0 V01	
	1.8.2 SAR MEASUREMENT REQUIREMENTS FOR BLUETOOTH	21
	1.8.3 SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER	
	CAPABILITIES AS PER KDB 941225 D06 V01	22
	1.8.4 SAR EVALUATION PROCEDURES FOR GSM/(E)GPRS DUAL TRANSFER MODE AS PER KDI	3
	941225 D04 V01 AND SAR TEST REDUCTION PROCEDURES GSM GPRS EDGE AS PER	DDB
	941225 D03 VO1	23
	1.8.5 SAR MEASUREMENT PROCEDURE FOR FAST SAR SCAN AS PER KDB 447498	27
	1.8.6 SAR MEASUREMENT PROCEDURES FOR 3G DEVICES	28
	1.8.7 TEST SEUP INFORMATION FOR WCDMA / HSPDA / HSUPA	28
	1.8.8 SAR EVALUATION PROCEDURES FOR LTE AS PER KDB 941225 D05 V02	36
1.9	GENERAL SAR TEST REDUCTION AND EXCLUSION PROCEDURE AS PER KDB 447498 D01 V05 AN	
	HANDSETS MULTI TRANSMITTERS AND ANT PROCEDURE AS PER 648474 D04 V01	52
	1.9.1 SIMULTANEOUS TRANSMISSION ANALYSIS	53
1.10		
2.0	DESCRIPTION OF THE TEST EQUIPMENT	62
2.1	SAR MEASUREMENT SYSTEM	
	2.1.1 EQUIPMENT LIST	63
2.2	DESCRIPTION OF THE TEST SETUP	
	2.2.1 DEVICE AND BASE STATION SIMULATOR SETUP	
	2.2.2 DASY SETUP	64
3.0	ELECTRIC FIELD PROBE CALIBRATION	64
3.1	PROBE SPECIFICATIONS	64
3.2	PROBE CALIBRATION AND MEASUREMENT UNCERTAINTY	65
4.0	SAR MEASUREMENT SYSTEM VERIFICATION	68
4.1		68
5.0	PHANTOM DESCRIPTION	70
6.0	TISSUE DIELECTRIC PROPERTIES	71
6.1	COMPOSITION OF TISSUE SIMULANT	71
	6.1.1 EQUIPMENT	
6.2	ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID	72
	6.2.2 TEST CONFIGURATION	
	6.2.3 PROCEDURE	76
7.0	SAR SAFETY LIMITS	
	DEVICE POSITIONING	
8.1	DEVICE HOLDER FOR SAM TWIN PHANTOM	
8.2	DESCRIPTION OF THE TEST POSITIONING	
	8.2.1 TEST POSITIONS OF DEVICE RELATIVE TO HEAD	
	8.2.2 BODY-WORN CONFIGURATION	81
	8.2.3 LIMB/HAND CONFIGURATION	
9.0	HIGH LEVEL EVALUATION	
9.1	MAXIMUM SEARCH	
9.2	EXTRAPOLATION	
9.3	BOUNDARY CORRECTION	
9.4	PEAK SEARCH FOR 1G AND 10G CUBE AVERAGED SAR	
10.0	MEASUREMENT UNCERTAINTY	
11.0	TEST RESULTS	
11.1		
11.2		00
2	ACCESSORIES	93
12 0	REFERENCES	102

Author Data Dates of Test		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 4(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

APPENDIX A: SAR DISTRIBUTION COMPARISON FOR ACCURACY VERIFICATION

APPENDIX B: SAR DISTRIBUTION PLOTS - HEAD CONFIGURATION

APPENDIX C1: SAR DISTRIBUTION PLOTS - BODY-WORN CONFIGURATION

APPENDIX C2: SAR DISTRIBUTION PLOTS - HOT SPOT

APPENDIX D: PROBE & DIPOLE CALIBRATION DATA

APPENDIX E: PHOTOGRAPHS

*** BlackBerry		SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 5(103)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7

1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS

1.1 Picture of Device

Please refer to Appendix E.

Figure 1.1-1 BlackBerry Smartphone

1.2 Antenna description

Type	Internal fixed antenna	
Location	Please refer to Figure 1.9-1	
Configuration	Internal fixed antenna	

Table 1.2-1 Antenna description

1.3 Device description

Device Model	RGY181LW								
FCC ID	L6ARGY180LW								
	Radiated: 2FFF3D40 (Rev 1), 2FFF3D3C (Rev 1), 2FFF46F9 (Rev 2),								
	2FFF4703 (Rev 2)								
PIN	Conducted: 2FFF3I	032 (Rev 1), 2FFF46I	F5 (Rev 2)						
Hardware Rev		Rev 2-x05-02/03/04/0	5						
Software Version	10.3.0.302/416/590/	/680							
Prototype or Production Unit	Production		-						
	1-slot	2-slots	3-slots	4-slots					
	GSM 850	EDGE/GPRS	EDGE/GPRS	EDGE/GPRS					
Mode(s) of Operation	GSM 1900	850/1900	850/1900	850/1900					
Nominal maximum	33.1	30.2	29.0	28.0					
conducted RF output power	30.4	28.5	26.0	25.5					
(dBm)	30.1	20.0	20.0	20.0					
Tolerance in power setting on	± 0.6	± 0.5	± 0.5	± 0.5					
centre channel (dB)									
Duty cycle	1:8	2:8	3:8	4:8					
Transmitting frequency	824.2 – 848.8	824.2 – 848.8	824.2 – 848.8	824.2 – 848.8					
range (MHz)	1850.2 – 1909.8	1850.2 – 1909.8	1850.2 – 1909.8	1850.2 – 1909.8					
Mode(s) of Operation	802.11b	802.11g	802.11n	Bluetooth					
Nominal maximum	10.0	10.5		10.0					
conducted RF output power	18.0	18.5	17.0	10.0					
(dBm)									
Tolerance in power setting on	+2/-2.5	+2/-2.5	+2/-2.5	± 0.75					
centre channel (dB)	1.1	1.1	1.1	DT/A					
Duty cycle	1:1	1:1	1:1	N/A					
Transmitting frequency range (MHz)	2412-2462	2412-2462	2412-2462	2402-2483					
	802.11a/n/ac	802.11a/n/ac	802.11a/n/ac	802.11a/n/ac					
Mode(s) of Operation	(low band)	(middle band)	(upper band I)	(upper band II)					
Nominal maximum	(upper cana)								
conducted RF output power	18.0 18.0 18.0 18.0								
(dBm)									
Tolerance in power setting on	+2/-2.5	+2/-2.5	+2/-2.5	+2/-2.5					
centre channel (dB)	121-2.3	121-2.3	121-2.3	121-2.3					

		SAR Compliance T	Compliance Test Report for the BlackBerry® rtphone Model RGY181LW		
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7

Duty cycle	1:1	1:1	1:1	1:1
Transmitting frequency range (MHz)	5180-5240	5260-5320	5520-5700	5745-5825
Mode(s) of Operation	HSPA ⁺ / WCDMA / UMTS FDD V (850)	HSPA ⁺ / WCDMA / UMTS FDD IV (1800)	HSPA ⁺ / WCDMA / UMTS FDD II (1900)	NFC
Nominal maximum conducted RF output power (dBm)	24.2	24.0	24.0	N/A
Tolerance in power setting on centre channel (dB)	± 0.6	± 0.6	± 0.6	N/A
Duty cycle	1:1	1:1	1:1	N/A
Transmitting frequency range (MHz)	824.6 – 846.6	1712.4 – 1752.6	1852.4 – 1907.6	13.56

Table 1.3-1 Test device characterization for U.S. wireless operating modes/bands

Note 1: The BlackBerry model: RGY181LW also supports GSM/GPRS/EDGE 900/1800 MHz, and UMTS/HSPA⁺ Bands VIII/I, and LTE bands 1/3/8/20 that are operational outside North America only, therefore no data is presented in this report for those bands. RGY181LW also supports LTE band 7 which is operational in Canada only, therefore no data is presented in this report.

Note 2: SAR measurements on NFC haven't been conducted, since it is very low power and frequency magnetic field transceiver. SAR probes measure higher frequency/power electric field.

Note 3: Open loop antenna tuning is used for all transmitters (GSM/WCDMA/LTE) which is equivalent to the static tuning configurations used in traditional handsets that do not have any specific antenna tuning flexibility or additional hardware.

Device Model RGY181LW							
FCC ID		L6ARGY	180LW				
		Radiated:	2FFF3D40 (R	ev 1), 2FFF3D3	C (Rev 1), 2FFI	F46F9 (Rev 2), 2FFF	4703 (Rev 2)
PIN		Conducted	d: 2FFF3D32 ((Rev 1), 2FFF46	6F5 (Rev 2)		
Hardware Rev		Rev 1-x04	1-00/01, Rev 2	2-x05-002/003			
Software Version		10.3.0.302	2/416/590/680				
Prototype or Production U	Jnit	Production					
			Band 2: 1.4 MHz , 3 MHz , 5 MHz, 10 MHz, 15 MHz, 20 MHz				
		Band 4: 1.4 MHz , 3 MHz , 5 MHz, 10 MHz, 15 MHz, 20 MHz					
Transmission channel ban	dwidth	Band 5: 1.4 MHz , 3 MHz , 5 MHz, 10 MHz					
		Band 17: 5 MHz, 10 MHz					
		Band 13: 5	MHz, $10 MHz$				
		Tr	ansmission cha	nnel number an	d frequencies		
		LTE ban	nd 2	LTE	band 4	LTE b	and 5
	f (N	MHz)	Chan.	f (MHz)	Chan.	f (MHz)	Chan.
L	18	860.0	18700	1720.0	20050	829.0	20450
M	18	880.0	18900	1732.5	20175	836.5	20525
Н	19	0.00	19100	1745.0	20300	844.0	20600
		LTE band	d 17	LTE	oand 13		
	f (N	MHz)	Chan.	Chan.	f (MHz)		

≅BlackBerry		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 7(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

L	709.0	23780	23205	779.5				
M	710.0	23790	23230	782.0				
Н	711.0	23800	23255	784.5				
UE Category	Category 3	3						
Modulation supported in u		`						
Description of LTE antenn	a 1 Tx/Rx A	nt, Sharing wit	h GSM/UMTS					
LTE voice available/suppor	rted Possible							
Hotspot with LTE+WiFi	Yes							
Hotspot with LTE+WiFi ac	ctive							
with GSM/UMTS voice	No	No						
LTE MPR permanently bu	ilt-in							
by design	Yes							
LTE A-MPR	Disabled d	Disabled during testing , by setting NV value to NV_01 on the CMW500						
NI	Band 2: 23	Band 2: 23.4 ± 0.50						
Nominal Maximum		Band 4: 23.4 ± 0.50						
conducted RF Output Po		Band 5: 23.2 ± 0.50						
(dBm) +/- Tolerance in I	Power Band 13: 2	Band 13: 23.4 ± 0.50						
Setting on centre channe	el (dB) Band 17: 2	Band 17: 23.1 ± 0.50						
				GSM	I 850 MHz			
				UMT	TS/WCDMA 850 MHz			
	GSM//WC	DMA/HSPA ⁺		UMT	TS/WCDMA 1800 MHz			
Other non-LTE U.S. wirele	ess			GSM	I 1900 MHz			
operating modes/bands				UMT	TS/WCDMA 1900 MHz			
_				2.4 C	GHz Wi-Fi			
	802.11 a/a	c/b/g/n		5 GH	Iz Wi-Fi			
		-		2.4 0	GHz BT			

Table 1.3-2 Test device characterization all North American wireless operating modes/bands

Note 1: As per 3GPP TS 36.521-1 V10.0.0 (2011-12):

"The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively."...5.4.4

Note 2: Open loop antenna tuning is used for all transmitters (GSM/WCDMA/LTE) which is equivalent to the static tuning configurations used in traditional handsets that do not have any specific antenna tuning flexibility or additional hardware.

≅BlackBerry		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 8(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

1.4 Body worn accessories (holsters)

The device has been tested with the holster listed below and/or a 15mm manufacturer recommended separation distance. The holster has been designed with the intended device orientation being with the LCD facing the belt clip only. Proper positioning is vital for protection of the LCD display, and to help maximize the battery life of the device. The device can also be placed in the holster with the backside facing the belt clip. Body SAR measurements were carried out with the worst-case configuration front LCD side and backside towards the belt clip.

]	Number	Holster Type	Part Number	Separation distance (mm)
	NA	NA	NA	NA

Table 1.4.1. Body worn holster

1.5 Headset

The device was tested with and without the following headset model numbers.

1)HDW-49299-002 2)HDW-55351-002

1.6 Battery

The device was tested with the following Lithium Ion Battery pack.

1)BAT-58107-00x

1.7 Procedure used to establish test signal

- The device was put into test mode for SAR measurements by placing a call from a Rohde & Schwarz CMU 200 or CMW 500 Communications Test Instrument. The power control level was set to command the device to transmit at full power at the specified frequency. Other parameters include: Channel type = full rate, discontinuous transmission off, frequency hopping off. For LTE specific bandwidths, number of resource blocks, and resource block offsets were set. In addition, LTE A-MPR was disabled.
- Software Tool was used to set Wi-Fi to transmit at maximum power and duty cycle for each band, channel, and modulation.
- A Rohde & Schwarz CBT Bluetooth Tester was used to establish a connection with the DUT's Bluetooth radio.

*** BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 9(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

1.8 Highlights of the FCC OET SAR Measurement Requirements

$1.8.1 \quad SAR \ Measurement \ Procedures \ for \ 802.11 \ a/b/g/n/ac \ as \ per \ KDB \ 248227 \ D01 \ v01r02 \ and \ SAR \ Measurements \ 100 \ MHz \ to \ 6 \ GHz \ as \ per \ KDB \ 865664 \ D0 \ V01$

- Repeat measurements when the measured SAR is ≥ 0.80 W/kg. If the measured SAR values are < 1.45 W/kg with $\leq 20\%$ variation, only one repeated measurement was performed to reaffirm that the results are not expected to have substantial variations. An additional repeated measurement is required only if the measured results are within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties.
- Maintained dielectric parameter uncertainty to \pm 5.0% of the target values, (although it is very challenging to control/maintain both permittivity and conductivity for 5-6 GHz for all test channels within \pm 5.0% of the target values, some conductivity values were measured slightly higher which resulted in more conservative SAR values.
- Liquid depth from SAM ERP or flat phantom was kept at 15 cm.
- Probe Requirement: Used SPEAG probe model ET3DV6/ES3DV3 for 2.45 GHz and EX3DV4 for 5-6 GHz SAR testing specs are outlined below:

ET3DV6/ES	S3DV3		
Probe tip to sensor center	2.7 mm / 2.0 mm		
Probe tip diameter is	6.8 mm / 4.0 mm		
Probe calibration uncertainty	< 15 % for f = 2.45 GHz		
Probe calibration range	± 100 MHz		
EX3DV	V4		
Probe tip to sensor center	1.0 mm		
Probe tip diameter is	2.5 mm		
Probe calibration uncertainty	< 15 % for f = 2.45 to $< 6.0 GHz$		
Probe calibration range	± 100 MHz		

Table 1.8.1-1 Probe specification requirements

- Area scan resolution was maintained at 10mm (5-6 GHz)
- Area scan resolution was maintained at 12mm (2-3 GHz)
- Area scan resolution was maintained at 15mm (</= 2 GHz)
- System accuracy validation was conducted within \pm 100 MHz of device mid-band frequency and results were within \pm 10 % of the manufacturers target value for each band.
- Zoom Scan: The following settings were used for the validation and measurement.

ET3DV6	ES3DV3
Closest Measurement Point to Phantom	4.0 mm
Zoom Scan (x,y) Resolution	7.5 mm (≤2 GHz) or 5 mm (2-3 GHz)
Zoom Scan (z) Resolution	5.0 mm
Zoom Scan Volume	Minimum 30 x 30 x 30 mm ¹
EX3	DV4
Closest Measurement Point to Phantom	2.0 mm
Zoom Scan (x,y) Resolution	4.0 mm (5-6 GHz)
Zoom Scan (z) Resolution	2.0 mm (5-6 GHz)
Zoom Scan Volume	Minimum 24 x 24 x 22 mm ¹

Table 1.8.1-2 Zoom Scan requirement

Note 1: "Auto-extend zoom scan when maxima on boundary" is enabled, which can result in the zoom scan dimensions varying between 30x30x30 to 60x60x30 mm and 24x24x22 to 48x48x22 mm.

- Frequency Channel Configuration: 802.11 b/g modes are tested on the highest output power channel.
- 802.11a is tested for UNII operations on the highest output power channel of each sub band (low, mid, upper band I, and upper band II). If the highest output power channel has a SAR level that is not 3dB lower than the limit, then the "default test channels" of each sub band must also be tested. The "default channels" for each sub band are [36, 48], [52, 64], [104, 116, 124, and 136], [149, 157, and 165].
- For each frequency band, testing at higher rates and higher modulations is not required when the maximum average output power for each of these configurations is less than ¼ dB higher than those measured at the lowest data rate.
- SAR is not required for 802.11g/n channels when the maximum average output power is less than ¼ dB higher than that measured on the corresponding 802.11b channels.
- SAR test was conducted on each "default test channel" and each band with the worst case modulation and highest duty cycle, if the SAR level was within 3dB of the limit.
- 802.11a does not support channels 52 140 in Hotspot and GO/Direct mode.
- 802.11ac was spot checked on each bandwidth on the worst case SAR for 802.11a
- 802.11ac does not support Hotspot and GO/Direct mode
- Conducted power measurements:

Document SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW Author Data Andrew Region April 15 Lyne 13 2014 Description Description FCC ID: Test Report No DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION Description FCC ID: Test Report No DESCRIPTION Descrip				ry®	Page 11(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

	802.11b/g/n At Full Power											
80	2.11b @	1Mbp	s	802	2.11g	@ 6	Mbps			802	.11n @	6.5 Mbps
f (MHz)	Chan	ave cone pe	Iax. erage ducted ower Bm)	f (MHz)	Cha	an	ave cond po	ax. rage lucted wer Bm)	(N	f IHz)	Chan	Max. average conducted power (dBm)
2412	1	1	7.2	2412	1		10	6.1	2	412	1	16.0
2437	6	1	8.0	2437	6		18	8.5	2	437	6	16.8
2462	11	1	7.4	2462	11	1	10	6.7	2462		11	16.5
		802.	11g							802.11	lb	
Data			Ch	annel 6		D	ata				Chai	nnel 6
Rate	Mod.	M	lax. aver	age conduc	cted	R	ate	Mod		Max	x. averaș	ge conducted
(Mbps)			powe	er (dBm)		(M	bps)				power	(dBm)
6	BPSK			18.5			1	BPSk			17	7.8
9	BPSK			18.4			2	DQPS	_			3.0
12	QPSK			18.5		5	5.5	CCK			18	3.0
18	QPSK			18.4		1	11	CCK			18	3.0
24	16-QAN	M		16.1								
36	16-QAN			16.1								
48	64-QAN			16.1								
54	64-QAN	M		16.0								
			1		80	2.11	n					
Data I	Rate (Mb	ns)		Mod.							nel 6	
Duta 1		Po)					N	Aax. ave	erag			ower (dBm)
	6.5			MCS0							5.8	
	13			MCS1			16.7					
	19.5			MCS2							5.7	
	26			MCS3							5.1	
	39			MCS4			15.1					
	52			MCS5			15.0					
	58.5			MCS6							1.2	
	65			MCS7						14	1.2	

Table 1.8.1-3a 802.11 b/g/n modulation type/data rate vs. conducted power at full/maximum power

Author Data Andrew Becker Document SAR Compliance Test Report Smartphone Model RGY181L Test Report No RTS-6057		-	ry®	Page 12(103)		
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

		902) 11h/a	/m A + Dod	lucas	1 Da		Con II.	.	ot Ma	. d o		
80	802.11b/g/n At Reduced Po 802.11b @ 1Mbps 802.11g @ 6											6.5 Mbps	
f (MHz)	Chan	ave conc	lax. erage lucted wer Bm)	f (MHz)	Cha		Max. average conducted power (dBm)		(1	f MHz)	Chan	Max. average conducted power (dBm)	
2412	1	Ģ	9.6	2412	1		9	9.6	` 1	2412	1	9.5	
2437	6		0.2	2437	6		1	0.2	1	2437	6	10.2	
2462	11	Ç).9	2462	11	1	9	8.0	1	2462	11	9.8	
		802.	11g							802.1	1b		
Data			Ch	annel 6		D	ata				Chai	nnel 6	
Rate	Mod.	M	ax. aver	age conduc	cted	R	ate	Mod		Ma	Max. average conducted		
(Mbps)			pow	er (dBm)		(M	bps)				power	(dBm)	
6	BPSK			10.2			1	BPSk	ζ.		10	0.2	
9	BPSK						2	DQPS	K		10	0.3	
12	QPSK			10.1		5	.5	CCK			10	0.3	
18	QPSK					1	1	CCK	, ,		10	0.3	
24	16-QAN	M		10.2									
36	16-QAN	Л											
48	64-QAN	M		10.2									
54	64-QAN	Л											
					80	2.11	n						
Doto I	Rate (Mb	na)		Mod.						Char	mel 6		
Data 1	Nate (MID	ha)					Max. average conducted power (dBm)						
	6.5			MCS0			10.2						
	13			MCS1									
	19.5			MCS2									
	26			MCS3									
	39			MCS4						10).3	·	
	52			MCS5				-					
	58.5			MCS6									
	65			MCS7				10.3					

 $Table \ 1.8.1-3b \ 802.11 \ b/g/n \ modulation \ type/data \ rate \ vs. \ conducted \ power \ for \ Hotspot \ mode$

Note 1: There is fixed power reduction on Wi-Fi in hotspot mode. Power reduction is triggered when device is set to Hotspot mode.

1				ry®	Page 13(10	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

			802.11b/	g/n (GO/I	Direc	et Mod	le			
80	2.11b @ 1	Mbps	802	2.11g	@ 6	Mbps		80	2.11n @	6.5 Mbps	
f (MHz)	Chan	Max. average conducted power (dBm)	f (MHz)	Cha	an	power (dBm)		f (MHz)	Chan	Max. average conducted power (dBm)	
2412	1	17.2	2412	1		1:	5.9	2412	1	14.7	
2437	6	17.6	2437	6		1	8.2	2437	6	16.3	
2462	11	17.4	2462	1		1:	5.4	2462	11	15.2 15.2	
2472	13	17.6	2472	13	3	1.	5.3	2472	2472 13		
		802.11g						802.	11b		
Data		C	hannel 6		Da	ata			Cha	nnel 6	
Rate	Mod.		erage condu	cted		ate	Mod	. M	Max. average conducted		
(Mbps)		pov	wer (dBm)		(M	bps)			_	(dBm)	
6	BPSK		18.2			1	BPSF		17.6		
9	BPSK					2	DQPS			8.0	
12	QPSK		18.3			.5	CCK				
18	QPSK				1	1	CCK		1	7.9	
24	16-QAM	_	15.8								
36	16-QAM										
48	64-QAM	_									
54	64-QAN	[]	15.7								
				80)2.11	n					
Data I	Rate (Mbp	os)	Mod.		-		Joy ov		nnel 6	owor (dRm)	
	6.5		MCS0		+	Max. average conducted power (dBm)					
	13		MCS1					-	0.5		
	19.5		MCS2								
	26		MCS3					1	4.7		
	39		MCS4								
	52		MCS5								
	58.5		MCS6								
	65		MCS7						3.9		

Table 1.8.1-3c 802.11 b/g/n modulation type/data rate vs. maximum average conducted power for Wi-Fi Direct/GO mode

802.11a/n At Full Power on Rev 1														
802.11a	(low band)	6Mbps	802.	11a (mid ba	nd) 6Mbps		802.11a	(uppe	r band I) 6Mbp	S				
f (MHz)		Max. average onducted power (dBm)	f (MHz)	Chan	Max. averag conducto power (dBm)	ed	f (MHz)	Cha	Max. average n conducte power (dBm)	ed				
5180	36	18.2	5260	52	18.2		5500	100						
5200	40	18.2	5280	56	18.0		5520	104						
5220	44	18.1	5300	60			18.0				5540	108		
5240	48	18.0	5320	64			5560	112						
							5580	116						
							5600	120						
							5620	124	1 19.0					
							5640	128						
							5660	132						
							5680	136						
							5700	140) 18.9					
	802.11a (upper band II) 6Mbps								S					
							f (MHz) 5745 5765	Cha 149	power (dBm) 9 19.1	ed				
							3703							
							5785	157	7 189					
							5785 5805	157 161						
							5805	161	18.6					
		802	.11a	802.	11a				18.6					
			.11a · band)		11a e band)	(u	5805 5825	161 165	1 18.6 5 18.5					
Data		(lower Chan	band) nel 36	(middle Chan	e band) nel 52	C	5805 5825 802.11a pper band Channel 10	161 165 I) 4	18.6 18.5 802.11a (upper band I Channel 149	(II)				
Data Rate	Mod.	(lower Chan Max. a	band) nel 36 nverage	(middle Chan Max. a	e band) nel 52 verage	M	5805 5825 802.11a pper band Channel 10 lax. averag	161 165 I) 4	18.6 18.5 802.11a (upper band I Channel 149 Max. average	(I)) e				
Rate	Mod.	(lower Chan Max. a conducte	band) nel 36 nverage ed power	(middle Chan Max. a conducte	e band) nel 52 verage d power	M	5805 5825 802.11a pper band Channel 10 lax. averag	161 165 I) 4	18.6 18.5 802.11a (upper band I Channel 149 Max. average conducted pow	(I)) e				
Rate (Mbits)		(lower Chan Max. a conducte (dI	band) nel 36 verage ed power Bm)	(middle Chan Max. a conducte (dB	e band) nel 52 verage d power	M	5805 5825 802.11a pper band Channel 10 Iax. averageducted po (dBm)	161 165 I) 4	18.6 802.11a (upper band I Channel 149 Max. average conducted pov (dBm)	(I)) e				
Rate (Mbits)	BPSK	(lower Chan Max. a conducte (dI	band) nel 36 nverage ed power 3m) 3.3	(middle Chan Max. a conducte (dB	e band) nel 52 verage d power sm)	M	5805 5825 802.11a pper band channel 10 (ax. average ducted po (dBm) 18.8	161 165 I) 4	18.6 802.11a (upper band I Channel 149 Max. average conducted pove (dBm) 19.0	(I)) e				
Rate (Mbits)	BPSK BPSK	(lower Chan Max. a conducte (dI	band) nel 36 nverage ed power 3m) 3.3	(middle Cham Max. a conducte (dB 18	e band) nel 52 verage d power sm)1	M	5805 5825 802.11a pper band Channel 10 [ax. averag ducted po (dBm) 18.8 19.0	161 165 I) 4	18.6 802.11a (upper band I Channel 149 Max. average conducted pow (dBm) 19.0 19.0	(II) O e				
Rate (Mbits) 6 9 12	BPSK BPSK QPSK	(lower Chan Max. a conducte (dI 18	band) nel 36 nverage ed power Bm) 3.3 3.3 3.3	(middle Cham Max. a conducte (dB 18 18	e band) nel 52 verage d power sm)11	M	5805 5825 802.11a pper band Channel 10 (ax. averag ducted po (dBm) 18.8 19.0 19.0	161 165 I) 4	18.6 18.5 802.11a (upper band I Channel 149 Max. average conducted pov (dBm) 19.0 19.0 19.1	(II) O e				
Rate (Mbits) 6 9 12 18	BPSK BPSK QPSK QPSK	(lower Chan Max. a conducte (dI 18 18	band) nel 36 nverage ed power 3m) 3.3 3.3 3.3 3.5	(middle Chan Max. a conducte (dB 18 18	e band) nel 52 verage d power sm) .1 .1 .1	M	5805 5825 802.11a pper band Channel 10 Iax. average ducted po (dBm) 18.8 19.0 19.0	161 165 I) 4	18.6 802.11a (upper band I Channel 149 Max. average conducted pow (dBm) 19.0 19.0 19.1 19.1	(II) O e				
Rate (Mbits) 6 9 12 18 24	BPSK BPSK QPSK QPSK 16-QAM	(lower Chan Max. a conducte (df 18 18 18 18 18 17	band) nel 36 nverage ed power 3m) 3.3 3.3 3.5 7.7	(middle Chan Max. a conducte (dB 18 18 18	e band) nel 52 verage d power sm) .1 .1 .1 .7	M	5805 5825 802.11a pper band Channel 10 Iax. average ducted po (dBm) 18.8 19.0 19.0 19.0 18.4	161 165 I) 4	18.6 18.5 802.11a (upper band I Channel 149 Max. average conducted pov (dBm) 19.0 19.0 19.1 19.1 18.7	(I)) e				
Rate (Mbits) 6 9 12 18	BPSK BPSK QPSK QPSK	(lower Chan Max. a conducte (dI 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17	band) nel 36 nverage ed power 3m) 3.3 3.3 3.3 3.5	(middle Chan Max. a conducte (dB 18 18	e band) nel 52 verage d power sm)1111111	M	5805 5825 802.11a pper band Channel 10 Iax. average ducted po (dBm) 18.8 19.0 19.0	161 165 I) 4	18.6 802.11a (upper band I Channel 149 Max. average conducted pow (dBm) 19.0 19.0 19.1 19.1	(I)) e				

Author Data Dates of Test Smartphone Model			est Report for the BlackBer RGY181LW	ry®	Page 15(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW		

	802.11n (lower band)	802.11n (middle band)	802.11n (upper band I)	802.11n (upper band II)	
	Channel 36	Channel 52	Channel 104	Channel 149	
Mod.	Max. average conducted power				
1.000	(dBm)	(dBm)	(dBm)	(dBm)	
MCS0	18.2	18.1	19.0	19.1	
MCS1	18.6	18.2	18.9	19.5	
MCS2	18.5	18.3	19.0	19.1	
MCS3	17.9	17.7	18.6	18.7	
MCS4	17.4	17.3	18.2	18.2	
MCS5	16.5	16.4	17.0	17.6	
MCS6	16.3	16.2	17.1	17.4	
MCS7	15.3	15.2	16.0	16.4	

Table 1.8.1-4a 802.11 a/n modulation type/data rate vs. conducted power at full power on Rev 1

	802.11a/n At Full Power On Rev 2 (Spot Check On Band Edge)										
802.11a	(low ba	nd) 6Mbps	802.	11a (mid ba	nd) 6Mbps	802.11a (upper band I) 6Mbps					
f (MHz)	Chan	Max. average conducted power (dBm)	f (MHz)	Chan	Max. average conducted power (dBm)	f (MHz)	Chan	Max. average conducted power (dBm)			
5180	36	15.9	5260	52	17.9	5500	100	16.2			
5200	40	15.8	5280	56		5520	104	18.5			
5220	44	15.7	5300	60		5540	108				
5240	48	15.7	5320	64	17.6	5560	112				
						5580	116				
						5600	120				
						5620	124				
						5640	128				
						5660	132				
						5680	136				
						5700	140	13.6			
						802.11	a (upper ba	nd II) 6Mbps			
						f (MHz)	Chan	Max. average conducted power (dBm)			
						5745	149	15.9			
						5765	153				
						5785	157				
						5805	161				
						5825	165	18.2			

≅ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 16(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

			.11a	802.11		802.11a	802.11a	
		(lower	r band)	(middle l	band)	(upper band I)	(upper band II)	
Data		Chan	nel 36	Channe	1 52	Channel 104	Channel 165	
Rate	Mod.	Max. a	average	Max. ave	erage	Max. average	Max. average	
(Mbits)	WIUU.	conducto	ed power	conducted	power	conducted powe	r conducted power	
(Minis)		(dl	Bm)	(dBm	1)	(dBm)	(dBm)	
6	BPSK	15.9		17.9		18.5	18.2	
9	BPSK							
12	QPSK							
18	QPSK							
24	16-QAM	1:	5.7	17.2		17.8	17.6	
36	16-QAM							
48	64-QAM							
54	64-QAM	1:	5.8	15.8		16.0	16.1	
	802.1	1n	802	2.11n		802.11n	802.11n	
	(lower l	band)	(midd	le band)	(up	per band I)	(upper band II)	
	Chann	el 36	Cha	nnel 52	Ch	nannel 104	Channel 165	
Mod.	Max. av	erage	Max.	average	Ma	x. average	Max. average	
Mou.	conducted	l power	conduct	ted power	cond	ucted power	conducted power	
	(dBr	n)	(d	Bm)		(dBm)	(dBm)	
MCS0	15.	9	1	7.8		18.3	14.2	
MCS1								
MCS2				<u> </u>				
MCS3								
MCS4	15.	.7 1		6.7		17.2	14.3	
MCS5	_				_			
MCS6								
MCS7	14.	6	1	4.6		15.0	14.1	

Table~1.8.1-4b~802.11~a/n~modulation~type/data~rate~vs.~conducted~power~at~full~power~on~Rev~2

Note: Rev 2 reduced conducted power on the band edge, so only a spot check on these channels was done.

802.11a/n At Reduced Power For Hotspot Mode									
802.11a	(low ba	nd) 6Mbps	802.	11a (upper	r band II) 6Mbps				
f (MHz)	Chan	Max. average conducted power (dBm)	f (MHz)	Chan	Max. average conducted power (dBm)				
5180	36	10.5	5745	149	11.4				
5200	40	10.4	5765	153	11.1				
5220	44	10.2	5785	157	11.0				
5240	48	10.1	5805	161	10.8				
			5825	165	10.8				
	(low			2.11a 802.11 a er band) (upper band II) nnel 36 Channel 149					
Data Ra	te (Mbit	Max conduc	. average cted power dBm)	, Max	a. average conducted power (dBm)				
	6		10.5		11.4				
	24		10.5		11.3				
	54		10.4		11.3				
	80	02.11n	10.4		2.11n				
	80	02.11n er band)	10.4	(upper	2.11n band II)				
	80 (low		10.4	(upper	2.11n				
Mod.	(low Cha Max conduc	er band) annel 36 . average cted power		(upper Chan	2.11n band II)				
	(low Cha Max conduc	er band) annel 36 . average		(upper Chan rerage cond	2.11n band II) nel 149				
Mod.	(low Cha Max conduc	er band) annel 36 average eted power dBm)		(upper Chan rerage cond	2.11n band II) mel 149 lucted power (dBm)				

Table 1.8.1-4c 802.11 a/n modulation type/data rate vs. conducted power for Hotspot mode

Note: 802.11a/n Hotspot mode does not support channels 52-140.

	802	2.11	la/n Full F	Power GO	/Dir	ect Mode	e
802.11a	(low ba	nd)	6Mbps	802.11	la (u	pper bai	nd II) 6Mbps
f (MHz)	Chan	co	Max. average onducted power (dBm)	f (MHz)	· ·	Chan	Max. average conducted power (dBm)
5180	36		15.9	5745		149	15.9
5200	40		15.8	5765		153	18.5
5220	44		15.7	5785		157	18.3
5240	48		15.7	5805		161	18.1
				5825		165	18.2
	(low			er band) (uppe		802.11 a per band II) pannel 153	
Data Ra	te (Mbit	s)	Max conduc	Max. average conducted power (dBm)		Max. average conducted power (dBm)	
	6			15.9			18.5
	24			15.7			17.9
	54			15.8			16.5
	80	02.1	1n			802.111	n
	1		oand)			pper ban	
	Cha	ann	el 36		(Channel	153
Mod.	Mod. Max. average conducted power (dBm)		Max. average conducted power (dBm)				
MCS0	0 15.9			14.5			
MCS4		15.	7	14.4			
MCS7		14.	6			14.3	

Table 1.8.1-4d 802.11 a/n modulation type/data rate vs. conducted power for Wi-Fi GO/Direct mode

Note: 802.11a/n GO/Direct mode does not support channels 52-140.

	802.11ac At Full Power On Rev 1										
	802.11a	c (low b	and) MCS0		c (mid b				(upper ba	and I) MCS0	
BW (MHz)	f (MHz)	Chan	Max. average conducted power (dBm)	f (MHz)	Chan	av con po	Max. erage ducted ower lBm)	f (MHz)	Chan	Max. average conducted power (dBm)	
	5180	36	18.1	5260	52	_	18.0	5500	100	19.0	
	5200	40	18.0	5280	56		18.0	5520	104	19.0	
	5220	44	18.0	5300	60		18.0	5540	108	19.0	
	5240	48	18.0	5320	64	1	18.0	5560	112	19.0	
								5580	116	19.0	
								5600	120	18.9	
								5620	124	18.9	
								5640	128	18.9	
								5660	132	18.8	
								5680	136	18.8	
20								5700	140	18.8	
20								802.11ac	(upper ba	nd II) MCS0	
								f (MHz)	Chan	Max. average conducted power (dBm)	
								5745	149	19.0	
								5765	153	18.9	
								5785	157	18.6	
								5805	161	18.4	
				<u> </u>				5825	165	18.1	
			802.11ac)2.11ac			2.11ac		802.11ac	
	Data		wer band)	1	ldle band	l)		er band I)		(upper band II)	
BW	Rate		hannel 36		annel 52			nnel 104		annel 149	
(MHz)	(Mbits)		ax. average ucted power (dBm)	condu	average cted pov		conduc	. average cted power dBm)		Max. average conducted power (dBm)	
	MCS0		18.1		18.0			19.0		19.0	
20	MCS5		15.8		15.8			16.6		16.8	
	MCS9		7.2		7.1			7.8		8.0	
			302.11ac			2.11ac		302.11ac			
D***	Data	1	wer band)	1	ldle band	l)		er band I)		er band II)	
BW	Rate						nnel 104		annel 149		
(MHz)	(Mbits)		ix. average	S		. average		x. average			
	conducted power conducted power cond (dBm)						cted power dBm)		icted power		
	MCS0		17.1	<u> </u>	<u>авт)</u> 16.8		,	<u>ивт)</u> 17.7		(dBm) 17.7	
40	MCS5		15.8	 	15.6			16.2		16.8	
40	MCS9		12.0		11.7			12.4		12.7	
	1,1007		12.0	1	/						

*** BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 20 (103)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7

	Data	802.11ac (lower band)	802.11ac (middle band)	802.11ac (upper band I)	802.11ac (upper band II)
BW Rate (Mbits)		Channel 36	Channel 52	Channel 104	Channel 149
		Max. average	Max. average	Max. average	Max. average
	(Wibits)	conducted power	conducted power	conducted power	conducted power
		(dBm)	(dBm)	(dBm)	(dBm)
	MCS0	16.7	16.3	17.6	17.3
80	MCS5	14.6	14.2	15.3	15.3
	MCS9	10.9	10.9	11.6	11.6

Table 1.8.1-5a 802.11 ac modulation type/data rate vs. conducted power per bandwidth at full power on Rev 1 $\,$

	802.11a	802.11ac (low band) MCS0			c (mid b	and) MCS0	802.11ac	(upper ba	and I) MCS0
BW (MHz)	f (MHz)	Chan	Max. average conducted power (dBm)	f (MHz)	Chan	Max. average conducted power (dBm)	f (MHz)	Chan	Max. average conducted power (dBm)
	5180	36	15.9	5260	52	18.0	5500	100	17.0
	5200	40	15.8	5280	56		5520	104	18.4
	5220	44	15.8	5300	60		5540	108	
	5240	48	15.7	5320	64	17.1	5560	112	
							5580	116	
							5600	120	
							5620	124	
							5640	128	
							5660	132	
							5680	136	
• •							5700	140	13.4
20							802.11ac	(upper ba	nd II) MCS0
							f (MHz)	Chan	Max. average conducted power (dBm)
							5745	149	14.9
							5765	153	
							5785	157	
							5805	161	
							5825	165	14.6

≅ BlackBe	erry		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW				
Author Data	Dates of Test		Test Report No	FCC ID:			
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW			

BW (MHz)	Data Rate (Mbits)	802.11ac (lower band) Channel 36 Max. average conducted power (dBm)	802.11ac (middle band) Channel 52 Max. average conducted power (dBm)	802.11ac (upper band I) Channel 104 Max. average conducted power (dBm)	802.11ac (upper band II) Channel 149 Max. average conducted power (dBm)
	MCS0	15.9	18.0	18.4	14.9
20	MCS5	15.7	15.7	16.2	14.8
	MCS9	7.2	7.5	7.7	8.0
		802.11ac	802.11ac	802.11ac	802.11ac
	Data	(lower band)	(middle band)	(upper band I)	(upper band II)
\mathbf{BW}	Data Rate	Channel 36	Channel 52	Channel 104	Channel 149
(MHz)	(Mbits)	Max. average	Max. average	Max. average	Max. average
	(MIDILS)	conducted power	conducted power	conducted power	conducted power
		(dBm)	(dBm)	(dBm)	(dBm)
	MCS0	15.8	17.9	18.4	15.0
40	MCS5	15.6	15.7	16.2	14.8
	MCS9	7.5	7.5	7.7	8.3
		802.11ac	802.11ac	802.11ac	802.11ac
	Data	(lower band)	(middle band)	(upper band I)	(upper band II)
\mathbf{BW}	Data Rate	Channel 36	Channel 52	Channel 104	Channel 149
(MHz)	(Mbits)	Max. average	Max. average	Max. average	Max. average
	(MIDILS)	conducted power	conducted power	conducted power	conducted power
		(dBm)	(dBm)	(dBm)	(dBm)
	MCS0	15.9	18.0	18.4	15.0
80	MCS5	15.7	15.7	16.2	14.8
	MCS9	7.3	7.5	7.5	8.1

Table 1.8.1-5b 802.11 ac modulation type/data rate vs. conducted power per bandwidth at full power on Rev 2

Note: Rev 2 reduced conducted power on the band edge, so only a spot check on these channels was done.

1.8.2 SAR Measurement Requirements for Bluetooth

Channe l	Freq (MHz)	Mode	Conducted Avg. Transmit Power (dBm)
0	2402	DH5	8.6
39	2441	DH5	10.4
78	2480	DH5	6.7

Table 1.8.2-1 Bluetooth peak conducted power measurements

≅ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 22(10)3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

1.8.3 SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities as per KDB 941225 D06 v01

Standalone personal wireless routers and handsets with hotspot mode capabilities must address hand-held and other near-body exposure conditions to show SAR compliance. The following procedures are applicable when the overall device length and width are ≥ 9 cm x 5 cm respectively. A test separation of 10 mm is required. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25 mm from that surface or edge, for the data modes, wireless technologies and frequency bands supporting hotspot mode. The standalone SAR results in each device test orientation must be analyzed for the applicable hotspot mode simultaneous transmission configurations to determine SAR test exclusion and volume scan requirements.

Static/fixed power reduction scheme on the following modes/bands have been implemented when Hotspot Mode is enabled or active to comply with body SAR with 10 mm test separation from flat phantom on standalone transmitter and multi-band simultaneous transmission conditions:

• 802.11a/b/g/n: back off 6/8 dB

When Hotspot mode is enabled or active, 802.11a channels 52 - 140 are disabled or not supported.

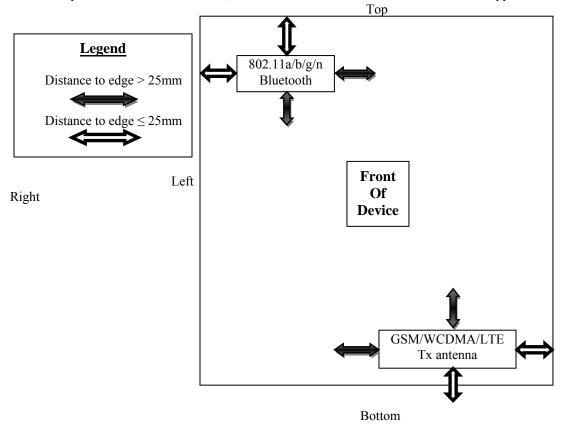


Figure 1.8.3-1 Identification of all sides for SAR Testing

Note: According to FCC guidance, Hotspot SAR testing is not required on any edge that is more than 2.5cm from the transmitting antenna.

This report shall <u>NOT</u> be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2014, BlackBerry RTS, a division of BlackBerry Limited

∷ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 23(10	3)
Author Data Dates of Test			Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

Hotspot Sides for SAR Testing								
Mode	Front	Back	Top	Bottom	Left	Right		
GPRS 850/1900, WCDMA/HSPA II/IV/V, LTE band 2/4/5/7/13/17	Yes	Yes	No	Yes	No	Yes		
Bluetooth 2.4GHz/802.11 a/b/g/n/ac (2.4 GHz/5.0 GHz)	Yes	Yes	Yes	No	Yes	No		

Table 1.8.3-1 Identification of all sides for SAR Testing

1.8.4 SAR Evaluation Procedures for GSM/(E)GPRS Dual Transfer Mode as per KDB 941225 D04 v01 and SAR Test Reduction Procedures GSM GPRS EDGE as per DDB 941225 D03 vo1

- The device supports EGPRS/GPRS Multi-slot Class 12, DTM/GPRS Multi-slot Class 11 and DTM/EGPRS Multi-slot Class 10.
- CMU200 base station simulator with DTM software option CMU-K44 was used to set device in DTM (CS+PD) mode for testing. However, device could not be connected in DTM 4-slots uplink.
- For each slot addition in multi-slot modes (DTM, GPRS, EDGE), there is software power reduction of \approx 3/1/1 dB per slot respectively for GSM 850 and 2/2.5/0.5 dB per slot respectively for GSM 1900.
- For head configurations, 1 slot CS, 2/3-slots (PD) and DTM (CS+PD) were evaluated.
- For body SAR configurations, 1 slot CS, 2/3/4-slots GPRS (PD) mode were tested.
- In EDGE/GPRS mode, GMSK Modulation was used using CS1-CS4 or MCSI-MCS4.
- 8-PSK modulation or MCS5-MCS9 code scheme were avoided since maximum burst avg . power was measured lower on those modulation schemes.
- Please refer to the conducted power measurements table below:

Mode	Freq. (MHz)	Ch.	Max burst averaged conducted power (dBm) CS1 (GMSK)	Max burst averaged conducted power (dBm) MCS1 (GMSK)	Max burst averaged conducted power (dBm) MCS5 (8-QPSK)
1-slot	824.2	128	33.6		
GPRS/EDGE	836.8	190	33.3		
850 MHz	848.8	251	33.3		
2-slots	824.2	128	30.7		
GPRS	836.8	190	30.2		
850 MHz	848.8	251	30.2		
3-slots	824.2	128	29.2		
GPRS	836.8	190	28.9		
850 MHz	848.8	251	28.7		
4-slots	824.2	128	27.1		
GPRS	836.8	190	26.8		
850 MHz	848.8	251	26.6		
2-slots	824.2	128	30.7	30.6	25.6
EDGE	836.8	190	30.2	30.2	25.3
850 MHz	848.8	251	30.2	30.2	25.0
2-slots	824.2	128	30.6	30.6	30.6
DTM	836.8	190	30.4	30.4	30.4
850 MHz	848.8	251	30.1	30.1	30.1
3-slots	824.2	128	29.3	29.3	24.5

## BlackBe	erry	SAR Compliance T Smartphone Mode	Cest Report for the BlackBer I RGY181LW	ry®	Page 24(103)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	r

EDGE	836.8	190	29	0.0	29.0	24.1
850 MHz	848.8	251	28	3.8	28.7	23.8
3-slots	824.2	128	29	9.3	29.4	29.3
DTM	836.8	190	29	9.0	29.0	28.9
850 MHz	848.8	251		3.8	28.7	28.7
4-slots	824.2	128	_	7.1	27.1	23.2
EDGE	836.8	190		5.9	26.9	22.9
850 MHz	848.8	251		5.6	26.6	22.6
1-slot	1850.2	512		0.0	20.0	22.0
GPRS/EDGE	1880.0	661		0.1		
1900 MHz	1909.8	810).8		
2-slots	1850.2	512		9.4		
GPRS	1880.0	661	29	9.5		
1900 MHz	1909.8	810		9.4		
3-slots	1850.2	512	26	5.5		
GPRS	1880.0	661	26	5.5		
1900 MHz	1909.8	810	26	5.3		
4-slots	1850.2	512	25	5.9		
GPRS	1880.0	661	25	5.7		
1900 MHz	1909.8	810	25	5.7		
2-slots	1850.2	512	29	9.4	29.4	25.1
EDGE	1880.0	661	29	9.4	29.4	25.1
1900MHz	1909.8	810	29	9.4	29.3	25.1
2-slots	1850.2	512		9.4	29.4	29.4
DTM	1880.0	661	_	9.5	29.4	29.4
1900MHz	1909.8	810		9.4	29.3	29.3
3-slots	1850.2	512	26	5.6	26.6	23.8
EDGE	1880.0	661		5.5	26.5	23.9
1900MHz	1909.8	810		5.4	26.5	24.0
3-slots	1850.2	512		5.5	26.5	26.5
DTM	1880.0	661		5.5	26.4	26.4
1900MHz	1909.8	810		5.2	26.2	26.3
4-slots	1850.2	512		5.9	25.9	22.9
EDGE	1880.0	661		5.8	25.8	22.8
1900MHz	1909.8	810		5.7	25.7	22.7
Mode	Freq. (N			Max bu		ucted power (dBm)
1-slot	824.		128		33.6	
GSM (CS)	836.		190		33.3	
850 MHz	848.		251		33.3	
1-slot	1850		512		30.9	
GSM (CS)	1880		661		31.0	
1900 MHz	1909	.8	810	30.8		

1.8.4-1a GSM/EDGE/GPRS channel vs. conducted power on Rev 1

Document

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW

25(103)

Author Data

Andrew Becker

Dates of Test

April 15 – June 13, 2014

RTS-6057-1405-01 Rev 2

FCC ID:

L6ARGY180LW

Mode	Freq. (MHz)	Channel	Max burst averaged conducted power (dBm) CS1 (GMSK)	Max burst averaged conducted power (dBm) MCS1 (GMSK)	Max burst averaged conducted power (dBm) MCS5 (8-QPSK)
1-slot	824.2	128	32.8		,
GPRS/EDGE	836.8	190	32.8		
850 MHz	848.8	251	32.7		
2-slots	824.2	128	29.7		
GPRS	836.8	190	29.5		
850 MHz	848.8	251	29.6		
3-slots	824.2	128	28.5		
GPRS	836.8	190	28.3		
850 MHz	848.8	251	28.3		
4-slots	824.2	128	26.5		
GPRS	836.8	190	26.3		
850 MHz	848.8	251	26.1		
2-slots	824.2	128	29.7		
EDGE	836.8	190	29.5		
850 MHz	848.8	251	29.5		
2-slots	824.2	128	29.7		
DTM	836.8	190	29.5		
850 MHz	848.8	251	29.5		
3-slots	824.2	128	28.5		
EDGE	836.8	190	28.3		
850 MHz	848.8	251	28.3		
3-slots	824.2	128	28.5		
DTM	836.8	190	28.3		
850 MHz	848.8	251	28.3		
4-slots	824.2	128	26.5		
EDGE	836.8	190	26.3		
850 MHz	848.8	251	26.1		
1-slot	1850.2	512	29.8		
GPRS/EDGE	1880.0	661	29.8		
1900 MHz	1909.8	810	29.8		
2-slots	1850.2	512	28.4		
GPRS	1880.0	661	28.5		
1900 MHz	1909.8	810	28.4		
3-slots	1850.2	512	25.5		
GPRS	1880.0	661	25.5		
1900 MHz	1909.8	810	25.5		
4-slots	1850.2	512	25.0		
GPRS	1880.0	661	25.0		
1900 MHz	1909.8	810	25.0		

∷ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 26(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 - June 13, 2014 RTS-6057-1405-01 Rev 2 L6ARGY180L				L6ARGY180LW		

28.5

28.4

1850.2

1880.0

2-slots EDGE 512

661

EDGE	1000.0	001	20.	. —			
1900MHz	1909.8	810	28.	.4			
2-slots	1850.2	512	28.	.5			
DTM	1880.0	661	28.	.4			
1900MHz	1909.8	810	28.	.4			
3-slots	1850.2	512	25.	.5			
EDGE	1880.0	661	25.	.5			
1900MHz	1909.8	810	25.	.6			
3-slots	1850.2	512	25.	.5			
DTM	1880.0	661	25.	.5			
1900MHz	1909.8	810	25.	.6			
4-slots	1850.2	512	25.	.0			
EDGE	1880.0	661	25.	.0			
1900MHz	1909.8	810	25.	.0			
Mode)	Free (MH	_	Ch	annel	burst averaged ducted power (dBm)	
1-slot	<u> </u>	824	.2		128	32.8	
GSM (C	GSM (CS) 836.8		836.8		190	32.8	
850 MI	Ηz	848.8		3 251		32.7	
1-slot	<u> </u>	1850	0.2	.2 512		29.8	
GSM (C	CS)	1880	0.0		661	29.8	
1900 M	Hz	1909	0.8		810	29.8	

1.8.4-1b GSM/EDGE/GPRS channel vs. conducted power on Rev 2

∷ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 27(10	03)
Author Data Dates of Test			Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

1.8.5 SAR Measurement Procedure for Fast SAR Scan as per KDB 447498

Fast SAR or area scan based 1-g SAR estimation can be used instead of full SAR measurements as long as the following conditions are fulfilled:

- For dipole validation the 1g SAR for the area and zoom scan must be with $\pm 3\%$
- 1g Measured SAR \leq 1.2 W/kg
- The difference between the zoom and area scan 1g SAR \leq 0.1 W/kg
- A zoom scan is required on the worst case for each configuration of a frequency band.
 - \circ For head configuration: A zoom scan is required for <u>each</u> position with 1g SAR ≥ 0.8 and 1 additional zoom scan to cover all the remaining positions. The scan is done on the worst case for the position(s)
- Polynomial fit algorithm is utilized. Set in DASY by double clicking the area scan procedure
- Area scan is measure at a distance ≤ 4 mm from the phantom surface
- A zoom scan is not required for any other purpose
 - o For simultaneous transmission the coordinates for the maxima can be found using the area scan
- DASY must not show any error, warning, or alert messages during the scan.
 - o Example: noise in measurement, peak to close to the scan boundary. Peaks are too sharp, etc.
- The frequency band being tested is \leq 3 GHz

1.8.6 SAR Measurement Procedures for 3G Devices

WCDMA Handsets

Output Power Verification

- Maximum output power is verified on the High, Middle and Low channels using 12.2 kbps RMC, 12.2 kbps AMR with a 3.4 kbps SRB (signal radio bearer) with TPC (transmit power control) set to all "1's" for WCDMA/HSPA or applying the required inner loop.
- For Release 6 HSPA/Release 7 HSDPA⁺, output power is measured according to requirements for HS-DPCCH Sub-test 1-4/1-5 and 3GPP TS 34.121.

Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signalling radio bearer) using the exposure configuration that results in the highest SAR for that RF channel in 12.2 RMC.

Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all "1s". SAR for other spreading codes and multiple DPDCH_n, when supported by the DUT, are not required when the maximum average outputs of each RF channel, for each spreading code and DPDCH_n configuration, are less than ½ dB higher than those measured in 12.2 RMC. Otherwise, SAR is measured on the maximum output channel with an applicable RMC configuration for the corresponding spreading code or DPDCH_n using the exposure configuration that results in the highest SAR with 12.2 RMC.

Handsets with HSPA

Body SAR is not required for handsets with HSPA/HSPA+ capabilities, when the maximum average output of each RF channel with HSPA active is less than ½ dB higher than that measured in 12.2 kbps RMC without HSPA/HSPA+. Otherwise, SAR for HSPA is measured using FRC (fixed reference channel) in the body exposure configuration that results in the highest SAR for that RF channel in 12.2kbps RMC.

1.8.7 Test Seup information for WCDMA / HSPDA / HSUPA

a) WCDMA RMC

In RMC (reference measurement channel) mode the conducted power at 4 different bit rates were measured. They correspond with the used spreading factors as follows:

Bit rate	12.2 kbit/s	64 kbit/s	144 kbit/s	384 kbit/s
Spreading factor (SF)	64	16	8	4

*** BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 29(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

In RMC mode only DPCCH and DPDCH are active. As bit rate changes do not influence the relative power of any code channel the measured RMS output power remains on the same level which is set to maximum by TPC (Transmit power control) pattern type 'All 1'.

b) HSDPA

HSDPA adds the HS-DPCCH in uplink as a control channel for high speed data transfer in downlink. In HSDPA mode 4 sub-tests are defined by 3GPP 34.121 according to the following table:

Sub-test	βc	β_d	β _d (SF)	β_c/β_d	β _{hs} ⁽¹⁾	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 11/15 and β_d = 15/15

Table 1.8.7-1 Sub-tests for UMTS Release 5 HSDPA

The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the above table, β_{hs} for HS-DPCCH is set automatically to the correct value when Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8$. The variation of the β_c/β_d ratio causes a power reduction at sub-tests 2 - 4.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 1.8.7-2 Settings of required H-Set 1 QPSK acc. to 3GPP 34.121

∷ BlackBe	erry		Compliance Test Report for the BlackBerry® rtphone Model RGY181LW			
Author Data	Dates of Test		Test Report No FCC ID:			
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

c) DC-HSDPA (3GPP Release 8)

Dual Cell – HSDPA has been signalized using the following settings for connection setup:

Parameter	Value
During Connection Setup	
P-CPICH_Ec/Ior	-10 dB
P-CCPCH	-12
SCH_Ec/Ior	-12
PICH_Ec/Ior	-15
HS-PDSCH	off
HS-SCCH_1	off
DPCH_Ec/Ior	-5
OCNS_Ec/Ior	-3.1

Table 1.8.7-3 Downlink Physical Channels according to 3GPP 34.121 Table E.5.0

The fixed reference channel has been set to H-set 12 according to 3GPP TS 34.121 Table C.8.1.12:

Parameter	Unit	Value
Nominal Average Inf. Bit Rate	kbit/s	60
Inter-TTI Distance	TTI's	1
Information Bit Payload (N _{INF})	Bits	120
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	960
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Process	SML's	3200
Coding Rate		0.15
Number of Physical Channel Codecs	Codecs	1
Modulation		QPSK

Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table.

Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.

Table 1.8.7-4 H-Set 12 QPSK configuration

The same Sub-test settings as for Release 5 HSDPA were used for the tests.

Andrew Becker April 15 – June 13, 2014 RTS-6057-1405-01 Rev 2 L6ARGY180LW

d) HSUPA

In HSUPA mode additional code channels (E-DPCCH, E-DPDCHn) are added for data transfer in uplink at higher bit rates.

5 sub-tests are defined by 3GPP 34.121 according to the following table:

Sub-	βc	β_d	β _d (SF)	β_c/β_d	β _{hs} ⁽¹⁾	β_{ec}	β_{ed}	β_{ec}	β_{ed}	CM ⁽²⁾	MPR	AG ⁽⁴⁾	E-TFCI
test	-	•			-	•	-	(SF)	(code)	(dB)	(dB)	Index	
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed1} :47/15 β_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} , $\Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for β_c/β_d = 12/15, β_{hs}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference

Note 3 : For subtest 1 the $\beta_J\beta_d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$

Note 4 : For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to β_c = 14/15 and β_d = 15/15

Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value

Table 1.8.7-5 Subtests for UMTS Release 6 HSUPA

To achieve the settings above some additional procedures were defined by 3GPP 34.121. Those have been included in an application note for the CMU200 and were exactly followed:

- Test mode connection (BS signal tab):

RMC 12.2 kbit/s + HSPA 34.108 with loop mode 1

- HS-DSCH settings (BS signal tab):
- FRC with H-set 1 OPSK
- ACK-NACK repetition factor = 3
- CQI feedback cycle = 4ms
- CQI repetition factor = 2
- HSUPA-specific signalling settings (UE signal tab) :
- E-TFCI table index = 0
- E-DCH minimum set E-TFCI = 9
- Puncturing limit non-max = 0.84
- max. number of channelisation codes = 2x SF4
- Initial Serving Grant Value = Off
- HSDPA and HSUPA Gain factors (UE signal tab)

∷ BlackBe	erry	SAR Compliance T Smartphone Model	Page 32(103)		
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker April 15 – June 13, 2014		RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

Sub-test	β _c	β_d	$\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQ}$	ı ΔE-DPCCH *
1	10	15	8	6
2	6	15	8	8
3	15	9	8	8
4	2	15	8	5
5	14	15	8	7

* β_{ec} and β_{ed} ratios (relative to β_c and $\beta_d)$ are set by $\Delta E\text{--}DPCCH$

- HSUPA Reference E-TFCIs (UE signal tab > HSUPA gain factors) :

Sub-test	1, 2, 4, 5					
Number of E-TFCIs			5			
Reference E-TFCI	11	67	71	75	81	
Reference E-TFCI power offset	4	18	23	26	27	

Sub-test	-	3		
Number of E-TFCIs	2			
Reference E-TFCI	11	92		
Reference E-TFCI power offset	4	18		

- HSUPA-specific generator parameters (BS Signal tab > HSUPA > E-AGCH > AG Pattern)

Sub-test	Absolute Grant Value (AG Index)
1	20
2	12
3	15
4	17
5	21

- Power Level settings (BS Signal tab > Node B-settings):
- Level reference : Output Channel Power (lor)
- Output Channel Power (lor): -86 dBm
- Downlink Physical Channel Settings (BS signal tab)

- P-CPICH: -10 dB - S-CPICH: Off - P-SCH: -15 dB - S-SCH: -15 dB - P-CCPCH: -12 dB - S-CCPCH: -12 dB - PICH: -15 dB - AICH: -12 dB - DPDCH: -10 dB

- HS-SCCH: -8 dB

Document

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW

Page 33(103)

Author Data
Andrew Becker

Dates of Test

April 15 – June 13, 2014

Test Report N

RTS-6057-1405-01 Rev 2

L6ARGY180LW

FCC ID:

- HS-PDSCH : -3 dB - E-AGCH : -20 dB

- E-RGCH/E-HICH - 20 dB - E-RGCH Active : Off

The settings above were stored once for each sub-test and recalled before the measurement.

To reach maximum output power in HSUPA mode the following procedures were followed:

3 different TPC patterns were defined:

Set 1: Closed loop with target power 10 dBm

Set 2: Single Pattern + Alternating with binary pattern '11111' for 1 dB steps 'up'

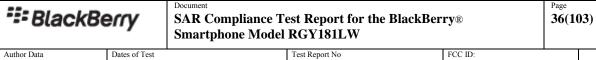
Set 3: Single Pattern + Alternating with binary pattern '00000' for 1 dB steps 'down'

After recalling a certain HSUPA sub-test the HSUPA E-AGCH graph with E-TFCI event counter is displayed. First, the closed loop command is executed and then the power is increased in 1 dB steps by activating pattern set 2 until the UE decreases the transmitted E-TFCI. At this point set 3 is activated once to reduce the output power to the value at which the original E-TFCI, which is required for the sub-test, appears again.

For conducted power measurements the same steps are repeated in the power menu to read out the corresponding maximum RMS output power with the target E-TFCI. For SAR measurements it is useful to switch to Code Domain Power vs. Time display. Here the CMU200 shows relative power values (max. and min.) of each code channel which should roughly correspond to the numerators of the gain factors e.g.:

Sub-test	eta_{c}	β_d	$eta_{\sf hs}$	$eta_{ m ec}$	$eta_{\sf ed}$
5	15	15	30	24	134

	Band	FDD V (850)			
	Freq (MHz)	826.4	836.4	846.6	
	Channel	4132	4182	4233	
Mada	Corbana	Max burst averaged			
Mode	Subtest	conduc	ted power	(dBm)	
Rel99	12.2 kbps RMC	24.34	24.36	24.31	
Rel99	12.2kbps, Voice, AMR, SRB 3.4 kbps	24.40	24.36	24.30	
HSUPA	1	23.38	23.32	22.99	
HSUPA	2	22.44	22.42	22.38	
HSUPA	3	21.97	22.01	21.97	
HSUPA	4	22.92	22.87	22.86	
HSUPA	5	22.54	23.22	22.96	
HSDPA+	1	23.40	23.47	23.33	
HSDPA+	2	23.42	23.44	23.30	
HSDPA+	3	23.00	22.95	22.81	
HSDPA+	4	23.01	22.95	22.87	
DC-HSDPA	1	23.02	23.03	23.24	
DC-HSDPA	2	23.03	23.12	23.24	
DC-HSDPA	3	22.64	22.64	22.84	
DC-HSDPA	4	22.64	22.66	22.77	
	Band	FDD IV (1700)		00)	
	Freq (MHz)	1712.4	1732.6	1752.6	
	Channel	1312	1413	1513	
3.7. 1		Max burst averaged			
Mode	Subtest	conduc	ted power	ower (dBm)	
Rel99	12.2 kbps RMC	24.02	24.26	24.25	
Rel99	12.2 kbps, Voice, AMR, SRB 3.4 kbps	24.04	24.24	24.25	
HSUPA	1	23.11	22.94	22.65	
HSUPA	2	22.05	22.26	22.32	
HSULA					
HSUPA	3	21.94	21.58	21.80	
	3 4		21.58 22.76	21.80 22.83	
HSUPA		21.94	21.58		
HSUPA HSUPA	5 1	21.94 22.54	21.58 22.76	22.83	
HSUPA HSUPA HSUPA	4 5	21.94 22.54 22.55	21.58 22.76 22.45	22.83 22.38	
HSUPA HSUPA HSUPA HSDPA+	4 5 1 2 3	21.94 22.54 22.55 23.10	21.58 22.76 22.45 23.38	22.83 22.38 23.36	
HSUPA HSUPA HSUPA HSDPA+	4 5 1 2	21.94 22.54 22.55 23.10 23.12	21.58 22.76 22.45 23.38 23.31	22.83 22.38 23.36 23.39	
HSUPA HSUPA HSUPA HSDPA+ HSDPA+	4 5 1 2 3	21.94 22.54 22.55 23.10 23.12 22.60	21.58 22.76 22.45 23.38 23.31 22.86	22.83 22.38 23.36 23.39 22.89	
HSUPA HSUPA HSUPA HSDPA+ HSDPA+ HSDPA+	4 5 1 2 3 4	21.94 22.54 22.55 23.10 23.12 22.60 22.61	21.58 22.76 22.45 23.38 23.31 22.86 22.83	22.83 22.38 23.36 23.39 22.89 22.90	
HSUPA HSUPA HSUPA+ HSDPA+ HSDPA+ HSDPA+ DC-HSDPA	4 5 1 2 3 4	21.94 22.54 22.55 23.10 23.12 22.60 22.61 22.71	21.58 22.76 22.45 23.38 23.31 22.86 22.83 23.05	22.83 22.38 23.36 23.39 22.89 22.90 22.84	


≅BlackBerry		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW				03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

	Freq (MHz)	1852.4	1880.0	1907.6	
	Channel	9262	9400	9538	
Mode	Subtest	Max burst averaged			
Wiode	Subtest	conduc	ted power (dBm)		
Rel99	12.2 kbps RMC	24.24	24.28	24.06	
Rel99	12.2 kbps, Voice, AMR, SRB 3.4 kbps	24.26	24.28	24.02	
HSUPA	1	23.08	23.21	22.78	
HSUPA	2	22.31	22.45	22.25	
HSUPA	3	22.34	21.94	21.77	
HSUPA	4	22.75	22.90	22.66	
HSUPA	5	23.11	23.01	22.74	
HSDPA+	1	23.44	23.42	23.17	
HSDPA+	2	23.47	23.43	23.23	
HSDPA+	3	22.95	22.96	22.77	
HSDPA+	4	22.87	22.96	22.76	
DC-HSDPA	1	23.22	22.92	22.97	
DC-HSDPA	2	23.26	23.05	22.92	
DC-HSDPA	3	22.62	22.45	22.45	
DC-HSDPA	4	22.63	22.43	22.41	

Table 1.8.7-6a WCDMA (Rel99) / HSPA/HSPA+ conducted power measurements at full power

WCDMA/UMTS/HSPA/HSPA+ At Reduced Power For Hotspot Mode						
	Band	FDD II (1900)				
	Freq (MHz)	1852.4	1880.0	1907.6		
	Channel	9262	9400	9538		
Mode	Subtest	Max burst averaged conducted power (dBm)				
Rel99	12.2 kbps RMC	23.37	23.37	23.03		
Rel99	12.2kbps, Voice, AMR, SRB 3.4 kbps	23.38	23.38	23.02		
HSUPA	1	22.37	22.36	21.98		
HSDPA+	1	22.40	22.60	22.26		

Table 1.8.7-6b WCDMA (Rel99) / HSPA/HSPA+ conducted power measurements on Hotspot mode

Andrew Becker April 15 – June 13, 2014 RTS-6057-1405-01 Rev 2 L6ARGY180LW

1.8.8 SAR Evaluation Procedures for LTE as per KDB 941225 D05 v02

"1. QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.6 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required

for all three RB offset configurations for that required test channel.

2. QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1. are applied to measure the SAR for QPSK with 50% RB allocation.

3. QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1. and 2. are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 1. and 2. and 3. to determine the QAM configurations that may need SAR measurement.

For each configuration

identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

4. Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 5.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. The equivalent channel configuration for the RB allocation, RB offset and modulation etc. Is determined for the smaller channel bandwidth according to the same number of RB allocated in

largest channel bandwidth. For example, 50 RB in 10 MHz channel bandwidth does not apply to

MHz channel bandwidth; therefore, this cannot be tested in the smaller channel bandwidth. However, 50% RB allocation in 10 MHz channel bandwidth

is equivalent to 100% RB allocation in 5 MHz channel bandwidth; therefore, these are the equivalent configurations to be compared to determine the specific channel and configuration in

≅ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 37(103)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7

the smaller channel bandwidth that need SAR testing."

- MPR has been implemented permanently by the manufacturer as per 3GPP TS36.101
- A-MPR was disabled for all SAR measurements.
- •LTE Head SAR was evaluated to cover third-party VoIP applications at full power.
- According to "3GPP TS 36.521-1 V10.0.0 (2011-12)":
 - •"The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively."...

			LTE Band 2 A	t Full P	ower	
Band	BW	Mod.	Channel	RB	Offset	Max. avg. conducted power (dBm)
2	20	QPSK	18700	1	LOW	23.53
2	20	QPSK	18700	1	MID	23.60
2	20	QPSK	18700	1	HIGH	23.54
2	20	QPSK	18700	50	LOW	22.53
2	20	QPSK	18700	50	HIGH	22.50
2	20	QPSK	18700	100	LOW	22.56
2	20	Q16	18700	1	LOW	22.51
2	20	Q16	18700	1	MID	22.55
2	20	Q16	18700	1	HIGH	22.56
2	20	Q16	18700	75	LOW	21.67
2	20	Q16	18700	75	HIGH	21.56
2	20	Q16	18700	100	LOW	21.64
2	20	QPSK	18900	1	LOW	23.65
2	20	QPSK	18900	1	MID	23.65
2	20	QPSK	18900	1	HIGH	23.64
2	20	QPSK	18900	50	LOW	22.63
2	20	QPSK	18900	50	HIGH	22.60
2	20	QPSK	18900	100	LOW	22.57
2	20	Q16	18900	1	LOW	23.03
2	20	Q16	18900	1	MID	23.07
2	20	Q16	18900	1	HIGH	23.05

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW

38(103)

2	20	Q16	18900	75	LOW	21.69
2	20	Q16	18900	75	HIGH	21.59
2	20	Q16	18900	100	LOW	21.60
2	20	QPSK	19100	1	LOW	23.55
2	20	QPSK	19100	1	MID	23.33
2	20	QPSK	19100	1	HIGH	23.42
2	20	QPSK	19100	50	LOW	22.44
2	20	QPSK	19100	50	HIGH	22.25
2	20	QPSK	19100	100	LOW	22.36
2	20	Q16	19100	1	LOW	22.63
2	20	Q16	19100	1	MID	22.44
2	20	Q16	19100	1	HIGH	22.48
2	20	Q16	19100	75	LOW	21.49
2	20	Q16	19100	75	HIGH	21.43
2	20	Q16	19100	100	LOW	21.38
2	15	QPSK	18900	1	LOW	23.58
2	15	QPSK	18900	1	MID	23.52
2	15	QPSK	18900	1	HIGH	23.49
2	15	QPSK	18900	36	LOW	22.66
2	15	QPSK	18900	36	HIGH	22.60
2	15	QPSK	18900	75	LOW	22.78
2	15	Q16	18900	1	LOW	22.92
2	15	Q16	18900	1	MID	22.88
2	15	Q16	18900	1	HIGH	22.89
2	15	Q16	18900	16	LOW	22.61
2	15	Q16	18900	16	HIGH	22.64
2	15	Q16	18900	75	LOW	21.74
2	10	QPSK	18900	1	LOW	23.53
2	10	QPSK	18900	1	MID	23.51
2	10	QPSK	18900	1	HIGH	23.56
2	10	QPSK	18900	25	LOW	22.63
2	10	QPSK	18900	25	HIGH	22.58
2	10	QPSK	18900	50	LOW	22.63
2	10	Q16	18900	1	LOW	22.94
2	10	Q16	18900	1	MID	22.89
2	10	Q16	18900	1	HIGH	22.95
2	10	Q16	18900	30	LOW	21.59
2	10	Q16	18900	30	HIGH	21.56

RTS-6057-1405-01 Rev 2 L6ARGY180LW

April 15 – June 13, 2014

Andrew Becker

2	10	Q16	18900	50	LOW	21.57
2	5	QPSK	18900	1	LOW	23.49
2	5	QPSK	18900	1	MID	23.50
2	5	QPSK	18900	1	HIGH	23.55
2	5	QPSK	18900	10	LOW	22.53
2	5	QPSK	18900	10	HIGH	22.59
2	5	QPSK	18900	25	LOW	22.58
2	5	Q16	18900	1	LOW	22.46
2	5	Q16	18900	1	MID	22.45
2	5	Q16	18900	1	HIGH	22.52
2	5	Q16	18900	8	LOW	22.68
2	5	Q16	18900	8	HIGH	22.71
2	5	Q16	18900	25	LOW	21.64
2	3	QPSK	18900	1	LOW	23.55
2	3	QPSK	18900	1	MID	23.47
2	3	QPSK	18900	1	HIGH	23.52
2	3	QPSK	18900	6	LOW	22.57
2	3	QPSK	18900	6	HIGH	22.56
2	3	QPSK	18900	15	LOW	22.60
2	3	Q16	18900	1	LOW	22.92
2	3	Q16	18900	1	MID	22.87
2	3	Q16	18900	1	HIGH	22.95
2	3	Q16	18900	4	LOW	22.74
2	3	Q16	18900	4	HIGH	22.77
2	3	Q16	18900	15	LOW	21.66
2	1.4	QPSK	18900	1	LOW	23.54
2	1.4	QPSK	18900	1	MID	23.52
2	1.4	QPSK	18900	1	HIGH	23.54
2	1.4	QPSK	18900	3	LOW	23.62
2	1.4	QPSK	18900	3	HIGH	23.61
2	1.4	QPSK	18900	6	LOW	22.67
2	1.4	Q16	18900	1	LOW	22.73
2	1.4	Q16	18900	1	MID	22.66
2	1.4	Q16	18900	1	HIGH	22.73
2	1.4	Q16	18900	5	LOW	22.53
2	1.4	Q16	18900	5	HIGH	22.55
2	1.4	Q16	18900	6	LOW	21.57

*** BlackBo	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 40(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014		RTS-6057-1405-01 Rev 2	L6ARGY180LW	,		

Table 1.8.8-1a LTE band 2 conducted power measurements at full power

	LTE Band 2 At Reduced Power On Hotspot Mode									
Band	BW	Mod.	Channel	RB	Offset	Max. avg. conducted power (dBm)				
2	20	QPSK	18700	1	LOW	22.71				
2	20	QPSK	18700	1	MID	22.79				
2	20	QPSK	18700	1	HIGH	22.74				
2	20	QPSK	18700	50	LOW	22.53				
2	20	QPSK	18700	50	HIGH	22.52				
2	20	QPSK	18700	100	LOW	22.62				
2	20	Q16	18700	1	LOW	22.53				
2	20	Q16	18700	1	MID	22.56				
2	20	Q16	18700	1	HIGH	22.56				
2	20	Q16	18700	75	LOW	21.67				
2	20	Q16	18700	75	HIGH	21.59				
2	20	Q16	18700	100	LOW	21.64				
2	20	QPSK	18900	1	LOW	22.83				
2	20	QPSK	18900	1	MID	22.90				
2	20	QPSK	18900	1	HIGH	22.89				
2	20	QPSK	18900	50	LOW	22.71				
2	20	QPSK	18900	50	HIGH	22.65				
2	20	QPSK	18900	100	LOW	22.65				
2	20	Q16	18900	1	LOW	23.08				
2	20	Q16	18900	1	MID	23.14				
2	20	Q16	18900	1	HIGH	23.14				
2	20	Q16	18900	75	LOW	21.70				
2	20	Q16	18900	75	HIGH	21.72				
2	20	Q16	18900	100	LOW	21.60				
2	20	QPSK	19100	1	LOW	22.80				
2	20	QPSK	19100	1	MID	22.66				
2	20	QPSK	19100	1	HIGH	22.70				
2	20	QPSK	19100	50	LOW	22.52				
2	20	QPSK	19100	50	HIGH	22.38				
2	20	QPSK	19100	100	LOW	22.43				
2	20	Q16	19100	1	LOW	22.67				
2	20	Q16	19100	1	MID	22.48				

Document

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW

41(103)

2	20	Q16	19100	1 1	HIGH	22.55
2	20	Q16	19100	75	LOW	21.56
2	20	Q16	19100	75	HIGH	21.50
2	20	Q16	19100	100	LOW	21.44
2	15	QPSK	18900	1	LOW	22.77
2	15	QPSK	18900	1	MID	22.76
2	15	QPSK	18900	1	HIGH	22.73
2	15	QPSK	18900	36	LOW	22.72
2	15	QPSK	18900	36	HIGH	22.65
2	15	QPSK	18900	75	LOW	22.79
2	15	Q16	18900	1	LOW	22.97
2	15	Q16	18900	1	MID	22.96
2	15	Q16	18900	1	HIGH	22.98
2	15	Q16	18900	16	LOW	22.66
2	15	Q16	18900	16	HIGH	22.69
2	15	Q16	18900	75	LOW	21.79
2	10	QPSK	18900	1	LOW	22.74
2	10	QPSK	18900	1	MID	22.67
2	10	QPSK	18900	1	HIGH	22.72
2	10	QPSK	18900	25	LOW	22.70
2	10	QPSK	18900	25	HIGH	22.68
2	10	QPSK	18900	50	LOW	22.66
2	10	Q16	18900	1	LOW	23.00
2	10	Q16	18900	1	MID	22.95
2	10	Q16	18900	1	HIGH	23.02
2	10	Q16	18900	30	LOW	21.70
2	10	Q16	18900	30	HIGH	21.60
2	10	Q16	18900	50	LOW	21.65
2	5	QPSK	18900	1	LOW	22.73
2	5	QPSK	18900	1	MID	22.73
2	5	QPSK	18900	1	HIGH	22.79
2	5	QPSK	18900	10	LOW	22.60
2	5	QPSK	18900	10	HIGH	22.62
2	5	QPSK	18900	25	LOW	22.59
2	5	Q16	18900	1	LOW	22.50
2	5	Q16	18900	1	MID	22.53
2	5	Q16	18900	1	HIGH	22.60
2	5	Q16	18900	8	LOW	22.74

∷ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 42(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	,	

ا ء	ا _	016	10000	١	111611	22.00
2	5	Q16	18900	8	HIGH	22.80
2	5	Q16	18900	25	LOW	21.74
2	3	QPSK	18900	1	LOW	22.75
2	3	QPSK	18900	1	MID	22.67
2	3	QPSK	18900	1	HIGH	22.75
2	3	QPSK	18900	6	LOW	22.70
2	3	QPSK	18900	6	HIGH	22.68
2	3	QPSK	18900	15	LOW	22.65
2	3	Q16	18900	1	LOW	22.99
2	3	Q16	18900	1	MID	22.92
2	3	Q16	18900	1	HIGH	22.99
2	3	Q16	18900	4	LOW	22.84
2	3	Q16	18900	4	HIGH	22.87
2	3	Q16	18900	15	LOW	21.71
2	14	QPSK	18900	1	LOW	22.81
2	14	QPSK	18900	1	MID	22.71
2	14	QPSK	18900	1	HIGH	22.79
2	14	QPSK	18900	3	LOW	22.91
2	14	QPSK	18900	3	HIGH	22.91
2	14	QPSK	18900	6	LOW	22.70
2	14	Q16	18900	1	LOW	22.79
2	14	Q16	18900	1	MID	22.75
2	14	Q16	18900	1	HIGH	22.81
2	14	Q16	18900	5	LOW	22.57
2	14	Q16	18900	5	HIGH	22.57
2	14	Q16	18900	6	LOW	21.67

Table 1.8.8-1b LTE band 2 conducted power measurements on Hotspot mode

Document

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW

43(103)

Author Data
Andrew Becker

Dates of Test

April 15 – June 13, 2014

RTS-6057-1405-01 Rev 2

FCC ID:

L6ARGY180LW

Band	BW	Mod.	Channel	RB	Offset	Max. avg. conducted power (dBm)
4	20	QPSK	20050	1	LOW	23.27
4	20	QPSK	20050	1	MID	23.48
4	20	QPSK	20050	1	HIGH	23.39
4	20	QPSK	20050	50	LOW	22.33
4	20	QPSK	20050	50	HIGH	22.44
4	20	QPSK	20050	100	LOW	22.44
4	20	Q16	20050	1	LOW	22.25
4	20	Q16	20050	1	MID	22.45
4	20	Q16	20050	1	HIGH	22.40
4	20	Q16	20050	75	LOW	21.53
4	20	Q16	20050	75	HIGH	21.49
4	20	Q16	20050	100	LOW	21.38
4	20	QPSK	20175	1	LOW	23.59
4	20	QPSK	20175	1	MID	23.51
4	20	QPSK	20175	1	HIGH	23.34
4	20	QPSK	20175	50	LOW	22.48
4	20	QPSK	20175	50	HIGH	22.44
4	20	QPSK	20175	100	LOW	22.48
4	20	Q16	20175	1	LOW	23.03
4	20	Q16	20175	1	MID	22.94
4	20	Q16	20175	1	HIGH	22.81
4	20	Q16	20175	75	LOW	21.55
4	20	Q16	20175	75	HIGH	21.60
4	20	Q16	20175	100	LOW	21.52
4	20	QPSK	20300	1	LOW	23.47
4	20	QPSK	20300	1	MID	23.18
4	20	QPSK	20300	1	HIGH	23.40
4	20	QPSK	20300	50	LOW	22.30
4	20	QPSK	20300	50	HIGH	22.30
4	20	QPSK	20300	100	LOW	22.32
4	20	Q16	20300	1	LOW	22.54
4	20	Q16	20300	1	MID	22.29
4	20	Q16	20300	1	HIGH	22.51

April 15 – June 13, 2014

Dates of Test

4

5

Author Data

Andrew Becker

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW

RTS-6057-1405-01 Rev 2

44(103)

FCC ID:

L6ARGY180LW

4 20 Q16 20300 75 LOW 21.40 4 20 Q16 20300 75 HIGH 21.38 4 20 Q16 20300 100 LOW 21.38 20175 4 15 QPSK 1 LOW 23.37 4 15 QPSK 20175 1 23.36 MID 4 1 15 QPSK 20175 HIGH 23.26 4 36 15 QPSK 20175 LOW 22.48 4 36 HIGH 15 QPSK 20175 22.57 4 15 QPSK 20175 75 LOW 22.61 4 15 Q16 20175 1 LOW 22.77 4 15 Q16 20175 1 MID 22.75 1 4 15 20175 HIGH 22.69 Q16 15 4 Q16 20175 16 LOW 22.39 4 15 16 22.47 20175 HIGH Q16 4 15 Q16 20175 75 LOW 21.60 4 10 QPSK 20175 1 LOW 23.28 4 10 QPSK 20175 1 MID 23.31 4 10 QPSK 20175 1 HIGH 23.34 25 4 10 QPSK 20175 LOW 22.40 4 10 QPSK 20175 25 HIGH 22.45 4 10 QPSK 20175 50 LOW 22.51 4 10 20175 1 LOW 22.68 Q16 4 10 20175 1 MID 22.74 Q16 4 10 HIGH 22.74 Q16 20175 1 4 10 Q16 20175 30 LOW 21.39 21.43 4 10 Q16 20175 30 HIGH 4 10 20175 50 LOW 21.47 Q16 5 QPSK 20175 1 LOW 23.33 4 5 4 QPSK 20175 1 MID 23.34 4 5 20175 1 23.41 QPSK HIGH 4 5 QPSK 20175 10 LOW 22.43 4 5 QPSK 20175 10 HIGH 22.45 4 5 QPSK 20175 25 LOW 22.45 4 5 20175 1 LOW 22.32 Q16 5 1 22.33 4 Q16 20175 MID 4 5 1 Q16 20175 HIGH 22.42 5 8 4 Q16 20175 LOW 22.55

20175

8

HIGH

22.61

Q16

BlackBerry SAR Compliance To Smartphone Mode			est Report for the BlackBer RGY181LW	ry®	Page 45(103)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker April 15 – June 13, 2014		RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

4	5	Q16	20175	25	LOW	21.54
4	3	QPSK	20175	1	LOW	23.35
4	3	QPSK	20175	1	MID	23.33
4	3	QPSK	20175	1	HIGH	23.35
4	3	QPSK	20175	6	LOW	22.49
4	3	QPSK	20175	6	HIGH	22.50
4	3	QPSK	20175	15	LOW	22.51
4	3	Q16	20175	1	LOW	22.79
4	3	Q16	20175	1	MID	22.74
4	3	Q16	20175	1	HIGH	22.78
4	3	Q16	20175	4	LOW	22.59
4	3	Q16	20175	4	HIGH	22.65
4	3	Q16	20175	15	LOW	21.53
4	1.4	QPSK	20175	1	LOW	23.41
4	1.4	QPSK	20175	1	MID	23.31
4	1.4	QPSK	20175	1	HIGH	23.39
4	1.4	QPSK	20175	3	LOW	23.48
4	1.4	QPSK	20175	3	HIGH	23.47
4	1.4	QPSK	20175	6	LOW	22.54
4	1.4	Q16	20175	1	LOW	22.59
4	1.4	Q16	20175	1	MID	22.53
4	1.4	Q16	20175	1	HIGH	22.61
4	1.4	Q16	20175	5	LOW	22.42
4	1.4	Q16	20175	5	HIGH	22.41
4	1.4	Q16	20175	6	LOW	21.51

Table 1.8.8-2 LTE band 4 conducted power measurements

Band	BW	Mod.	Channel	RB	Offset	Max. avg. conducted power (dBm)
5	10	QPSK	20450	1	LOW	22.94
5	10	QPSK	20450	1	MID	23.62
5	10	QPSK	20450	1	HIGH	23.39
5	10	QPSK	20450	25	LOW	22.47
5	10	QPSK	20450	25	HIGH	22.51
5	10	QPSK	20450	50	LOW	22.50
5	10	Q16	20450	1	LOW	22.20
5	10	Q16	20450	1	MID	22.98
5	10	Q16	20450	1	HIGH	22.81
5	10	Q16	20450	30	LOW	21.51
5	10	Q16	20450	30	HIGH	21.50
5	10	Q16	20450	50	LOW	21.49
5	10	QPSK	20525	1	LOW	23.34
5	10	QPSK	20525	1	MID	23.17
5	10	QPSK	20525	1	HIGH	23.21
5	10	QPSK	20525	25	LOW	22.30
5	10	QPSK	20525	25	HIGH	22.28
5	10	QPSK	20525	50	LOW	22.37
5	10	Q16	20525	1	LOW	22.35
5	10	Q16	20525	1	MID	22.22
5	10	Q16	20525	1	HIGH	22.18
5	10	Q16	20525	30	LOW	21.38
5	10	Q16	20525	30	HIGH	21.36
5	10	Q16	20525	50	LOW	21.33
5	10	QPSK	20600	1	LOW	23.27
5	10	QPSK	20600	1	MID	23.23
5	10	QPSK	20600	1	HIGH	23.06
5	10	QPSK	20600	25	LOW	22.32
5	10	QPSK	20600	25	HIGH	22.28
5	10	QPSK	20600	50	LOW	22.29
5	10	Q16	20600	1	LOW	22.70
5	10	Q16	20600	1	MID	22.69
5	10	Q16	20600	1	HIGH	22.55
5	10	Q16	20600	30	LOW	21.24
5	10	Q16	20600	30	HIGH	21.29
5	10	Q16	20600	50	LOW	21.30

≅ BlackBerry			SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW					
Author Data	Dates of Test	Test Report No				FCC ID:		
Andrew Becker	April 15	– June 13	, 2014	RTS-6057	7-1405-01 Re	v 2 L6ARGY180LV	<u>v</u>	
5	5	QPSK	20525	1	LOW	23.39	9	
5	5	QPSK	20525	1	MID	23.30)	
5	5	QPSK	20525	1	HIGH	23.40	0	
5	5	QPSK	20525	10	LOW	22.30	0	
5	5	QPSK	20525	10	HIGH	22.39	9	
5	5	QPSK	20525	25	LOW	22.30	0	
5	5	Q16	20525	1	LOW	22.90)	
5	5	Q16	20525	1	MID	22.88	3	
5	5	Q16	20525	1	HIGH	22.9	7	
5	5	Q16	20525	8	LOW	22.30)	
5	5	Q16	20525	8	HIGH	22.39	9	
5	5	Q16	20525	25	LOW	21.2	7	
5	3	QPSK	20525	1	LOW	23.22	2	
5	3	QPSK	20525	1	MID	23.15	5	
5	3	QPSK	20525	1	HIGH	23.20	6	
5	3	QPSK	20525	6	LOW	22.34	4	
5	3	QPSK	20525	6	HIGH	22.39	9	
5	3	QPSK	20525	15	LOW	22.34		
5	3	Q16	20525	1	LOW	22.64	4	
5	3	Q16	20525	1	MID	22.5	7	
5	3	Q16	20525	1	HIGH	22.72	2	
5	3	Q16	20525	4	LOW	22.4	7	
5	3	Q16	20525	4	HIGH	22.60	0	
5	3	Q16	20525	15	LOW	21.43	1	
5	1.4	QPSK	20525	1	LOW	23.2	1	
5	1.4	QPSK	20525	1	MID	23.17	7	
5	1.4	QPSK	20525	1	HIGH	23.3	5	
5	1.4	QPSK	20525	3	LOW	23.30	0	
5	1.4	QPSK	20525	3	HIGH	23.23	7	
5	1.4	QPSK	20525	6	LOW	22.30	5	
5	1.4	Q16	20525	1	LOW	22.40	5	
5 1.4 0		Q16	20525	1	MID	22.38	3	
5	1.4	Q16	20525	1	HIGH	22.54	4	
5	1.4	Q16	20525	5	LOW	22.2	5	
5	1.4	Q16	20525	5	HIGH	22.25	5	
1	-	· · · · · · · · · · · · · · · · · · ·			1			

Table 1.8.8-3 LTE band 5 conducted power measurements

LOW

21.37

6

5

1.4

Q16

20525

 $SAR\ Compliance\ Test\ Report\ for\ the\ BlackBerry \\ {\tt \$}$ **Smartphone Model RGY181LW**

48(103)

Author Data **Andrew Becker** Dates of Test

April 15 – June 13, 2014

RTS-6057-1405-01 Rev 2

L6ARGY180LW

FCC ID:

Band	BW	Mod.	Channel	RB	Offset	Max. avg. conducted power (dBm)
13	10	QPSK	23230	1	LOW	23.62
13	10	QPSK	23230	1	MID	23.69
13	10	QPSK	23230	1	HIGH	23.77
13	10	QPSK	23230	25	LOW	22.83
13	10	QPSK	23230	25	HIGH	22.78
13	10	QPSK	23230	50	LOW	22.83
13	10	Q16	23230	1	LOW	23.04
13	10	Q16	23230	1	MID	23.10
13	10	Q16	23230	1	HIGH	23.12
13	10	Q16	23230	30	LOW	21.71
13	10	Q16	23230	30	HIGH	21.72
13	10	Q16	23230	50	LOW	21.79
13	10	QPSK	23230	1	LOW	23.62
13	10	QPSK	23230	1	MID	23.68
13	10	QPSK	23230	1	HIGH	23.76
13	10	QPSK	23230	25	LOW	22.82
13	10	QPSK	23230	25	HIGH	22.84
13	10	QPSK	23230	50	LOW	22.82
13	10	Q16	23230	1	LOW	23.04
13	10	Q16	23230	1	MID	23.09
13	10	Q16	23230	1	HIGH	23.13
13	10	Q16	23230	30	LOW	21.73
13	10	Q16	23230	30	HIGH	21.72
13	10	Q16	23230	50	LOW	21.78
13	10	QPSK	23230	1	LOW	23.64
13	10	QPSK	23230	1	MID	23.69
13	10	QPSK	23230	1	HIGH	23.71
13	10	QPSK	23230	25	LOW	22.83
13	10	QPSK	23230	25	HIGH	22.77
13	10	QPSK	23230	50	LOW	22.82
13	10	Q16	23230	1	LOW	23.02
13	10	Q16	23230	1	MID	23.09
13	10	Q16	23230	1	HIGH	23.13
13	10	Q16	23230	30	LOW	21.71
13	10	Q16	23230	30	HIGH	21.72
13	10	Q16	23230	50	LOW	21.77

*** BlackBerry		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW				03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

			_	_		
13	5	QPSK	23205	1	LOW	23.47
13	5	QPSK	23205	1	MID	23.40
13	5	QPSK	23205	1	HIGH	23.57
13	5	QPSK	23205	10	LOW	22.41
13	5	QPSK	23205	10	HIGH	22.49
13	5	QPSK	23205	25	LOW	22.55
13	5	Q16	23205	1	LOW	23.01
13	5	Q16	23205	1	MID	22.91
13	5	Q16	23205	1	HIGH	23.02
13	5	Q16	23205	25	LOW	21.39
13	5	QPSK	23230	1	LOW	23.42
13	5	QPSK	23230	1	MID	23.53
13	5	QPSK	23230	1	HIGH	23.46
13	5	QPSK	23230	10	LOW	22.49
13	5	QPSK	23230	10	HIGH	22.43
13	5	QPSK	23230	25	LOW	22.51
13	5	Q16	23230	1	LOW	22.26
13	5	Q16	23230	1	MID	22.34
13	5	Q16	23230	1	HIGH	22.27
13	5	Q16	23230	25	LOW	22.45
13	5	QPSK	23255	1	LOW	23.41
13	5	QPSK	23255	1	MID	23.30
13	5	QPSK	23255	1	HIGH	23.23
13	5	QPSK	23255	10	LOW	22.38
13	5	QPSK	23255	10	HIGH	22.35
13	5	QPSK	23255	25	LOW	22.39
13	5	Q16	23230	1	LOW	22.26
13	5	Q16	23230	1	MID	22.34
13	5	Q16	23230	1	HIGH	22.27
13	5	Q16	23255	25	LOW	21.45

Table 1.8.8-4 LTE band 13 conducted power measurements

Document

SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW

Page **50(103)**

Author Data
Andrew Becker

Dates of Test

April 15 – June 13, 2014

RTS-6057-1405-01 Rev 2

L6ARGY180LW

FCC ID:

Band	BW	Mod.	Channel	RB	Offset	Max. avg. conducted power (dBm)
17	10	QPSK	23780	1	LOW	22.85
17	10	QPSK	23780	1	MID	22.95
17	10	QPSK	23780	1	HIGH	22.98
17	10	QPSK	23780	25	LOW	21.95
17	10	QPSK	23780	25	HIGH	22.03
17	10	QPSK	23780	50	LOW	21.95
17	10	Q16	23780	1	LOW	22.21
17	10	Q16	23780	1	MID	22.28
17	10	Q16	23780	1	HIGH	22.30
17	10	Q16	23780	30	LOW	20.96
17	10	Q16	23780	30	HIGH	21.02
17	10	Q16	23780	50	LOW	20.97
17	10	QPSK	23790	1	LOW	22.70
17	10	QPSK	23790	1	MID	22.90
17	10	QPSK	23790	1	HIGH	23.04
17	10	QPSK	23790	25	LOW	21.95
17	10	QPSK	23790	25	HIGH	22.01
17	10	QPSK	23790	50	LOW	21.95
17	10	Q16	23790	1	LOW	21.74
17	10	Q16	23790	1	MID	21.86
17	10	Q16	23790	1	HIGH	21.92
17	10	Q16	23790	30	LOW	21.01
17	10	Q16	23790	30	HIGH	21.03
17	10	Q16	23790	50	LOW	20.93
17	10	QPSK	23800	1	LOW	22.69
17	10	QPSK	23800	1	MID	22.90
17	10	QPSK	23800	1	HIGH	23.08
17	10	QPSK	23800	25	LOW	21.95
17	10	QPSK	23800	25	HIGH	21.99
17	10	QPSK	23800	50	LOW	21.95
17	10	Q16	23800	1	LOW	22.13
17	10	Q16	23800	1	MID	22.25
17	10	Q16	23800	1	HIGH	22.45

∷ BlackB	Author Data Andrew Becker Dates of Test April 15 -		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW					
			- June 13, 2014		Test Report No RTS-6057-1405-01 Rev 2		FCC ID: L6ARGY180LW	
	17	10	Q16	23800	30	LOW	20.95	
	17	10	Q16	23800	30	HIGH	20.95	
	17	10	Q16	23800	50	LOW	20.97	
	17	5	QPSK	23790	1	LOW	23.01	
	17	5	QPSK	23790	1	MID	22.99	
	17	5	QPSK	23790	1	HIGH	23.07	
	17	5	QPSK	23790	10	LOW	21.98	
	17	5	QPSK	23790	10	HIGH	21.98	
	17	5	QPSK	23790	25	LOW	21.94	
	17	5	Q16	23790	1	LOW	22.46	
	17	5	Q16	23790	1	MID	22.49	
	17	5	Q16	23790	1	HIGH	22.48	
	17	5	Q16	23790	8	LOW	21.94	

Table 1.8.8-5 LTE band 17 conducted power measurements

23790

23790

8

25

HIGH

LOW

21.97

20.94

17

17

5

5

Q16

Q16

Author Data And your Peakson And your Peakson Appl 15		SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 52(103)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

1.9 General SAR Test Reduction and Exclusion procedure as per KDB 447498 D01 V05 and SAR Handsets Multi transmitters and Ant procedure as per 648474 D04 v01

Standalone SAR test exclusion guidance:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances

$$\frac{(mW)}{min.test separation distance} \times \sqrt{\frac{f}{(GHz)}} \le 3.0 \text{, For 1g SAR}$$

Where:

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation17
- If distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- The result is rounded to one decimal place for comparison

Simultaneous Transmission SAR Test exclusion considerations:

When the sum of 1-g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit, SAR test exclusion applies to that simultaneous transmission configuration. When the sum is greater than the SAR limit, the SAR to peak location separation ratio procedures described below may be applied to determine if simultaneous transmission SAR test exclusion applies.

The ratio is determined by:

$$\left([SAR1 + SAR2]^{\frac{1.5}{R_{\ell}}} \right) \le 0.04$$

Where:

• R_i= the separation distance between the peak SAR locations for the antenna pair (mm)

Simultaneous Transmission SAR required:

• antenna pairs with SAR to antenna separation ratio > 0.04; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition.

This report shall NOT be reproduced except in full without the written consent of BlackBerry RTS Copyright 2005-2014, BlackBerry RTS, a division of BlackBerry Limited

Author Data Dates of Test		erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 53(10	03)
	Author Data	Dates of Test		Test Report No	FCC ID:		
	Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

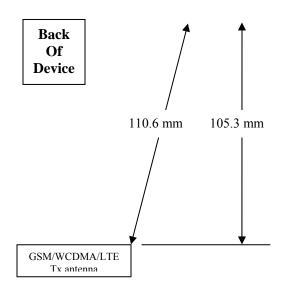


Figure 1.9-1 Back view of device showing closest distance between antenna pairs

1.9.1 Simultaneous Transmission Analysis

Separate Transmitting Antenna							
Separate Antenna	Technologies Utilized By Each Antenna						
Antenna 1	GSM, Wo	CDMA, LTE					
Antenna 2	Wi-Fi 2.4 GHz, Wi-Fi 5.0 GHz, Bluetooth						
	Simultaneous Transmission Con	nsmission Combinations					
Configuration	Simultaneous Transmission	Simultaneous Transmission					
Comiguration	(by Antenna)	(by Technology)					
Head	Antenna 1 + Antenna 2	GSM/WCDMA/LTE + Wi-Fi/BT					
Body-Worn	Antenna 1 + Antenna 2	GSM/WCDMA/LTE + Wi-Fi/BT					
Hotspot	Antenna 1 + Antenna 2	GSM/WCDMA/LTE + Wi-Fi/BT					

Table 1.9.1-1 Simultaneous Transmission Scenarios

Note 1: BT and Wi-Fi cannot transmit simultaneously since the design doesn't allow it and they use the same antenna.

Note 2: 802.11b and 802.11a cannot transmit simultaneously since the design doesn't allow it and they use the same antenna.

Note 3: LTE and GSM/WCDMA cannot transmit simultaneously since it shares the same antenna.

		Licensed Transn	nitters	WiFi 2.4/5.0GHz	Max Sum 1g
Test	Configuration	Band	1g avg. SAR (W/kg)	1g avg. SAR (W/kg)	avg. SAR (W/kg)
	Right Cheek	LTE Band 17	0.08	0.41	0.49
	Right Cheek	LTE Band 13	0.21	0.41	0.62
	Right Cheek	LTE Band 5	0.30	0.41	0.71
	Right Cheek	GSM/DTM/EDGE 850	0.55	0.41	0.96
	Right Cheek	UMTS Band V	0.40	0.41	0.81
	Right Cheek	LTE Band 4	0.28	0.41	0.69
	Right Cheek	UMTS Band IV	0.26	0.41	0.67
	Right Cheek	LTE Band 2	0.18	0.41	0.59
	Right Cheek	GSM/DTM/EDGE 1900	0.13	0.41	0.54
	Right Cheek	UMTS Band II	0.16	0.41	0.57
	Right Tilt	LTE Band 17	0.02	0.58	0.60
	Right Tilt	LTE Band 13	0.08	0.58	0.66
	Right Tilt	LTE Band 5	0.08	0.58	0.66
	Right Tilt	GSM/DTM/EDGE 850	0.11	0.58	0.69
	Right Tilt	UMTS Band V	0.14	0.58	0.72
	Right Tilt	LTE Band 4	0.09	0.58	0.67
	Right Tilt	UMTS Band IV	0.12	0.58	0.70
	Right Tilt	LTE Band 2	0.05	0.58	0.63
	Right Tilt	GSM/DTM/EDGE 1900	0.03	0.58	0.61
Head SAR	Right Tilt	UMTS Band II	0.05	0.58	0.63
nead SAR	Left Cheek	LTE Band 17	0.05	0.51	0.56
	Left Cheek	LTE Band 13	0.15	0.51	0.66
	Left Cheek	LTE Band 5	0.15	0.51	0.66
	Left Cheek	GSM/DTM/EDGE 850	0.28	0.51	0.79
	Left Cheek	UMTS Band V	0.26	0.51	0.77
	Left Cheek	LTE Band 4	0.33	0.51	0.84
	Left Cheek	UMTS Band IV	0.27	0.51	0.78
	Left Cheek	LTE Band 2	0.21	0.51	0.72
	Left Cheek	GSM/DTM/EDGE 1900	0.21	0.51	0.72
	Left Cheek	UMTS Band II	0.28	0.51	0.79
	Left Tilt	LTE Band 17	0.02	0.50	0.52
	Left Tilt	LTE Band 13	0.07	0.50	0.57
	Left Tilt	LTE Band 5	0.07	0.50	0.57
	Left Tilt	GSM/DTM/EDGE 850	0.09	0.50	0.59
	Left Tilt	UMTS Band V	0.11	0.50	0.61
	Left Tilt	LTE Band 4	0.10	0.50	0.60
	Left Tilt	UMTS Band IV	0.11	0.50	0.61
	Left Tilt	LTE Band 2	0.05	0.50	0.55
	Left Tilt	GSM/DTM/EDGE 1900	0.05	0.50	0.55
	Left Tilt	UMTS Band II	0.06	0.50	0.56

Table 1.9.1-2 Highest Head SAR values and summation on the same test position

Note 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.

	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 55(103)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

		Licensed Transn	nitters	WiFi	Max Sum 1g
Test	Configuration	Configuration Band 1g avg. SAR (W/kg)		2.4/5.0GHz 1g avg. SAR (W/kg)	avg. SAR (W/kg)
	15mm separation device back	LTE Band 17	0.11	1.45	1.56
	15mm separation device back	LTE Band 13	0.39	1.45	1.84
	15mm separation device back	LTE Band 5	0.40	1.45	1.85
	15mm separation device back	GSM/DTM/EDGE 850	0.67	1.45	2.12
	15mm separation device back	UMTS Band V	0.58	1.45	2.03
	15mm separation device back	LTE Band 4	0.45	1.45	1.90
	15mm separation device back	UMTS Band IV	0.62	1.45	2.07
	15mm separation device back	LTE Band 2	0.61	1.45	2.06
Body	15mm separation device back	GSM/DTM/EDGE 1900	0.45	1.45	1.90
Worn	15mm separation device back	UMTS Band II	0.70	1.45	2.15
SAR	15mm separation device front	LTE Band 17	0.10	0.06	0.16
SAR	15mm separation device front	LTE Band 13	0.34	0.06	0.40
	15mm separation device front	LTE Band 5	0.31	0.06	0.37
	15mm separation device front	GSM/DTM/EDGE 850	0.40	0.06	0.46
	15mm separation device front	UMTS Band V	0.51	0.06	0.57
	15mm separation device front	LTE Band 4	0.17	0.06	0.23
	15mm separation device front	UMTS Band IV	0.26	0.06	0.32
	15mm separation device front	LTE Band 2	0.14	0.06	0.20
	15mm separation device front	GSM/DTM/EDGE 1900	0.14	0.06	0.20
	15mm separation device front	UMTS Band II	0.18	0.06	0.24

Table 1.9.1-3a Highest Body-worn SAR values and summation on the same test position

Note 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters is required.

Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
Antenna 2 (LTE 13)	15mm, back	0.39	11.5	27.5	-207.7	
RB1						
	SAR Sum	1.84				
	SAR Sum to the power of 1.5	2.50				
	Delta [mm]		-69.5	-80.5	1.2	
	closest Distance [mm]					106.38
	Ratio	0.02				
Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
Antenna 2 (LTE 5)	15mm, back	0.40	1.0	27.5	-209.4	
RB1						
	SAR Sum	1.85				
	SAR Sum to the power of 1.5	2.52				
	Delta [mm]		-59.0	-80.5	2.9	
	closest Distance [mm]					99.86
	Ratio	0.03				
Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
Antenna 2 (GPRS 850)	15mm, back	0.67	10.0	30.5	-208.3	
	SAR Sum	2.12				
	SAR Sum to the power of 1.5	3.09				
	Delta [mm]		-68.0	-83.5	1.8	
	closest Distance [mm]					107.71
	Ratio	0.03				
Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
	15mm, back	0.58	5.5		-209.3	
Antenna 2 (UMTS V)	,					
	SAR Sum	2.03				
	SAR Sum to the power of 1.5	2.89				
	Delta [mm]		-63.5	-82.0	2.8	
	closest Distance [mm]				_	103.77
	Ratio	0.03				

Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
Antenna 2 (LTE 4)	15mm, back	0.45	5.5	59.0	-208.7	
RB1						
	SAR Sum	1.90				
	SAR Sum to the power of 1.5	2.62				
	Delta [mm]		-63.5	-112.0	2.2	
	closest Distance [mm]					128.78
	Ratio	0.02				
Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
At	15mm, back	0.62	13.0	51.5	-207.3	
Antenna 2 (UMTS IV)						
	SAR Sum	2.07				
	SAR Sum to the power of 1.5	2.98				
	Delta [mm]		-71.0	-104.5	0.8	
	closest Distance [mm]					126.34
	Ratio	0.02				
Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
Antenna 2 (LTE 2)	15mm, back	0.61	11.5	57.5	-209.3	
RB1	·					
	SAR Sum	2.06				
	SAR Sum to the power of 1.5	2.96				
	Delta [mm]		-69.5	-110.5	2.8	
	closest Distance [mm]					130.58
	Ratio	0.02				
Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
Antenna 2	15mm, back	0.45	14.5		-207.6	
(GPRS1900)	,					
, ,	SAR Sum	1.90				
	SAR Sum to the power of 1.5	2.62				
	Delta [mm]		-72.5	-109.0	1.1	
	closest Distance [mm]					130.93
	Ratio	0.02				

≅BlackBerry		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 58(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15		- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

Antenna 1 (802.11 a)	15mm, back	1.45	-58.0	-53.0	-206.5	
Antenna 2 (UMTS II)	15mm, back	0.70	13.0	60.5	-207.1	
Antenna 2 (Olvirs II)						
	SAR Sum	2.15				
	SAR Sum to the power of 1.5	3.15				
	Delta [mm]		-71.0	-113.5	0.6	
	closest Distance [mm]					133.90
	Ratio	0.02				

Table 1.9.1-3b Body-worn configuration ratio of SAR to peak separation distance for pair of transmitters

Note: If the ratio of SAR to peak separation distance is \leq 0.04, Simultaneous SAR measurement is not required.

	Hotspot SAR Values St	Summation On The Same Test Position Table 1/2					
	Licensed Transmitters			WEE 2 4CH	May Cum 4a		
Test	Configuration	Band	1g avg. SAR (W/kg)	WiFi 2.4GHz 1g avg. SAR (W/kg)	Max Sum 1g avg. SAR (W/kg)		
	10mm separation device back	LTE Band 17	0.19	0.42	0.61		
	10mm separation device back	LTE Band 13	0.50	0.42	0.92		
	10mm separation device back	LTE Band 5	0.62	0.42	1.04		
	10mm separation device back	GSM/DTM/EDGE 850	0.95	0.42	1.37		
	10mm separation device back	UMTS Band V	0.78	0.42	1.20		
	10mm separation device back	LTE Band 4	0.84	0.42	1.26		
	10mm separation device back	UMTS Band IV	1.23	0.42	1.65		
	10mm separation device back	LTE Band 2	1.21	0.42	1.63		
	10mm separation device back	GSM/DTM/EDGE 1900	0.82	0.42	1.24		
	10mm separation device back	UMTS Band II	1.40	0.42	1.82		
	10mm separation device front	LTE Band 17	0.12	0.09	0.21		
	10mm separation device front	LTE Band 13	0.43	0.09	0.52		
	10mm separation device front	LTE Band 5	0.51	0.09	0.60		
	10mm separation device front	GSM/DTM/EDGE 850	0.49	0.09	0.58		
	10mm separation device front	UMTS Band V	0.63	0.09	0.72		
	10mm separation device front	LTE Band 4	0.24	0.09	0.33		
	10mm separation device front	UMTS Band IV	0.45	0.09	0.54		
	10mm separation device front	LTE Band 2	0.25	0.09	0.34		
Llotonot	10mm separation device front	GSM/DTM/EDGE 1900	0.16	0.09	0.25		
Hotspot	10mm separation device front	UMTS Band II	0.28	0.09	0.37		
Mode	10mm separation device left	LTE Band 17	0.02	0.12	0.14		
SAR	10mm separation device left	LTE Band 13	0.10	0.12	0.22		
	10mm separation device left	LTE Band 5	0.21	0.12	0.33		
	10mm separation device left	GSM/DTM/EDGE 850	0.24	0.12	0.36		
	10mm separation device left	UMTS Band V	0.31	0.12	0.43		
	10mm separation device left	LTE Band 4	0.08	0.12	0.20		
	10mm separation device left	UMTS Band IV	0.09	0.12	0.21		
	10mm separation device left	LTE Band 2	0.04	0.12	0.16		
	10mm separation device left	GSM/DTM/EDGE 1900	0.04	0.12	0.16		
	10mm separation device left	UMTS Band II	0.06	0.12	0.18		
	10mm separation device right	LTE Band 17	0.13	0.00	0.13		
	10mm separation device right	LTE Band 13	0.26	0.00	0.26		
	10mm separation device right	LTE Band 5	0.20	0.00	0.20		
	10mm separation device right	GSM/DTM/EDGE 850	0.17	0.00	0.17		
	10mm separation device right	UMTS Band V	0.25	0.00	0.25		
	10mm separation device right	LTE Band 4	0.11	0.00	0.11		
	10mm separation device right	UMTS Band IV	0.13	0.00	0.13		
	10mm separation device right	LTE Band 2	0.12	0.00	0.12		
	10mm separation device right	GSM/DTM/EDGE 1900	0.14	0.00	0.14		
	10mm separation device right	UMTS Band II	0.15	0.00	0.15		

Author Data Dates of Test		SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 60(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 -		- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

	Hotspot SAR Values Sum	mation On The Same Tes	st Position T	able 2/2	
		Licensed Transm	itters	W:E: 2 4CH-	May Com 4a
Test	Configuration	Configuration Band SA (W/F		WiFi 2.4GHz 1g avg. SAR (W/kg)	Max Sum 1g avg. SAR (W/kg)
	10mm separation device bottom	LTE Band 17	0.17	0.00	0.17
	10mm separation device bottom	LTE Band 13	0.21	0.00	0.21
	10mm separation device bottom	LTE Band 5	0.30	0.00	0.30
	10mm separation device bottom	GSM/DTM/EDGE 850	0.30	0.00	0.30
	10mm separation device bottom	UMTS Band V	0.44	0.00	0.44
	10mm separation device bottom	LTE Band 4	0.33	0.00	0.33
	10mm separation device bottom	UMTS Band IV	0.42	0.00	0.42
	10mm separation device bottom	LTE Band 2	0.41	0.00	0.41
Hotspot	10mm separation device bottom	GSM/DTM/EDGE 1900	0.36	0.00	0.36
Mode	10mm separation device bottom	UMTS Band II	0.47	0.00	0.47
SAR	10mm separation device top	LTE Band 17	0.00	0.18	0.18
SAR	10mm separation device top	LTE Band 13	0.00	0.18	0.18
	10mm separation device top	LTE Band 5	0.00	0.18	0.18
	10mm separation device top	GSM/DTM/EDGE 850	0.00	0.18	0.18
	10mm separation device top	UMTS Band V	0.00	0.18	0.18
	10mm separation device top	LTE Band 4	0.00	0.18	0.18
	10mm separation device top	UMTS Band IV	0.00	0.18	0.18
	10mm separation device top	LTE Band 2	0.00	0.18	0.18
	10mm separation device top	GSM/DTM/EDGE 1900	0.00	0.18	0.18
	10mm separation device top	UMTS Band II	0.00	0.18	0.18

Table 1.9.1-4a Highest Hotspot SAR values and summation on the same test position

Note 1: If sum of 1 g SAR < 1.6 W/kg, Simultaneous SAR measurement is not required.

Note 2: If sum of 1 g SAR > 1.6 W/kg, ratio of SAR to peak separation distance for pair of transmitters calculated.

*** BlackBerry Author Data Dates of Test		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 61(10)3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 -		- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

Antenna 1 (802.11 b)	10mm, back	0.42	-47.0	-57.6	-207.3	
Antenna 2 (UMTS IV)	10mm, back	1.23	7.0	59.0	-208.7	
Low Ch.	,					
	SAR Sum	1.65				
	SAR Sum to the power of 1.5	2.12				
	Delta [mm]		-54.0	-116.6	1.4	
	closest Distance [mm]					128.52
	Ratio	0.02				
Antenna 1 (802.11 b)	10mm, back	0.02	-47.0	-57.6	-207.3	
Antenna 2 (LTE 2)	10mm, back	1.21	13.0	50.0	-207.3	
	SAR Sum	1.63				
	SAR Sum to the power of 1.5	2.08				
	Delta [mm]		-60.0	-107.6	0.0	
	closest Distance [mm]					123.21
	Ratio	0.02				
Antenna 1 (802.11 b)	10mm, back	0.42	-47.0	-57.6	-207.3	
Antenna 2 (UMTS II)	10mm, back	1.40	14.5	50.0	-207.3	
. ,	SAR Sum	1.82				
	SAR Sum to the power of 1.5	2.46				
	Delta [mm]		-61.5	-107.6	0.0	
	closest Distance [mm]					123.95
	Ratio	0.02				

Table 1.9.1-4b Hotspot configuration ratio of SAR to peak separation distance for pair of transmitters

Note: If the ratio of SAR to peak separation distance is \leq 0.04, Simultaneous SAR measurement is not required.

1.10 Wi-Fi and Hotspot Mode Power Reductions

There can be a fixed power reduction in hotspot mode for certain bands when the mode is enabled. The following bands have a reduced power in Hotspot mode; all other bands continue to transmit at full power.

- LTE band 2
- UMTS band II
- 802.11 a/b/g/n/ac

Author Data Dates of Test		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 62(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15		- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

2.0 DESCRIPTION OF THE TEST EQUIPMENT

2.1 SAR measurement system

SAR measurements were performed using a Dosimetric Assessment System (DASY52), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland.

The DASY 52 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A DAE module that performs the signal amplification, signal multiplexing, A/D conversion, offset
 measurements, mechanical surface detection, collision detection, etc. The unit is battery powered
 with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical
 coupler (EOC).
- A unit to operate the optical surface detector that is connected to the EOC.
- The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card.
- The functions of the PC plug-in card based on a DSP are to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts.
- A computer operating Windows.
- DASY52 software version 52.8.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM Twin Phantom enabling testing left-hand and right-hand usage.
- The device holder for mobile phones.
- Tissue simulating liquid mixed according to the given recipes (see section 6.1).
- System validation dipoles allowing for the validation of proper functioning of the system.

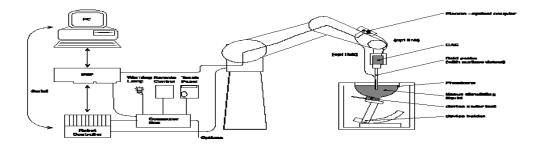


Figure 2.1-1 System Description

≅BlackBerry		erry	SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 63(10	03)
	Author Data	Dates of Test		Test Report No	FCC ID:		
	Andrew Becker April 15		- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

2.1.1 Equipment List

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
SCHMID & Partner Engineering AG	E-field probe	ES3DV3	3225	01/22/2015
SCHMID & Partner Engineering AG	E-field probe	ET3DV6	1643	03/10/2015
SCHMID & Partner Engineering AG	E-field probe	EX3DV4	3548	01/17/2015
SCHMID & Partner Engineering AG	Data Acquisition Electronics (DAE3)	DAE3	472	03/18/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D750V2	1021	01/07/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D835V2	446	01/07/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1800V2	2d020	01/09/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D1900V2	545	01/09/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D2450V2	791	09/10/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D2600V2	1033	03/11/2015
SCHMID & Partner Engineering AG	Dipole Validation Kit	D5000V2	1033	11/08/2015
Agilent Technologies	Signal generator	8648C	4037U03155	09/25/2015
Agilent Technologies	Power meter	E4419B	GB40202821	09/25/2015
Agilent Technologies	Power sensor	8481A	MY41095233	09/27/2014
Agilent Technologies	Power sensor	8481A	MY41095417	09/26/2014
Amplifier Research	Amplifier	5S1G4M3	300986	CNR
Rohde & Schwarz	Signal generator	SMA 100A	102106	11/28/2014
Amplifier Research	Coupler	DC7144	300993	CNR
CPI Wireless Solutions	Amplifier	VZC-6961K4	SK4310E5	CNR
Agilent Technologies	Network analyzer	8753ES	US39174857	09/27/2014
Agilent Technologies	Power meter	N1911A	MY45100905	05/29/2015
Agilent Technologies	Power sensor	N1921A	SG45240281	12/04/2014
Rohde & Schwarz	Wideband Base Station Simulator	CMW 500	136298	04/22/2015
Rohde & Schwarz	Base Station Simulator	CMU 200	109747	11/28/2015
Rohde & Schwarz	Bluetooth Tester	CBT	100368	11/28/2014
Weinschel Corp	20dB Attenuator	33-20-34	BMO697	CNR

Table 2.1.1-1 Equipment list

≅ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 64(103))
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

2.2 Description of the test setup

Before SAR measurements are conducted, the device and the DASY equipment are setup as follows:

2.2.1 Device and base station simulator setup

- Power up the device.
- Turn on the base station simulator and set the radio channel and power to the appropriate values.
- Connect an antenna to the RF IN/OUT of the communication test set and place it close to the device.

2.2.2 DASY setup

- Turn the computer on and log on to Windows.
- Start the DASY software by clicking on the icon located on the Windows desktop.
- Mount the DAE unit and the probe. Turn on the DAE unit.
- Turn the Robot Controller on by turning the main power switch to the horizontal position
- Align the probe by clicking the 'Align probe in light beam' button.
- Open a file and configure the proper parameters probe, medium, communications system etc.
- Establish a connection between the Device and the communications test instrument. Place the Device on the stand and adjust it under the phantom.
- Start SAR measurements.

3.0 ELECTRIC FIELD PROBE CALIBRATION

3.1 Probe Specifications

SAR measurements were conducted using the dosimetric probes ES3DV3/ET3DV6 and EX3DV4, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fibre for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe.

Property	Data			
Frequency range	30 MHz – 3 GHz			
Linearity	±0.1 dB			
Directivity (rotation around probe axis)	$\leq \pm 0.2 \text{ dB}$			
Directivity (rotation normal to probe axis)	±0.4 dB			
Dynamic Range	5 mW/kg – 100 W/kg			
Probe positioning repeatability	±0.2 mm			
Spatial resolution	< 0.125 mm ³			
Probe model EX3DV4 for 2.4	– 6 GHz			
Probe tip to sensor center	1.0 mm			
Probe tip diameter is	2.5 mm			
Probe calibration uncertainty	< 15 % for f = 2.45 to $< 6.0 GHz$			
Probe calibration range	± 100 MHz			

Table 3.1-1 Probe specifications

## BlackB	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 65(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	•	

3.2 Probe calibration and measurement uncertainty

The probe had been calibrated with accuracy better than $\pm 12\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D and below:

Calibration Parameter Determined in Head Tissue Simulating Media

	· · · · · · · · · · · · · · · · · · ·									
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)		
750	41.9	0.89	6.55	6.55	6.55	0.41	2.30	± 12.0 %		
900	41.5	0.97	6.15	6.15	6.15	0.38	2.41	± 12.0 %		
1810	40.0	1.40	5.17	5.17	5.17	0.80	2.07	± 12.0 %		
1950	40.0	1.40	4.92	4.92	4.92	0.80	2.04	± 12.0 %		
2450	39.2	1.80	4.46	4.46	4.46	0.80	1.83	± 12.0 %		

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.24	6.24	6.24	0.43	2.19	± 12.0 %
900	55.0	1.05	6.03	6.03	6.03	0.38	2.61	± 12.0 %
1810	53.3	1.52	4.59	4.59	4.59	0.80	2.41	± 12.0 %
1950	53.3	1.52	4.64	4.64	4.64	0.80	2.33	± 12.0 %
2450	52.7	1.95	4.07	4.07	4.07	0.70	1.23	± 12.0 %

Table 3.2-1 Probe ET3DV6 SN: 1643 (cal: 3/10/2014)

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

∷ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 66(10)3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Recker	Anril 15	- June 13 2014	RTS-6057-1405-01 Rev 2	L6ARGV180LW	•	

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.36	6.36	6.36	0.28	1.91	± 12.0 %
900	41.5	0.97	6.05	6.05	6.05	0.49	1.38	± 12.0 %
1810	40.0	1.40	5.24	5.24	5.24	0.69	1.23	± 12.0 %
1950	40.0	1.40	4.97	4.97	4.97	0.73	1.21	± 12.0 %
2450	39.2	1.80	4.64	4.64	4.64	0.80	1.23	± 12.0 %
2600	39.0	1.96	4.33	4.33	4.33	0.75	1.34	± 12.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.28	6.28	6.28	0.34	1.84	± 12.0 %
900	55.0	1.05	6.09	6.09	6.09	0.62	1.32	± 12.0 %
1810	53.3	1.52	4.93	4.93	4.93	0.48	1.57	± 12.0 %
1950	53.3	1.52	4.84	4.84	4.84	0.50	1.59	± 12.0 %
2450	52.7	1.95	4.28	4.28	4.28	0.77	1.23	± 12.0 %
2600	52.5	2.16	4.03	4.03	4.03	0.80	1.01	± 12.0 %

Table 3.2-2 Probe ES3DV3 SN: 3225 (cal: 1/22/2014)

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

== Bl	ackBe	erry	SAR Compliance T Smartphone Model			Page 67(103)	
Author Data		Dates of Test		Test Report No	FCC ID:		
Andrew	Recker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	r	

Calibration Parameter Determined in Head Tissue Simulating Media

					•			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
2600	39.0	1.96	7.03	7.03	7.03	0.50	0.77	± 12.0 %
5200	36.0	4.66	5.37	5.37	5.37	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.94	4.94	4.94	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.76	4.76	4.76	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^f	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k≖2)
2600	52.5	2.16	6.91	6.91	6.91	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.83	4.83	4.83	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.33	4.33	4.33	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.36	4.36	4.36	0.50	1.90	± 13.1 %

Table 3.2-3 Probe EX3DV4 SN: 3548 (cal: 1/17/2014)

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated farget tissue parameters.

Galanta Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

BlackBerry Date of Test		SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 68(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

4.0 SAR MEASUREMENT SYSTEM VERIFICATION

Prior to conducting SAR measurements, the system was validated using the dipole validation kit and the flat section of the SAM phantom. A power level of 1.0W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are within the allowed tolerances.

At above 1.5 - 2 GHz, dipoles maintain good return loss of -15 dB to -20 dB, therefore SAR measurements are limited to approximately +/- 100 MHz of the probe/dipole calibration frequency.

4.1 System accuracy verification for head adjacent use

f	Limits / Measured	imits / Measured Scan Type			lectric meters	Liquid Temp.
(MHz)	(MM/DD/YYYY)	Scan Type	1g/10g (W/kg)	ε _r	σ [S/m]	(°C)
	Measured (05/08/2014)	Area Scan/Fast SAR	8.31/5.56	40.5	0.89	22.1
	Measured (05/08/2014)	Zoom Scan	8.25/5.42	40.5	0.89	22.1
750	Measured (05/12/2014)	Area Scan/Fast SAR	8.13/5.44	40.9	0.90	22.3
	Measured (05/12/2014)	Zoom Scan	8.03/5.26	40.9	0.90	22.3
	Recommended Limi	ts (Dipole:1021)	8.46/5.51	41.9	0.89	N/A
	Measured (05/01/2014)	Area Scan/Fast SAR	9.52/6.31	40.0	0.87	22.0
	Measured (05/01/2014)	Zoom Scan	9.48/6.27	40.0	0.87	22.0
	Measured (05/05/2014)	Area Scan/Fast SAR	9.74/6.46	40.0	0.89	22.9
835	Measured (05/05/2014)	Zoom Scan	9.55/6.33	40.0	0.89	22.9
	Measured (06/09/2014)	Area Scan/Fast SAR	9.42/6.25	41.3	0.89	22.9
	Measured (06/09/2014)	Zoom Scan	9.48/6.23	41.3	0.89	22.9
	Recommended Lim	its (Dipole: 446)	9.39/6.13	41.5	0.90	N/A
	Measured (05/12/2014)	Area Scan/Fast SAR	35.7/19.2	40.4	1.47	22.5
	Measured (05/12/2014)	Zoom Scan	34.8/18.6	40.4	1.47	22.5
	Measured (05/15/2014)	Area Scan/Fast SAR	35.7/19.2	40.1	1.44	23.0
1800	Measured (05/15/2014)	Zoom Scan	35.3/18.8	40.1	1.44	23.0
	Measured (06/04/2014)	Area Scan/Fast SAR	36.0/19.4	40.0	1.46	22.4
	Measured (06/04/2014)	Zoom Scan	35.5/19.0	40.0	1.46	22.4
	Recommended Limit	38.5/20.3	40.0	1.40	N/A	
	Measured (04/24/2014)	Area Scan/Fast SAR	40.9/21.9	39.2	1.43	21.1
	Measured (04/24/2014)	Zoom Scan	39.9/21.4	39.2	1.43	21.1
	Measured (04/28/2014)	Area Scan/Fast SAR	38.0/20.1	40.9	1.37	22.4
	Measured (04/28/2014)	Zoom Scan	37.6/20.1	40.9	1.37	22.4
1900	Measured (05/30/2014)	Area Scan/Fast SAR	38.3/20.2	40.3	1.41	22.2
	Measured (05/30/2014)	Zoom Scan	37.2/20.1	40.3	1.41	22.2
	Measured (06/03/2014)	Area Scan/Fast SAR	37.3/19.8	39.8	1.38	22.7
	Measured (06/03/2014)	Zoom Scan	36.3/19.5	39.8	1.38	22.7
	Recommended Lim	its (Dipole: 545)	40.2/21.1	40.0	1.40	N/A
	Measured (05/16/2014)	Area Scan/Fast SAR	56.2/24.7	37.7	1.86	22.0
	Measured (05/16/2014)	Zoom Scan	56.6/26.2	37.7	1.86	22.0
2450	Measured (05/20/2014)	Area Scan/Fast SAR	56.6/24.7	37.7	1.84	22.1
	Measured (05/20/2014)	Zoom Scan	56.7/26.3	37.7	1.84	22.1
	Recommended Lim	its (Dipole: 791)	51.6/24.0	39.2	1.80	N/A

∷ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 69(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	,	

	Measured (05/21/2014)	Area Scan/Fast SAR	64.0/28.9	37.1	1.99	21.9
	Measured (05/21/2014)	Zoom Scan	62.8/27.9	37.1	1.99	21.9
	Measured (06/05/2014)	Area Scan/Fast SAR	63.8/28.5	37.3	1.99	22.4
2600	Measured (06/05/2014)	Zoom Scan	62.2/27.9	37.3	1.99	22.4
	Measured (06/12/2014)	Area Scan/Fast SAR	63.6/28.4	37.3	2.01	22.8
	Measured (06/12/2014)	Zoom Scan	62.9/28.2	37.3	2.01	22.8
	Recommended Limi	58.6/26.2	39.0	1.96	N/A	
	Measured (05/26/2014)	Area Scan/Fast SAR	77.3/21.5	34.7	4.71	21.4
5200	Measured (05/26/2014)	Zoom Scan	80.6/23.4	34.7	4.71	21.4
	Recommended Limi	80.8/23.0	36.0	4.66	N/A	
	Measured (05/26/2014)	Area Scan/Fast SAR	88.2/24.4	34.2	5.08	21.4
5500	Measured (05/26/2014)	Zoom Scan	94.5/26.9	34.2	5.08	21.4
	Recommended Limi	ts (Dipole: 1033)	87.3/24.7	35.6	4.96	N/A
	Measured (05/26/2014)	Area Scan/Fast SAR	80.4/22.1	33.6	5.39	21.4
5800	Measured (05/26/2014)	Zoom Scan	85.4/24.3	33.6	5.39	21.4
	Recommended Limi	ts (Dipole: 1033)	79.4/22.5	35.3	5.27	N/A

Table 4.1-1 System accuracy (validation for head adjacent use)

≅BlackBerry		SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	70(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

5.0 PHANTOM DESCRIPTION

The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fibreglass shell integrated with a wooden table.

The SAM Twin Phantom is a fibreglass shell phantom with 2 mm shell thickness. It has three measurement areas:

Left side head Right side head Flat phantom

The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with freestanding robots.

The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is

necessary if two phantoms are used (e.g., for different solutions).

A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection.

Liquid depth of \geq 15 cm is maintained in the phantom for all the measurements.

Figure 5.0-1 SAM Twin Phantom

Author Data Dates of Test		SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 71(103)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

6.0 TISSUE DIELECTRIC PROPERTIES

6.1 Composition of tissue simulant

The composition of the brain and muscle simulating liquids are shown in the table below.

INGREDIE				MIXTURE 1800- 1900MHz		MIXTURE 2450 MHz		MIXTURE 5 - 6 GHz	
NT			Brain %	Muscle %	Brain %	Muscle %	Brain %	Muscl e %	
Water	40.29	65.45	55.24	69.91	55.0	68.75	64	64-78	
Sugar	57.90	34.31	0	0	0	0	0	0	
Salt	1.38	0.62	0.31	0.13	0	0	0	0	
HEC	0.24	0	0	0	0	0	0	0	
Bactericide	0.18	0.10	0	0	0	0	0	0	
DGBE	0	0	44.45	29.96	40.0	31.25	0	0	
Triton X-	0	0	0	0	5.0	0	0	0	
Additives and Salt	0	0	0	0	0	0	3	2-3	
Emulsifiers	0	0	0	0	0	0	15	9-15	
Mineral Oil	0	0	0	0	0	0	18	11-18	

Table 6.1-1 Tissue simulant recipe

6.1.1 Equipment

Manufacturer	Test Equipment	Model Number	Serial Number	Cal. Due Date (MM/DD/YY)
Pyrex, England	Graduated Cylinder	N/A	N/A	N/A
Pyrex, USA	Beaker	N/A	N/A	N/A
Acculab	Weight Scale	V1-1200	018WB2003	N/A
IKA Works Inc.	Hot Plate	RC Basic	3.107433	N/A
Dell	PC using GPIB card	GX110	347	N/A
Agilent Technologies	Dielectric probe kit	HP 85070C	US9936135	CNR
Agilent Technologies	Network Analyzer	8753ES	US39174857	09/27/2014
Control Company	Digital Thermometer	23609-234	21352860	09/30/2014
Control Company	Digital Thermometer	15-077-21	51129471	05/30/2014*

Table 6.1.1-1 Tissue simulant preparation equipment

Note 1: "*" equipment was sent out for calibration before it's due date.

≅BlackBerry		SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 72(1)	03)	
	Author Data	Dates of Test		Test Report No	FCC ID:		
	Andrew Recker	April 15	. June 13 2014	RTS-6057-1405-01 Rev 2	1.64 RGV 1801 W	7	

6.1.2 Preparation procedure

800-900 MHz liquids

- Fill the container with water. Begin heating and stirring.
- Add the **Cellulose**, the **preservative substance** and the **salt**. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation.
- Add Sugar. Stir it well until the sugar is sufficiently dissolved.
- Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

1800-2450 MHz liquid

- Fill the container with water and place it on hotplate. Begin heating and stirring.
- Add the salt, Glycol/Triton X-100. The container must be covered to prevent evaporation.
- Keep the liquid hot enough to dissolve sugar for at least an hour. The container must be covered to prevent evaporation.
- Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements.

6.2 Electrical parameters of the tissue simulating liquid

The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are shown in the table below.

Recommended limits are adopted from IEEE P1528-2003:

"Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", DASY manual and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh

Band	Tissue	Limits / Measured	f	Dielectric	Parameters	Liquid Temp
(MHz)	Type	e (MM/DD/YYYY)	(MHz)	ε _r	σ [S/m]	(°C)
			705	41.1	0.85	
			715	40.9	0.86]
		Measured (05/09/2014)	750	40.5	0.89	22.1
			775	40.2	0.91	
			790	39.9	0.93	
750	Head		705	41.6	0.86	22.3
			715	41.5	0.87	
		Measured (05/12/2014)	750	40.9	0.90	
			775	40.6	0.92	
			790	40.4	0.93	
		Recommended Limits	750	41.9	0.89	N/A

			705	54.8	0.91	
			715	54.7	0.92	
		Measured (05/09/2014)	750	54.4	0.96	22.1
			775	54.3	0.98	
			790	53.9	0.99	
	Muscle		705	54.6	0.91	
			715	54.6	0.92	
		Measured (05/12/2014)	750	54.2	0.96	21.9
		, in the second of the second	775	53.9	0.98	
			790	53.8	1.00	1
		Recommended Limits	750	55.5	0.96	N/A
			815	41.6	0.86	
			825	41.5	0.87	
		Measured (05/01/2014)	835	40.0	0.87	22.0
		\ \ \	850	39.8	0.88	1
			865	39.7	0.89	1
			815	41.7	0.88	
		Ī	825	41.6	0.89	
		Measured (05/05/2014)	835	40.0	0.89	22.9
	Head		850	39.8	0.90	
		ļ l	865	39.6	0.91	
			815	41.6	0.86	
			825	41.5	0.87	1
		Measured (06/09/2014)	835	41.3	0.89	22.9
			850	41.1	0.90	
835			865	41.0	0.91	
		Recommended Limits	835	41.5	0.90	N/A
			815	53.7	0.96	
		1 (05/01/0014)	825	53.6	0.97	22.1
		Measured (05/01/2014)	835	53.4	0.98	22.1
			850	53.3	1.00	
			815	55.2	0.99	
		M 1/05/05/2014)	825	54.0	0.98	22.0
	Muscle	Measured (05/05/2014)	835	53.9	0.99	22.8
			850	53.7	1.01	1
			815	53.8	0.95	
		1 (0 (0 0 0 0 1 1)	825	53.7	0.96	22.5
		Measured (06/09/2014)	835	53.6	0.97	22.7
		Ī	850	53.4	0.99	
		Recommended Limits	835	55.2	0.97	N/A
			1710	40.8	1.37	
		Measured (05/12/2014)	1750	40.7	1.42	22.5
		((((((((((((((((((((1800	40.4	1.47	1
1800	Head		1710	40.5	1.35	
1000			1750	40.3	1.39	23.0
		Measured (05/15/2014)	1750	10.5	1.57	

		T T	1710	40.2	1.27	1
		Manager 1 (06/04/2014)	1710	40.3	1.37	22.4
		Measured (06/04/2014)	1750	40.2	1.41	22.4
		D 1.11.	1800	40.0	1.46	3.T/A
		Recommended Limits	1800	40.0	1.40	N/A
		1 (07/12/2014)	1710	51.5	1.49	
	Muscle	Measured (05/12/2014)	1750	51.4	1.54	22.5
	11100010		1800	51.2	1.59	
		Recommended Limits	1800	53.3	1.52	N/A
		<u></u>	1850	39.4	1.38	
		Measured (04/24/2014)	1900	39.2	1.43	21.1
		- Wiedsared (0 1/2 1/2011)	1910	39.2	1.45	21.1
			1980	NA	NA	
		<u> </u>	1850	41.1	1.32	
		Measured (04/28/2014)	1900	40.9	1.37	22.4
			1910	40.5	1.46	22.4
			1980	40.5	1.46	
	Head		1850	40.4	1.37	
		Measured (05/30/2014)	1900	40.3	1.41	22.4
		Wieasured (03/30/2014)	1910	40.3	1.42	22.4
			1980	NA	NA	
		Measured (06/03/2014)	1850	40.0	1.33	22.7
			1900	39.8	1.38	
1900			1910	39.8	1.38	
1900			1980	39.6	1.46	
		Recommended Limits	1900	40.0	1.40	N/A
		Measured (04/24/2014)	1850	51.7	1.45	21.7
			1900	51.5	1.52	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1910	51.5	1.54	
			1850	51.6	1.47	22.4
		Measured (04/28/2014)	1900	51.4	1.53	
			1910	51.4	1.54	
	Muscle		1850	52.7	1.53	
		Measured (05/30/2014)	1900	52.7	1.57	22.4
			1910	52.6	1.58	
	1		1850	50.8	1.46	
		Measured (06/03/2014)	1900	50.7	1.51	22.6
	1	(,)	1910	50.7	1.52	
	1	Recommended Limits	1900	53.3	1.52	N/A
	1		2410	37.9	1.80	
		Measured (05/16/2014)	2450	37.7	1.86	22.0
	1		2480	37.6	1.89	1
			2410	37.8	1.79	
2450	Head	Measured (05/20/2014)	2450	37.7	1.84	22.1
			2480	37.5	1.87	1
		Recommended Limits	2450	39.2	1.80	N/A
<u> </u>	Muscle	Measured (05/20/2014)	2410	51.0	1.96	22.7

**** BlackBerry SAR Smar		SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 75(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

			2450	50.9	2.01		
			2480	50.7	2.04		
		Recommended Limits	2450	52.7	1.95	N/A	
			2500	37.4	1.89		
		Measured (05/20/2014)	2570	37.2	1.96	21.9	
		, in the second of the second	2600	37.1	1.99		
			2500	37.6	1.88		
	TT 1	Measured (06/05/2014)	2570	37.4	1.96	22.4	
	Head	, in the second of the second	2600	37.3	1.99		
			2500	37.6	1.90	22.8	
		Measured (06/12/2014)	2570	37.4	1.97		
			2600	37.3	2.01		
2600		Recommended Limits	2600	39.0	1.96	N/A	
2600			2500	50.7	2.08		
		Measured (05/20/2014)	2570	50.4	2.16	22.1	
		, in the second of the second	2600	50.3	2.20		
			2500	51.0	2.07		
	3.6 1	Measured (06/05/2014)	2570	50.7	2.15	22.5	
	Muscle	, in the second of the second	2600	50.7	2.20		
			2500	50.5	2.06		
		Measured (06/05/2014)	2570	50.3	2.15	22.6	
		` í	2600	50.2	2.19		
			Recommended Limits	2600	52.5	2.16	N/A
				5180	34.7	4.70	
		Measured (05/26/2014)	5200	34.7	4.71	21.4	
	Head	, in the second of the second	5280	34.6	4.82		
53 00		Recommended Limits	5200	36.0	4.66	N/A	
5200				5180	47.1	5.47	
	3.6 1	Measured (05/26/2014)	5200	47.0	5.50	21.4	
	Muscle	, in the second of the second	5280	46.9	5.60		
		Recommended Limits	5200	49.0	5.30	N/A	
			5500	34.2	5.08	21.4	
	Head	Measured (05/26/2014)	5600	34.1	5.19	21.4	
5500		Recommended Limits	5500	35.6	4.96	N/A	
5500		1 (05/2 (/2014)	5500	46.4	5.92	21.4	
	Muscle	Measured (05/26/2014)	5600	46.3	6.06	21.4	
	1	Recommended Limits	5500	48.6	5.65	N/A	
			5745	33.8	5.35		
	Head	Measured (05/26/2014)	5800	33.6	5.39	21.4	
5000	1	Recommended Limits	5800	35.3	5.27	N/A	
5800		M1 (05/07/2014)	5745	45.9	6.27		
	Muscle	Measured (05/26/2014)	5800	45.8	6.34	21.4	
		Recommended Limits	5800	48.2	6.00	N/A	

Table 6.2-1 Electrical parameters of tissue simulating liquid

≅ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry ®	Page 76(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

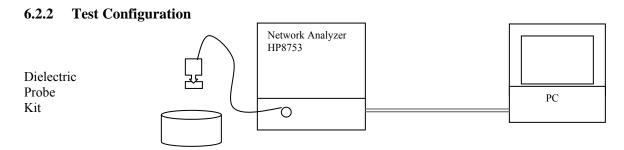


Figure 6.2.2-1 Test configuration

6.2.3 Procedure

- 1. Turn NWA on and allow at least 30 minutes for warm up.
- 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration.
- 3. Pour de-ionized water and measure water temperature ($\pm 1^{\circ}$).
- 4. Set water temperature in HP-Software (Calibration Setup).
- 5. Perform calibration.
- 6. Relative permittivity $\varepsilon_r = \varepsilon'$ and conductivity can be calculated from ε'' ($\sigma = \omega \varepsilon_0 \varepsilon''$)
- 7. Measure liquid shortly after calibration.
- 8. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container.
- 9. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
- 10. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
- 11. Perform measurements.
- 12. Adjust medium parameters in DASY software for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Head 835 MHz) and press 'Option'-button.
- 13. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 835 MHz).

*	:: BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 77(10	03)
A	uthor Data	Dates of Test		Test Report No	FCC ID:		
A	Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

7.0 SAR SAFETY LIMITS

Standards/Guideline	Localized SAR Limit (W/kg) General public (uncontrolled)	Localized SAR Limits (W/kg) Workers (controlled)
ICNIRP Standard	2.0 (10g)	10.0 (10g)
IEEE C95.1 Standard	1.6 (1g)	8.0 (1g)

Table 7.0-1 SAR safety limits for Controlled / Uncontrolled environment

Human Exposure	Localized SAR Limits (W/kg) 10g, ICNIRP Standard	Localized SAR Limits (W/kg) 1g, IEEE C95.1 Standard
Spatial Average (averaged over the whole		
body)	0.08	0.08
Spatial Peak (averaged over any X g of		
tissue)	2.00	1.60
Spatial Peak (hands/wrists/feet/ankles		
averaged over 10 g)	4.00	4.00 (10g)

Table 7.0-2 SAR safety limits

Uncontrolled Environments are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

≅ BlackBerry		SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	78(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Androw Dookon	Annil 15	Iuma 12 2014	DTC 6057 1405 01 Dog 2	I CADOVIONI W		

8.0 DEVICE POSITIONING

8.1 Device holder for SAM Twin Phantom

The Device was positioned for all test configurations using the DASY5 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 8.1-1 Device Holder

- 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the earpiece is in the symmetry plane of the clamp).
- 2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the earpiece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and backsides, the phone holder angle (3) is 0°.
- 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly).
- 4. Shift the phone clamp (6) so that the earpiece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section.
- 5. Adjust the device position angles to the desired measurement position.
- 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle).

≅BlackBerry		SAR Compliance T Smartphone Model	Cest Report for the BlackBer RGY181LW	ry®	Page 79(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

8.2 Description of the test positioning

8.2.1 Test Positions of Device Relative to Head

The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom.

The handset was tested in the above positions according to IEEE 1528- 2003 "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques".

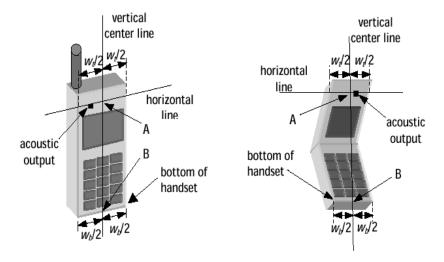


Figure 8.2.1-1 Handset vertical and horizontal reference lines – fixed case

Figure 8.2.1-2 Handset vertical and horizontal reference lines – "clam-shell"

Author Data
Andrew Becker

Document
SAR Compliance Test Report for the BlackBerry®
SAR Compliance Test Report for the B

Definition of the "cheek" position

- 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover.
- 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width *wt* of the handset at the level of the acoustic output (point A on Figures 8.2.1-1 and 8.2.1-2), and the midpoint of the width *wb* of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 8.2.1-1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 8.2.1-2), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets.
- 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 8.2.1-3), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom.
- **4)** Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear.
- 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") NF ("neck-front") including the line MB (reference plane).
- **6)** Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF.
- 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek).

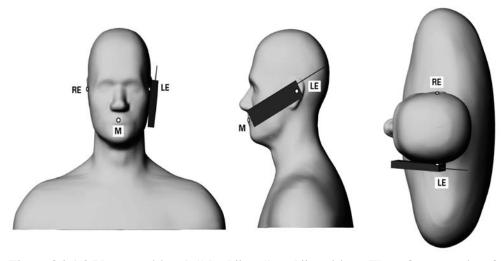


Figure 8.2.1-3 Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

*** BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 81(103	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

Definition of the "Tilted" Position

- 1) Repeat steps 1 to 7 from above.
- 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom.

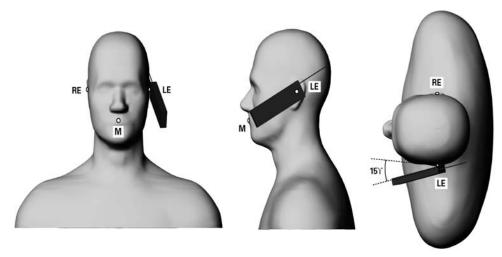


Figure 8.2.1-4 Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only.

8.2.2 Body-worn Configuration

Body-worn configurations, as shown in appendix E, have been test with the device for RF exposure compliance. The device was tested with a holster and/or a minimum separation distance. The device was tested with 15 mm BLACKBERRY recommended separation distance to allow typical after-market holster to be used. For holster testing the holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the device to simulate hands-free operation in a body worn holster configuration. BLACKBERRY body-worn holsters with belt-clip have been designed to maintain \sim 19-20 mm separation distance from body.

8.2.3 Limb/Hand Configuration

BlackBerry device is not a limb-worn device and hasn't been tested for such a configuration.

As per Clause 6.1.4.9 in the IEC/EN 62209-2 standard:

"Additional studies remain needed for devising a representative method for evaluating SAR in the hand of hand-held devices. Future versions of this standard are intended to contain a test method based on scientific data and rationale. Annex J presents the currently available test procedure."

**** BlackBerry		SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 82(103)
Author Data	Dates of Test		Test Report No	FCC ID:	
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7

Clause J.2 of the IEC/EN 62209-2 states that testing for compliance for the exposure of the hand is not applicable for devices that are intended to being hand-held to enable use at the ear (see EN 62209-1) or worn on the body when transmitting.

In addition, BlackBerry device is not intended to be held in hand at a distance of larger than 200 mm from the head and body during normal use.

9.0 HIGH LEVEL EVALUATION

9.1 Maximum search

The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations.

9.2 Extrapolation

The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values.

9.3 Boundary correction

The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect.

9.4 Peak search for 1g and 10g cube averaged SAR

The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 / 7x7x9 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements.

The measured volume of 30x30x30mm / 22x22x22 with 7.5 / 5 / 4.0 mm resolution in (x,y) and 5mm / 2.mm resolution in z axis amounts to 175 / 693 measurement points. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

∷ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 83(10	13)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker April 15 – June 13, 2014			RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

10.0 MEASUREMENT UNCERTAINTY

DA	SY5 U	Jncer 3 - 3 GI			udge	et .		
	Uncert.	Prob.	Div.	(c ₁)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0 %	±6.0%	∞
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9%	∞
Hemispherical Isotropy	±9.6 %	R	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Linearity	$\pm 4.7\%$	R	$\sqrt{3}$	1	1	±2.7%	±2.7 %	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Modulation Response ^m	±2.4 %	R	√3	1	1	±1.4 %	±1.4 %	∞
Readout Electronics	±0.3 %	N	1	1	1	±0.3 %	±0.3 %	∞
Response Time	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞
Integration Time	±2.6 %	R	√3	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
RF Ambient Reflections	±3.0 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
Probe Positioner	±0.4 %	R	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	00
Probe Positioning	±2.9 %	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
Max. SAR Eval.	±2.0%	R	$\sqrt{3}$	1	1	±1.2 %	±1.2 %	∞
Test Sample Related								
Device Positioning	±2.9 %	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0%	R	√3	1	1	±2.9 %	±2.9 %	∞
Power Scaling ^p	±0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	∞
Phantom and Setup								
Phantom Uncertainty	±6.1%	R	√3	1	1	±3.5 %	±3.5 %	∞
SAR correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1 %	±0.9 %	∞
Liquid Conductivity (mea.) ^{DAK}	$\pm 2.5\%$	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity (mea.) DAK	$\pm 2.5\%$	R	$\sqrt{3}$	0.26	0.26	$\pm 0.3 \%$	±0.4 %	∞
Temp. unc Conductivity BB	±3.4 %	R	$\sqrt{3}$	0.78	0.71	±1.5 %	±1.4 %	∞
Temp. unc Permittivity BB	±0.4%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Std. Uncertainty					±11.2%	±11.1%	361	
Expanded STD Uncertainty						$\pm 22.3\%$	$\pm 22.2\%$	

Table 10.0-1 Worst-Case uncertainty budget for DASY5 assessed according to IEEE P1528-2013. Source: Schmid & Partner Engineering AG.

[1] The budget is valid for the frequency range 300MHz - 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Relative DASYS	Unce	rtaint).3 - 3 (y Bi GHz ra	udge	et fo	r Fast S	SAR Tes	ts
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System								
Probe Calibration	±6.0%	N	1	0	0			
Axial Isotropy	$\pm 4.7\%$	R	$\sqrt{3}$	0.7	0.7	±1.9 %	±1.9 %	∞
Hemispherical Isotropy	$\pm 9.6 \%$	R	$\sqrt{3}$	0.7	0.7	±3.9 %	±3.9 %	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	00
Linearity	$\pm 4.7\%$	R	$\sqrt{3}$	1	1	±2.7%	±2.7 %	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6 %	±0.6 %	∞
Modulation Response	$\pm 2.4\%$	R	$\sqrt{3}$	1	1	±1.4 %	±1.4 %	00
Readout Electronics	±0.3%	N	1	0	0			
Response Time	±0.8%	R	$\sqrt{3}$	0	0			
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise ±3.0		R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	00
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	0	0			
Probe Positioner	$\pm 0.4\%$	R	$\sqrt{3}$	1	1	±0.2 %	±0.2 %	00
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7 %	00
Spatial x-y-Resolution	±10.0%	R	$\sqrt{3}$	1	1	±5.8 %	±5.8 %	00
Fast SAR z-Approximation	±7.0%	R	$\sqrt{3}$	1	1	±4.0 %	±4.0 %	00
Test Sample Related								
Device Positioning	$\pm 2.9\%$	N	1	1	1	±2.9 %	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6 %	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
Power Scaling	±0%	R	$\sqrt{3}$	0	0			
Phantom and Setup								
Phantom Uncertainty	±6.1%	R	$\sqrt{3}$	1	1	±3.5 %	±3.5 %	00
SAR correction	±1.9%	R	$\sqrt{3}$	0	0			
Liquid Conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0	0			
Liquid Permittivity (mea.) ±2.5%		R	$\sqrt{3}$	0	0			
Temp. unc Conductivity ±3.4%		R	$\sqrt{3}$	0	0			
Temp. unc Permittivity	R	$\sqrt{3}$	0	0				
Combined Std. Uncertainty					±11.4%	±11.4%	748	
Expanded STD Uncertain	nty					$\pm 22.7 \%$	$\pm 22.7 \%$	

Table 10.0-2 Worst-Case uncertainty budget for DASY5 assessed according to IEEE P1528-2013 Source: Schmid & Partner Engineering AG.

DA	SY5 U	ncer - 6 GH			udge			
	Uncert.	Prob.	Div.	(c_i)	(c_i)	Std. Unc.	Std. Unc.	(v_i)
Error Description	value	Dist.		1g	10g	(1g)	(10g)	v_{eff}
Measurement System	10 22 07	**		4	4	10 22 07	105507	
Probe Calibration	±6.55 %	N	1	1	1	±6.55 %	±6.55%	00
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	00
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9 %	00
Boundary Effects	±2.0%	R	$\sqrt{3}$	1	1	±1.2 %	±1.2%	00
Linearity	±4.7%	R	$\sqrt{3}$	1	1	$\pm 2.7\%$	±2.7 %	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6 %	±0.6%	00
Modulation Response ^m	$\pm 2.4 \%$	R	√3	1	1	$\pm 1.4 \%$	±1.4 %	00
Readout Electronics	$\pm 0.3\%$	N	1	1	1	$\pm 0.3 \%$	±0.3 %	00
Response Time	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	$\pm 0.5 \%$	±0.5 %	∞
Integration Time	$\pm 2.6\%$	R	√3	1	1	±1.5 %	±1.5 %	∞
RF Ambient Noise	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	$\pm 1.7 \%$	±1.7 %	∞
RF Ambient Reflections	$\pm 3.0 \%$	R	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
Probe Positioner	$\pm 0.8\%$	R	$\sqrt{3}$	1	1	±0.5 %	±0.5 %	∞
Probe Positioning	$\pm 6.7\%$	R	$\sqrt{3}$	1	1	$\pm 3.9 \%$	±3.9 %	∞
Max. SAR Eval.	±4.0%	R	$\sqrt{3}$	1	1	$\pm 2.3 \%$	±2.3 %	∞
Test Sample Related								
Device Positioning	$\pm 2.9 \%$	N	1	1	1	$\pm 2.9 \%$	±2.9 %	145
Device Holder	±3.6 %	N	1	1	1	±3.6 %	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	$\pm 2.9 \%$	±2.9 %	∞
Power Scaling ^p	±0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	00
Phantom and Setup								
Phantom Uncertainty	±6.6%	R	√3	1	1	±3.8 %	±3.8 %	∞
SAR correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±0.9 %	00
Liquid Conductivity (mea.) ^{DAK}	±2.5%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%	00
Liquid Permittivity (mea.) DAK	±2.5%	R	$\sqrt{3}$	0.26	0.26	±0.3 %	±0.4 %	00
Temp. unc Conductivity BB	R	$\sqrt{3}$	0.78	0.71	±1.5 %	±1.4%	00	
Temp. unc Permittivity BB	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	00	
Combined Std. Uncertainty				İ	±12.3 %	±12.2 %	748	
Expanded STD Uncertainty						$\pm 24.6 \%$	$\pm 24.5 \%$	

Table 10.0-3 Worst-Case uncertainty budget for DASY52 assessed according to IEEE P1528-2013. Source: Schmid & Partner Engineering AG.

≅ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 86(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

11.0 TEST RESULTS

11.1 SAR Measurement results at highest power measured against the head

	F			D D		Cond. Outpu	ıt Power (dBm)	Power	1g SAR	(W/Kg)
Channel	Freq. (MHz)	Mod.	RB#	RB Offset	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
23780	709.0	QPSK	1	49	Right Cheek	23.6	22.98	0.05	0.07	0.08
23790	710.0	QPSK	1	49	Right Cheek	23.6	23.04	0.14	0.07	0.08
23800	711.0	QPSK	1	49	Right Cheek	23.6	23.08	-0.11	0.05	0.06
23780	709.0	QPSK	25	25	Right Cheek	22.6	22.03	-0.13	0.05	0.06
		QPSK	50	0	Right Cheek	22.6				0.00
23800	711.0	QPSK	1	49	Right 15° Tilt	23.6	23.08	0.08	0.02	0.02
23780	709.0	QPSK	1		Left Cheek	23.6				0.00
23790	710.0	QPSK	1		Left Cheek	23.6				0.00
23800	711.0	QPSK	1	49	Left Cheek	23.6	23.08	0.17	0.04	0.05
23780	709.0	QPSK	25	25	Left Cheek	22.6	22.03	0.01	0.03	0.03
		QPSK	50	0	Left Cheek	22.6				0.00
23800	711.0	QPSK	1	49	Left 15° Tilt	23.6	23.08	-0.14	0.02	0.02

Table 11.1-1 SAR results for LTE Band 17 (10MHz BW) head configuration

- Note 1: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula: Extrapolated SAR = (Measured SAR) * 10^(|Power Drift (dB)| / 10)
- Note 2: Only Middle channel was tested when 1g reported SAR ≤ 0.8 W/Kg or 3dB lower than the limit.
 Note 3a: For Fast SAR a zoom scan is required for each head position with 1g measured SAR ≥ 0.8 W/Kg and one additional zoom scan to cover all the remaining head positions. The scan is done on the worst case for the position(s)
- **Note 3b:** For Fast SAR the technique cannot be utilized when 1g measured SAR \geq 1.2 W/Kg, an error message occurs, or difference between the zoom and area scan 1g SAR \geq 0.1 W/kg for that configuration.
- **Note 4:** A 2^{nd} scan is required when 1g measured SAR ≥ 0.8 W/Kg. A 3^{rd} scan is required when the 1g measured SAR ≥ 1.45 W/Kg or the 2^{nd} scan SAR differs more than 20%. A 4^{th} scan is required when the 1g measured SAR ≥ 1.50 W/Kg or the previous measurements differ more than 20%.
- **Note 5a:** For LTE it is only required to test the configuration (channel and offset) yielding the highest conducted power for RB 1 and RB 50% when combined 1g avg. SAR < 0.8 W/Kg or 3dB lower than the limit for both cases. Also, when the highest conducted power for RB 1 and RB 50% are both greater than RB 100%, then SAR testing for RB 100% can be excluded.
- **Note 5b:** For LTE if 1g avg. SAR > 0.8 W/Kg or not at least 3dB lower than the limit, than the remaining channels for that RB number must be tested and one additional scan must be done with RB 100%. For all additional scans the highest conducted power configuration (channel and offset) must be used
- **Note 5c:** For LTE if $SAR \le 1.45$, then SAR tests for the smaller bandwidths are not required
- **Note 5d:** For LTE the lower bandwidths are only tested on the cases where the conducted power is 0.5 dB greater than those found on the highest bandwidth or when the reported 1g SAR > 1.45 for the highest bandwidth.
- **Note 5e:** For LTE 16 QAM is only tested on the cases where its conducted power is 0.5 dB greater than QPSK or when the reported 1g SAR > 1.45 for QPSK.

≅ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 87 (10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

		Measure	d/Extr	apolate	d SAR Values -	Head - LTE E	Band 13 750 MI	Hz (BW '	10MHz)	
	F			5		Cond. Outpu	t Power (dBm)	Power	1g SAR	(W/Kg)
Channel	Freq. (MHz)	Mod.	RB#	RB Offset	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
23230	782.0	QPSK	1	49	Right Cheek	23.9	23.77	-0.08	0.20	0.21
23230	782.0	QPSK	25	25	Right Cheek	22.9	22.84	0.02	0.17	0.17
23230	782.0	QPSK	50	0	Right Cheek					0.00
23230	782.0	QPSK	1	49	Right 15° Tilt	23.9	23.77	0.16	0.08	0.08
23230	782.0	QPSK	1	49	Left Cheek	23.9	23.77	-0.02	0.15	0.15
23230	782.0	QPSK	25	25	Left Cheek	22.9	22.84	-0.04	0.12	0.12
23230	782.0	QPSK	50	0	Left Cheek					0.00
23230	782.0	QPSK	1	49	Left 15° Tilt	23.9	23.77	0.03	0.07	0.07

Table 11.1-2 SAR results for LTE Band 13 (10MHz BW) head configuration

		Measure	d/Ext	rapolate	ed SAR Values	- Head - LTE	Band 5 850 MF	Iz (BW 1	0MHz)		
	F			D D		Cond. Outpu	ıt Power (dBm)	Power	1g SAR	(W/Kg)	
Channel	Freq. (MHz)	Mod.	RB#	RB Offset	Position	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
20450	829.0	QPSK	1	25	Right Cheek	23.7	23.62	0.02	0.25	0.26	
20525	836.5	QPSK	1	0	Right Cheek	23.7	23.34	0.01	0.27	0.30	
20600	844.0	QPSK	1	0	Right Cheek	23.5	23.27	-0.01	0.27	0.28	
20450	829.0	QPSK	25	25	Right Cheek	22.7	22.51	0.03	0.21	0.22	
		QPSK	50	0	Right Cheek					0.00	
20450	829.0	QPSK	1	25	Right 15° Tilt	23.7	23.62	0.04	0.08	0.08	
20450	829.0	QPSK	1	25	Left Cheek	23.7	23.62	-0.01	0.14	0.15	
20525	836.5	QPSK	1	0	Left Cheek					0.00	
20600	844.0	QPSK	1	0	Left Cheek					0.00	
20450	829.0	QPSK	25	25	Left Cheek	22.7	22.51	0.05	0.12	0.13	
		QPSK	50	0	Left Cheek					0.00	
20450	829.0	QPSK	1	25	Left 15° Tilt	23.7	23.62	-0.01	0.07	0.07	

Table 11.1-3 SAR results for LTE Band 5 (10MHz BW) head configuration

		Measu	red/Extrapolate	d SAR Values	- Head - GSM/GI	MSK/DTM 8	50 MHz	
Channel	Freq.	Time	Position	Cond. Outpu	t Power (dBm)	Power	1g SAR	(W/Kg)
Citatille	(MHz)	Slots	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
128	824.2	1	Right Cheek					0.00
190	836.6	1	Right Cheek	33.6	33.3	0.05	0.31	0.33
251	848.8	1	Right Cheek					0.00
128	824.2	2	Right Cheek	30.7	30.6	0.33	0.40	0.41
190	836.6	2	Right Cheek	30.5	30.4	-0.08	0.32	0.33
251	848.8	2	Right Cheek	30.5	30.1	-0.15	0.29	0.32
190	836.6	3	Right Cheek	29.5	29.0	0.05	0.30	0.34
190	836.6	2	Right 15° Tilt	30.5	30.4	0.04	0.11	0.11
128	824.2	1	Left Cheek					0.00
190	836.6	1	Left Cheek	33.6	33.3	0.01	0.16	0.17
251	848.8	1	Left Cheek					0.00
190	836.6	2	Left Cheek	30.5	30.4	-0.01	0.17	0.17
190	836.6	3	Left Cheek					0.00
190	836.6	2	Left 15° Tilt	30.5	30.4	-0.08	0.09	0.09

Table 11.1-4a SAR results for GSM/EDGE/DTM 850 head configuration on Rev 1

∷ BlackBe	erry	SAR Compliance T Smartphone Model	Page 88(10	3)		
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

		Measu	red/Extrapolate	d SAR Values -	Head - GSM/GI	ISK/DTM 8	50 MHz	
Channel	Freq.	Time	Position	Cond. Output	t Power (dBm)	Power	1g SAR	(W/Kg)
Chamile	(MHz)	Slots	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
128	824.2	1	Right Cheek	33.6	32.8			0.00
190	836.6	1	Right Cheek	33.6	32.8	0.00	0.38	0.46
251	848.8	1	Right Cheek	33.7	32.7			0.00
128	824.2	2	Right Cheek	30.5	29.7	0.07	0.40	0.48
128	824.2	3	Right Cheek	29.5	28.5	0.02	0.44	0.55
190	836.6	3	Right Cheek	29.5	28.3	-0.06	0.38	0.50
251	848.8	3	Right Cheek	29.5	28.3	0.15	0.33	0.44
128	824.2	1	Left Cheek					0.00
190	836.6	1	Left Cheek					0.00
251	848.8	1	Left Cheek					0.00
190	836.6	2	Left Cheek		·		·	0.00
128	824.2	3	Left Cheek	29.5	28.5	0.00	0.22	0.28

Table 11.1-4b SAR results for GSM/EDGE/DTM 850 head configuration on Rev 2

Note: Antenna tuning and conducted power changed on Rev 2 therefore spot check measurements were performed on the highest conducted power channel for the worst case position. Please refer to the hardware declaration HWD_CER-59665-001 - Rev2-x05-04.

	Me	easured/Extrapo	olated SAR Val	ues - Head - WC	DMA FDD	V 850 MHz	
Channel	Freq.	Position	Cond. Output	t Power (dBm)	Power	1g SAR	(W/Kg)
Chamilei	(MHz)	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
4132	826.4	Right Cheek	24.8	24.34	-0.03	0.32	0.36
4182	836.4	Right Cheek	24.8	24.36	0.00	0.34	0.38
4233	846.6	Right Cheek	24.8	24.31	-0.01	0.36	0.40
4182	836.4	Right 15° Tilt	24.8	24.36	0.00	0.12	0.14
4132	826.4	Left Cheek					0.00
4182	836.4	Left Cheek	24.8	24.36	0.02	0.24	0.26
4233	846.6	Left Cheek					0.00
4182	836.4	Left 15° Tilt	24.8	24.36	-0.02	0.10	0.11

Table 11.1-5 SAR results for WCDMA FDD V head configuration

## BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 89(103	3)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

	ı	Measured	l/Extr	apolate	d SAR Values -	Head - LTE E	Band 4 1800 MI	lz (BW 2	20MHz)	
	F			D D		Cond. Outpu	t Power (dBm)	Power	1g SAR	(W/Kg)
Channel	Freq. (MHz)	Mod.	RB#	RB Offset	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
20050	1720.0	QPSK	1		Right Cheek					0.00
20175	1732.5	QPSK	1	0	Right Cheek	23.9	23.59	-0.17	0.26	0.28
20300	1745.0	QPSK	1		Right Cheek					0.00
20175	1732.5	QPSK	50	0	Right Cheek	22.9	22.48	-0.16	0.21	0.23
		QPSK	100	0	Right Cheek					0.00
20175	1732.5	QPSK	1	0	Right 15° Tilt	23.9	23.59	0.04	0.08	0.09
20050	1720.0	QPSK	1	50	Left Cheek	23.9	23.48	-0.19	0.30	0.33
20175	1732.5	QPSK	1	0	Left Cheek	23.9	23.59	-0.17	0.31	0.33
20300	1745.0	QPSK	1	0	Left Cheek	23.9	23.47	-0.19	0.30	0.33
20175	1732.5	QPSK	50	0	Left Cheek	22.9	22.48	0.03	0.25	0.28
		QPSK	100	0	Left Cheek	·				0.00
20175	1732.5	QPSK	1	0	Left 15° Tilt	23.9	23.60	0.09	0.09	0.10

Table 11.1-6 SAR results for LTE Band 4 (20MHz BW) head configuration

	Me	easured/Extrapo	olated SAR Valu	ies - Head - WC	DMA FDD I	V 1800 MHz		
Channel	Freq.	Position	Cond. Output	t Power (dBm)	Power	1g SAR (W/Kg)		
Chamilei	(MHz)	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported	
1312	1712.4	Right Cheek					0.00	
1413	1732.6	Right Cheek	24.6	24.26	-0.14	0.24	0.26	
1513	1752.6	Right Cheek					0.00	
1413	1732.6	Right 15° Tilt	24.6	24.26	0.13	0.11	0.12	
1312	1712.4	Left Cheek	24.6	24.02	0.04	0.22	0.25	
1413	1732.6	Left Cheek	24.6	24.26	-0.10	0.25	0.27	
1513	1752.6	Left Cheek	24.6	24.25	-0.09	0.23	0.25	
1413	1732.6	Left 15° Tilt	24.6	24.26	-0.19	0.10	0.11	

Table 11.1-7 SAR results for WCDMA FDD IV head configuration

		Measur	ed/Ex	trapolat	ed SAR Values -	Head - LTE I	Band 2 1900 M	Hz (BW	20MHz)	OMHz)	
	F			D D		Cond. Outpu	ıt Power (dBm)	Power	1g SAR	(W/Kg)	
Channel	Freq. (MHz)	Mod.	RB#	RB Offset	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported	
18700	1860.0	QPSK	1		Right Cheek					0.00	
18900	1880.0	QPSK	1	50	Right Cheek	23.9	23.65	-0.07	0.17	0.18	
19100	1900.0	QPSK	1		Right Cheek					0.00	
18900	1880.0	QPSK	50	0	Right Cheek	22.9	22.63	0.06	0.14	0.14	
		QPSK	100	0	Right Cheek					0.00	
18900	1880.0	QPSK	1	50	Right 15° Tilt	23.9	23.65	-0.05	0.05	0.05	
18700	1860.0	QPSK	1	50	Left Cheek	23.9	23.60	0.19	0.18	0.19	
18900	1880.0	QPSK	1	50	Left Cheek	23.9	23.65	-0.04	0.20	0.21	
19100	1900.0	QPSK	1	0	Left Cheek	23.9	23.55	-0.11	0.16	0.17	
18900	1880.0	QPSK	50	0	Left Cheek	22.9	22.63	-0.01	0.16	0.17	
		QPSK	100	0	Left Cheek					0.00	
18900	1880.0	QPSK	1	50	Left 15° Tilt	23.9	23.65	0.04	0.05	0.05	

Table 11.1-8 SAR results for LTE Band 2 (20MHz BW) head configuration

*** BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 90(103	3)
Author Data Dates of Test			Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

		Measu	red/Extrapolate	d SAR Values -	Head - GSM/ED	OGE/DTM 19	900 MHz	
Channel	Freq.	Time	Position	Cond. Output	t Power (dBm)	Power	1g SAR	(W/Kg)
Chamilei	(MHz)	Slots	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
512	1850.2	1	Right Cheek	31.0				0.00
661	1880.0	1	Right Cheek	31.0	29.8	-0.08	0.09	0.12
810	1909.8	1	Right Cheek	30.8				0.00
661	1880.0	2	Right Cheek	29.0	28.4	0.20	0.11	0.13
661	1880.0	3	Right Cheek	26.5	25.5	-0.11	0.09	0.11
661	1880.0	2	Right 15° Tilt	29.0	28.4	-0.18	0.03	0.03
661	1880.0	1	Left Cheek	31.0	29.7	0.16	0.13	0.18
512	1850.2	2	Left Cheek	29.0	28.5	0.02	0.17	0.19
661	1880.0	2	Left Cheek	29.0	28.4	-0.01	0.18	0.21
810	1909.8	2	Left Cheek	29.0	28.4	-0.06	0.14	0.16
661	1880.0	3	Left Cheek	26.5	25.5	0.05	0.13	0.16
661	1880.0	2	Left 15° Tilt	29.0	28.4	-0.14	0.04	0.05

Table 11.1-9 SAR results for GSM/EDGE/DTM 1900 head configuration

	Me	easured/Extrapo	olated SAR Val	ues - Head - WC	DMA FDD	II 1900 MHz	
Channel	Freq.	Position	Cond. Output	t Power (dBm)	Power	1g SAR	(W/Kg)
Chamilei	(MHz)	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
9262	1852.4	Right Cheek					0.00
9400	1880.0	Right Cheek	24.6	24.28	-0.03	0.15	0.16
9538	1907.6	Right Cheek					0.00
9400	1880.0	Right 15° Tilt	24.6	24.28	0.01	0.05	0.05
9262	1852.4	Left Cheek	24.6	24.24	-0.13	0.26	0.28
9400	1880.0	Left Cheek	24.6	24.28	-0.04	0.24	0.26
9538	1907.6	Left Cheek	24.6	24.06	-0.08	0.20	0.23
9400	1880.0	Left 15° Tilt	24.6	24.28	0.08	0.06	0.06

Table 11.1-10 SAR results for WCDMA FDD II head configuration

Meas	sured/Extra	apolated SAR Valu	ues - Head Full	- 802.11b/g 2450	0 MHz		
Channal	Freq.	1g SAR	(W/Kg)				
Channel	(MHz)	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
1	2412.0	Right Cheek					0.00
6	2437.0	Right Cheek	20.0	18.0	0.01	0.24	0.38
11	2462.0	Right Cheek					0.00
6	2437.0	Right Cheek(g)	20.5	18.5	0.17	0.24	0.38
6	2437.0	Right 15° Tilt	20.0	18.0	0.02	0.20	0.32
1	2412.0	Left Cheek					0.00
6	2437.0	Left Cheek	20.0	18.0	0.16	0.09	0.14
11	2462.0	Left Cheek					0.00
6	2437.0	Left 15° Tilt	20.0	18.0	0.28	0.10	0.16

Table 11.1-11 results for Wi-Fi/WLAN/802.11b head configuration

Note 1: SAR measurements were performed on the highest output power channel

Note 2: Spot check measurements were performed on 802.11g as its conducted power is ½ dB higher than 802.11b

	erry	Smartphone Model RGY181LW				03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

Mea	sured/Ext	rapolated SAR \	/alues - Head -	Bluetooth 2450	MHz		
Channel	Freq.	Position	Cond. Outpu	t Power (dBm)	Power	1g SAR	(W/Kg)
Chamilei	(MHz)	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
0	2402.0	Right Cheek					0.00
39	2441.0	Right Cheek	10.75	10.40	0.19	0.03	0.03
78	2480.0	Right Cheek					0.00
39	2441.0	Right 15° Tilt	10.75	10.40	0.18	0.03	0.03
0	2402.0	Left Cheek					0.00
39	2441.0	Left Cheek	10.75	10.40	0.02	0.01	0.01
78	2480.0	Left Cheek					0.00
39	2441.0	Left 15° Tilt	10.75	10.40	0.18	0.00	0.00

Table 11.1-12 SAR results for Bluetooth head configuration

Note: SAR measurements were performed on the highest output power channel

Measured	/Extrapola	ited SAR Values - Hea Power		00 MHz	Full		
Chammal	Freq.	Docition	Cond. Output	t Power (dBm)	Power	1g SAR (W/Kg)
Channel	(MHz)	Position	Declared	Measured	Drift (dB)	Extrapolated	Reported
36*	5180.0	Right Cheek	20.0	18.2	-0.01	0.08	0.12
48*	5240.0	Right Cheek					0.00
52*	5260.0	Right Cheek	20.0	18.2	0.15	0.27	0.41
64*	5320.0	Right Cheek					0.00
104*	5520.0	Right Cheek	20.0	19.1	-0.03	0.26	0.32
116*	5580.0	Right Cheek					0.00
124*	5620.0	Right Cheek					0.00
136*	5680.0	Right Cheek					0.00
149*	5745.0	Right Cheek	20.0	19.1	0.06	0.33	0.41
157*	5785.0	Right Cheek					0.00
165*	5825.0	Right Cheek					0.00
149*	5745.0	Right 15° Tilt	20.0	19.1	0.18	0.47	0.58
36*	5180.0	Left Cheek	20.0	18.2	-0.18	0.19	0.29
48*	5240.0	Left Cheek					0.00
52*	5260.0	Left Cheek	20.0	18.2	-0.11	0.34	0.51
64*	5320.0	Left Cheek					0.00
104*	5520.0	Left Cheek	20.0	19.1	-0.13	0.37	0.46
116*	5580.0	Left Cheek					0.00
124*	5620.0	Left Cheek					0.00
136*	5680.0	Left Cheek					0.00
104*	5520.0	Left Cheek(ac, 20)	20.0	19.0	0.00	0.27	0.34
104*	5520.0	Left Cheek(ac, 40)	19.0	17.7	0.30	0.16	0.22
104*	5520.0	Left Cheek(ac, 80)	19.0	17.6	-0.48	0.11	0.15
149*	5745.0	Left Cheek	20.0	19.1	0.09	0.25	0.31
157*	5785.0	Left Cheek					0.00
165*	5825.0	Left Cheek					0.00
104*	5520.0	Left 15° Tilt	20.0	19.1	0.28	0.41	0.50

Table 11.1-13 SAR results for 802.11a head configuration

Note 1: "*" marks default test channels of each sub band which need to be tested if SAR is more than half of the limit.

Note 2: Spot check measurements were performed on 802.11ac for each bandwidth on the worst case SAR from 802.11a.

Note 3: Tests were conducted on Rev 1. Spot check measurements were not performed on Rev 2 as the only change was a decrease in conducted power.

	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 93(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

11.2 SAR measurement results at highest power measured against the body using accessories

	Measured/Extrapolated SAR Values - Hotspot/Body-Worn - LTE Band 17 700 MHz (BW 10MHz)											
	F.,	Spacing			0	Cida fasima	Cond. Outpu	t Power (dBm)	Power	1g SAR	(W/Kg)	
Channel	Freq. (MHz)	(cm)/ Holster	Mod.	RB#	RB Offset	Side facing phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported	
	Hotspot Configuration											
23780												
23790	710	1.0	QPSK	1	49	Back	23.6	23.04	-0.02	0.16	0.19	
23800	711	1.0	QPSK	1	49	Back	23.6	23.08	-0.04	0.17	0.19	
23780	709	1.0	QPSK	25	25	Back	22.6	22.03	0.04	0.13	0.15	
		1.0	QPSK	50	0	Back					0.00	
23800	711	1.0	QPSK	1	49	Front	23.6	23.08	0.03	0.11	0.12	
23800	711	1.0	QPSK	1	49	Left	23.6	23.08	-0.16	0.01	0.02	
23800	711	1.0	QPSK	1	49	Right	23.6	23.08	-0.04	0.12	0.13	
23800	711	1.0	QPSK	1	49	Bottom	23.6	23.08	0.02	0.15	0.17	
						Body-Worn (Configuration					
23780	709	1.5	QPSK	1	49	Back	23.6	22.98	-0.01	0.08	0.09	
23790	710	1.5	QPSK	1	49	Back	23.6	23.04	0.00	0.09	0.11	
23800	711	1.5	QPSK	1	49	Back	23.6	23.08	-0.04	0.10	0.11	
23780	709	1.5	QPSK	25	25	Back	22.6	22.03	-0.04	0.07	0.08	
		1.5	QPSK	50	0	Back					0.00	
23800	711	1.5	QPSK	1	49	Front	23.6	23.08	0.03	0.09	0.10	

Table 11.2-1 SAR results for LTE Band 17 (10MHz BW) body-worn and Hotspot configurations

Note 1: If the power drift is ≤ -0.200 dB, the extrapolated SAR is calculated using the formula:

Extrapolated SAR = (Measured SAR) * $10^{(1)}$ (|Power Drift (dB)| / $10^{(1)}$

Note 2: Only Middle channel was tested when 1g reported SAR \leq 0.8 W/Kg or 3dB lower than the limit.

Note 3a: For Fast SAR a zoom scan is required for each head position with 1g measured SAR \geq 0.8 W/Kg and one additional zoom scan to cover all the remaining head positions. The scan is done on the worst case for the position(s)

Note 3b: For Fast SAR the technique cannot be utilized when 1g measured SAR \geq 1.2 W/Kg, an error message occurs, or difference between the zoom and area scan 1g SAR \geq 0.1 W/kg for that configuration.

Note 4: A 2^{nd} scan is required when 1g measured SAR ≥ 0.8 W/Kg. A 3^{rd} scan is required when the 1g measured SAR ≥ 1.45 W/Kg or the 2^{nd} scan SAR differs more than 20%. A 4^{th} scan is required when the 1g measured SAR ≥ 1.50 W/Kg or the previous measurements differ more than 20%.

Note 5: Device was tested with 15 mm BLACKBERRY recommended separation distance to allow typical aftermarket holster to be used.

Note 6: For Hot Spot mode any side of the phone that is further than 2.5 cm away from the transmitting antenna can be exempted from testing.

Note 7a: For LTE it is only required to test the configuration (channel and offset) yielding the highest conducted power for RB 1 and RB 50% when combined 1g avg. SAR < 0.8 W/Kg or 3dB lower than the limit for both cases. Also, when the highest conducted power for RB 1 and RB 50% are both greater than RB 100%, then SAR testing for RB 100% can be excluded.

Note 7b: For LTE if 1g avg. SAR > 0.8 W/Kg or not at least 3dB lower than the limit, than the remaining channels for that RB number must be tested and one additional scan must be done with RB 100%. For all additional scans the highest conducted power configuration (channel and offset) must be used.

Note 7c: For LTE if SAR \leq 1.45, then SAR tests for the smaller bandwidths are not required

Note 7d: For LTE the lower bandwidths are only tested on the cases where the conducted power is 0.5 dB greater than those found on the highest bandwidth or when the reported 1g SAR > 1.45 for the highest bandwidth.

Note 7e: For LTE 16 QAM is only tested on the cases where its conducted power is 0.5 dB greater than QPSK or when the reported 1g SAR > 1.45 for QPSK.

Author Data Dates of Test		SAR Compliance T Smartphone Model	Page 94 (103)			
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

	Me	asured/E	xtrapola	ted SA	AR Value	es - Hotspot/B	ody-Worn - L	TE Band 13 7	50 MHz ((BW 10MHz)	
		Spacing			RB			ıt Power (dBm)	Power	1g SAR	(W/Kg)
Channel	Freq. (MHz)	(cm)/ Holster	′ I	RB#	Offset	Side facing phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
						Hotspot Co	nfiguration				
23180	777.0	1.0	QPSK	1		Back					0.00
23230	782.0	1.0	QPSK	1	49	Back	23.9	23.77	-0.02	0.49	0.50
23279	786.9	1.0	QPSK	1		Back					0.00
23230	782.0	1.0	QPSK	25	25	Back	22.9	22.84	0.03	0.39	0.40
		1.0	QPSK	50	0	Back					0.00
23230	782.0	1.0	QPSK	1	49	Front	23.9	23.77	-0.08	0.42	0.43
23230	782.0	1.0	QPSK	1	49	Left	23.9	23.77	0.02	0.10	0.10
23230	782.0	1.0	QPSK	1	49	Right	23.9	23.77	-0.04	0.25	0.26
23230	782.0	1.0	QPSK	1	49	Bottom	23.9	23.77	0.01	0.20	0.21
		1.0	QPSK			+HS					0.00
						Body-Worn C	onfiguration				
23180	777.0	1.5	QPSK	1		Back					0.00
23230	782.0	1.5	QPSK	1	49	Back	23.9	23.77	-0.01	0.38	0.39
23279	786.9	1.5	QPSK	1		Back					0.00
23230	782.0	1.5	QPSK	25	25	Back	22.9	22.84	-0.01	0.28	0.29
		1.5	QPSK	50	0	Back					0.00
23230	782.0	1.5	QPSK	1	49	Front	23.9	23.77	0.04	0.33	0.34
		Holster	QPSK								0.00

Table 11.2-2 SAR results for LTE Band 13 (10MHz BW) body-worn and Hotspot configurations

	Me	asured/Ex	ktrapolat	ed SA	R Value	es - Hotspot/I	Body-Worn -	LTE Band 5 85	0 MHz (BW 10MHz)	
	_	Spacing	-		RB		Cond. Outpu	it Power (dBm)	Power	1g SAR	(W/Kg)
Channel	Freq. (MHz)	(cm)/ Holster	Mod.	RB#	Offset	Side facing phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
						Hotspot Co	nfiguration				
20450	829.0	1.0	QPSK	1	25	Back	23.7	23.62	-0.14	0.60	0.61
20525	836.5	1.0	QPSK	1	0	Back	23.7	23.34	0.03	0.57	0.62
20600	844.0	1.0	QPSK	1	0	Back	23.5	23.27	0.02	0.55	0.58
20450	829.0	1.0	QPSK	25	25	Back	22.7	22.51	0.00	0.46	0.48
		1.0	QPSK	50	0	Back					0.00
20450	829.0	1.0	QPSK	1	25	Front	23.7	23.62	0.05	0.50	0.51
20450	829.0	1.0	QPSK	1	25	Left	23.7	23.62	-0.13	0.21	0.21
20450	829.0	1.0	QPSK	1	25	Right	23.7	23.62	-0.11	0.20	0.20
20450	829.0	1.0	QPSK	1	25	Bottom	23.7	23.62	-0.06	0.29	0.30
		1.0	QPSK			+HS					0.00
						Body-Worn C	onfiguration				
20450	829.0	1.5	QPSK	1	25	Back	23.7	23.62	-0.01	0.36	0.37
20525	836.5	1.5	QPSK	1	0	Back	23.7	23.34	-0.01	0.36	0.39
20600	844.0	1.5	QPSK	1	0	Back	23.7	23.27	-0.02	0.36	0.40
20450	829.0	1.5	QPSK	25	25	Back	22.7	22.51	0.00	0.29	0.31
		1.5	QPSK	50		Back					0.00
20450	829.0	1.5	QPSK	1	25	Front	23.7	23.62	0.02	0.30	0.31
		Holster	QPSK								0.00

Table 11.2-3 SAR results for LTE Band 5 (10MHz BW) body-worn and Hotspot configurations

	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 95(10	13)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	•	

		Measu	red/Extra	oolated SAR Va	lues - Hotspot/E	Body-Worn - GS	M/EDGE/G	PRS 850 MHz				
	Freg.	Time	spacing	Side Facing	Cond. Output	Power (dBm)	Power	1g SAR	(W/Kg)			
Ch.	(MHz)	Slots	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported			
					Hotspot Config	guration						
128 824.2 1 1.0 Back 33.6 33.6 -0.01 0.63												
190	836.6	1	1.0	Back	33.6	33.3	-0.13	0.60	0.64			
251	848.8	1	1.0	Back	33.7	33.3	0.00	0.54	0.59			
190	836.6	2	1.0	Back	30.5	30.2	-0.19	0.50	0.54			
190	836.6	3	1.0	Back	29.5	28.9	0.06	0.57	0.65			
190	836.6	4	1.0	Back	28.5	26.8	-0.03	0.46	0.68			
190	836.6	1	1.0	Front	33.6	33.3	0.00	0.46	0.49			
190	836.6	1	1.0	Left	33.6	33.3	0.03	0.23	0.24			
190	836.6	1	1.0	Right	33.6	33.3	0.07	0.16	0.17			
190	836.6	1	1.0	Bottom	33.6	33.3	-0.01	0.28	0.30			
			1.0	+HS					0.00			
				В	ody-Worn Conf	figuration						
190	836.6	1	1.5	Back	33.6	33.3	0.00	0.36	0.39			
190	836.6	2	1.5	Back	30.5	30.2	-0.02	0.35	0.37			
128	824.2	3	1.5	Back	29.5	29.2	0.00	0.45	0.49			
190	836.6	3	1.5	Back	29.5	28.9	0.08	0.38	0.44			
251	848.8	3	1.5	Back	29.5	28.7	-0.01	0.33	0.39			
190	836.6	4	1.5	Back	28.5	26.8	0.04	0.31	0.46			
190	836.6	3	1.5	Front	29.5	28.9	0.02	0.35	0.40			
			Holster						0.00			

Table 11.2-4a SAR results for GSM/EDGE/GPRS 850 body-worn and Hotspot configurations on Rev1

		Me	asured/Ex	trapolated SAR Value	ues - Hotspot/Boo	dy-Worn - GSM/	EDGE/GPR	S 850 MHz	
	Freq.	Time	spacing	Side Facing	Cond. Output	Power (dBm)	Power	1g SAR	(W/Kg)
Ch.	(MHz)	Slots	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
					Hotspot Configur	ation			
190	836.6	1	1.0	Back	32.8	0.01	0.61	0.73	
128	824.2	2	1.0	Back	30.7	29.7	-0.02	0.67	0.84
128	824.2	3	1.0	Back	29.5	28.5	-0.01	0.72	0.91
190	836.6	3	1.0	Back	29.5	28.3	0.02	0.65	0.86
251	848.8	3	1.0	Back	29.5	28.3	0.02	0.50	0.66
128	824.2	4	1.0	Back	28.5	26.5	0.02	0.60	0.95
128	824.2	3	1.0	Back (2nd)	29.5	28.5	0.02	0.73	0.92
				Во	ody-Worn Configu	uration			
190	836.6	1	1.5	Back	33.6	32.8	0.03	0.39	0.47
128	824.2	2	1.5	Back	30.7	29.7	0.00	0.46	0.58
128	824.2	3	1.5	Back	29.5	28.5	0.04	0.52	0.65
190	836.6	3	1.5	Back	29.5	28.3	-0.01	0.43	0.57
251	848.8	3	1.5	Back	29.5	28.3	-0.04	0.40	0.53
128	824.2	4	1.5	Back	28.5	26.5	-0.01	0.42	0.67
190	836.6	3	1.5	Front					0.00
			Holster						0.00

Table 11.2-4b SAR results for GSM/EDGE/GPRS 850 body-worn and Hotspot configurations on Rev2

		SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 96(103)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

Note: Antenna tuning and conducted power changed on Rev 2 therefore spot check measurements were performed on the highest conducted power channel for the worst case position. Please refer to the hardware declaration HWD CER-59665-001 - Rev2-x05-04.

_	М	easured/E	xtrapolated SA	R Values - Hots	spot/Body-Worr	- WCDMA	FDD V 850 MHz	2					
	Freq.	spacing	Side Facing	Cond. Output	t Power (dBm)	Power	1g SAR	(W/Kg)					
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported					
	Hotspot Configuration												
4132 826.4 1.0 Back 24.8 24.34 0.00 0.70													
4182	836.4	1.0	Back	24.8	24.36	-0.01	0.67	0.74					
4233	846.6	1.0	Back	24.8	24.31	-0.01	0.62	0.69					
4182	836.4	1.0	Front	24.8	24.36	0.00	0.57	0.63					
4182	836.4	1.0	Left	24.8	24.36	0.01	0.28	0.31					
4182	836.4	1.0	Right	24.8	24.36	0.00	0.23	0.25					
4182	836.4	1.0	Bottom	24.8	24.36	0.02	0.40	0.44					
		1.0	+HS					0.00					
				Body-Worn (Configuration								
4132	826.4	1.5	Back	24.8	24.34	-0.02	0.52	0.58					
4182	836.4	1.5	Back	24.8	24.36	-0.07	0.51	0.57					
4233	846.6	1.5	Back	24.8	24.31	0.01	0.47	0.52					
4182	836.4	1.5	Front	24.8	24.36	-0.01	0.47	0.51					
4182	836.4	Holster						0.00					

Table 11.2-5 SAR results for WCDMA FDD V body-worn and Hotspot configurations

	Mea	asured/Ex	trapolat	ed SA	R Value	es - Hotspot/E	Body-Worn - I	LTE Band 4 17	00 MHz	(BW 20MHz)	
	F	Spacing			RB	014 - 61	Cond. Outpu	t Power (dBm)	Power	1g SAR	(W/Kg)
Channel	Freq. (MHz)	(cm)/ Holster	Mod.	RB#	Offset	Side facing phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
						Hotspot Co	nfiguration				
20050	1720.0	1.0	QPSK	1	50	Back	23.9	23.48	-0.02	0.70	0.77
20175	1732.5	1.0	QPSK	1	0	Back	23.9	23.59	0.06	0.79	0.84
20300	1745.0	1.0	QPSK	1	0	Back	23.9	23.47	-0.01	0.69	0.76
20175	1732.5	1.0	QPSK	50	0	Back	22.9	22.48	-0.13	0.59	0.65
		1.0	QPSK	100	0	Back					0.00
20175	1732.5	1.0	QPSK		0	Front	23.9	23.59	0.08	0.22	0.24
20175	1732.5	1.0	QPSK		0	Left	23.9	23.59	0.00	0.07	0.08
20175	1732.5	1.0	QPSK		0	Right	23.9	23.59	-0.06	0.10	0.11
20175	1732.5	1.0	QPSK		0	Bottom	23.9	23.59	0.01	0.31	0.33
		1.0	QPSK			+HS					0.00
						Body-Worn C	Configuration				
20050	1720.0	1.5	QPSK	1	50	Back	23.9	23.48	-0.02	0.37	0.41
20175	1732.5	1.5	QPSK	1	0	Back	23.9	23.59	-0.12	0.42	0.45
20300	1745.0	1.5	QPSK	1	0	Back	23.9	23.47	-0.06	0.37	0.41
20175	1732.5	1.5	QPSK	50	0	Back	22.9	22.48	-0.05	0.31	0.34
•		1.5	QPSK	100	0	Back					0.00
20175	1732.5	1.5	QPSK		0	Front	23.9	23.59	-0.04	0.16	0.17
		Holster	QPSK								0.00

Table 11.2-6 SAR results for LTE Band 4 (20 MHz BW) body-worn and Hotspot configurations

	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 97 (10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW		

	M	easured/E	xtrapolated SAR \	/alues - Hotspo	t/Body-Worn -	WCDMA F	DD IV 1700 MHz	<u> </u>	
	Freq.	spacing	Side Facing	Cond. Output	Power (dBm)	Power	1g SAR	AR (W/Kg)	
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported	
				Hotspot Con	figuration				
1312	1712.4	1.0	Back	24.6	24.02	-0.02	1.08	1.23	
1413	1732.6	1.0	Back	24.6	24.26	0.01	1.11	1.20	
1513	1752.6	1.0	Back	24.6	24.25	-0.01	1.02	1.11	
1413	1732.6	1.0	Front	24.6	24.26	0.08	0.41	0.45	
1413	1732.6	1.0	Left	24.6	24.26	-0.02	0.08	0.09	
1413	1732.6	1.0	Right	24.6	24.26	-0.04	0.12	0.13	
1413	1732.6	1.0	Bottom	24.6	24.26	-0.04	0.39	0.42	
1413	1732.6	1.0	2nd Scan Back	24.6	24.26	0.03	1.02	1.10	
	-			Body-Worn Co	nfiguration	-			
1312	1712.4	1.5	Back	24.6	24.02	0.06	0.54	0.62	
1413	1732.6	1.5	Back	24.6	24.26	-0.09	0.57	0.62	
1513	1752.6	1.5	Back	24.6	24.25	0.05	0.46	0.50	
1413	1732.6	1.5	Front	24.6	24.26	0.01	0.24	0.26	

Table 11.2-7 SAR results for WCDMA FDD IV body-worn and Hotspot configurations

	N	/leasured	/Extrapo	lated	SAR Va	lues - Hotspot/Bo	dy-Worn - LT	E Band 2 1900	MHz (B	W 20MHz)	
	_	Spacing				0:1.6.	Cond. Outpu	ıt Power (dBm)	Power	1g SAR	(W/Kg)
Channel	Freq. (MHz)	(cm)/ Holster	Mod.	RB#	RB Offset	Side facing phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
						Hotspot Conf	iguration				
18700	1860.0	1.0	QPSK	1	50	Back	23.0	22.79	0.03	1.03	1.08
18900	1880.0	1.0	QPSK	1	50	Back	23.0	22.90	-0.01	1.02	1.04
19100	1900.0	1.0	QPSK	1	0	Back	23.0	22.80	0.07	1.16	1.21
18700	1860.0	1.0	QPSK	50	0	Back	23.0	22.53	0.12	1.02	1.14
18900	1880.0	1.0	QPSK	50	0	Back	23.0	22.71	-0.06	1.03	1.10
19100	1900.0	1.0	QPSK	50	0	Back	23.0	22.52	0.03	1.00	1.12
18900	1880.0	1.0	QPSK	100	0	Back	23.0	22.62	-0.18	1.02	1.11
19100	1900.0	1.0	QPSK	100	0	Back	23.0	22.65	0.10	1.04	1.13
19100	1900.0	1.0	QPSK	100	0	Back	23.0	22.43	-0.15	0.98	1.12
18900	1880.0	1.0	QPSK	1	50	Front	23.0	22.90	-0.05	0.24	0.25
18900	1880.0	1.0	QPSK	1	50	Left	23.0	22.90	-0.03	0.04	0.04
18900	1880.0	1.0	QPSK	1	50	Right	23.0	22.90	-0.04	0.12	0.12
18900	1880.0	1.0	QPSK	1	50	Bottom	23.0	22.90	-0.14	0.40	0.41
19100	1900.0	1.0	QPSK	1	0	Back+HS	23.0	22.90	0.08	0.79	0.81
19100	1900.0	1.0	QPSK	1	0	Back 2nd Scan	23.0	22.90	-0.16	1.04	1.06
•	•					Body-Worn Co	nfiguration				
18700	1860.0	1.5	QPSK	1	50	Back	23.9	23.60	0.03	0.57	0.61
18900	1880.0	1.5	QPSK	1	50	Back	23.9	23.65	-0.01	0.51	0.53
19100	1900.0	1.5	QPSK	1	0	Back	23.9	23.55	-0.02	0.44	0.48
18900	1880.0	1.5	QPSK	1	50	Front	23.9	23.65	-0.04	0.13	0.14
		Holster	QPSK								0.00

Table 11.2-8 SAR results for LTE Band 2 (20 MHz BW) body-worn and Hotspot configurations

*** BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 98(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	,	

	l	Measur	red/Extrap	olated SAR Val	ues - Hotspot/B	ody-Worn - GSI	M/EDGE/GF	PRS 1900 MHz	
	Freq.	Time	spacing	Side Facing	Cond. Output	Power (dBm)	Power	1g SAR	(W/Kg)
Ch.	(MHz)	Slots	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
					Hotspot Config	uration			
661	1880.0	1	1.0	Back	31.0	29.8	0.13	0.51	0.67
512	1850.2	2	1.0	Back	29.0	28.4	-0.03	0.64	0.73
661	1880.0	2	1.0	Back	29.0	28.5	-0.10	0.69	0.77
810	1909.8	2	1.0	Back	29.0	28.4	0.00	0.71	0.82
661	1880.0	3	1.0	Back	26.5	25.5	0.03	0.51	0.64
661	1880.0	4	1.0	Back	26.0	25.0	0.05	0.57	0.72
661	1880.0	2	1.0	Front	28.5	28.4	0.07	0.16	0.16
661	1880.0	2	1.0	Left	28.5	28.4	0.01	0.04	0.04
661	1880.0	2	1.0	Right	28.5	28.4	0.08	0.14	0.14
661	1880.0	2	1.0	Bottom	28.5	28.4	0.00	0.35	0.36
			1.0	+HS					0.00
810	1909.8	2	1.0	Back (2nd)	28.5	28.4	-0.19	0.68	0.70
				В	ody-Worn Conf	iguration			
661	1880.0	1	1.5	Back	31.0	29.8	-0.07	0.24	0.32
512	1850.2	2	1.5	Back	29.0	28.4	-0.03	0.31	0.36
661	1880.0	2	1.5	Back	29.0	28.5	-0.16	0.34	0.38
810	1909.8	2	1.5	Back	29.0	28.4	0.19	0.39	0.45
661	1880.0	3	1.5	Back	26.5	25.5	-0.07	0.26	0.33
661	1880.0	4	1.5	Back	26.0	25.0	0.14	0.29	0.37
661	1880.0	2	1.5	Front	29.0	28.4	-0.10	0.12	0.14
			Holster						0.00

Table 11.2-9 SAR results for GSM/EDGE/GPRS 1900 body-worn and Hotspot configurations

≅ BlackBe	erry	SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 99(10	03)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

	ı	Measured/	Extrapolated SAR \	/alues - Hotspo	t/Body-Worn - V	VCDMA FD	D II 1900 MHz	
	Freq.	spacing	Side Facing	Cond. Output	t Power (dBm)	Power	1g SAR	(W/Kg)
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
				Hotspot Conf	iguration			
9262	1852.4	1.0	Back	23.60	23.37	0.20	1.33	1.40
9400	1880.0	1.0	Back	23.60	23.37	0.01	1.25	1.32
9538	1907.6	1.0	Back	23.60	23.03	0.03	1.05	1.20
9400	1880.0	1.0	Front	23.60	23.37	-0.01	0.27	0.28
9400	1880.0	1.0	Left	23.60	23.37	-0.03	0.06	0.06
9400	1880.0	1.0	Right	23.60	23.37	-0.01	0.15	0.15
9400	1880.0	1.0	Bottom	23.60	23.37	0.09	0.44	0.47
9262	1852.4	1.0	Back+HS	23.60	23.37	0.01	1.22	1.29
9262	1852.4	1.0	Back HSUPA	22.60	22.37	0.01	1.08	1.14
9262	1852.4	1.0	Back HSDPA	22.60	22.40	0.11	1.06	1.11
9262	1852.4	1.0	Back 2nd	23.60	23.37	-0.01	1.20	1.27
				Body-Worn Cor	nfiguration			
9262	1852.4	1.5	Back	24.60	24.24	-0.03	0.40	0.44
9400	1880.0	1.5	Back	24.60	24.28	-0.03	0.65	0.70
9538	1907.6	1.5	Back	24.60	24.06	-0.03	0.37	0.42
9400	1880.0	1.5	Front	24.60	24.28	-0.03	0.16	0.18
9400	1880.0	Holster						0.00

Table 11.2-10 SAR results for WCDMA FDD II body-worn and Hotspot configurations

Mea	asured/E	xtrapolated	d SAR Values -	Hotspot/Body-	Worn - 802.11b/g	2450 MHz		
	Freq.	spacing	Side Facing	Cond. Outp	ut Power (dBm)	Power	1g SAR	(W/Kg)
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
					Hotspot Configu	uration		
1	2412	1.0	Back					0.00
6	2437	1.0	Back	12.00	10.20	-0.07	0.28	0.42
11	2462	1.0	Back					0.00
6	2437	1.0	Front	12.00	10.20	0.18	0.06	0.09
6	2437	1.0	Left	12.00	10.20	-0.03	0.08	0.12
6	2437	1.0	Right	12.00	10.20			0.00
6	2437	1.0	Тор	12.00	10.20	-0.02	0.12	0.18
		1.0	Bottom					0.00
		1.0	+HS					0.00
				I	Body-Worn Confi	guration		
6	2437	1.5	Back	20.00	18.00	0.08	0.11	0.17
6	2437	1.5	Back (g)	20.50	18.50	-0.04	0.15	0.24
6	2437	1.5	Front	20.00	18.00	-0.12	0.02	0.03
		Holster	Back					0.00

Table 11.2-11 SAR results for Wi-Fi/WLAN/802.11b body-worn and Hotspot configurations

Note 1: SAR measurements were performed on the highest output power channel

Note 2: Spot check measurements were performed on 802.11g as its conducted power is ½ dB higher than 802.11b

		SAR Compliance T Smartphone Model	est Report for the BlackBer RGY181LW	ry®	Page 100(1	103)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	7	

Me	easured/	Extrapolate	ed SAR Values	- Hotspot/Body	-Worn - Bluetooth	2450 MHz		
	Freq.	spacing	Side Facing	Cond. Outpo	ut Power (dBm)	Power Drift	1g SAR	(W/Kg)
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	(dB)	Extrapolated	Reported
					Hotspot Config	juration		
0	2402	1.0	Back					0.00
39	2441	1.0	Back	10.75	10.4	0.14	0.04	0.04
78	2480	1.0	Back					0.00
39	2441	1.0	Front	10.75	10.4	-0.08	0.01	0.01
		1.0	Left					0.00
		1.0	Right					0.00
39	2441	1.0	Тор	10.75	10.4	0.02	0.02	0.02
		1.0	Bottom					0.00
		1.0	+HS					0.00
					Body-Worn Conf	figuration	•	•
39	2441	1.5	Back	10.75	10.4	0.01	0.01	0.01
39	2441	1.5	Front	10.75	10.4	-0.11	0.00	0.00
		Holster						0.00

Table 11.2-12 SAR results for Bluetooth body-worn and Hotspot configurations

Note: SAR measurements were performed on the highest output power channel

N	/leasure	ed/Extrapo	olated SAR Va	lues - Hotspo	MHz				
	Freq.	spacing	Side Facing	e Facing Cond. Output Power (dBm) Power 1g SAR (W		(W/Kg)	10g SAR (W/Kg)		
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported	Extrapolated
36*	5180	1.0	Back	12.0	10.5	-0.09	0.11	0.16	0.03
40	5200	1.0	Back					0.00	
44	5220	1.0	Back					0.00	
48*	5240	1.0	Back					0.00	
149*	5745	1.0	Back	12.0	11.4	-0.09	0.32	0.37	0.11
153	5765	1.0	Back					0.00	
157*	5785	1.0	Back					0.00	
161	5805	1.0	Back					0.00	
165*	5825	1.0	Back					0.00	
149*	5745	1.0	Front	12.0	11.4	0.18	0.01	0.01	0.00
149*	5745	1.0	Left	12.0	11.4	-0.04	0.09	0.10	0.04
149*	5745	1.0	Right					0.00	
149*	5745	1.0	Тор	12.0	11.4	-0.01	0.11	0.13	0.04

 Table 11.2-13a
 SAR results for 802.11a
 Hotspot configuration

Note 1: "*" marks default test channels of each sub band which need to be tested if SAR is more than half of the limit.

Note 2: Spot check measurements were performed on 802.11ac for each bandwidth on the worst case SAR from 802.11a.

Note 3: Tests were conducted on Rev 1. Spot check measurements were not performed on Rev 2 as the only change was a decrease in conducted power.

Me	easured	/Extrapola	ated SAR Valu	es - Body-Wo	orn - 802.11a 500	0 MHz		
	Freq.	spacing	Side Facing	Cond. Outpu	ut Power (dBm)	Power	1g SAR	(W/Kg)
Ch.	(MHz)	(cm)/ holster	Phantom	Declared	Measured	Drift (dB)	Extrapolated	Reported
36*	5180	1.5	Back	20.0	18.2	-0.32	0.54	0.82
48*	5240	1.5	Back	20.0	18.0	-0.45	0.68	1.08
52*	5260	1.5	Back	20.0	18.2	0.09	0.85	1.29
64*	5320	1.5	Back	20.0	18.0	0.13	0.87	1.38
104*	5520	1.5	Back	20.0	19.1	-0.44	0.92	1.13
116*	5580	1.5	Back	20.0	19.0	0.09	0.98	1.23
124*	5620	1.5	Back	20.0	19.0	-0.02	1.11	1.40
136*	5680	1.5	Back	20.0	18.8	0.46	1.10	1.45
149*	5745	1.5	Back	20.0	19.1	0.22	1.18	1.45
157*	5785	1.5	Back	20.0	18.9	0.27	1.06	1.37
165*	5825	1.5	Back	20.0	18.5	0.06	1.02	1.44
149*	5745	1.5	Back+HS	20.0	19.1	-0.09	0.57	0.70
149*	5745	1.5	Back(2nd)	20.0	19.1	-0.09	1.18	1.45
149*	5745	1.5	Back(ac,20)	20.0	19.0	-0.41	1.01	1.27
149*	5745	1.5	Back(ac,40)	19.0	17.7	0.15	0.59	0.80
149*	5745	1.5	Back(ac,80)	19.0	17.3	0.23	0.41	0.61
149*	5745	1.5	Front	20.0	19.1	0.19	0.05	0.06
0	0.10	Holster	Back	20.0		3.10	0.00	0.00

Table 11.2-13b SAR results for 802.11a body-worn configuration

Note 1: "*" marks default test channels of each sub band which need to be tested if SAR is more than half of the limit.

Note 2: Spot check measurements were performed on 802.11ac for each bandwidth on the worst case SAR from 802.11a.

Note 3: Tests were conducted on Rev 1. Spot check measurements were not performed on Rev 2 as the only change was a decrease in conducted power.

≅ BlackBe	erry	SAR Compliance To Smartphone Model	est Report for the BlackBer RGY181LW	rry®	Page 102(1	103)
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	April 15 -	- June 13, 2014	RTS-6057-1405-01 Rev 2	L6ARGY180LW	•	

12.0 REFERENCES

- [1] IEEE 1528-2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- [2] EN 50360: 2001, Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)
- [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (2009), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz).
- [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
- [5] IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave.
- [6] IEEE C95.1-1992, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
- [7] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.
- [8] DASY 5 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL, Schmid & Partner Engineering AG.
- [9] Health Canada, Safety Code 6, 2009: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency range from 3 kHz to 300 GHz.
- [10] RSS-102, issue 4-2010: Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields.
- [11] IEC 62209-1, First Edition-2005: Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures –Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz).
- [12] IEC 62209-2, Edition 1.0-2010: Human exposure to radio frequency fields from hand-held and body-mount wireless communication devices Human Models, instrumentation, and procedures part 2 procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- [13] IEC/EN 62311-2008: Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz 300 GHz).
- [14] 3GPP TS 36.521-1 V10.0.0 (2011-12): Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing
- [15] FCC OET SAR measurement 100 MHz to 6 GHz, KDB 865664 D01 v01, October 24, 2012.
- [16] FCC OET SAR Measurement Procedures for 802.11 a/b/g Transmitters, KDB 248227 D01 v01r02, May, 2007.

**** BlackBerry		SAR Compliance Test Report for the BlackBerry® Smartphone Model RGY181LW			Page 103(103)	
Author Data	Dates of Test		Test Report No	FCC ID:		
Andrew Becker	Becker April 15 – June 13, 2014		RTS-6057-1405-01 Rev 2	L6ARGY180LW	,	

[17] FCC OET SAR Evaluation Considerations for Handsets with Multiple Transmitters & Antennas, KDB 648474 D04 v01, October 24, 2012.

- [18] FCC OET SAR Test Reduction Procedure for GSM/GPRS/EDGE, KDB 941225 D03 vo1, December, 2008.
- [19] FCC OET SAR Test Procedure for Evaluating SAR for GSM/(E)GPRS Dual Transfer Mode, KDB 941225 D04 v01, January 27, 2010.
- [20] FCC OET RF Exposure Procedures for Mobile and Portable Devices, and Equipment Authorization Policies, KDB 447498 D01 v05, October 24, 2012.
- [21] FCC OET SAR Measurements Procedures for 3G Devices, KDB 941225 D01 v02, October, 2007.
- [22] FCC OET SAR Evaluation Procedure for Portable Devices with Wireless Router capability, KDB 941225 D06 Hot Spot SAR v01, April 04, 2011.
- [23] FCC OET SAR Evaluation Considerations for LTE Devices, KDB 941225 D05 v02, October 24, 2012.
- [24] FCC OET RF Exposure Compliance Reporting and Documentation Considerations, KDB 865664 D02 v01, October 24, 2012.
- [25] FCC 47 CRF Part 2.1093, Radiofrequency radiation exposure evaluation: portable devices. June 18, 2014.