ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

Test Report No.	: OT-204-RED-133
AGR No.	: A203A-350
Applicant	: LG Electronics Inc.
Address	: 222 LG-ro Jinwi-myeon, Pyeongtaek-si,Gyeonggi-do, Korea
Manufacturer	: LG Electronics Inc.
Address	: 222 LG-ro Jinwi-myeon, Pyeongtaek-si,Gyeonggi-do, Korea
Type of Equipment	: Bluetooth Earbud
Model Name	: HBS-FN6
Multiple Model Name	: HBS-FN5W, HBS-FN5U, HBS-FN4
Serial number	: N/A
Total page of Report	: 18 pages (including this page)
Date of Incoming	: April 06, 2020
Date of Issuing	: April 29, 2020

SUMMARY

The equipment complies with the requirement of FCC CFR 47 PART 15 SUBPART B, Section 15.101

and IC ICES-003 Issue 6.

This test report contains only the results of a single test of the sample supplied for the examination.

1

Reviewed by:

Seung-Hyun, Park / Manager EMC Testing Div. ONETECH Corp.

The Approved by:

Eung-Chan, Kim / General Manager EMC Testing Div. ONETECH Corp..

EMC-005 (Rev.3)

CONTENTS

Page

1. VERIFICATION OF COMPLIANCE	5
2. TEST FACILITY	6
3. PRODUCT INFORMATION	7
3.1 DESCRIPTION OF EUT	
3.2 MODEL DIFFERENCES	
3.3 SUPPORT EQUIPMENT	
3.4 System Configuration	
3.5 CABLE DESCRIPTION FOR THE EUT	
3.6 Equipment Modifications	
4. DESCRIPTION OF TESTS	9
4.1 Test Methodology	9
4.2 TEST CONDITION	
4.3 CONDUCTED EMISSION	
4.4 RADIATED EMISSION	
5. FINAL RESULT OF MEASUREMENT	
5.1 Conducted Emission Test	11
5.1.1 Operating Environment	
5.1.2 Test Setup	
5.1.3 Measurement uncertainty	
5.1.4 Limit	
5.1.5 Test Equipment used	
5.1.6 Test Data	
5.2 RADIATED EMISSION TEST	14
5.2.1 Operating Environment	
5.2.2 Test Setup	
5.2.3 Measurement uncertainty	
5.2.4 Limit	
5.2.5 Test Equipment used	
5.2.6 Test Data	
6. SAMPLE CALCULATIONS	

- APPENDIX A TEST SET-UP PHOTOGRAPHS
- APPENDIX B EXTERNAL PHOTOGRAPHS
- APPENDIX C INTERNAL PHOTOGRAPHS
- APPENDIX D LABELLING REQUIREMENTS / INFORMATION TO THE USER IN USER'S MANUAL

Revision History

Rev. No.	Issued Report No.	Issued Date	Revisions	Section Affected
0	OT-204-RED-133	April 29, 2020	Initial Issue	All

It should not be reproduced except in full, without the written approval of ONETECH Corp.

1. VERIFICATION OF COMPLIANCE

Applicant	: LG Electronics Inc.
Address	: 222 LG-ro Jinwi-myeon, Pyeongtaek-si,Gyeonggi-do, Korea
Manufacturer	: LG Electronics Inc.
Address	: 222 LG-ro Jinwi-myeon, Pyeongtaek-si,Gyeonggi-do, Korea
Factory	: BLUECOM
Address	: C5-4, Area CN1, Trang Due Industrial Park, An Duong District, Haiphong City, Vietnam
MODEL NAME	: HBS-FN6
SERIAL NUMBER	: N/A
BRAND/TRADE NAME	: LG Electronics Inc.
DATE	: April 29, 2020

EQUIPMENT CLASS	Other Class B digital devices & peripherals
E.U.T. DESCRIPTION	Bluetooth Earbud
MEASUREMENT PROCEDURES	Original Grant
TYPE OF EQUIPMENT TESTED	ANSI C63.4: 2014 and ICES-003 ISSUE 6
KIND OF EQUIPMENT AUTHORIZATION REQUESTED	Supplier's Declaration of Conformity (SDoC)
STANDARDS	FCC PART 15 (Class B) ICES-003 ISSUE 6 Class B Apparatus
MODIFICATIONS ON THE EQUIPMENT TO ACHIEVE COMPLIANCE	None
FINAL TEST WAS CONDUCTED ON	10 m Semi anechoic chamber

ONETECH Corp. tested the above equipment in accordance with the requirements set forth in the above standard. The test results show that equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

2. TEST FACILITY

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025 by Radio Research Agency as accreditation body. The Onetech Corp. is accredited for measuring devices subject to Declaration of Conformity (DOC) under Parts 15 & 18 as a Conformity Assessment Body (CAB) with designation number KR0013.

These measurement tests were conducted at Onetech Corp.

The 10 m semi anechoic chamber and conducted measurement facilities are located at

- 1) 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea.
- 2) 12-5, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea.

Onetech Corp.

43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggido, 12735, Korea Tel: +82-31-799-9500 Fax: +82-31-799-9599

3. PRODUCT INFORMATION

3.1 Description of EUT

The LG Electronics Inc., Model HBS-FN6 (referred to as the EUT in this report) is a Bluetooth Earbud. Product specification described herein was obtained from product data sheet or user's manual.

CHASSIS TYPE	Plastic
LIST OF EACH OSC. or CRY. FREQ. (FREQ. >= 1 MHz)	20 MHz
RF FREQ.	2 402 MHz ~ 2 480 MHz
ELECTRICAL RATING	DC 5 V (Adapter) DC 3.7 V (Built-in battery)
NUMBER OF PCB LAYERS	-
EXTERNAL CONNECTOR	USB Type C (Charge port)

3.2 Model Differences

-. The following lists consist of the added model and their differences.

Model Name					
		Wireless Charging	UV-C LED	C-type Charging	Tested
Basic	HBS-FN6	0	0	О	Ø
	HBS-FN5W	0	Х	О	
Multiple	HBS-FN5U	Х	0	0	
	HBS-FN4	Х	Х	О	

Note: 1. Applicant consigns only basic model to test, therefore this test report just guarantees the units which have been tested.

2. The Applicant/manufacturer is responsible for the compliance of all variants.

3.3 Support Equipment

The model numbers for all the equipments that were used in the tested system is:

Description	Model	Manufacturer	Connected to
Bluetooth Earbud (EUT)	HBS-FN6	LG Electronics Inc.	Adapter
Adapter	MCS-V01WR	SUNLIN	EUT, Wireless Charger
Wireless Charger	LGT-PWC02	Shenzhen HDC Elctronic Co., Ltd.	Adapter
Smartphone	FS8032	Focal Tech Co., Ltd.	-

3.4 System Configuration

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Bluetooth Earbud	LG Electronics Inc.	HBS-FN6	ZNFHBSFN6

3.5 Cable Description for the EUT

Cable	Shielded	Ferrite Bead	Metal Shell	Length (m)	Connected to
USB Type C	Y	Ν	Ν	1.0	Adapter

3.6 Equipment Modifications

-. None

4. DESCRIPTION OF TESTS

4.1 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4: 2014. Radiated testing was performed at a distance of 3m and 10 m from EUT to the antenna.

4.2 Test Condition

The test conditions of the noted test mode(s) in this test report are;

1) Test Voltage / Frequency

-. AC 120 V / 60 Hz

2) Test condition

- -. The USB Type C port on the Wireless Charger was connected to the adapter and then the EUT was operated while charging.
- -. The USB Type C port on the EUT was connected to the adapter and then the EUT was operated while charging.

-. Test Mode(s)

Operating Mode 1	Charging
Operating Mode 2	Wireless Charging

4.3 Conducted Emission

The EUT was placed on a non-conductive 1.0 m \times 1.5 m table, which is 0.8 m in height above the reference ground plane and 0.4 m away from the vertical conducting plane (over 2 m \times 2 m) that is bonded to the reference ground plane. The power of EUT is fed through a 50 Ω / 50 μ H + 5 Ω LISN and all support equipment is powered from another LISN. Powers to the LISN are filtered by high-current high insertion loss power line filter.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

The RF output of the LISN was connected to the EMI test receiver.

Exploratory measurements were conducted to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Exploratory measurements were scanned using Peak mode of EMI Test receiver from 150 kHz to 30 MHz with 20 ms sweep time. The final measurements were measured with Quasi-Peak and CISPR Average mode.

The bandwidth of EMI Test Receiver was set to 9 kHz. Interface cables were connected to the available interface ports of the test unit. Excess cable lengths were bundled at center with 30 cm \sim 40 cm.

4.4 Radiated Emission

Exploratory Radiated measurements were conducted at the 3 m semi anechoic chamber in order to identify the highest emission by operating the EUT in a range of typical modes of operation, cable positions, system configuration and arrangement.

Based on exploratory measurements, the final measurements were conducted at the worst test conditions.

Final measurements were made at 10 m semi anechoic chamber that complies with CISPR 16/ANSI C63.4/ ICES-003.

Exploratory measurements were scanned using Peak mode of EMI Test receiver and final measurements were measured with Quasi-Peak mode (Below 1 GHz) and Peak & CISPR Average mode (Above 1 GHz).

The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

5. FINAL RESULT OF MEASUREMENT

Exploratory measurement was done in normal operation mode. And the final measurement was selected for the maximized emission level.

5.1 Conducted Emission Test

5.1.1 Operating Environment

Ambient temperature	: 22.8 °C
Relative humidity	: 44.9 % R.H.

5.1.2 Test Setup

The EUT and other support equipment were placed on a non-conductive table, 0.8 m height above the reference ground plane. The power of EUT was fed through a 50 Ω / 50 μ H + 5 Ω LISN. The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

5.1.3 Measurement uncertainty

Conducted emission, quasi-peak detection	$:\pm 2.28 \ dB$
Conducted emission, CISPR-average detection	$:\pm 2.28 \; dB$

Measurement uncertainty is calculated in accordance with CISPR 16-4-2. The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

5.1.4 Limit

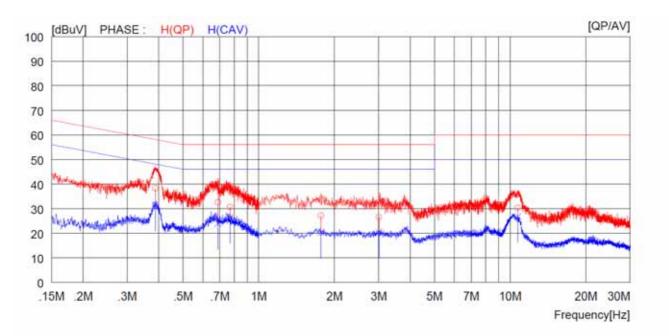
Frequency of Emission (MHz)	Conducted Limit (dBµV)			
	Quasi-peak	CISPR Average		
$0.15 \sim 0.5$	66 to 56*	56 to 46*		
0.5 ~ 5	56	46		
5~30	60	50		

* Decreases with the logarithm of the frequency

5.1.5 Test Equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ -	ESCI	Rohde & Schwarz	Test Receiver	101420	Mar. 23, 2020 (1Y)
■ -	NSLK 8126	Schwarzbeck	LISN	8126-480	Oct. 21, 2019 (1Y)
□ -	3825/2	EMCO	AMN	9109-1867	Mar. 23, 2020 (1Y)
■ -	11947A	Hewlett Packard	Transient Limiter	3107A02762	Mar. 23, 2020 (1Y)

All test equipment used is calibrated on a regular basis.



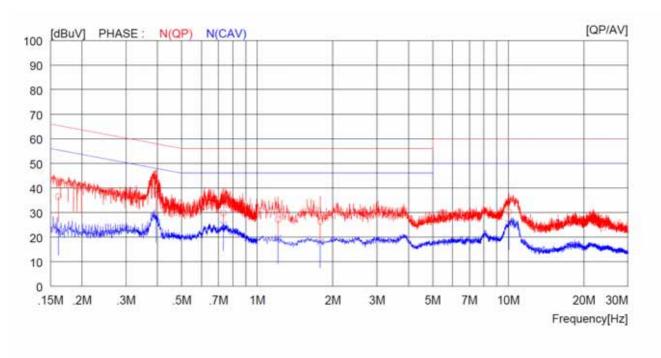
5.1.6 Test Data

. Test Result : Pass

Tested by: Jae-Yeon, Kim / Engineer

Operating Mode 1 (Charging)						
Frequency range	: 0.15 MHz ~ 30 MHz	Test Date	: April 28, 2020			
Resolution bandwidth	: 9 kHz	Tested Line	: HOT LINE			

NC) FREQ	READ QP	ING AV	C.FACTOR	RES QP	ULT AV	LIN QP	IIT AV	MAR QP	GIN AV	PHASE
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	
1	0.38800	28.2		10.1	38.3		58.1		19.8		H(QP)
2	0.68800	22.4		10.1	32.5		56.0		23.5		H(QP)
3	0.76900	20.5		10.2	30.7		56.0		25.3		H(QP)
4	1.76800	16.9		10.2	27.1		56.0		28.9		H(QP)
5	3.00400	16.3		10.2	26.5		56.0		29.5		H(QP)
6	10.71000	20.0		10.3	30.3		60.0		29.7		H(QP)
7	0.38800		21.3	10.1		31.4		48.1		16.7	H(CAV)
8	0.68800		13.8	10.1		23.9		46.0		22.1	H(CAV)
9	0.76900		16.2	10.2		26.4		46.0	****	19.6	H(CAV)
10	1.76800		10.2	10.2		20.4		46.0		25.6	H(CAV)
11	3.00400		10.1	10.2		20.3		46.0		25.7	H(CAV)
12	10.71000		16.4	10.3		26.7		50.0		23.3	H(CAV)


Remark: Margin (dB) = Limit – Level (Result)

The result level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

Operating Mode 1 (Charging)						
Frequency range	: 0.15 MHz ~ 30 MHz	Test Date	: April 28, 2020			
Resolution bandwidth	: 9 kHz	Tested Line	: NEUTRAL LINE			

NO	FREQ	READ OP	ING AV	C.FACTOR	RES OP	ULT AV	QP QP	IIT AV	MAR OP	GIN AV	PHASE
	[MHz]		[dBuV]	[dB]		[dBuV]		[dBuV]		[dBuV]	
1	0.16100	26.4		10.1	36.5		65.4		28.9		N(QP)
2	0.39500	28.5		10.1	38.6		58.0		19.4		N(QP)
3	0.73300	19.6		10.1	29.7		56.0		26.3		N(QP)
4	1.21200	16.8		10.2	27.0		56.0		29.0		N(QP)
5	1.78400	16.1	$\mathcal{T} = \mathcal{T} = \mathcal{T}$	10.2	26.3		56.0		29.7		N(QP)
6	10.05000	19.9		10.3	30.2		60.0		29.8		N(QP)
7	0.16100		13.0	10.1		23.1		55.4		32.3	N(CAV)
8	0.39500		18.2	10.1		28.3		48.0		19.7	N(CAV)
9	0.73300		14.9	10.1		25.0		46.0		21.0	N(CAV)
10	1.21200		9.4	10.2		19.6		46.0	$(-,-,-) \in \mathbb{R}$	26.4	N(CAV)
11	1.78400		7.8	10.2		18.0		46.0		28.0	N(CAV)
12	10.05000		15.2	10.3		25.5		50.0		24.5	N(CAV)

Remark: Margin (dB) = Limit – Level (Result)

The result level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

5.2 Radiated Emission Test

5.2.1 Operating Environment	
Ambient temperature	: 23.

Ambient temperature	: 23.5 °C
Relative humidity	: 53.5 % R.H.

5.2.2 Test Setup

The radiated emissions measurements were on the 3 m, in 10 m semi anechoic chamber. The EUT and all local support equipments were placed on a non-conductive turntable approximately 0.8 m above the ground plane.

The frequency spectrum from 30 MHz to 40 000 MHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

5.2.3 Measurement uncertainty

Radiated emission electric field intensity, 30 MHz \sim 1 000 MHz $:\pm$ 4.36 dB

Radiated emission electric field intensity, 1 GHz ~ 6 GHz : ± 4.92 dB

Measurement uncertainty is calculated in accordance with CISPR 16-4-2. The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

5.2.4 Limit

Frequency of Emission (MHz)	Resolution bandwidth	Field strength @ 3 m (dBµV/m)		
		Quasi	-peak	
30 ~ 88		40.0		
88~216	120 kHz	43.5		
216~230	120 KHZ	46.0 46.0		
230 ~ 960				
960 ~ 1 000		54.0		
		Peak Limit	CISPR Average Limit	
> 1 000	1 MHz	74.0	54.0	

*Alternative to Limits for radiated disturbance of CISPR22 class B ITE at a measuring distance of 10 m

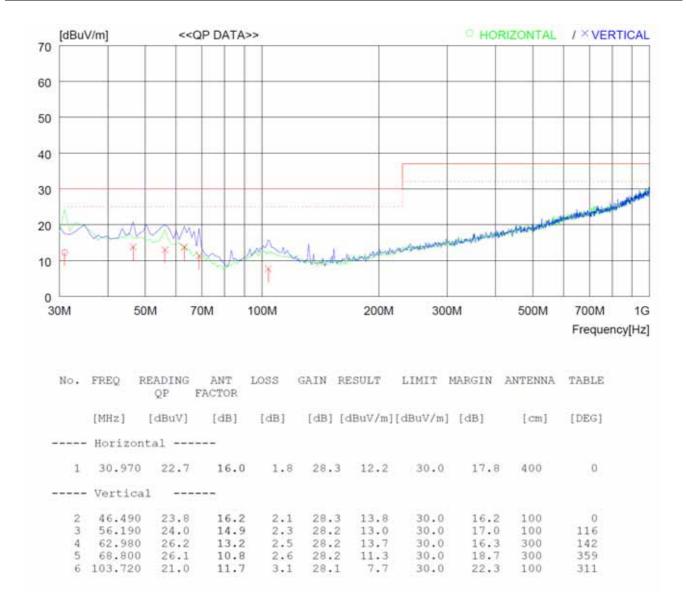
Frequency of Emission (MHz)	Resolution bandwidth	Field strength @ 10 m (dBµV/m)
$30 \sim 230$	120 kHz	Quasi-peak
30 ~ 230 230 ~ 1 000	120 KHZ	30.0 37.0

It should not be reproduced except in full, without the written approval of ONETECH Corp.

5.2.5 Test Equipment used

Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ - ESW 44	Rohde & Schwarz	Test Receiver	101851	Aug. 07, 2019 (1Y)
■ ESU	Rohde & Schwarz	Test Receiver	100261	Mar. 16, 2020 (1Y)
■ - VULB9163	Schwarzbeck	Trilog Broadband Antenna	9163-225	Sep. 17, 2018 (2Y)
■ - 3115	ETS-LINDGREN	Horn Antenna	34823	Aug. 26, 2019 (1Y)
■ - 8447D	Hewlett Packard	Amplifier	2944A07777	Mar. 16, 2020 (1Y)
■ - PAM-118A	Com-Power	Amplifier	18040081	Oct. 17, 2019 (1Y)
■ - CO3000	Innco Systems GmbH	Controller	N/A	N/A
■ - DT5000-3t	Innco Systems GmbH	Turn Table	N/A	N/A
■ - MA-4000XPET	Innco Systems GmbH	Antenna Master	N/A	N/A

All test equipment used is calibrated on a regular basis.

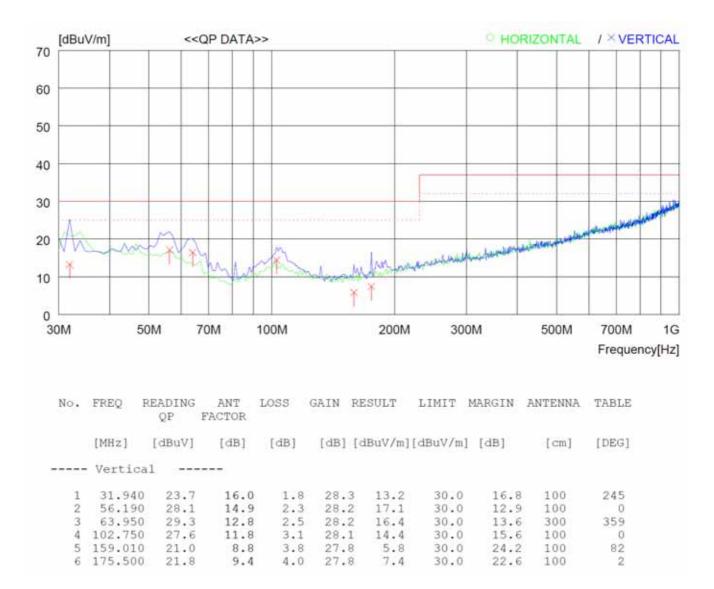


5.2.6 Test Data

. Test Result : Pass

Tested by: Jae-Yeon, Kim / Engineer

Operating Mode 1 (Charging)				
Frequency range	: 30 MHz ~ 1 000 MHz	Test Date	: April 28, 2020	
Resolution bandwidth	: 120 kHz	Measurement distance	: 10 m	
Detector Mode	: Quasi-Peak			



Remark: Margin (dB) = Limit - Result and Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain

Loss and Gain in above table means Cable Loss and Pre-amplifier gain.

Operating Mode 2 (Wireless Charging)				
Frequency range	: 30 MHz ~ 1 000 MHz	Test Date	: April 28, 2020	
Resolution bandwidth	: 120 kHz	Measurement distance	: 10 m	
Detector Mode	: Quasi-Peak			

Remark: Margin (dB) = Limit - Result and Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result and Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result and Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result and Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result and Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Limit - Result = Reading Quasi-Peak + Antenna Factor + Loss - Gain (dB) = Reading Quasi-Peak + Readi

Loss and Gain in above table means Cable Loss and Pre-amplifier gain.

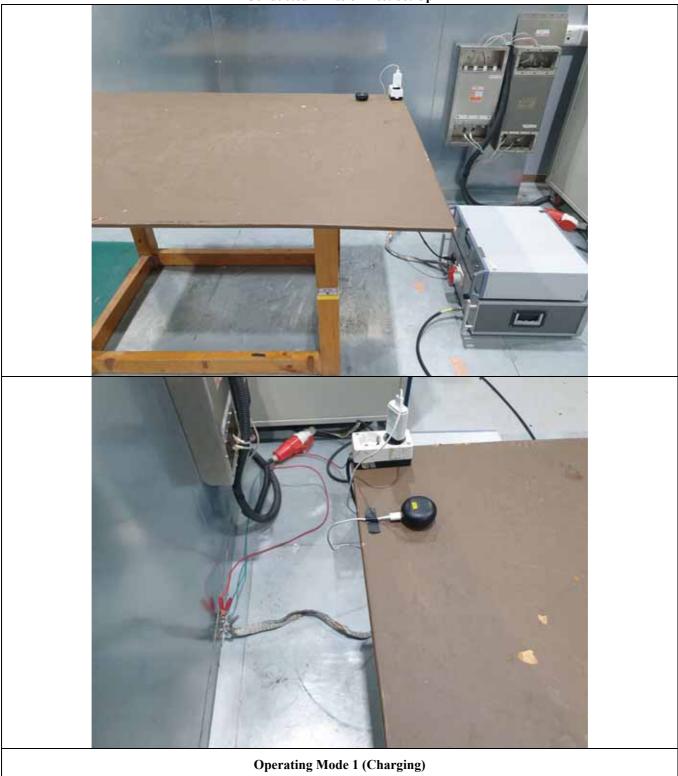
6. SAMPLE CALCULATIONS

 $dB\mu V = 20 Log_{10}(\mu V)$ Margin = Limit - Result

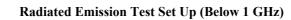
-. Example 1: 0.38800 MHz

Class B Limit	= 58.1 dBµV (Quasi-peak)		
Reading	$= 28.2 \text{ dB}\mu\text{V}$		
Correction Factor	= Cable Loss + Pulse Limiter		
	= 10.1 dB		
Total	$= 38.3 \text{ dB}\mu\text{V}$		
Margin	$= 58.1 \text{ dB}\mu\text{V} - 38.3 \text{ dB}\mu\text{V}$		
	= 19.8 dB		

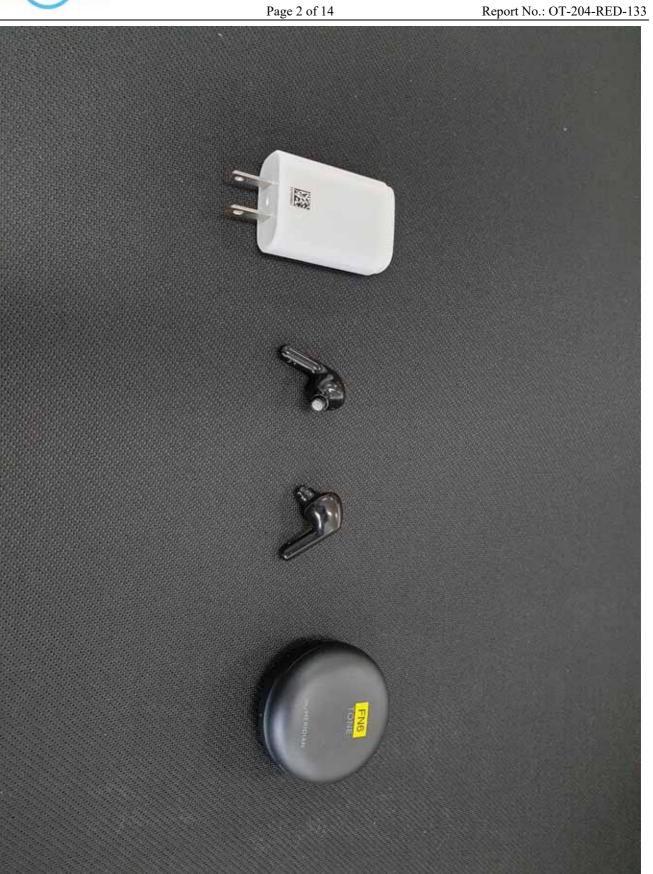
-. Example 2: 56.190 MHz


Class B Limit	= 30.0 dBµV/m (Quasi-peak)
Reading	$= 28.1 \text{ dB}\mu\text{V}$
Correction Factor	= Antenna Factor (14.9 dB/m) + Cable Loss (2.3 dB) - Amp. Gain (28.2 dB)
	= -11.0 dB
Total	$= 17.1 \text{ dB}\mu\text{V/m}$
Margin	$= 30.0 \text{ dB}\mu\text{V/m} - 17.1 \text{ dB}\mu\text{V/m}$
	= 12.9 dB

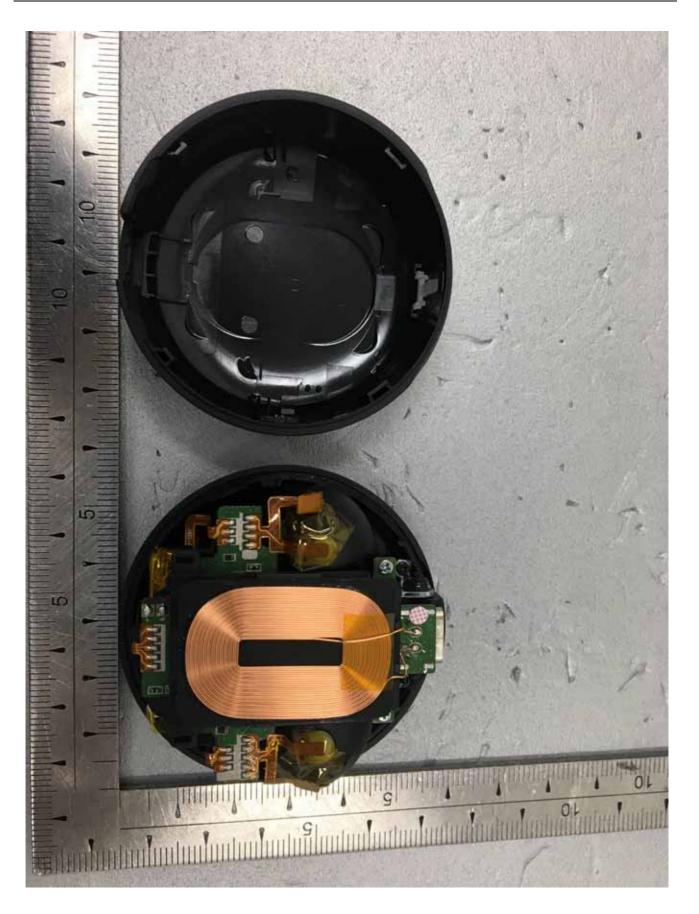
APPENDIX A [TEST SET UP PHOTOGRAPHS]


Conducted Emission Test Set Up

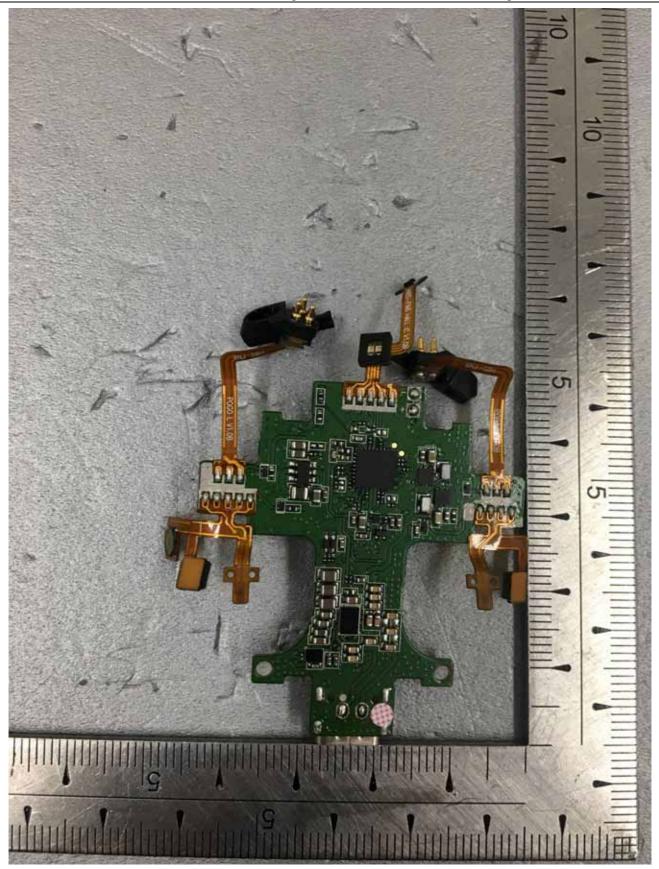
Radiated Emission Test Set Up (Below 1 GHz)



APPENDIX B [EXTERNAL PHOTOGRAPHS]

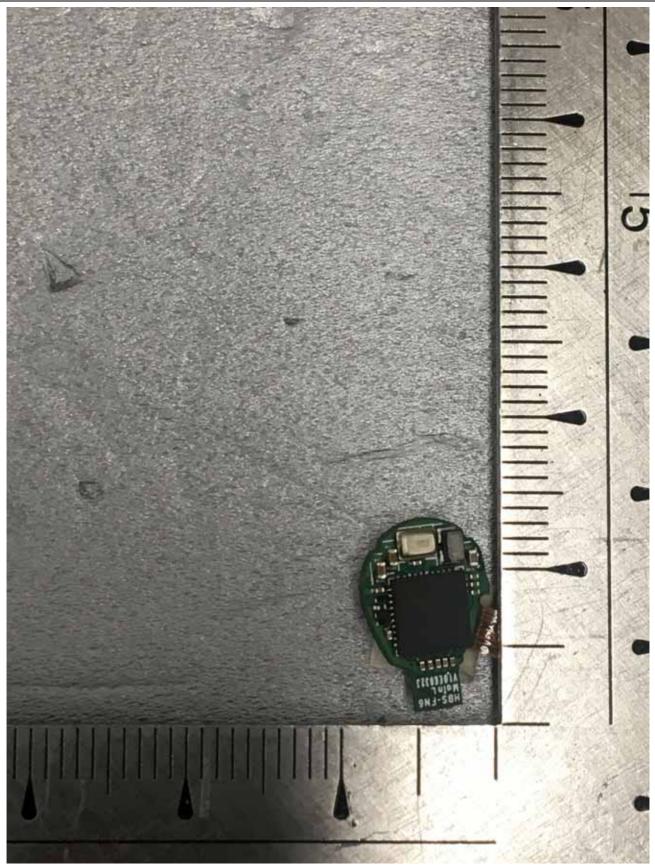

Report No.: OT-204-RED-133

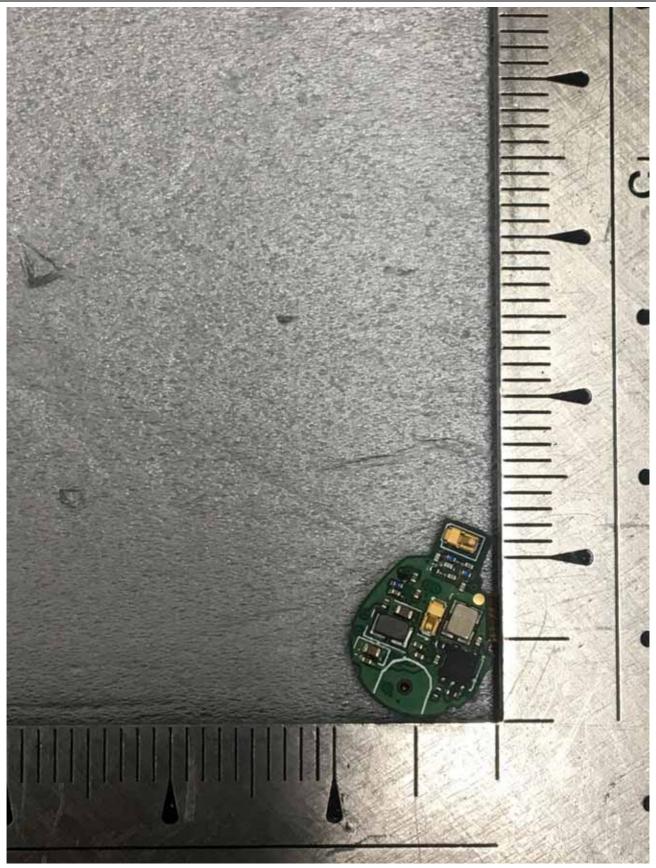
APPENDIX C [INTERNAL PHOTOGRAPHS]

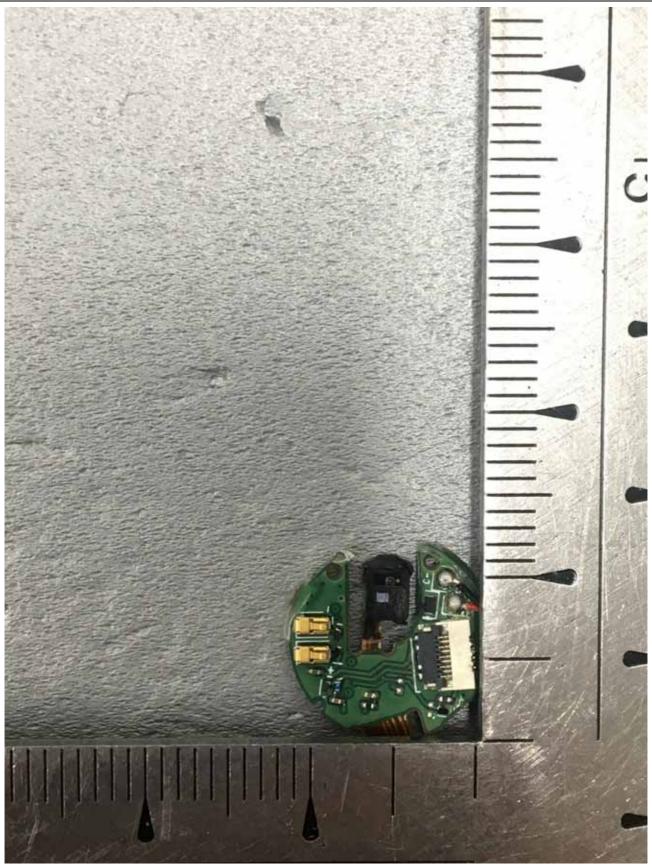


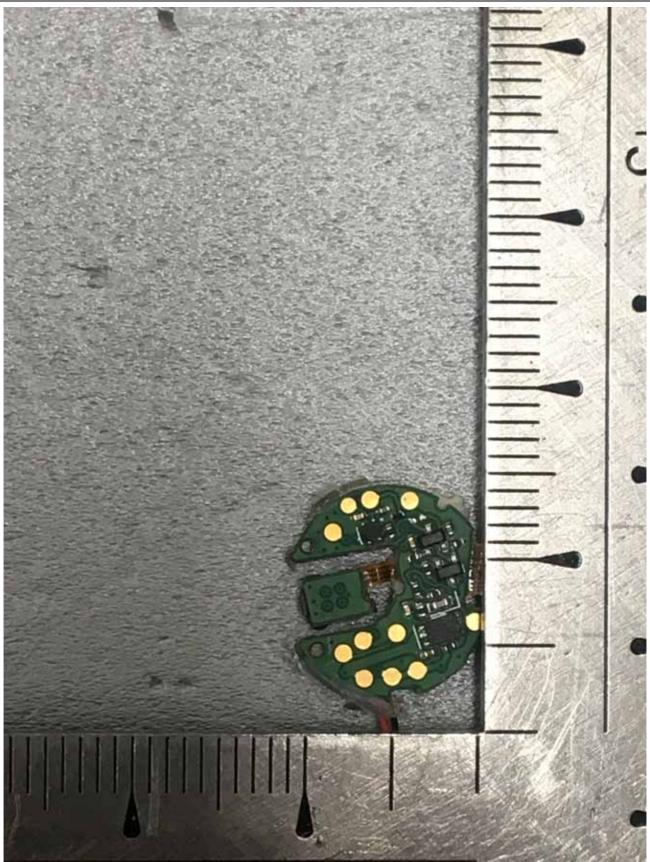
ONETECH

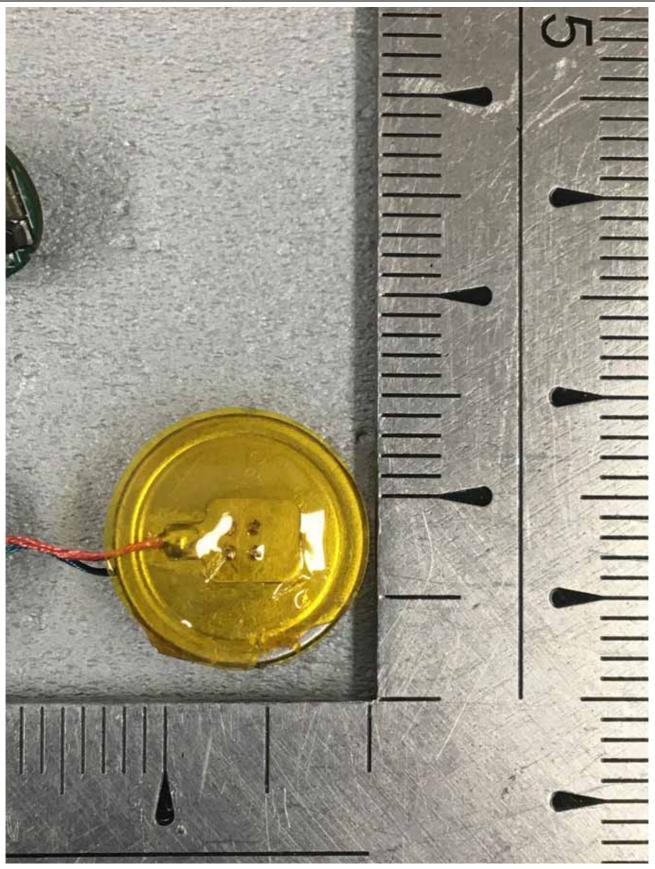
DNETECH

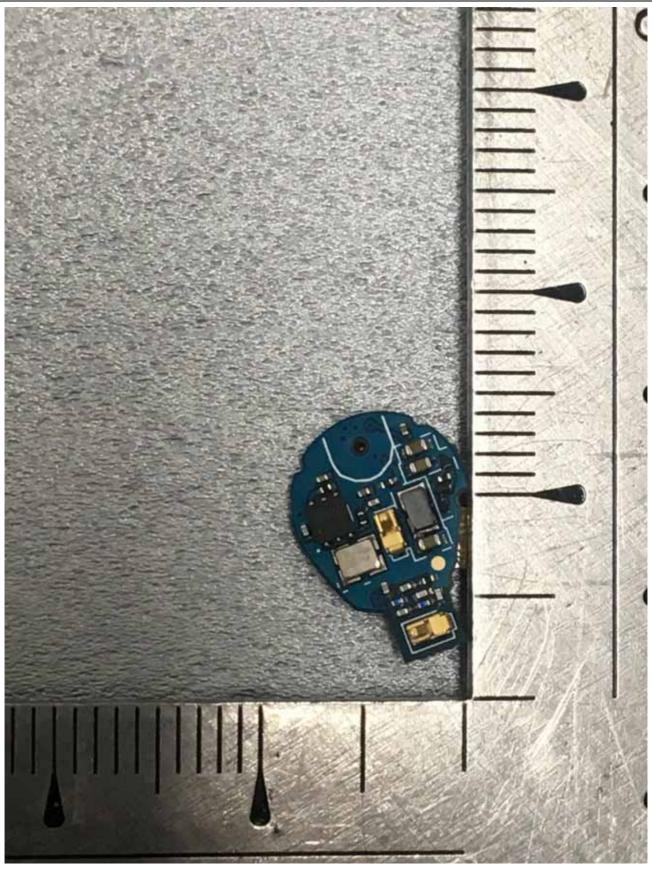


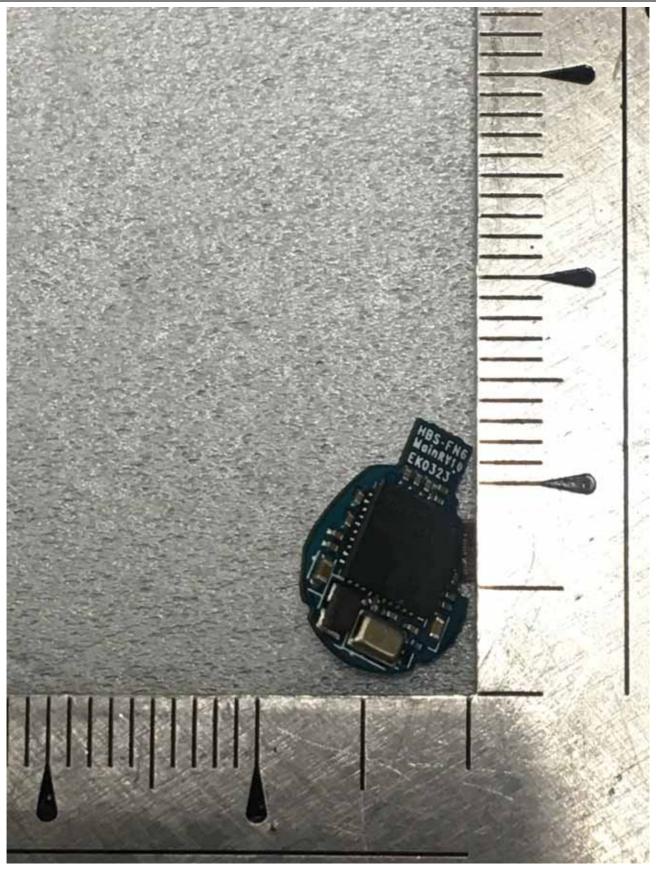


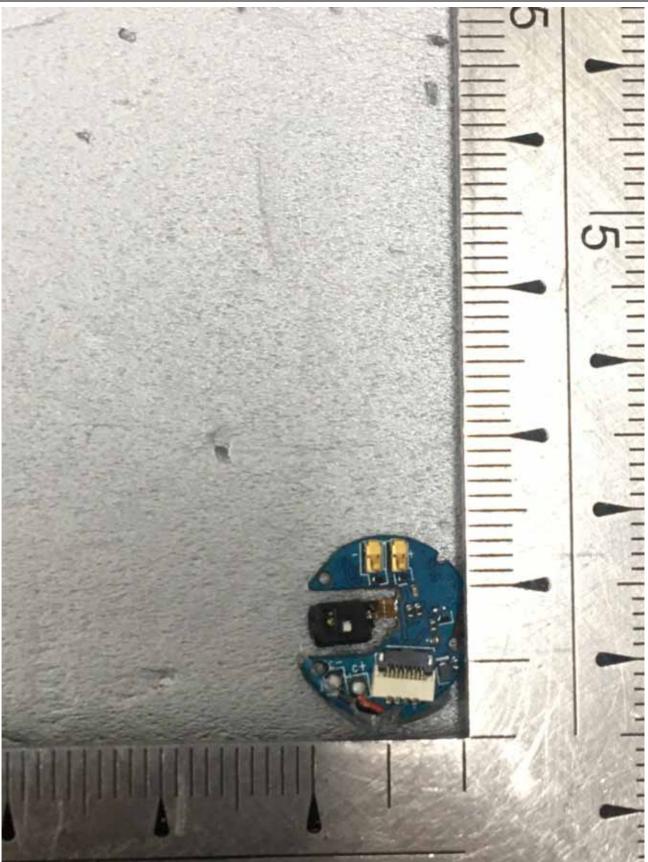


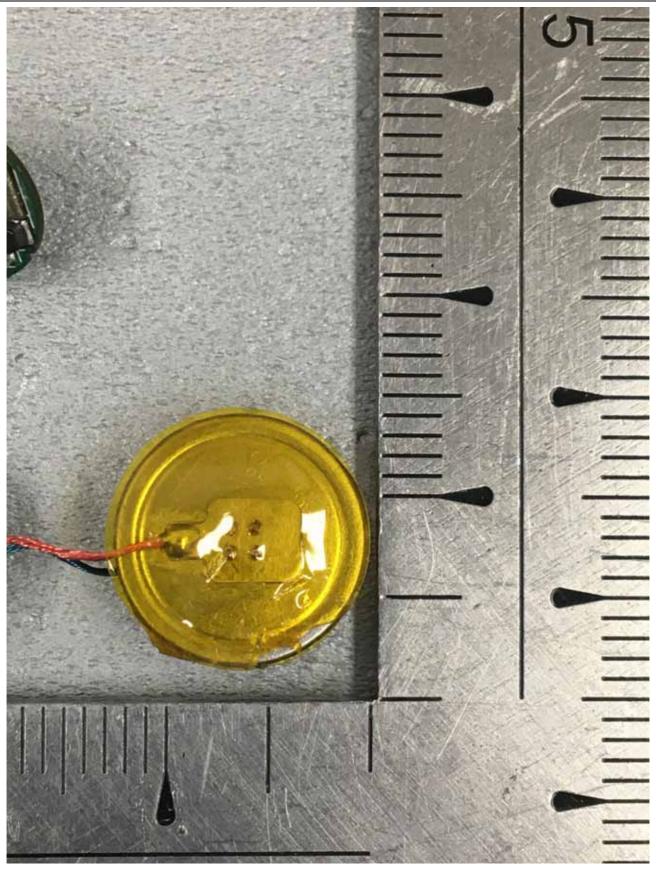


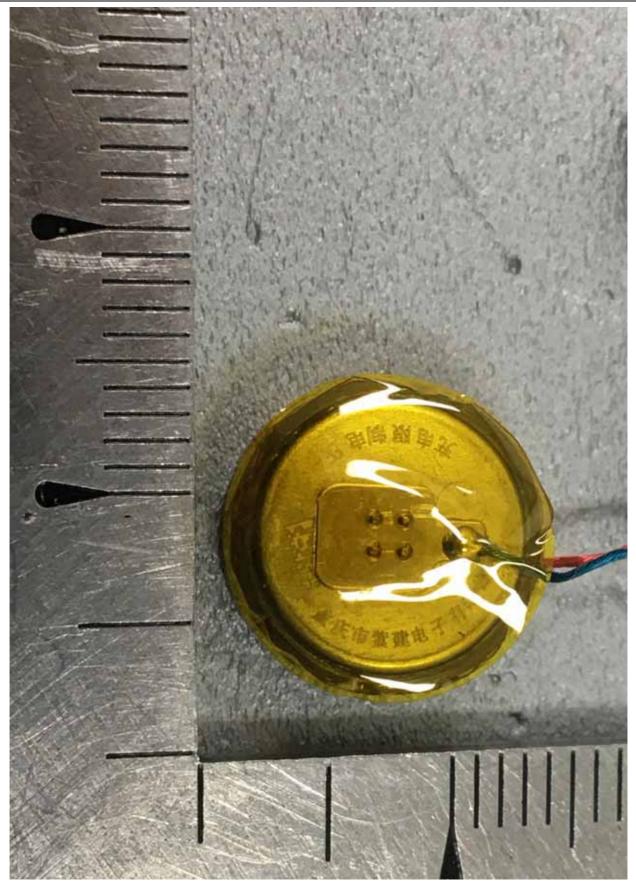



Report No.: OT-204-RED-133


Report No.: OT-204-RED-133







APPENDIX D

[LABELLING REQUIREMENTS] [INFORMATION TO THE USER IN USER'S MANUAL]

LABELLING REQUIREMENTS

FCC Part 15 SUBPART B § 15.19 Labeling requirements

(a) In addition to the requirements in part 2 of this chapter, a device subject to certification, or Supplier's Declaration of Conformity shall be labeled as follows:

(1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under part 73 of this chapter, land mobile operation under part 90 of this chapter, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

(4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.

(5) When the device is so small or for such use that it is impracticable to label it with the statement specified under paragraph (a) of this section in a font that is four-point or larger, and the device does not have a display that can show electronic labeling, then the information required by this paragraph shall be placed in the user manual and must also either be placed on the device packaging or on a removable label attached to the device.

For FCC Certification

If the device is subject to Certification: (1) Section 2.925 contains information on identification of the equipment; (2) include a label bearing an FCC Identifier (FCC ID) (Section 2.926) and (3) include the appropriate compliance statement in Section 15.19(a). If the labelling area is considered too small and therefore it is impractical (smaller than the palm of the hand) to display the compliance statement, then the statement may be placed in the user manual or product packaging. However, the device must still be labelled with the FCC ID. If the device is unquestionably too small for the FCC ID to be readable (smaller than 4-6 points), the FCC ID may be placed in the user manual. However, it must be determined that the device itself is too small – the label area allocated to the FCC ID may not be reduced because of over crowded identification of other product and regulatory information. Justification for placing the FCC ID in the manual must be submitted with the initial application for certification for review and approval.

For FCC Supplier's Declaration of Conformity (SDOC)

(a) If a product must be tested and authorized under Supplier's Declaration of Conformity, a compliance information statement shall be supplied with the product at the time of marketing or importation, containing the following information:

(1) Identification of the product, e.g., name and model number;

(2) A compliance statement as applicable, e.g., for devices subject to part 15 of this chapter as specified in §15.19(a)(3) of this chapter, that the product complies with the rules; and

(3) The identification, by name, address and telephone number or Internet contact information, of the responsible party, as defined in §2.909. The responsible party for Supplier's Declaration of Conformity must be located within the United States.

(b) If a product is assembled from modular components (e.g., enclosures, power supplies and CPU boards) that, by themselves, are authorized under a Supplier's Declaration of Conformity and/or a grant of certification, and the assembled product is also subject to authorization under Supplier's Declaration of Conformity but, in accordance with the applicable regulations, does not require additional testing, the product shall be supplied, at the time of marketing or importation, with a compliance information statement containing the following information:

(1) Identification of the assembled product, e.g., name and model number.

(2) Identification of the modular components used in the assembly. A modular component authorized under Supplier's Declaration of Conformity shall be identified as specified in paragraph (a)(1) of this section. A modular component authorized under a grant of certification shall be identified by name and model number (if applicable) along with the FCC Identifier number.

(3) A statement that the product complies with part 15 of this chapter.

(4) The identification, by name, address and telephone number or Internet contact information, of the responsible party who assembled the product from modular components, as defined in §2.909. The responsible party for Supplier's Declaration of Conformity must be located within the United States.

(5) Copies of the compliance information statements for each modular component used in the system that is authorized under Supplier's Declaration of Conformity.

(c) The compliance information statement shall be included in the user's manual or as a separate sheet. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form. The information may be provided electronically as permitted in §2.935.

For ICES-003

The manufacturer, importer or supplier shall meet the labelling requirements set out in this section and in Notice 2014-DRS1003 for electronic labelling for every unit:

- i. prior to marketing in Canada, for ITE manufactured in Canada and
- ii. prior to importation into Canada, for imported ITE.

Each unit of an ITE model shall bear a label (see below) that represents the manufacturer's or the importer's SDoC with Innovation, Science and Economic Development Canada's ICES-003. This label shall be permanently affixed to the ITE or displayed electronically and its text must be clearly legible. If the dimensions of the device are too small or if it is not practical to place the label on the ITE and electronic labelling has not been implemented, the label shall be, upon agreement with Innovation, Science and Economic Development Canada, placed in a prominent location in the user manual supplied with the ITE. The user manual may be in an electronic format and must be readily available.

Innovation, Science and Economic Development Canada ICES-003 Compliance Label:

CAN ICES-3 (*)/NMB-3(*)

* Insert either "A" or "B" but not both to identify the applicable Class of ITE.

PROPOSED LABEL

The label included following statement will be attached on product or the compliance statement can be observed in a prominent location in the instruction manual.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

INFORMATION TO THE USER IN USER'S MANUAL

For FCC: The instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

For a **Class A** digital device or peripheral

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

WARNING

Any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

For a Class B digital device or peripheral

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one more of the following measures:

-. Reorient or relocate the receiving antenna.

- -. Increase the separation between the equipment and receiver.
- -. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- -. Consult the dealer or an experienced radio/TV technician for help.

WARNING

Any changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.