

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT			
Report No. ·····:	CTC20230767E03		
FCC ID:	2AR24-AIBOX31		
Applicant:	Shenzhen Absen Optoelectronic Co	o.,Ltd	
Address	18-20/F,Tower A,Building 3,Phase I,Tian An Cloud Park,N0.2018,Xuegang Rd,Bantian,Longgang District,Shenzhen,Guangdong,P.R.China		
Manufacturer	Shenzhen Absen Optoelectronic Co.,I	_td	
Address:	18-20/F,Tower A,Building 3,Phase I,Ti Park,N0.2018,Xuegang Rd,Bantian,Lo District,Shenzhen,Guangdong,P.R.Ch	onggang	
Product Name·····:	LED Multimedia Processor		
Trade Mark······:	/		
Model/Type reference······:	Ai Box3.1		
Listed Model(s) ·····:	/		
Standard:	FCC CFR Title 47 Part 15 Subpart C Section 15.247		
Date of receipt of test sample:	May 04, 2023		
Date of testing:	May 04, 2023 to Jun. 01, 2023		
Date of issue	Jun. 02, 2023		
Result:	PASS		
Compiled by:			
(Printed name+signature)	Lucy Lan	They Iom	
Supervised by: (Printed name+signature)	Lucy Lan Incry Tem Zinc zhang		
Approved by:		1 - Inco	
(Printed name+signature)	Totti Zhao		
Testing Laboratory Name:	CTC Laboratories, Inc.		
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China		
This test report may be duplicated completely for legal use with the approval of the applicant. It			

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1. T	TEST SUMMARY	3
1.1.	Test Standards	3
1.2.	REPORT VERSION	3
1.3.	TEST DESCRIPTION	3
1.4.	TEST FACILITY	4
1.5.	MEASUREMENT UNCERTAINTY	4
1.6.	ENVIRONMENTAL CONDITIONS	5
2. G	SENERAL INFORMATION	6
2.1.	CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	ACCESSORY EQUIPMENT INFORMATION	7
2.4.		
2.5.	Measurement Instruments List	10
3. Т	EST ITEM AND RESULTS	11
3.1.	Conducted Emission	11
3.2.	RADIATED EMISSION	14
3.3.	BAND EDGE EMISSIONS (RADIATED)	
3.4.		
3.5.		
3.6.	001011012	
3.7.		
3.8.		
3.9.	ANTENNA REQUIREMENT	

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

RSS 247 Issue 2: Standard Specifications for Frequency Hopping Systems (FHSs) and Digital Transmission Systems (DTSs) Operating in the Bands 902-928MHz, 2400-2483.5MHz and 5725-5850MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report Version

Revised No.	Date of issue	Description
01	Jun. 02, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 2				
Test Item	Standard Section		Result	Test
rest item	FCC	IC	Result	Engineer
Antenna Requirement	15.203	/	Pass	Lucy Lan
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Lucy Lan
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Lucy Lan
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Lucy Lan
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Lucy Lan
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Lucy Lan
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Lucy Lan
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Lucy Lan

Note:

1. The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug. 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Air Pressure:	101kPa

ΕN

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20/F,Tower A,Building 3,Phase I,Tian An Cloud Park,N0.2018,Xuegang Rd,Bantian,Longgang District,Shenzhen,Guangdong,P.R.China
Manufacturer:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20/F,Tower A,Building 3,Phase I,Tian An Cloud Park,N0.2018,Xuegang Rd,Bantian,Longgang District,Shenzhen,Guangdong,P.R.China

2.2. General Description of EUT

Product Name:	LED Multimedia Processor
Trade Mark:	Abyen
Model/Type reference:	Ai Box3.1
Listed Model(s):	/
Model Difference:	/
Power supply:	100-240V~ 50/60Hz
RF Module Model:	RTL8822BU
Hardware version:	/
Software version:	/
WIFI 802.11b/ g/ n(HT20)/	n(HT40)
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK, QPSK, 16QAM, 64QAM)
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz
Channel number:	802.11b/g/n(HT20): 11 Channels 802.11n(HT40): 7 Channels
Channel separation:	5MHz
Antenna 1 or 2 type:	External Antenna
Antenna 1 or 2 gain:	5dBi

2.3. Accessory Equipment Information

Equipment Information			
Name	Model	S/N	Manufacturer
Notebook	X220	/	Lenovo
Cable Information			
Name	Shielded Type	Ferrite Core	Length
USB Cable	Unshielded	NO	150cm
AC Cable	Unshielded	NO	120cm
Test Software Information	Test Software Information		
Name	Software version	/	/
REALTEK 11ac 8822BU USB WLAN NIC Massproduction Kit	1	/	/

2.4. Operation State

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40)

Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain(dBi)
1	NA	NA	External Antenna	IPEX	5
2	NA	NA	External Antenna	IPEX	5

Note: Antenna Gain=5 dBi. For 2.4G, this EUT supports MIMO 2X2, any transmit signals are correlated with each other, so Directional gain = $G_{Ant.}$ +10log(N)dBi, that is Directional gain=5+10log(2)dBi=8dBi.So output power limit is 30-8+6=28dBm, the power spectral density limit is 8-8+6=6dBm/3KHz. The power spectral density limit is 8-8+6=6dBm/3KHz.

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	HT-MCS0
802.11n(HT40)	HT-MCS0

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

2.5. Measurement Instruments List

	Radiated emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until					
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-759	Mar. 30, 2024					
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024					
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023					
4	Broadband Premplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023					
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023					
6			EE106	/	Sep. 09, 2023					

Conducted emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until				
1	LISN	R&S	ENV216	101112	Dec. 16, 2023				
2	LISN	R&S	ENV216	101113	Dec. 16, 2023				
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023				
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023				
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023				

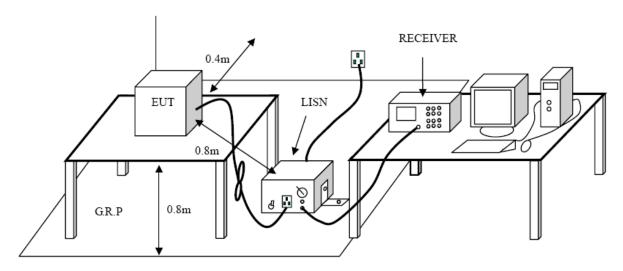
	Tonscend RF Test System								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until				
1	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023				
2	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023				
3	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024				
4	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023				
5	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023				
6	Power Sensor	Keysight	U2021XA	MY55130004	Mar. 14, 2024				
7	Power Sensor	Keysight	U2021XA	MY55130006	Mar. 14, 2024				
8	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023				
9	High and low temperature box	ESPEC	MT3035	/	Mar. 24, 2024				
10	JS1120 RF Test system	TONSCEND	v2.6	/	/				

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

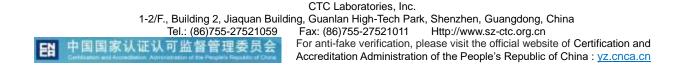
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

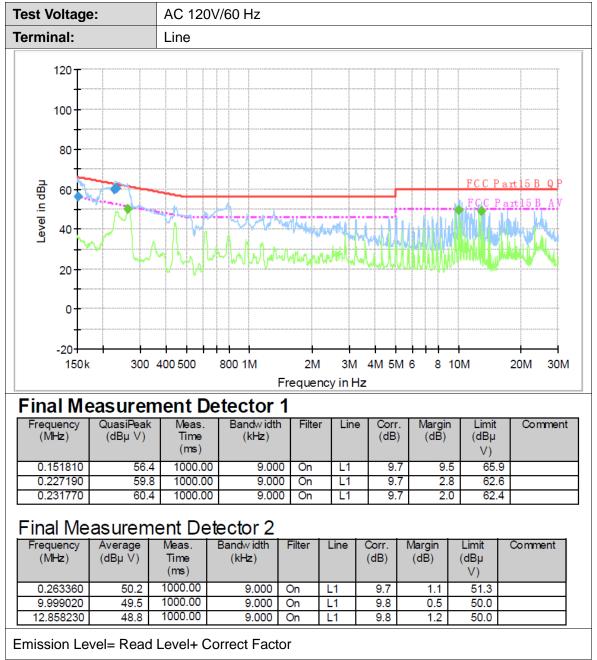

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

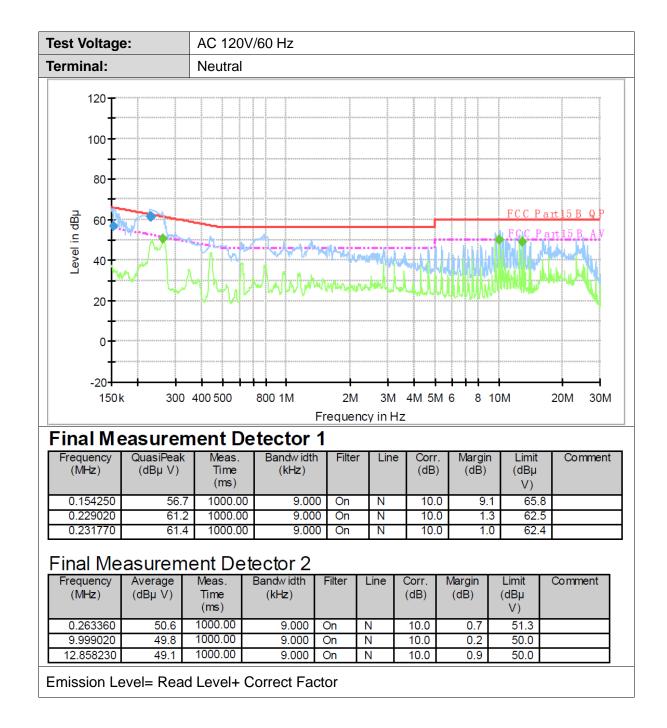
5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.



Test Mode:


Please refer to the clause 2.4.

Test Results

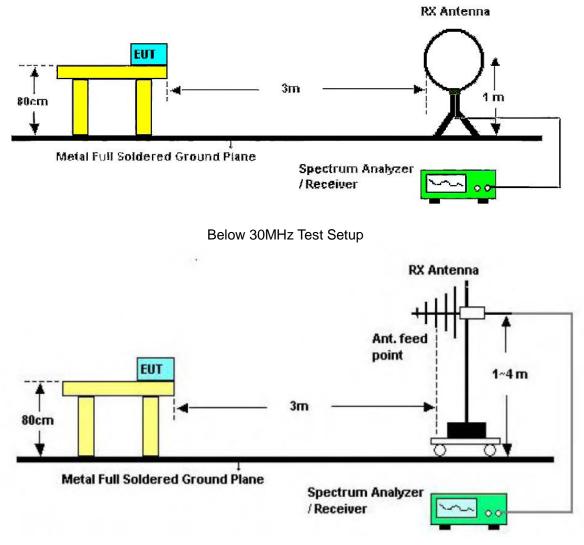
3.2. Radiated Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9:

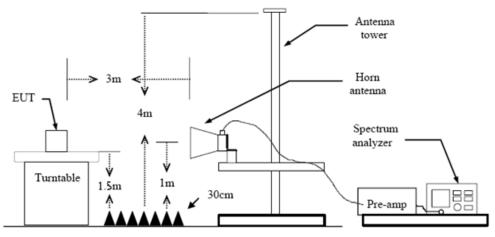
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Frequency (MHz)	dB(uV/m) (at 3 meters)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	


Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).


Test Configuration

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

- 6. Use the following spectrum analyzer settings
- (1) Span shall wide enough to fully capture the emission being measured;
- (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW≥1/T Peak detector for Average value.

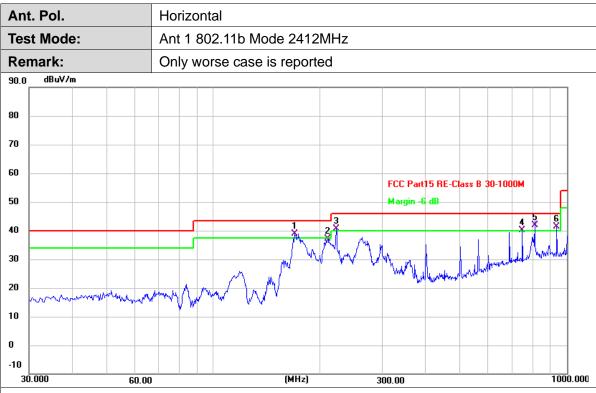
Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

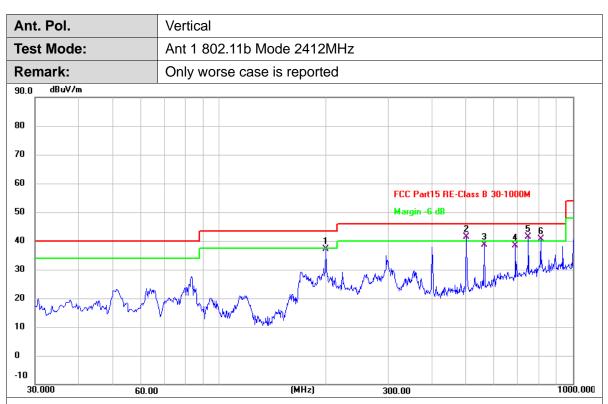
<u>Test Result</u>

9 KHz~30 MHz


From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Pre-scan all antenna, only show the test data for worse case antenna on the test report.


30MHz-1GHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1!	170.0033	57.58	-18.63	38.95	43.50	-4.55	QP
2	210.0967	52.82	-15.78	37.04	43.50	-6.46	QP
3!	222.7067	56.07	-15.42	40.65	46.00	-5.35	QP
4!	750.0633	45.02	-4.82	40.20	46.00	-5.80	QP
5 *	812.4667	45.80	-3.93	41.87	46.00	-4.13	QP
6!	937.5967	43.75	-2.26	41.49	46.00	-4.51	QP

Remarks:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	199.7500	53.29	-16.09	37.20	43.50	-6.30	QP
2 !	500.1267	50.54	-9.19	41.35	46.00	-4.65	QP
3	562.5300	46.18	-7.63	38.55	46.00	-7.45	QP
4	687.6599	44.01	-5.68	38.33	46.00	-7.67	QP
5 *	750.0633	46.24	-4.82	41.42	46.00	-4.58	QP
6 !	812.4667	44.64	-3.93	40.71	46.00	-5.29	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下 中国国家认证认可监督管理委员会 在 creditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4824.019	28.25	2.20	30.45	54.00	-23.55	AVG
2	4824.448	41.30	2.20	43.50	74.00	-30.50	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.	:	Ant 1						
Ant. Pol	I.	Vertical						
Test Mo	de:	TX B Mode 2412MHz						
Remark		No report for the emission which more than 20 dB below the prescribed limit.						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
4	4000.007	40.45	0.00	E0.0E	74.00	00.05		

	((4247)	(42/11)	(4247/11)	(aba m)	(42)		
1	4823.967	48.45	2.20	50.65	74.00	-23.35	peak	
2 *	4823.987	44.39	2.20	46.59	54.00	-7.41	AVG	

Remarks:

Ant No.:	:	Ant 1					
Ant. Pol	-	Horizontal					
Test Mo	de:	TX B Mode 2437MHz					
Remark		No report for prescribed lin		n which more	e than 20 dB	below the	e
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector

No.	(MHz)	(dBuV)		(dBuV/m)		(dB)	Detector
1	4873.529	40.87	2.30	43.17	74.00	-30.83	peak
2 *	4874.079	26.20	2.30	28.50	54.00	-25.50	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.887	47.37	2.30	49.67	74.00	-24.33	peak
2 *	4874.013	43.14	2.30	45.44	54.00	-8.56	AVG

Remarks:

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4924.122	25.77	2.41	28.18	54.00	-25.82	AVG
2	4924.213	41.65	2.41	44.06	74.00	-29.94	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX B Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.988	46.14	2.41	48.55	74.00	-25.45	peak
2 *	4923.998	40.72	2.41	43.13	54.00	-10.87	AVG

Remarks:

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1	4823.869	41.68	2.20	43.88	74.00	-30.12	peak
2 *	4824.126	27.82	2.20	30.02	54.00	-23.98	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4823.982	45.50	2.20	47.70	74.00	-26.30	peak
2 *	4824.016	35.14	2.20	37.34	54.00	-16.66	AVG

Remarks:

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.652	25.97	2.30	28.27	54.00	-25.73	AVG
2	4874.315	41.57	2.30	43.87	74.00	-30.13	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.564	26.34	2.30	28.64	54.00	-25.36	AVG
2	4873.599	41.23	2.30	43.53	74.00	-30.47	peak

Remarks:

Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.721	41.14	2.41	43.55	74.00	-30.45	peak
2 *	4924.498	25.48	2.41	27.89	54.00	-26.11	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.	Vertical
Test Mode:	TX G Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4923.996	40.67	2.41	43.08	74.00	-30.92	peak
2 *	4924.046	26.27	2.41	28.68	54.00	-25.32	AVG

Remarks:

Ant No.: Ant 1 + Ant 2									
Ant. Pol. Horizontal									
Т	est Mo	de:	TX N20 Mode 2412MHz						
Remark:			No report for prescribed lin		n which more	e than 20 dB	below the	9	
	No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
ŀ	1 *	4823.989	27.72	2.20	29.92	54.00	-24.08	AVG	
ŀ	2	4824.419	41.79	2.20	43.99	74.00	-30.01	peak	
1		s: (dB/m) = Anter value = Level		/m)+Cable I	Factor (dB)-F	Pre-amplifier	Factor		

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2412MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4824.084	35.88	2.20	38.08	54.00	-15.92	AVG
2	4824.162	44.56	2.20	46.76	74.00	-27.24	peak

Ant No.	:	Ant 1 + Ant 2						
Ant. Po	Ant. Pol. Horizontal							
Test Mo	st Mode: TX N20 Mode 2437MHz							
Remark	ark: No report for the emission which more than 20 dB below the prescribed limit.				9			
	1							Ŧ
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	4873.797	26.35	2.30	28.65	54.00	-25.35	AVG	

Remarks:	
Remarks	
nomano.	

2

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.30

41.66

43.96

74.00

-30.04

peak

2.Margin value = Level -Limit value

4873.878

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	4873.627	41.85	2.30	44.15	74.00	-29.85	peak
2 *	4874.341	26.04	2.30	28.34	54.00	-25.66	AVG

Remarks:

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.860	25.60	2.41	28.01	54.00	-25.99	AVG
2	4924.050	40.82	2.41	43.23	74.00	-30.77	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N20 Mode 2462MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4923.901	25.78	2.41	28.19	54.00	-25.81	AVG
2	4924.076	41.77	2.41	44.18	74.00	-29.82	peak

Remarks:

nt No.	:	Ant 1 + Ant 2					
nt. Pol	i.	Horizontal					
est Mo	de:	TX N40 Mode 2422MHz					
Remark:No report for the emission which more than 20 dB below the prescribed limit.					9		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4843.601	26.76	2.24	29.00	54.00	-25.00	AVG
2	4844.062	41.85	2.24	44.09	74.00	-29.91	peak

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2422MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4843.656	26.86	2.24	29.10	54.00	-24.90	AVG
2	4844.327	41.72	2.24	43.96	74.00	-30.04	peak

Remarks:

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Horizontal
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.580	26.07	2.30	28.37	54.00	-25.63	AVG
2	4873.937	41.37	2.30	43.67	74.00	-30.33	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amlifier Factor

2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2437MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4873.580	26.07	2.30	28.37	54.00	-25.63	AVG
2	4873.937	41.37	2.30	43.67	74.00	-30.33	peak

Remarks:

Ant No.: Ant 1 + Ant 2									
Ant. P	ol.	Horizontal							
Test M	ode:	TX N40 Mode 2452MHz							
Remark: No report for the emission which more than 20 dB below the prescribed limit.									
								T	
No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1 *	4903.541	41.50	2.36	43.86	54.00	-10.14	AVG	Ť	

Remarks:	

2

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.36

26.33

28.69

74.00

-45.31

peak

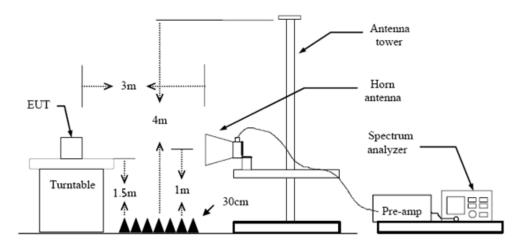
2.Margin value = Level -Limit value

4903.549

Ant No.:	Ant 1 + Ant 2
Ant. Pol.	Vertical
Test Mode:	TX N40 Mode 2452MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	4903.541	41.50	2.36	43.86	54.00	-10.14	AVG
2	4903.549	26.33	2.36	28.69	74.00	-45.31	peak

Remarks:


3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m	n)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Test Configuration

Test Procedure

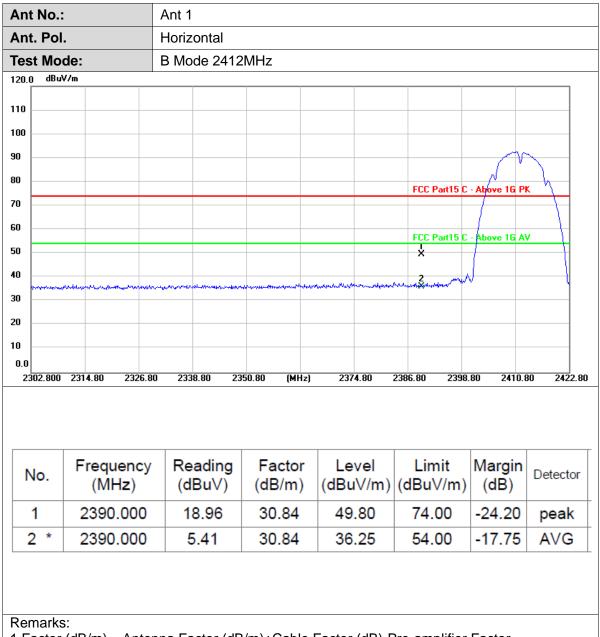
- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.7 Duty Cycle.

Test Mode


Please refer to the clause 2.4.

CTC Laboratories, Inc.

Test Results

Pre-scan all antenna, only show the test data for worse case antenna on the test report.

nt No.	.:	1	Ant 1								
nt. Po	I.	١	Vertical								
est Mo	ode:	I	3 Mode 2	412	MHz						
20.0 dB	uV/m	1	Ì		1		1	1			
0											
									N		
, 📃									A	4	
								FCC Part15	C - Above 1G P	ĸ	
)								CC Part15	- Above 1G A	× V	
								2	4		
and the second second	- marine and the second second	manution	man	, a damany	m	provide the second	han management when	mitour			
I											
·											
.0 2304.000	0 2316.00	2328.00	2340.00	235	2.00 (MHz	237	6.00	2388.00 240	0.00 2412.	00 2424	
No.	Freque (MH		Readir (dBu√		Factor (dB/m)		vel IV/m)	Limit (dBuV/m)	Margin (dB)	Detecto	
1	2390.	000	23.94	•	30.84	54	.78	74.00	-19.22	peak	
2 *	2390.	000	9.88		30.84	40	.72	54.00	-13.28	AVG	

ΕN

Ant	No.:		Ant 1									
Ant	. Pol		Horiz	Horizontal								
Tes	t Mo	de:	B Mo	B Mode 2462 MHz								
120.0) dBu\	//m										
110												
100												
90												
80	1	\sim										
70	_/	4						FCC Part15 C	- Above 1G P	ĸ		
	1											
60	1		-					FCC Part15 C	- Above 16 A	v		
50	1		X									
40	J	lucion	2	and the second	en her ben against when the	hadraffarragaahadha	halfingerman	durant and a second	astrony, strates and approximates	eduna wydaene		
30												
20												
10												
0.0	50.600	2462.60 2474.	60 249	6.60 24	98.60 (MH	z) 252	2.60	2534.60 2546	.60 2558.0	50 2570.60		
	00.000					-,						
N	lo.	Frequency (MHz)		ading BuV)	Factor (dB/m)		vel iV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	1	2483.500	1	9.15	31.24	50	.39	74.00	-23.61	peak		
2	*	2483.500	5	5.22	31.24	36	.46	54.00	-17.54	AVG		
	I									·		

EN

nt No.:		Ant 1									
nt. Pol	•	Vertical	Vertical								
est Mo	de:	B Mode 246	2 MHz								
20.0 dBu\	//m										
					FCC Part15 C	- Above 16 PK					
		1 × 2			FCC Part15 C	- Above 1G AV					
.0 2451.200	2463.20 2475.2	20 2487.20 2	499.20 (MHz)	2523.20	2535.20 2547.	20 2559.2	0 2571.2				
	_										
No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
	2483.500	17.73	31.24	48.97	74.00	-25.03	peak				
1		9.71	31.24	40.95	54.00	-13.05	AVG				

ΕN

Ant No.	:	Ant 1								
Ant. Po	I.	Horizontal								
Test Mo	de:	G Mode 2412MHz								
120.0 dBu	V/m									
110										
100										
90										
80						\frown	\sim			
70					FCC Part15 C	Above 1G Pl				
60					FCC Part15 C	- Above 1G AV				
50					1×		$-\lambda$			
40	dhard an	-	an and the town of math	hannessentre	- Zermander					
30										
20										
10										
0.0 2304.600	2316.60 2328.60) 2340.60 23	52.60 (MHz)	2376.60	2388.60 2400.	60 2412.6	0 2424.60			
2304.000	2310.00 2320.00	5 2340.00 23	32.00 (MHZ)	2370.00	2300.00 2400.	00 2412.0	0 2424.00			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
1	2390.000	13.38	30.84	44.22	74.00	-29.78	peak			
2 *	2390.000	6.05	30.84	36.89	54.00	-17.11	AVG			

ΕN

Ant	No.:			Ant 1										
Ant	. Pol	•	•	Vertical										
Tes	t Mo			G Mode	2412	MHz								
120.0 	dBu\	//m												
110														
100														
90												$\int $		
80										ECC D		AL		
70										FLL P	art i s L	- Above 1G P		
60										1		/ 	<u> </u>	
50											artist	- Above 1G A	<u> </u>	
40		- the stars to see the star	. And some that	and the contraction of the	No. and Law		a Mariana N	and the state of the	a darage and a second	2 Contraction				
30														
20														
10														
0.0	04.000	2316.00	2328.00	2340.00		52.00	(411_)		6.00	2388.00	2400.	00 2412.	00 2424	
23	04.000	2316.00	2328.00	2340.00	23:	DZ.UU	(MHz)	237	6.00	2388.00	2400.	.00 2412.	UU 2424	1.00
N	lo.	Freque (MH		Readi (dBu'	-	Fac (dB/i			vel iV/m)	Lim (dBu∖		Margin (dB)	Detecto	or
	1	2390.	000	26.3	5	30.8	34	57	.19	74.0	00	-16.81	peak	(
2	2 *	2390.	000	11.0	9	30.8	34	41	.93	54.0	00	-12.07	AVG	;
														<u> </u>

EN

Ant No.	:	Ant 1					
Ant. Po	l.	Horizontal					
Test Mo	de:	G Mode 2462	2MHz				
120.0 dBu	W/m		1				
110							
100							
90							
80							
	- Am				FCC Part15 C	- Above 1G Pl	(
70							
60					FCC Part15 C	- Above 1G A	,
50		1 X					
40		2	and the second	where the state of	Munderston	and the state of the second	withhere was
30							
20							
10							
0.0							
2448.800	2460.80 2472.8	0 2484.80 24	96.80 (MHz)	2520.80	2532.80 2544.	80 2556.8	30 2568.80
	Frequency	Reading	Factor	Level	Limit	Margin	
No.	(MHz)	(dBuV)	(dB/m)		(dBuV/m)	(dB)	Detector
1	2483.500	13.97	31.24	45.21	74.00	-28.79	peak
2 *	2483.500	5.61	31.24	36.85	54.00	-17.15	AVG

EN

nt No.	:	Ant 1							
nt. Po	l.	Vertical							
est Mo	de:	G Mode	2462	MHz					
0.0 dBu	V/m								
0									
0									
							FCC Part15 (- Above 1G P	ĸ
		1 X					FCC Part15 (- Above 1G A	v
		2							
		X	and a planter	www.www.www.www.www.www.www.www.www.ww	erest and the second second	n Rydensoder	mallan	ethor marken was	reamina
.0 2450.600	2462.60 2474	.60 2486.60		8.60 (MH:		2.60 2	2534.60 254	6.60 2558.0	60 2570.1
									1
No.	Frequenc (MHz)	y Read (dBu		Factor (dB/m)		vel IV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500) 27.3	37	31.24	58	.61	74.00	-15.39	peak
2 *	2483.500) 10.9	95	31.24	42	.19	54.00	-11.81	AVG

ΕN

nt No) .:	F	Ant 1 + Ant 2					
nt. Po	ol.	F	Iorizontal					
est M	ode:	١	N(HT20) Mod	de 2412MHz				
20.0 dE	Bu∀/m							
0								
								~
						FCC Part15 C	- Above 1G Pl	<
						1		
						FCC Part15 C	- Above 16 A	
						2		
man	worker, marker between	Annound	presentation and manufactured	we mithered with more and address	an weather many many the section of the	Martin Martin		
_								
.0	0 2317.20 2	329.20	2341.20 23	53.20 (MHz)	2377.20	2389.20 2401.	.20 2413.2	20 2425.3
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	00	20.94	30.84	51.78	74.00	-22.22	peak
2 *	2390.0	00	9.81	30.84	40.65	54.00	-13.35	AVG

ΕN

:	A	Ant 1 + Ant	2								
l .	١	Vertical									
de:	1	N(HT20) M	ode 2412MH	Z							
V/m		1		i		1					
					(
					FCC Part15 C	- Above 1G Pl	<				
							-				
						- Above 16 A	$- \vee$				
						Abore ru A					
			- Hards Alexandra and a share of the	to the manual state of the second state of the	2 August						
	THE OWNER AND A CONTRACT OF										
2318.40	2330.40	2342.40	2354.40 (MHz)	2378.40	2390.40 2402.	40 2414.4	10 2426.4				
2318.40	2330.40	2342.40	2354.40 (MHz)	2378.40	2390.40 2402.	40 2414.4	10				
	lency	Reading	g Factor	Level	Limit	Margin	Detecto				
(MI	Hz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)					
(MI 2390	Hz)	(dBuV) 25.07	(dB/m) 30.84	(dBuV/m) 55.91	(dBuV/m) 74.00	(dB) -18.09	peak				
	1	vde: I V/m - - - <td< td=""><td>vde: N(HT20) M</td><td>vde: N(HT20) Mode 2412MHz V/m </td><td>vde: N(HT20) Mode 2412MHz W/m </td><td>N(HT20) Mode 2412MHz N/m FCC Partis FCC Partis X/m FCC Partis X/m X</td><td>Inde: N(HT20) Mode 2412MHz W/m </td></td<>	vde: N(HT20) M	vde: N(HT20) Mode 2412MHz V/m	vde: N(HT20) Mode 2412MHz W/m	N(HT20) Mode 2412MHz N/m FCC Partis FCC Partis X/m FCC Partis X/m X	Inde: N(HT20) Mode 2412MHz W/m				

ΕN

nt No.:	:	Ant 1 + Ant 2					
nt. Pol	l .	Horizontal					
est Mo	de:	N(HT20) Mod	de 2462MHz				
20.0 dBu	V/m						
10							
5	-						
					FCC Part15 C	- Above 1G Pl	ĸ
\vdash					FCC Part15 C	Abarra 10 A3	
+		1 X				- ADOVE TE AV	
		2		and the second second second second			
		and the second of the second o	where and the second	ala an		and the second secon	
.0							
.u 2449.400	2461.40 2473.4	40 2485.40 24	97.40 (MHz)	2521.40	2533.40 2545.	40 2557.4	40 2569.4
No.	Frequency (MHz)	✓ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	21.01	31.24	52.25	74.00	-21.75	peak
2 *	2483.500	7.47	31.24	38.71	54.00	-15.29	AVG
		·	-		-		-

EN

	Vertical N(HT20) Mc	ode 2462MHz			- Above 16 P	
		ode 2462MHz	Z		: - Above 16 A	,
					: - Above 16 A	,
					: - Above 16 A	,
					: - Above 16 A	,
					: - Above 16 A	,
					: - Above 16 A	,
					: - Above 16 A	,
				FCC Part15 C		
				FCC Part15 C		
			ntelevenne at some at some for at some	4660-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	X				ymenter de la comp	hannand
00 2474.00	0 2486.00 2	2498.00 (MHz)	2522.00	2534.00 2546	.00 2558.0	10 2570.0
equency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
183.500	24.04	31.24	55.28	74.00	-18.72	peak
183.500	13.49	31.24	44.73	54.00	-9.27	AVG
(N	MHz) 33.500	MHz) (dBuV) 33.500 24.04	MHz) (dBuV) (dB/m) 33.500 24.04 31.24	MHz) (dBuV) (dB/m) (dBuV/m) 33.500 24.04 31.24 55.28	MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 33.500 24.04 31.24 55.28 74.00	MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 33.500 24.04 31.24 55.28 74.00 -18.72

ΕN

nt No.	.:		Ant 1 +	Ant 2									
nt. Po)I.		Horizon	Ital									
est Mo	ode:		N(HT40) Moc	le 2422N	1Hz							
20.0 dB	uV/m												
o													
									1		~~~~		~
									FCC F	art15 C	- Above 1G	PK	
								1 X	FCC F	art15 C	- Above 1G	AV	\neg
								× 2					
warnesser.	And an article and a state of the	erup of the standards	hangtintaramaturatura	and any second with the	Amandar	-	hand and the second	and the second second	"r				
.0	0 2308.90	2323.90	2338.9		53.90 (M	Hz)	238		2398.90	2413		8.90	2443.
No.		uency IHz)	Read (dBu	-	Facto (dB/m		Le (dBu		Lin (dBu\		Margi (dB)	n _{De}	tector
1	239	0.000	21.9	90	30.84	Ļ	52.	74	74.	00	-21.20	6 p	eak
2 *	239	0.000	12.	16	30.84	Ļ	43.	00	54.	00	-11.0	D A	VG

ΕN

nt No).:	Ar	it 1 + Ant 2									
nt. Po	ol.	Ve	Vertical									
est M	ode:	N(HT40) Moo	de 2422MHz	2							
:0.0 dE	3uV/m		i		1	1 1	l.					
o												
						FCC Part15 C	- Above 1G Pl	<u>ر</u>				
								—-{				
					1 X	FCC Part15 C	- Above 1G A	,				
					2 and the second							
muser	man	at work and the	waymon	Anno Marin Maken Ball	harrist and the second s							
.0												
2293.00	10 2308.00 23	23.00	2338.00 23	353.00 (MHz)	2383.00	2398.00 2413.	00 2428.0	00 24 4 3.(
No.	Frequen (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
1	2390.00	0	27.87	30.84	58.71	74.00	-15.29	peak				
2 *	2390.00	0	18.23	30.84	49.07	54.00	-4.93	AVG				
				-		-	I					

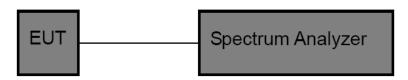
ΕN

Ant No.: Ant 1 + Ant 2										
nt. Pol	•	Horizontal								
est Mo	de:	N(HT40) Mo	de 2452MHz							
0.0 dBu ¹	V/m									
0										
0										
	~~									
					ECC Part15 C	- Above 1G Pl	<u> </u>			
\vdash		<u> </u>			FCC Part15 C	- Above 1G A	/			
		2								
			hadle bland and a state of the	ngweidhar an airstean ar dùthair an an air an ai	ana katan ang sana sa katan	anter the descent sector of the	kernettan parkana			
.0	0110 75 0150	75 0470 75 0	100.75 (111.)	0510 75		75 0500 3				
2428.750	2443.75 2458.	75 2473.75 2	488.75 (MHz)	2518.75	2533.75 2548.	.75 2563.7	75 257 8.			
No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto			
1	2483.500	21.85	31.24	53.09	74.00	-20.91	peak			
2 *	2483.500	10.10	31.24	41.34	54.00	-12.66	AVG			
	1	1	1	1	1	1				

EN

Ant No.	:	Ant 1 + Ant 2					
Ant. Po	-	Vertical					
Test Mo	de:	N(HT40) Mod	de 2452MHz	2			
120.0 dBu	V/m						
110							
100							
90 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	γ					
80	· ·						
70					FCC Part15 C	- Above 1G Pl	<u><</u>
60		<u>1</u>					
50		,			FCC Part15 C	- Above 1G A	<u> </u>
40			and the character and the second		mento and a second		
30						and a star and a star for the star	a na mana ang kana na k
20							
10							
0.0							
2431.000	2446.00 2461.0	0 2476.00 24	91.00 (MHz)	2521.00	2536.00 2551.	.00 2566.0	00 2581.00
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.500	27.00	31.24	58.24	74.00	-15.76	peak
2 *	2483.500	18.32	31.24	49.56	54.00	-4.44	AVG
							<u> </u>

EN



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

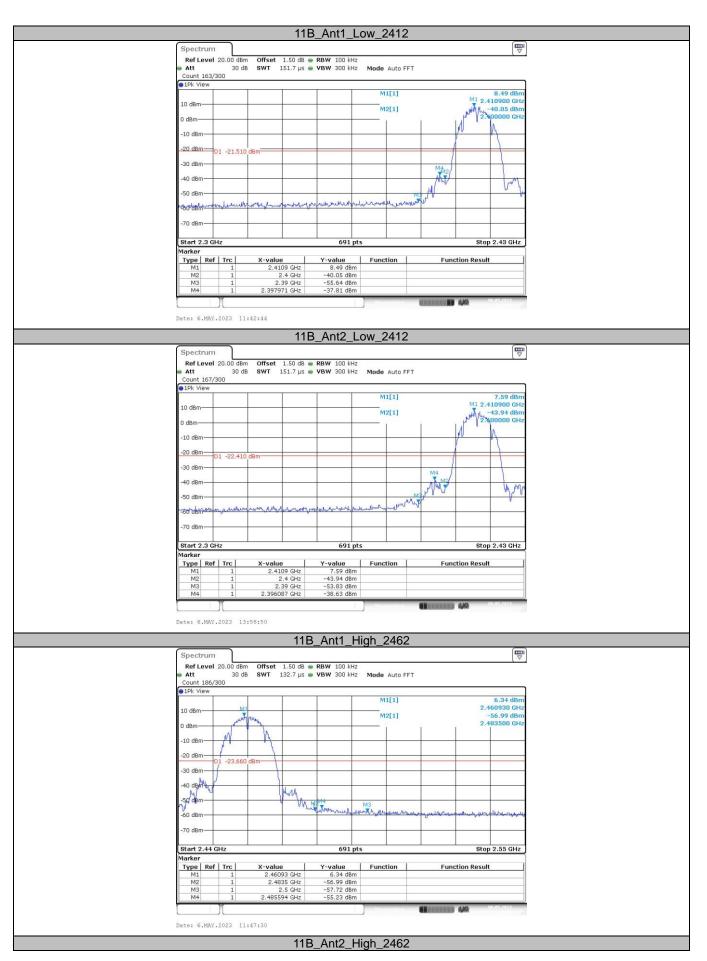
Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic.
- Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

Test Mode

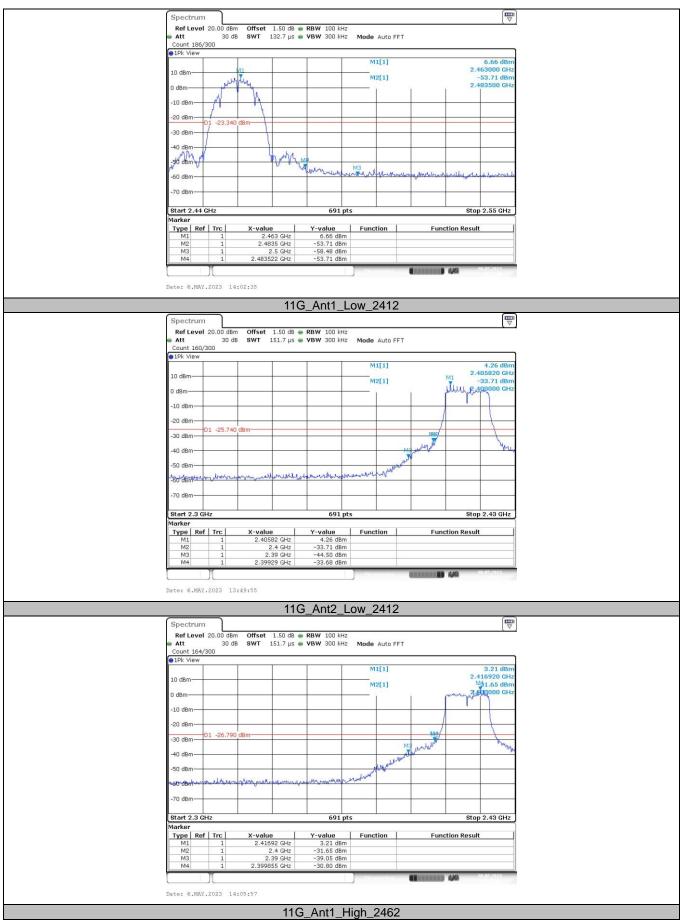
Please refer to the clause 2.4.

Test Results

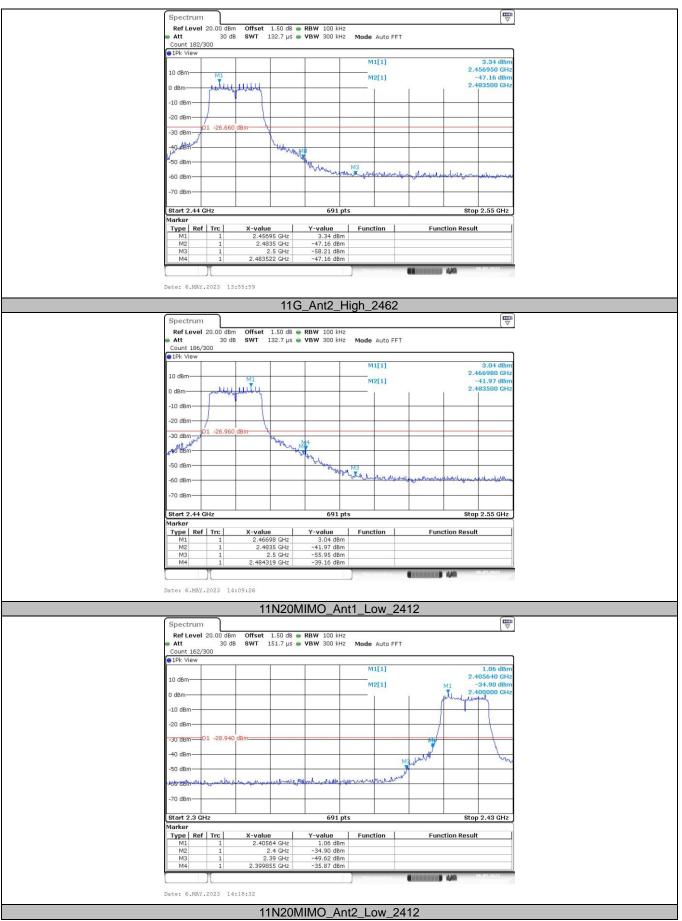


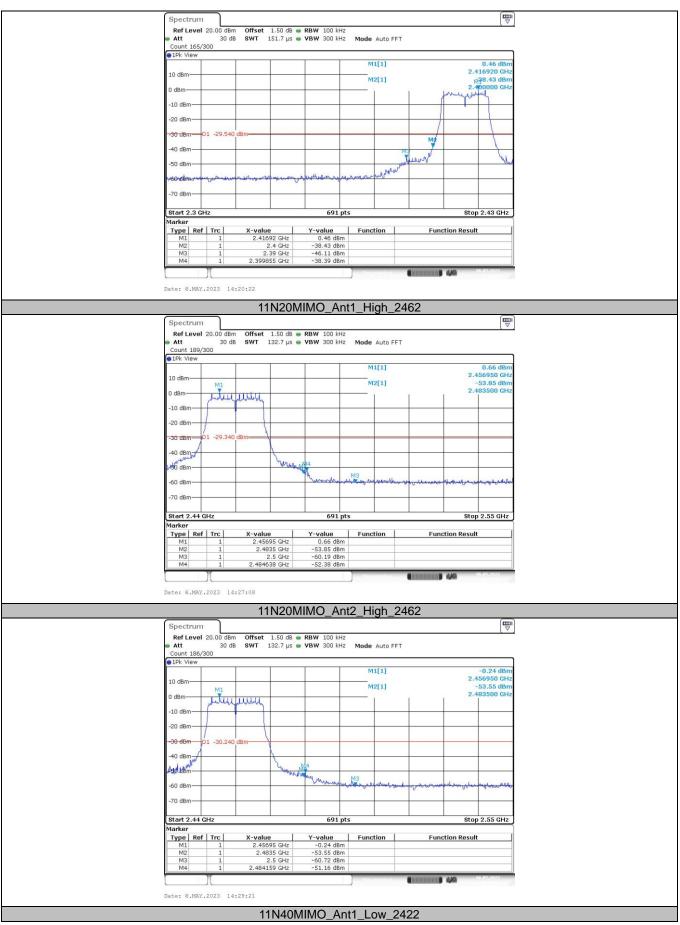
(1) Band edge Conducted Test

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Ant1	Low	2412	8.49	-37.81	≤-21.51	PASS
11B	Ant2	Low	2412	7.59	-38.63	≤-22.41	PASS
ПD	Ant1	High	2462	6.34	-55.23	≤-23.66	PASS
	Ant2	High	2462	6.66	-53.71	≤-23.34	PASS
	Ant1	Low	2412	4.26	-33.68	≤-25.74	PASS
11G	Ant2	Low	2412	3.21	-30.8	≤-26.79	PASS
110	Ant1	High	2462	3.34	-47.16	≤-26.66	PASS
	Ant2	High	2462	3.04	-39.16	≤-26.96	PASS
	Ant1	Low	2412	1.06	-35.87	≤-28.94	PASS
11N20MIMO	Ant2	Low	2412	0.46	-38.39	≤-29.54	PASS
	Ant1	High	2462	0.66	-52.38	≤-29.34	PASS
	Ant2	High	2462	-0.24	-51.16	≤-30.24	PASS
	Ant1	Low	2422	-2.52	-36.33	≤-32.52	PASS
11N40MIMO	Ant2	Low	2422	-2.21	-37.12	≤-32.21	PASS
	Ant1	High	2452	-2.51	-44.36	≤-32.51	PASS
	Ant2	High	2452	-1.50	-40.65	≤-31.5	PASS

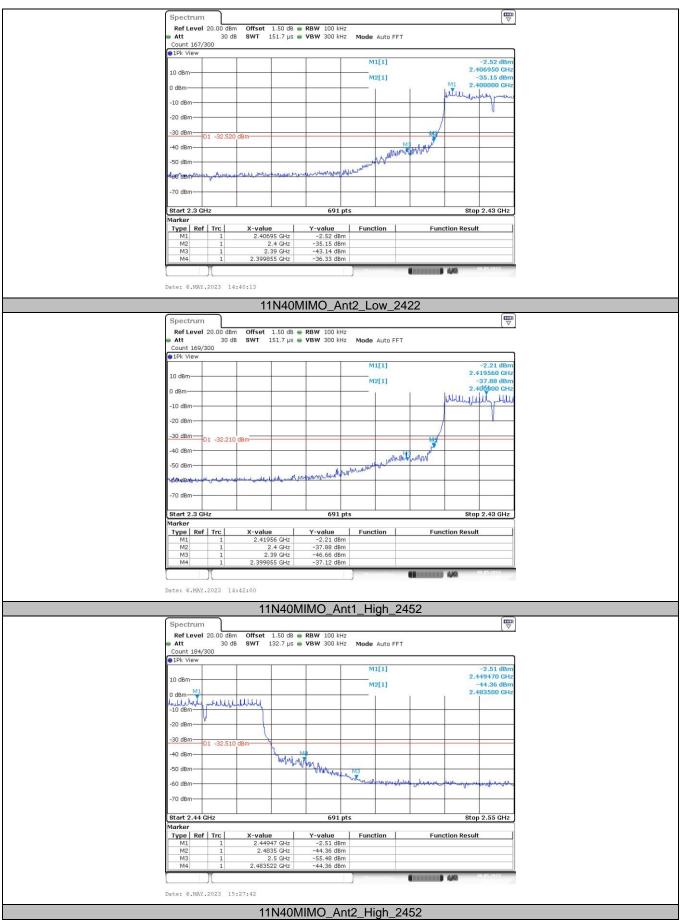


Page 50 of 123

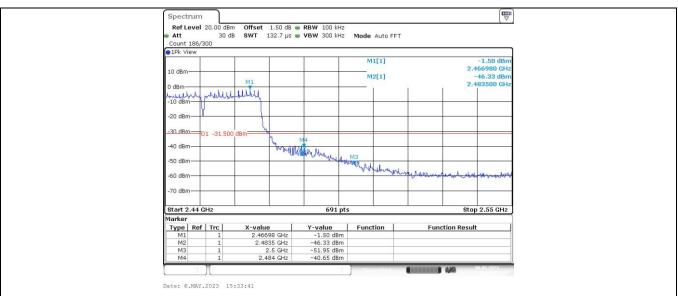




CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下a:: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>



CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下a:: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>



EN

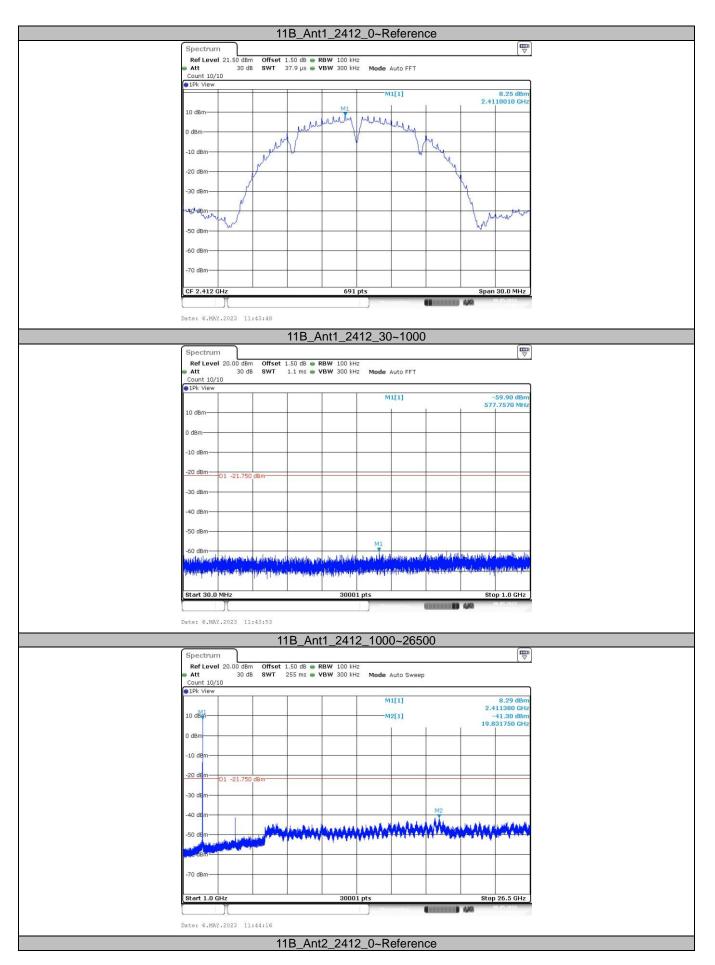
CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

(2) Conducted Spurious Emissions Test

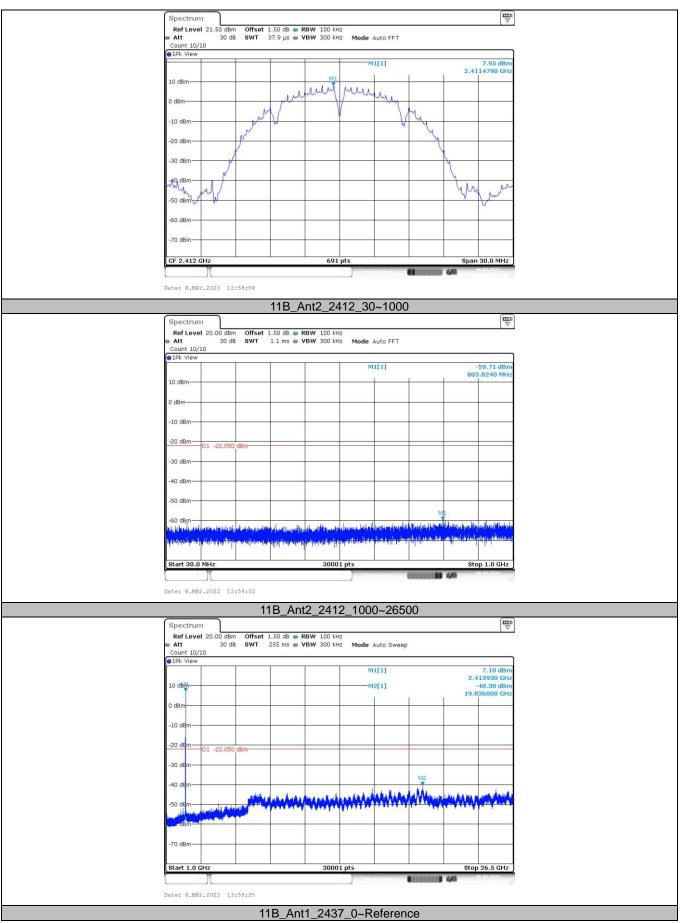
TestMode	Antenna	Channel	FreqRange [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
11B -			Reference	8.25	8.25		PASS
	Ant1	2412	30~1000	8.25	-59.9	≤-21.75	PASS
			1000~26500	8.25	-41.3	≤-21.75	PASS
		2412	Reference	7.95	7.95		PASS
	Ant2		30~1000	7.95	-59.71	≤-22.05	PASS
			1000~26500	7.95	-40.3	≤-22.05	PASS
		2437	Reference	8.18	8.18		PASS
	Ant1		30~1000	8.18	-60.46	≤-21.82	PASS
			1000~26500	8.18	-40.28	≤-21.82	PASS
	Ant2	2437	Reference	7.98	7.98		PASS
			30~1000	7.98	-59.74	≤-22.02	PASS
			1000~26500	7.98	-40.72	≤-22.02	PASS
	Ant1	2462	Reference	7.86	7.86		PASS
			30~1000	7.86	-59.96	≤-22.14	PASS
			1000~26500	7.86	-41.16	≤-22.14	PASS
		2462	Reference	7.48	7.48		PASS
	Ant2		30~1000	7.48	-59.92	≤-22.52	PASS
			1000~26500	7.48	-41.03	≤-22.52	PASS
			Reference	4.04	4.04		PASS
	Ant1	2412	30~1000	4.04	-60	≤-25.96	PASS
			1000~26500	4.04	-41.22	≤-25.96	PASS
			Reference	3.63	3.63		PASS
	Ant2	2412	30~1000	3.63	-59.85	≤-26.37	PASS
			1000~26500	3.63	-40.9	≤-26.37	PASS
	• • •		Reference	3.06	3.06		PASS
	Ant1	2437	30~1000	3.06	-59.33	≤-26.94	PASS
11G			1000~26500	3.06	-41.11	≤-26.94	PASS
	Ant2	2437	Reference	3.83	3.83		PASS
			30~1000	3.83	-60.09	≤-26.17	PASS
			1000~26500	3.83	-40.8	≤-26.17	PASS
	Ant1	2462	Reference	3.22	3.22		PASS
			30~1000	3.22	-59.51	≤-26.78	PASS
			1000~26500	3.22	-41.24	≤-26.78	PASS
	Ant2	2462	Reference	3.69	3.69		PASS
			<u>30~1000</u> 1000~26500	3.69 3.69	-58.28 -41.38	<u>≤-26.31</u> ≤-26.31	PASS PASS
	Ant1	2412	Reference	1.93	1.93	<u> </u>	PASS
			30~1000	1.93	-59.61	≤-28.07	PASS
			1000~26500	1.93	-40.47	≤-28.07	PASS
			Reference	1.24	1.24		PASS
	Ant2	2412	30~1000	1.24	-59.85	≤-28.76	PASS
			1000~26500	1.24	-41.36	≤-28.76	PASS
			Reference	1.18	1.18		PASS
	Ant1	2437	30~1000	1.18	-58.93	≤-28.82	PASS
			1000~26500	1.18	-41.69	≤-28.82	PASS
11N20MIMO			Reference	0.76	0.76		PASS
	Ant2	2437	30~1000	0.76	-59.99	≤-29.24	PASS
			1000~26500	0.76	-41.71	≤-29.24	PASS
-		2462	Reference	-0.63	-0.63		PASS
	Ant1		30~1000	-0.63	-59.26	≤-30.63	PASS
			1000~26500	-0.63	-41.45	<u>≤</u> -30.63	PASS
	Ant2	2462	Reference	0.25	0.25		PASS
			30~1000	0.25	-60.18	≤-29.75	PASS
			1000~26500	0.25	-41.17	≤-29.75	PASS
11N40MIMO	Ant1	2422	Reference	-2.14	-2.14		PASS
			30~1000	-2.14	-59.55	≤-32.14	PASS
			1000~26500	-2.14	-41.16	≤-32.14	PASS
			Reference	-2.53	-2.53		PASS
	Ant2	2422	30~1000	-2.53	-59.81	≤-32.53	PASS
			1000~26500	-2.53	-41.32	<u>≤</u> -32.53	PASS

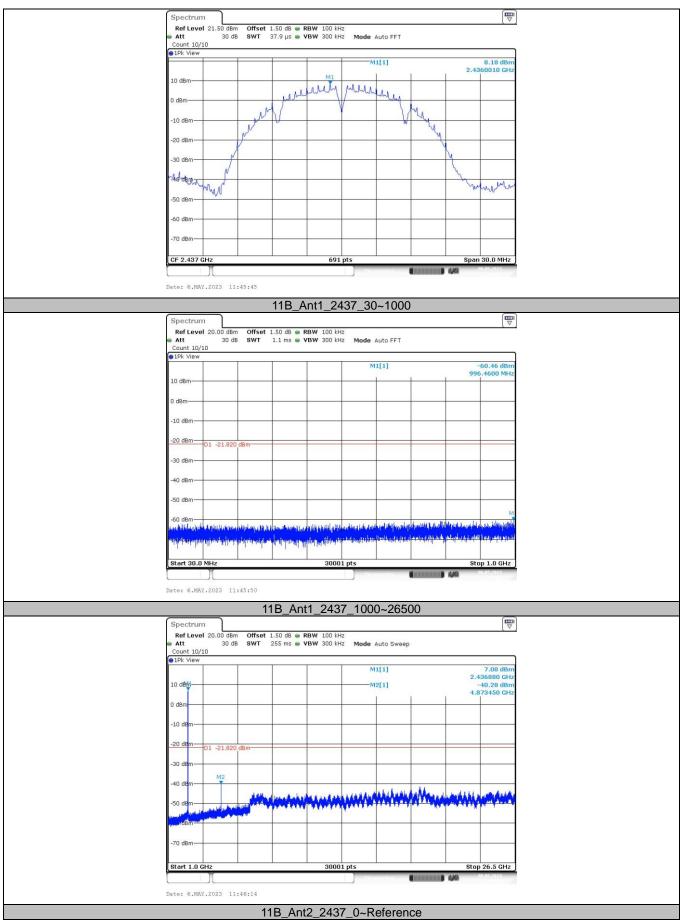
CTC Laboratories, Inc.

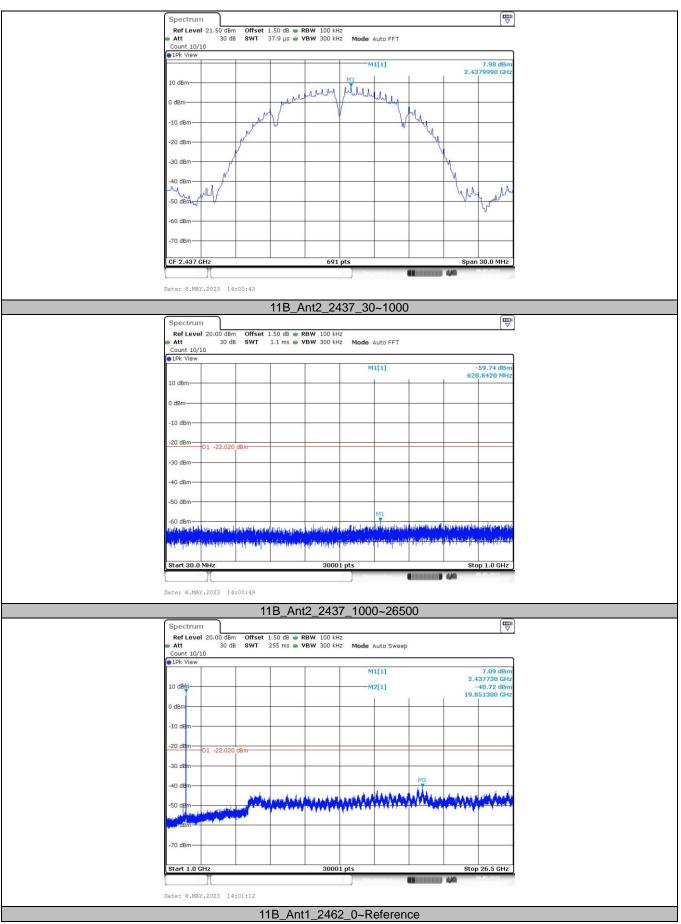
EN

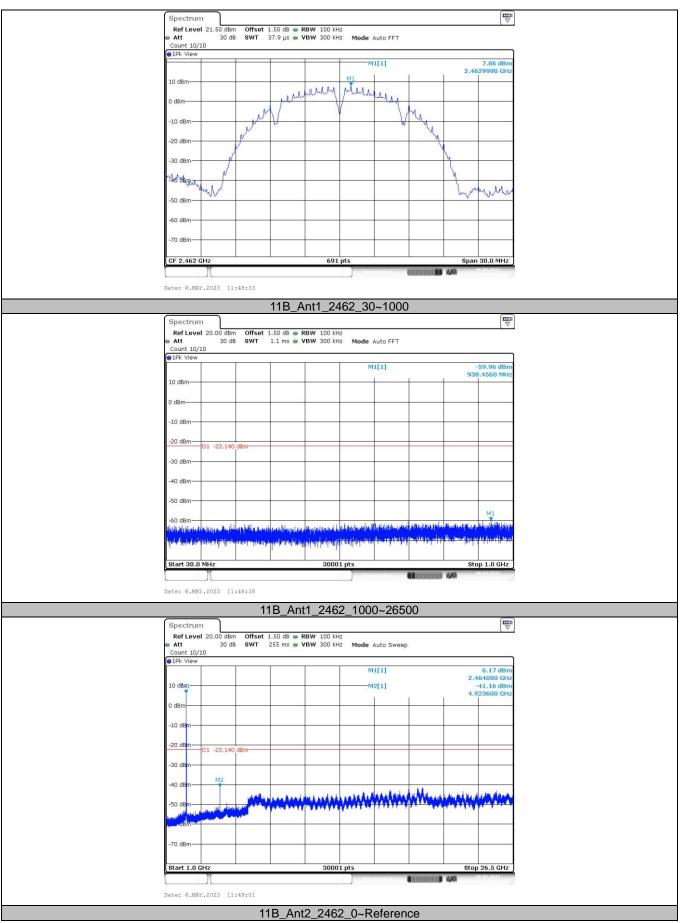

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn 证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

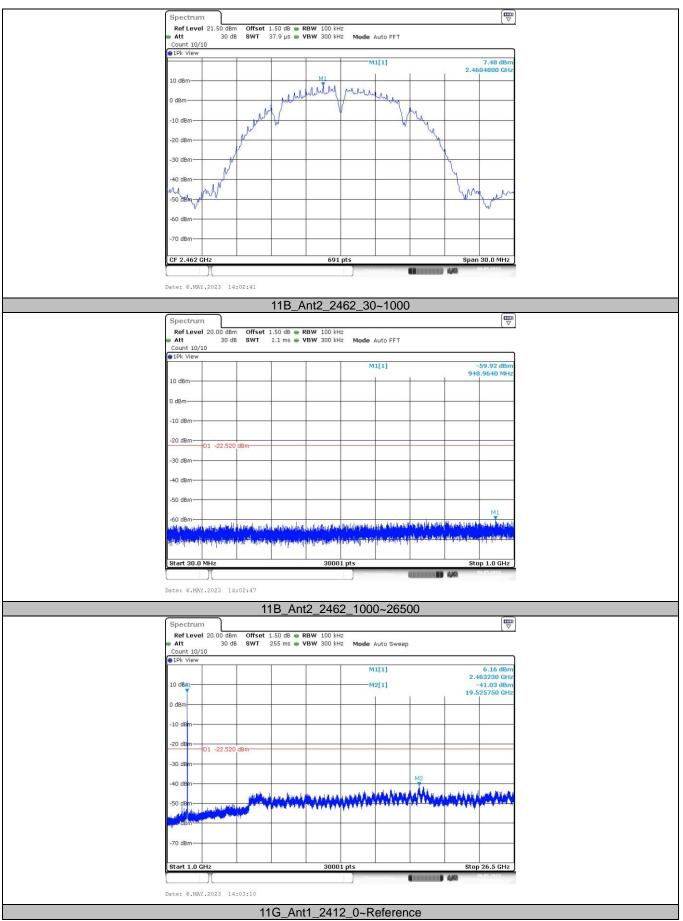
Page 57 of 123

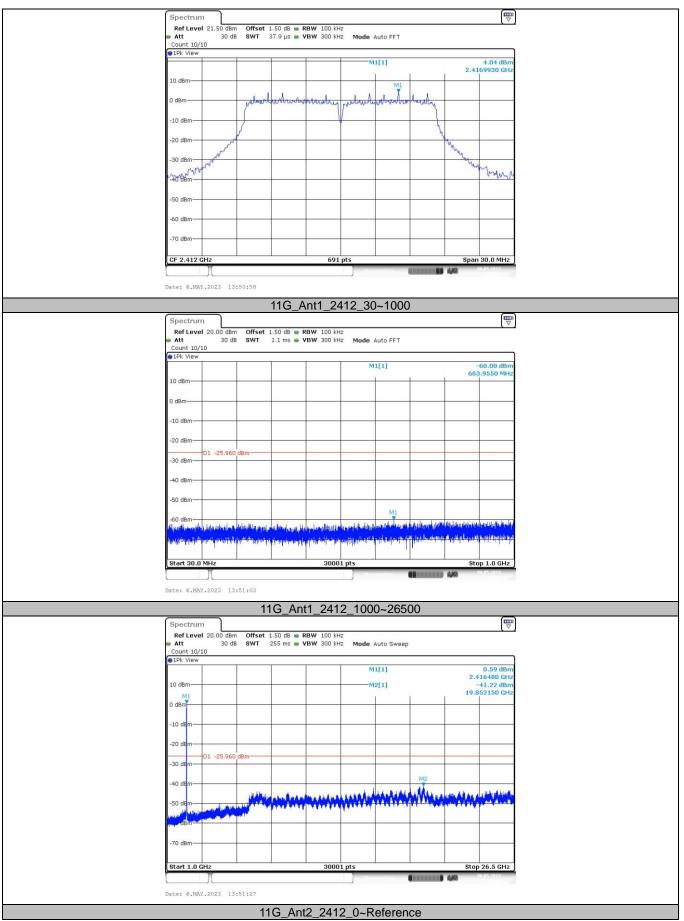

			30~1000	-1.21	-59.12	≤-31.21	PASS
			1000~26500	-1.21	-40.39	≤-31.21	PASS
	Ant2	2437	Reference	-1.98	-1.98		PASS
			30~1000	-1.98	-58.5	≤-31.98	PASS
			1000~26500	-1.98	-41.05	≤-31.98	PASS
	Ant1	2452	Reference	-1.89	-1.89		PASS
			30~1000	-1.89	-58.9	≤-31.89	PASS
			1000~26500	-1.89	-40.71	≤-31.89	PASS
	Ant2	2452	Reference	-2.26	-2.26		PASS
			30~1000	-2.26	-59.94	≤-32.26	PASS
			1000~26500	-2.26	-41.26	≤-32.26	PASS











CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下a:: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

