

Page: 1 of 22 MS-Word2000

W-CDMA test report for

Report Date:

March 30, 2004

Signatures:

Tested by:

John Julh

Marko Turkkila

Testing Engineer

Contents approved:

J-M

Tomi Nyberg

Laboratory Manager

Test results are valid for the tested unit only.

Trade reg. Nr:: 1871439-4 This report shall not be reproduced except in full

Page: 2 of 22 MS-Word2000

CONTENTS

1	LABORATORY INFORMATION	3
2	CUSTOMER INFORMATION	
3	SUMMARY OF TEST RESULTS	4
4	EUT INFORMATION 4.1 EUT description	
5	EUT TEST SETUPS	6
6	APPLICABLE STANDARDS	6
7	RADIATED RF OUTPUT POWER7.1Test setup7.2Test method7.3EUT operation mode7.4Limit7.5Results	
8	99% OCCUPIED BANDWIDTH 8.1 Test setup 8.2 EUT operation mode 8.3 Results 8.4 Screen shots	
9	BAND-EDGE COMPLIANCE.9.1Test setup	
10	0 RADIATED SPURIOUS EMISSIONS 10.1 Test setup 10.2 Test method 10.3 EUT operation mode 10.4 Limit. 10.5 Results	14 14 14 14
	1 TEST EQUIPMENT 11.1 Conducted measurements 11.2 Radiated measurements	
12	2 TEST SETUP PHOTOGRAPHS	

EMC Laboratory

Page: 3 of 22 MS-Word2000

1 LABORATORY INFORMATION

Test Laboratory	NORDIC ACCREDITED TESTING
·	LABORATORIES OY
	EMC Laboratory
	Koneenkatu 12 / K17
	05830 Hyvinkää
	FINLAND
	Tel: +358 20 475 2600
	Fax: +358 20 475 2719
	e-mail: firstname.surname@ette.com
FCC registration	
number:	910391 (January 27, 2003)
IC file number:	IC 4616 (May 14, 2003)

2 CUSTOMER INFORMATION

Client	Nokia Corporation Keilalahdentie 2-4 02150 Espoo PL 226 00045 NOKIA GROUP
	Tel: 07180 08000
Contact person:	Reija Moisio Nokia Corporation / TCC Salo P.O. Box 86 (Joensuunkatu 7E / Kiila 1B) FIN -24101 SALO FINLAND Tel: +358 7180 08000 Fax: +358 7180 44123
Receipt of EUT:	March 11, 2004
Testing date:	March 11 – 29, 2004
Report date:	March 30 2004

The tests listed in this report have been done to demonstrate compliance with the applicable requirements in FCC rules Part 24 and 2 and IC standard RSS-133.

EMC Laboratory

Page: 4 of 22 MS-Word2000

3 SUMMARY OF TEST RESULTS

Section in CFR 47	Section in	Test	Result
	RSS-133		
§2.1046 (a)	6.2	Conducted RF output	-
§24.232 (b)	6.2	Radiated RF output	PASS
§2.1049 (h)	5.6	99% occupied bandwidth	PASS
§24.238 (a)	6.3	Block-edge compliance	PASS
§24.238 (a), §2.1051	6.3	Spurious emissions at antenna terminals	-
§24.238 (a), §2.1053	6.3	Radiated spurious emissions	PASS
§24.235, §2.1055 (a)(1)(b)	7	Frequency stability, temperature variation	-
§24.235, §2.1055 (d)(1)(2)	7	Frequency stability, voltage variation	-

PASS Pass

FAIL Fail

_

X Measured, but there is no applicable performance criteria

Not done

EMC Laboratory

Page: 5 of 22 MS-Word2000

4 EUT INFORMATION

The EUT and accessories used in the tests are listed below. Later in this report only EUT numbers are used as reference.

	Device	Туре	S/N	EUT number
EUT	W-CDMA Mobile phone	NMM-1	001004/00/171665/4	17001
LUI	W-CDMA Mobile phone	NMM-1	001004/00/171642/3	17002
	W-CDMA Mobile phone	NMM-1	001004/00/171678/7	17003
Accessories	Battery	BLC-2		17004

Notes: -

4.1 EUT description

EUT is a GSM 1900 mobile phone with BT and W-CDMA functions.

The EUT was not modified during the tests.

EMC Laboratory

Page: 6 of 22 MS-Word2000

Identification: T04-017B-EMC

5 EUT TEST SETUPS

For each test the EUT was exercised to find out the worst case of operation modes and device configuration.

The test setup photographs are in the document referenced in section 12.

6 APPLICABLE STANDARDS

The tests were performed in guidance of CFR 47 part 24, part 2, ANSI/TIA/EIA-603-A-2001 and RSS-133.

Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method" for each test case.

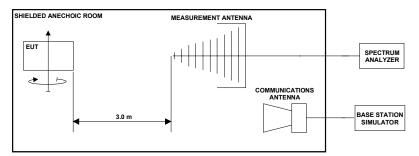
EMC Laboratory

Page: 7 of 22 MS-Word2000

7 RADIATED RF OUTPUT POWER

EUT	17003			
Accessories	17004			
Temp, Humidity,	21 °C	44 RH%	1018 hPa	
Air Pressure				
Date of measurement	March 27, 2004			
FCC rule part	§24.232 (b)			
RSS-133 section	6.2			
Measured by	Marko Turkkila			

7.1 Test setup


The EUT was set on a non-conductive turntable in a semi-anechoic chamber. In the corner of the chamber there was a communications antenna, which was connected to the BS simulator located outside the chamber.

The radiated power from the EUT was measured with an antenna fixed to an antenna tower. Antenna polarization and height can be changed remotely. The turntable is remotely controlled to turn the EUT

The EUT was set at 0.8m height. Measuring antenna was scanned 1 - 4 m in height.

The measured signal was routed from the measuring antenna to the spectrum analyzer.

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

Picture 1: Test setup for radiated RF output power measurement

EMC Laboratory

Page: 8 of 22 MS-Word2000

- 7.2 Test method
 - 1. Substitution method calibration was made for determining correction factors for horizontal and vertical polarization. In the calibration the EUT was substituted with a signal generator and antenna, which gain over isotropic and dipole radiator was known.
 - 2. The maximum power level was searched by moving the turntable, by manipulating the EUT and by changing the measurement antenna polarization and height. The maximum measured level (P_{EUT}) was recorded.
 - 3. The measured power from EUT was corrected with the correction factor in an automated test system to give the EUT EIRP.

7.3 EUT operation mode

EUT operation mode Test loop mode 2			
EUT channel 9262, 9400, 9538			
EUT TX power level	Max TX power level was set with TPC power control bit pattern "All 1"		

7.4 Limit

EIRP [W]			
FCC	≤ 2		
IC	≤ 2		

Identification: T04-017B-EMC

EMC Laboratory

Page: 9 of 22 MS-Word2000

7.5 Results

The formula below was used to calculate the EIRP of the EUT.

$$P_{EIRP[W]} = \frac{10^{(P_{EUT[dBm]} + (P_{Subst_RX}[dBm] - P_{Subst_TX}[dBm] + L_{Cable}[dB] - G_{Substitute_antenna}[dBi]))/10}{1000}$$
$$= \frac{10^{(P_{EUT}[dBm] + CF[dB])/10}}{1000}$$

1000

where the variables are as follows:

$P_{\rm EUT[dBm]}$	Measured power level (from step 2 in 7.2) from the EUT
$P_{\mathrm{Subst}_{\mathrm{TX}}[\mathrm{dBm}]}$	Power (step 1 in 7.2) fed to the substituting antenna
$P_{\mathrm{Subst}_{\mathrm{RX}}[\mathrm{dBm}]}$	Power (step 1 in 7.2) received with the spectrum analyzer
$G_{ m Substitute_antenna}$ [d	Bi] Gain of the substitutive antenna over isotropic radiator
$L_{\text{Cable [dB]}}$	Loss of the cable between signal generator and the substituting antenna
<i>CF</i> [dB]	Correction factor combined from the $P_{\text{Subst_TX}[dBm]}$, $P_{\text{Subst_RX}[dBm]}$, $G_{\text{Substitute_antenna}[dBi]}$ and $L_{\text{Cable}[dB]}$ used in the automated measurement system (step 3 in 7.2).

In the tables below, the abbreviated column titles are:

EUT H / H2 /	V EUT orientation, Horizontal / Horizontal 2 /
	Vertical
Pol H / V	Measuring antenna polarization, Horizontal / Vertical
Height [m]	Measuring antenna height from reference ground in meters
TT [deg]	Turn table angle in degrees

Page: 10 of 22 MS-Word2000

			P	P · · · · · · · ·			,		
	EUT Channel	P _{EUT} [dBm]	CF [dB]	EIRP [dBm]	EIRP [W]	EUT H / V /H2	Pol. H / V	Height [m]	TT [deg]
Γ	9262	-20.45	43.20	22.75	0.19	Н	Н	1.20	27.0
Γ	9400	-19.29	43.32	24.03	0.25	Н	Н	1.17	24.0
	9538	-19.69	43.53	23.84	0.24	Н	Н	1.14	29.0

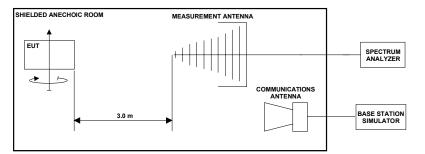
Table 1:Radiated RF output power measurement results, W-CDMA.

Test results are valid for the tested unit only.

This report shall not be reproduced except in full

Tel: +358 20 475 2600 Fax: +358 20 475 2719 Email: firstname.surname@ette.com

EMC Laboratory


Page: 11 of 22 MS-Word2000

8 99% OCCUPIED BANDWIDTH

EUT	17001				
Accessories	17004				
Temp, Humidity,	21 °C	41 RH%	1028 hPa		
Air Pressure					
Date of measurement	March 13, 2004				
FCC rule part	§2.1049 (h)				
RSS-133 section	5.6				
Measured by	Kimmo Aarnio				

8.1 Test setup

The BS simulator was used to set the TX channel, power level and to establish data communication with EUT.

Picture 2: Test setup for band edge compliance measurement

99% occupied bandwidth measurements were made as radiated measurement similar to radiated power measurement. The worst turntable angle, antenna height and antenna polarisation found in radiated power measurements were used.

Base station simulator was used to set the EUT channel, modulation and power level.

8.2 EUT operation mode

EUT operation mode	Test loop mode 2
EUT channel	9262, 9400, 9538
EUT TX power level	Max TX power level was set with TPC power control bit pattern "All 1"

EMC Laboratory

Identification: T04-017B-EMC

Page: 12 of 22 MS-Word2000

8.3 Results

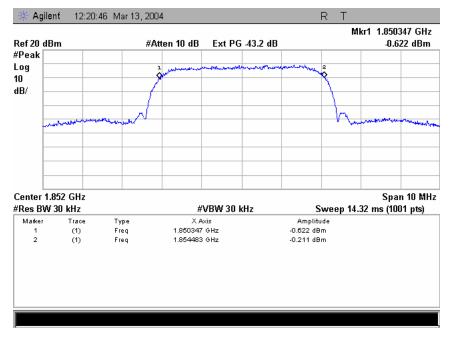
The 99% occupied bandwidth was calculated from spectrum analyzer measurements. The measurement data was read from the analyzer to computer. Software in computer calculated the total power from the measurement data and defined the frequency band containing 99% of the total power. Markers in the spectrum analyzer were then placed between the calculated frequencies to show the calculated 99% power band in the screenshots.

Table 2:99% occupied bandwidth measurement results, W-CDMA

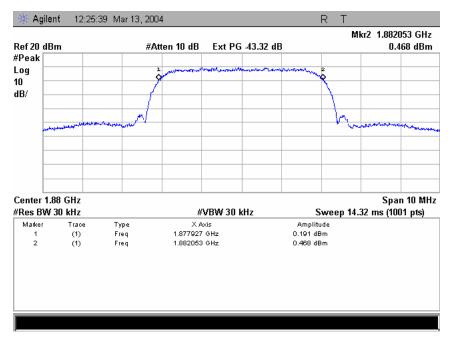
EUT Channel	99% occupied bandwidth [kHz]
9262	4136
9400	4126
9538	4076

Test results are valid for the tested unit only.

This report shall not be reproduced except in full



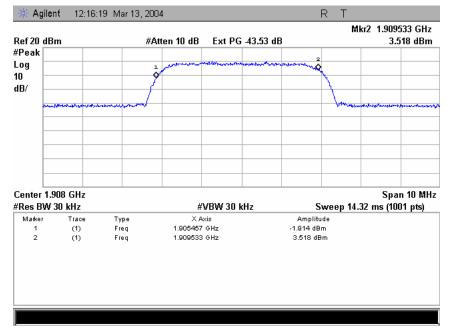
EMC Laboratory


Page: 13 of 22 MS-Word2000

Identification: T04-017B-EMC

8.4 Screen shots

Picture 3: 99% occupied bandwidth, W-CDMA channel 9262



Picture 4: 99% occupied bandwidth, W-CDMA channel 9400.

Page: 14 of 22 MS-Word2000

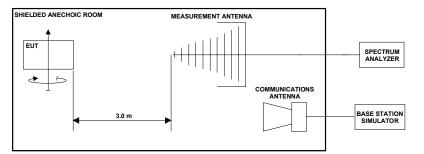
EMC Laboratory

Picture 5: 99% occupied bandwidth, W-CDMA channel 9538

Test results are valid for the tested unit only.

This report shall not be reproduced except in full

EMC Laboratory


Page: 15 of 22 MS-Word2000

9 BAND-EDGE COMPLIANCE

EUT	17003		
Accessories	17004		
Temp, Humidity,	21 °C	42 RH%	1021 hPa
Air Pressure			
Date of measurement	March 29, 2004		
FCC rule part	§24.238 (a)		
RSS-133 section	6.3		
Measured by	Marko Turkkila		

9.1 Test setup

The BS simulator was used to set the TX channel, power level and to establish data communication with EUT.

Picture 6: Test setup for band edge compliance measurement

Band edge power measurements were made as radiated measurement similar to radiated power measurement. The worst turntable angle, antenna height and antenna polarisation found in radiated power measurements were used.

Base station simulator was used to set the EUT channel, modulation and power level.

Power level at the band edge was measured with spectrum analyzer. Measured reading was corrected in the spectrum analyzer by setting correction factor calculated in radiated power measurement section (7.5), as offset.

9.2 EUT operation mode

EUT operation mode	Test loop mode 2
EUT channel	9262, 9538
EUT TX power level	Max TX power level was set with TPC power control bit pattern "All 1"

Product compliance test

EMC Laboratory

EMC-measurements

Page: 16 of 22 MS-Word2000

Identification: T04-017B-EMC

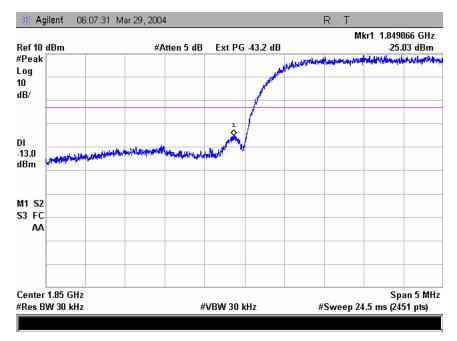
9.3 Limit

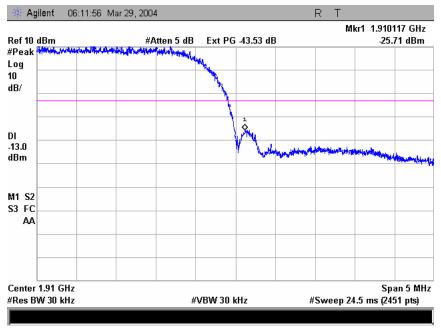
Frequency [MHz]	Level [dBm]
<1850	-13
>1910	-13

9.4 Results

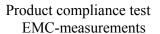
The line in the screen shots is the -13dBm limit line. The results were corrected with "offset" value described in test setup section.

Table 3:	Band edge compliance measurement results, W	V-CDMA
14010 01		· • • • • • • • •


EUT Channel	Offset [dB]	Band edge power [dBm]	Antenna Height	Antenna Pol.	EUT Orient.	Turn table Angle
9262	43.20	-25.03	1.20	Н	Н	27
9538	43.53	-25.71	1.14	Н	Н	29


EMC Laboratory

Page: 17 of 22 MS-Word2000

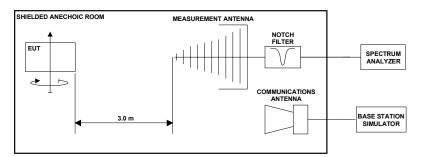

9.5 Screen shots

Picture 7: W-CDMA, channel 9262

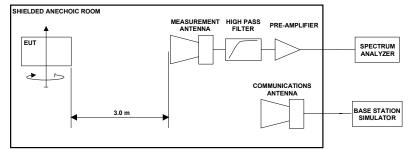
Picture 8: W-CDMA, channel 9538

Page: 18 of 22 MS-Word2000

10 RADIATED SPURIOUS EMISSIONS


EUT	17002		
Accessories	17004		
Temp, Humidity,	22 °C	43 RH%	1008 hPa
Air Pressure			
Date of measurement	March 18, 2004		
FCC rule part	§24.238 (a), §2.1053	3	
RSS-133 section	6.3		
Measured by	Kimmo Aarnio		

10.1 Test setup


Band reject and high pass filters was used to prevent overloading the spectrum analyzer and preamplifier.

The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.

The test was done using an automated test system, where the measurement equipment was controlled by a computer.

Picture 9: Test setup for radiated spurious emissions measurement on below 3 GHz frequencies

Picture 10: Test setup for radiated spurious emissions measurement on 3 GHz and above frequencies

Livic Eutobatory

Page: 19 of 22 MS-Word2000

- 10.2 Test method
 - 1. The emissions were searched and maximized by moving the turntable, changing the measuring antenna polarization and height.
 - 2. Levels of suspicious signals and levels of EUT transmitter harmonics were recorded.
 - 3. The recorded levels were corrected in the automated test system with the correction factor given by a substitution calibration made before the measurements. The calibration is made separately for vertical and horizontal polarization and the system uses different correction factors depending on the measuring antenna polarization.
 - 4. The corrected values, giving the EUT radiated spurious emission levels as e.i.r.p, are reported.

10.3 EUT operation mode

EUT operation mode	Test loop mode 2
EUT channel	9400
EUT TX power level	Max TX power level was set with TPC
	power control bit pattern "All 1"

10.4 Limit

Frequency [MHz]	Level [dBm]
30 - 19100	-13

EMC Laboratory

Page: 20 of 22 MS-Word2000

10.5 Results

The formula below was used to calculate the EIRP of the spurious emissions.

$$P_{Emission[dBm]} = P_{Measured[dBm]} + \left(P_{SubstRX[dBm]} - P_{SubstTX[dBm]} + L_{Cable[dB]} - G_{Antenna[dBi]}\right)$$
$$= P_{Measured[dBm]} + CF_{[dB]}$$

where the variables are as follows:

P _{Measured [dBm]}	Measured emission level (from step 2 in 10.2)
P _{Subst_TX [dBm]}	Signal generator power (from step 4 in 10.2) fed to the
	substituting antenna
P _{Subst_RX [dBm]}	Measured power (from step 4 in 10.2) in the substitution
	calibration
L _{Cable [dB]}	Loss of the cable between antenna and signal generator (from
	step 4 in 10.2)
GAntenna [dBi]	Gain of the substitutive antenna over isotropic radiator
CF _[dB]	Correction factor combined from the P _{Subst TX [dBm]} , L _{Cable [dB]} and
	G _{Antenna [dBi]} used in the automated test software

Measurement system noise level was least 15 dB below the spurious emission limit. Only levels of suspicious signals and transmitter harmonic frequencies, which were above the measurement system noise, are reported.

In the tables below, the abbreviated column titles are:

f[MHz]	Measured frequency
EUT V	EUT orientation, Vertical
Pol H / V	Measuring antenna polarization, Horizontal / Vertical
Height [m]	Measuring antenna height from reference ground in meters
TT [deg]	Turn table angle in degrees

Table 4:	Radiated spurious emission levels,	W-CDMA channel 9400
1 4010 1.	reactive sparrous emission ievers,	

f	P _{Measured}	CF	P _{Emission}	EUT	Pol.	Height	TT
[MHz]	[dBm]	[dB]	[dBm]	V	H / V	[m]	[deg]

*** All peaks were more than 25 dB under the limit.

EMC Laboratory

Page: 21 of 22 MS-Word2000

11 TEST EQUIPMENT

All testing and measurement equipment has been calibrated once a year, except the antennas which are calibrated every two years.

11.1 Conducted measurements

Equipment	Manufacturer	Model
Spectrum Analyzer	Agilent	E7405A
W-CDMA Base	Anritsu	MT8820A
station simulator		
Signal Generator	Rohde & Schwarz	SMR27
Attenuator 3 dB	Narda	779-3
Power splitter	Mini Circuits	ZFSC-2-4
Power splitter	Narda	4426-2
Temperature	Finero	LK 540
chamber		
DC power supply	Delta Elektronika	SM 120-13
Multimeter	Fluke	179

11.2 Radiated measurements

Equipment	Manufacturer	Model
Spectrum Analyzer	Agilent	E7405A
W-CDMA Base	Anritsu	MT8820A
station simulator		
Antenna	Chase	CBL 6140
Antenna	Schwarzbeck	BBHA 9120D
Antenna	Chase	CBL 6141
Antenna	EMCO	3115
Signal Generator	Rohde & Schwarz	SMR27
Tunable notch filter	Wainwright Instruments	WRCD 1700/2000-0.2/40-
		10EEK
Tunable notch filter	Wainwright Instruments	WRCT 800/960-0.2/40-
		8EEK
High pass filter	Wainwright Instruments	WHK3/18GST
High pass filter	Wainwright Instruments	WHK 2.1/18GST
Band Reject filter	Wainwright instruments	WRCT2400/2483-45/10EE
Pre-amplifier	JCA	118-400
Pre-amplifier	Agilent	87405B
Turn table /	EMCO	2090
antenna mast		
controller		
Antenna mast	EMCO	2075-2

EMC Laboratory

Page: 22 of 22 MS-Word2000

12 TEST SETUP PHOTOGRAPHS

Test setup photographs can be found in a separate document

T04-017B-EMC_PHOTOS.doc