

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.381.1520 http://www.element.com

MEASUREMENT REPORT FCC PART 15.247 802.11b/g/n/ax/be (OFDM)

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea **Date of Testing:**

8/21/2023 - 11/10/2023 Test Report Issue Date:

11/10/2023

Test Site/Location:

Element lab., Columbia, MD, USA

Test Report Serial No.: 1M2308210093-11.A3L

FCC ID: A3LSMS928B

APPLICANT: Samsung Electronics Co., Ltd.

Application Type:CertificationModel:SM-S928B/DSAdditional Model(s):SM-S928B

EUT Type:Portable HandsetFrequency Range:2412 – 2472MHzModulation Type:CCK, DSSS, OFDM

FCC Classification: Digital Transmission System (DTS)

FCC Rule Part(s): Part 15 Subpart C (15.247)

Test Procedure(s): ANSI C63.10-2013, KDB 648474 D03 v01r04

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez
Executive Vice President

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 106	
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 1 01 106	

TABLE OF CONTENTS

1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRC	DDUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	7
	2.4	Antenna Description	7
	2.5	Software and Firmware	7
	2.6	EMI Suppression Device(s) / Modifications	7
3.0	DES	SCRIPTION OF TESTS	8
	3.1	Evaluation Procedure	8
	3.2	AC Line Conducted Emissions	8
	3.3	Radiated Emissions	9
	3.4	Environmental Conditions	9
4.0	ANT	ENNA REQUIREMENTS	10
5.0	MEA	ASUREMENT UNCERTAINTY	11
6.0	TES	T EQUIPMENT CALIBRATION DATA	12
7.0	TES	T RESULTS	13
	7.1	Summary	
	7.2	6dB Bandwidth Measurement	
		7.2.1 MIMO 6dB Bandwidth Measurements	
	7.3	Output Power Measurement	34
	7.4	Power Spectral Density	37
		7.4.1 MIMO Power Spectral Density Measurements	37
	7.5	Conducted Band Edge Emissions	58
		7.5.1 MIMO Conducted Band Edge Emissions	59
	7.6	Conducted Spurious Emissions	83
		7.6.1 MIMO Conducted Spurious Emissions	85
	7.7	Radiated Emission Measurements	91
		7.7.1 MIMO Radiated Spurious Emission Measurements	95
		7.7.2 MIMO Radiated Restricted Band Edge Measurements	99
	7.8	Line-Conducted Test Data	102
8.0	CON	NCLUSION	106

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	raye 2 01 100

MEASUREMENT REPORT

			МІМО					
Channel		Tx Frequency	Avg. Co	nducted	Peak Conducted			
Bandwidth [MHz]	IEEE Mode	IMH-1	Max. Power [mW]	Max. Power [dBm]	Max. Power [mW]	Max. Power [dBm]		
	802.11b	2412 - 2472	143.88	21.58	435.95	26.39		
	802.11g	2412 - 2472	115.61	20.63	511.14	27.09		
20	802.11n	2412 - 2472	117.49	20.70	541.46	27.34		
20	802.11ac	2412 - 2472	92.90	19.68	446.65	26.50		
	802.11ax	2412 - 2472	97.95	19.91	506.52	27.05		
	802.11be	2412 - 2472	97.95	19.91	517.94	27.14		

EUT Overview

FCC ID: A3LSMS928B	MEASUREMENT REPORT Approved by: Technical Management		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 2 of 100
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 3 of 106

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and\\or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO\\IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreements (MRAs).

FCC ID: A3LSMS928B	MEASUREMENT REPORT		MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 106		
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	raye 4 01 100		

PRODUCT INFORMATION

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the Samsung Portable Handset FCC ID: A3LSMS928B. The test data contained in this report pertains only to the emissions due to the EUT's WLAN (DTS) transmitter.

Test Device Serial No.: 0734M, 1096M, 1133M, 0735M

2.2 **Device Capabilities**

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Multi-band LTE, Multi-band 5G NR (FR1), 802.11b/g/n/ac/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5GHz and 6GHz), Bluetooth (1x, EDR, LE), NFC, Wireless Power Transfer, UWB

Ch.	Frequency (MHz)	Ch.	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	12	2467
		13	2472

Table 2-1. Frequency \ Channel Operations

Notes:

1. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section 6.0 b) of ANSI C63.10-2013 and KDB 558074 D01 v05r02. The RBW and VBW were both greater than 50\T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

		ANT1	ANT2	MIMO (1+2)
802.11	802.11 Mode/Band		Duty Cycle [%]	Duty Cycle [%]
	b	98.88	98.85	98.87
2.4GHz	g	96.25	96.32	96.29
	n (HT20)	97.86	97.90	97.86
	ac (VHT20)	97.96	97.88	95.93
	ax (HE20)	99.63	99.65	99.63
	be (EHT20)	99.62	99.63	99.63

Table 2-2. Measured Duty Cycles

FCC ID: A3LSMS928B		MEASUREMENT REPORT Approved by: Technical Manage	
Test Report S/N:	Test Dates:	EUT Type:	Dogo E of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 5 of 106

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SISO		SDM		CDD	
WIFI CON	igurations	ANT1	ANT2	ANT1	ANT2	ANT1	ANT2
	11b	✓	✓	×	*	✓	✓
	11g	✓	✓	×	*	✓	✓
2.404-	11n	✓	✓	✓	✓	✓	✓
2.4GHz	11ac	✓	✓	✓	✓	✓	✓
	11ax	✓	✓	✓	✓	✓	✓
	11be	✓	✓	✓	✓	✓	✓

✓= Support; × = NOT Support **SISO** = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity - 2Tx Function

3. The device supports the following data rates (shown in Mbps):

802.11b	802.11a/g	MCS Index		Spatial	OFDM (8	302.11n)	OFDI	M (802.11a:	x/be)
20MHz	MHz 20MHz			Stream	201	ЛHz		20MHz	
ZUIVITZ	ZUIVITZ	HT	HE		0.8μs Gl	0.4μs GI	0.8μs GI	1.6μs GI	3.2μs GI
1	6	0	0	1	6.5	7.2	8.6	8.1	7.3
2	9	1	1	1	13	14.4	17.2	16.3	14.6
5.5	12	2	2	1	19.5	21.7	25.8	24.4	21.9
11	18	3	3	1	26	28.9	34.4	32.5	29.3
	24	4	4	1	39	43.3	51.6	48.8	43.9
	36	5	5	1	52	57.8	68.8	65	58.5
	48	6	6	1	58.5	65	77.4	73.1	65.8
	54	7	7	1	65	72.2	86	81.3	73.1
			8	1		`	103.2	97.5	87.8
			9	1			114.7	108.3	97.5
			10	1			129	121.9	109.7
			11	1			143.4	135.4	121.9
				1			154.9	146.3	131.6
				1	`		172.1	162.5	146.3
1	6	8	0	2	13	14.4	17.2	16.3	14.6
2	9	9	1	2	26	28.9	34.4	32.5	29.3
5.5	12	10	2	2	39	43.3	51.6	48.8	43.9
11	18	11	3	2	52	57.8	68.8	65	58.5
	24	12	4	2	78	86.7	103.2	97.5	87.8
	36	13	5	2	104	115.6	137.6	130	117
	48	14	6	2	117	130	154.9	146.3	131.6
	54	15	7	2	130	144.4	172.1	162.5	146.3
			8	2	156	173.3	206.5	195	175.5
			9	2	N/A	N/A	229.4	216.7	195
			10	2			258.1	243.8	219.4
			11	2			286.8	270.8	243.8
				2			309.7	292.5	263.3
				2			344.1	325	292.5

Table 2-3. Supported Data Rates

FCC ID: A3LSMS928B		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 6 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 6 of 106

Test Configuration

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing. See Sections 7.8 for AC line conducted emissions test setups, 7.7 for radiated emissions test setups, and 7.2, 7.3, 7.4, 7.5, and 7.6 for antenna port conducted emissions test setups.

This device supports wireless charging capability and, thus, is subject to the test requirements of KDB 648474 D03 v01r04. Additional radiated spurious emission measurements were performed with the EUT lying flat on an authorized wireless charging pad (WCP) EP-P2400 while operating under normal conditions in a simulated call or data transmission configuration. The worst case radiated emissions data is shown in this report.

2.4 **Antenna Description**

The following antenna gains were used for the testing.

Frequency [GHz]	Antenna-1 Gain [dBi]	Antenna-2 Gain [dBi]	Directional Gain [dBi]
2.4	-3.81	-3.84	-0.81

Table 2-4. Antenna Peak Gain

2.5 Software and Firmware

The test was conducted with software\firmware version S928BXXU0AWH9 installed on the EUT.

2.6 **EMI Suppression Device(s) / Modifications**

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 7 of 106

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2 AC Line Conducted Emissions

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF EnclosuresThe line-conducted facility is located inside a 7m x 3.66m x 2.7m shielded enclosure. The shielded enclosure is manufactured by AP Americas. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega\$ \\50\mu\\50\mu\\100\Line\text{Inderended} by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI\\RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Once the worst case emissions have been identified, the one EUT cable configuration\\arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 7.8. The EMI Receiver mode of the Agilent MXE was used to perform AC line conducted emissions testing.

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 9 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 8 of 106

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.4 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 9 01 100

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules\Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connections to an external antenna.

Conclusion:

The EUT unit complies with the requirement of §15.203.

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 10 01 106

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage II of 100

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	AP2-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	AP2-001
-	ETS-001	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	ETS-002
-	MD 1M 18-40	EMC Cable and Switch System	1/11/2023	Annual	1/11/2024	MD 1M 18-40
-	WL40-1	Conducted Cable Set (40GHz)	1/12/2023	Annual	1/12/2024	WL40-1
-	WL25-1	Conducted Cable Set (25GHz)	1/12/2023	Annual	1/12/2024	WL25-1
Anritsu	MA24406A	Microwave Peak Power Sensor	9/7/2023	Annual	9/7/2024	11240
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	7/5/2022	Biennial	7/5/2024	9203-2178
Pastermack	MNLC-2	Line Conducted Emission Cable (NM)	1/11/2023	Annual	1/11/2024	NMLC-2
ETS-Lindgren	3816/2NM	Line Impedance Stabilization Network	8/11/2022	Biennial	8/11/2024	114451
ETS Lindgren	3116C	1-18 GHz DRG Horn Antenna	2/27/2023	Biennial	2/27/2024	00218893
ETS Lindgren	3115	Double Ridged Guide Horn	4/12/2022	Biennial	4/12/2024	82333
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	4/13/2022	Biennial	4/13/2025	121034
Keysight Technologies	N9020A	MXA Signal Analyzer	3/15/2023	Annual	3/15/2024	MY54500644
Keysight Technologies	N9030A	PXA Signal Analyzer (44GHz)	3/15/2023	Annual	3/15/2024	MY52350166
Keysight Technologies	N9030A	PXA Signal Analyzer	1/31/2023	Annual	1/31/2024	MY55410501
Keysight Technologies	N9030B	PXA Signal Analyzer, Multi-touch	9/7/2023	Annual	9/7/2024	MY57141001
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	9/11/2023	Annual	9/11/2024	100348
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	3/1/2023	Annual	3/1/2024	101716
Rohde & Schwarz	FSW26	2Hz-26.5GHz Signal and Spectrum Analyzer	11/6/2022	Annual	11/6/2023	103187
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	1/13/2023	Annual	1/13/2024	103200
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	2/21/2023	Biennial	2/21/2025	A051107
Sunol	JB6	LB6 Antenna	3/2/2023	Biennial	3/2/2025	A082816

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 12 01 106

LEMENT V11.0 07/06/2023

7.0 TEST RESULTS

7.1 Summary

Company Name: <u>Samsung Electronics Co., Ltd.</u>

FCC ID: A3LSMS928B

FCC Classification: Digital Transmission System (DTS)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	RSS-247 [5.2(a)]	6dB Bandwidth	The minimum 6 dB bandwidth shall be at least 500 kHz.		PASS	Section 7.2
15.247(b)(3)	RSS-247 [5.4(b)]	Transmitter Output Power	shall not exceed 1 W		PASS	Section 7.3
N\A	RSS-247 [5.4(b)]	e.i.r.p.	shall not exceed 4 W	CONDUCTED	PASS	Section 7.3
15.247(e)	RSS-247 [5.2(b)]	Transmitter Power Spectral Density	shall not be greater than 8 dBm in any 3 kHz band		PASS	Section 7.4
15.247(d)	RSS-247 [5.5]	Band Edge \\ Out-of-Band Emissions	≥ 20dBc		PASS	Sections 7.5, 7.6
15.205 15.209	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.7
15.207	RSS-Gen [8.8]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits (RSS-Gen [8.8])	LINE CONDUCTED	PASS	Section 7.8

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "WLAN Automation," Version 3.5.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.3.1.

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 13 of 106

7.2 6dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the transmitter antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated and the worst case configuration results are reported in this section.

The minimum 6 dB bandwidth shall be at least 500 kHz.

<u>Test Procedure Used</u>

ANSI C63.10-2013 - Section 11.8.2 Option 2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100kHz
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Setup

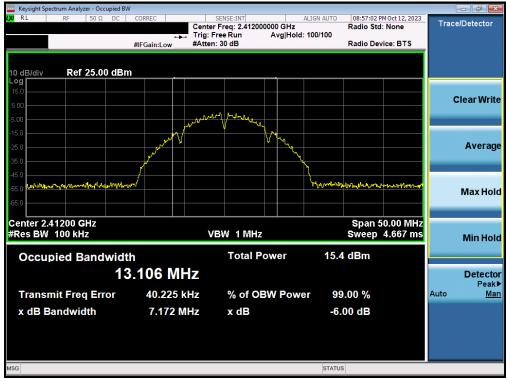
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	raye 14 01 100


7.2.1 MIMO 6dB Bandwidth Measurements

Frequency [MHz]	Channel No.	802.11 Mode	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]	Minimum Bandwidth [MHz]
2412	1	b	7.17	7.14	0.500
2437	6	b	7.56	8.08	0.500
2462	11	b	7.17	8.10	0.500
2412	1	g	16.37	16.38	0.500
2437	6	g	16.33	16.34	0.500
2462	11	g	16.36	16.41	0.500
2412	1	n	17.58	17.33	0.500
2437	6	n	17.62	17.63	0.500
2462	11	n	17.62	16.96	0.500
2412	1	ac	17.60	17.23	0.500
2437	6	ac	17.57	17.62	0.500
2462	11	ac	17.62	17.60	0.500
2412	1	ax	18.88	18.93	0.500
2437	6	ax	18.85	18.93	0.500
2462	11	ax	18.93	18.74	0.500
2412	1	be	18.93	18.98	0.500
2437	6	be	18.88	18.96	0.500
2462	11	be	18.95	19.02	0.500

Table 7-2. Conducted 6dB Bandwidth Measurements MIMO

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 15 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 15 of 106

Plot 7-1. 6dB Bandwidth Plot MIMO ANT1 (802.11b - Ch. 1)

Plot 7-2. 6dB Bandwidth Plot MIMO ANT1 (802.11b - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 16 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 16 of 106

© 2023 ELEMENT

V11.0 07/06/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without

Plot 7-3. 6dB Bandwidth Plot MIMO ANT1 (802.11b - Ch. 11)

Plot 7-4. 6dB Bandwidth Plot MIMO ANT1 (802.11g - Ch. 1)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 17 of 106

Plot 7-5. 6dB Bandwidth Plot MIMO ANT1 (802.11g - Ch. 6)

Plot 7-6. 6dB Bandwidth Plot MIMO ANT1 (802.11g - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 18 of 106

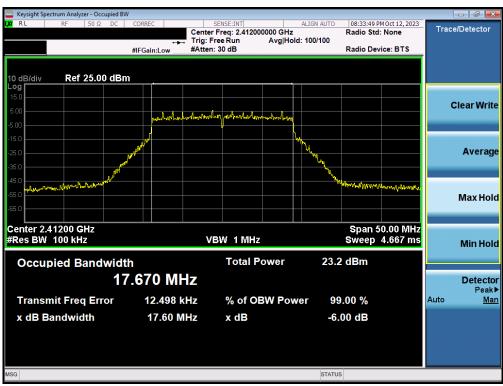
© 2023 ELEMENT

V11.0 07/06/2023
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou

Plot 7-7. 6dB Bandwidth Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 1)

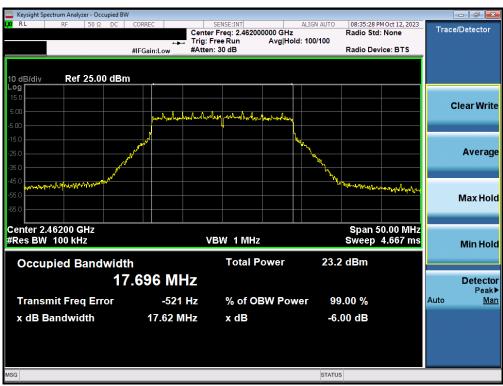
Plot 7-8. 6dB Bandwidth Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 19 of 106


© 2023 ELEMENT

V11.0 07/06/2023
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou

Plot 7-9. 6dB Bandwidth Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 11)


Plot 7-10. 6dB Bandwidth Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 1)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dags 20 of 100
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 20 of 106
© 2023 ELEMENT	•	•	V11.0 07/06/2023


Plot 7-11. 6dB Bandwidth Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 6)

Plot 7-12. 6dB Bandwidth Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	D 04 100
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 21 of 106
© 2023 ELEMENT	•		V11.0 07/06/2023

Plot 7-13. 6dB Bandwidth Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 1)


Plot 7-14. 6dB Bandwidth Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 22 of 106

Plot 7-15. 6dB Bandwidth Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 11)

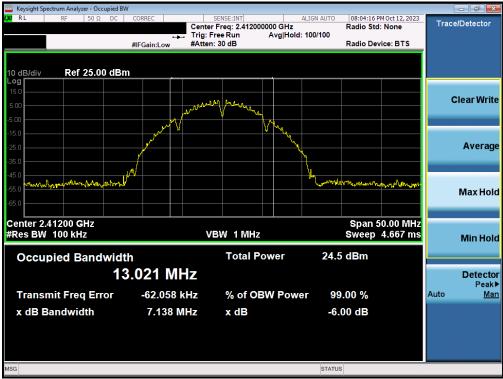
Plot 7-16. 6dB Bandwidth Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 1)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 23 of 106

© 2023 ELEMENT

V11.0 07/06/2023
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without

Plot 7-17. 6dB Bandwidth Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 6)


Plot 7-18. 6dB Bandwidth Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 24 of 106

© 2023 ELEMENT

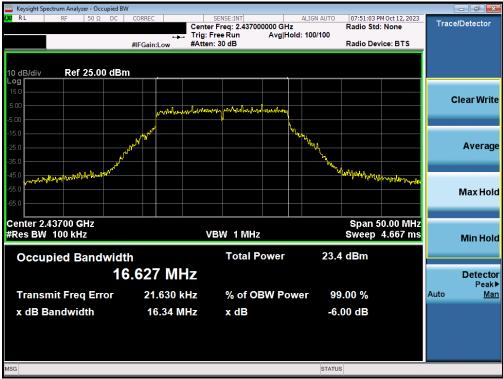
V11.0 07/06/2023
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou

Plot 7-19. 6dB Bandwidth Plot MIMO ANT2 (802.11b - Ch. 1)

Plot 7-20. 6dB Bandwidth Plot MIMO ANT2 (802.11b - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 25 of 106

Plot 7-21. 6dB Bandwidth Plot MIMO ANT2 (802.11b - Ch. 11)


Plot 7-22. 6dB Bandwidth Plot MIMO ANT2 (802.11g - Ch. 1)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 20 01 100

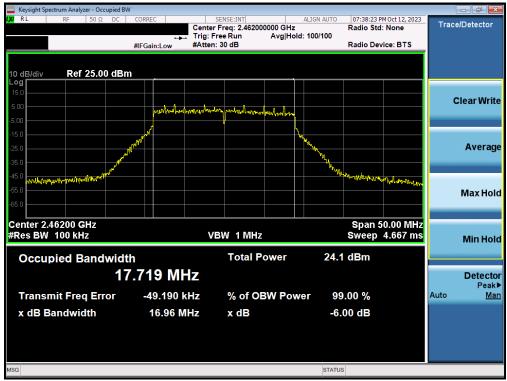
© 2023 ELEMENT

V11.0 07/06/202:
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without

Plot 7-23. 6dB Bandwidth Plot MIMO ANT2 (802.11g - Ch. 6)

Plot 7-24. 6dB Bandwidth Plot MIMO ANT2 (802.11g - Ch. 11)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 27 of 106


Plot 7-25. 6dB Bandwidth Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 1)

Plot 7-26. 6dB Bandwidth Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 20 01 100

Plot 7-27. 6dB Bandwidth Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 11)

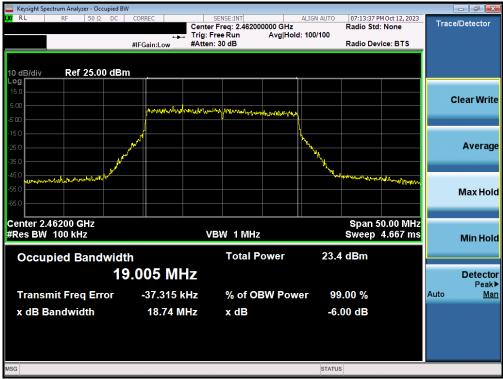
Plot 7-28. 6dB Bandwidth Plot MIMO ANT2 (802.11ac (2.4GHz) - Ch. 1)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 29 of 106

Plot 7-29. 6dB Bandwidth Plot MIMO ANT2 (802.11ac (2.4GHz) - Ch. 6)


Plot 7-30. 6dB Bandwidth Plot MIMO ANT2 (802.11ac (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 30 of 106


Plot 7-31. 6dB Bandwidth Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 1)

Plot 7-32. 6dB Bandwidth Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 6)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 31 of 106

Plot 7-33. 6dB Bandwidth Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 11)

Plot 7-34. 6dB Bandwidth Plot MIMO ANT2 (802.11be (2.4GHz) - Ch. 1)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 32 of 106

© 2023 ELEMENT

V11.0 07/06/2023
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without

Plot 7-35. 6dB Bandwidth Plot MIMO ANT2 (802.11be (2.4GHz) - Ch. 6)

Plot 7-36. 6dB Bandwidth Plot MIMO ANT2 (802.11be (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 33 of 106

© 2023 ELEMENT

V11.0 07/06/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou

7.3 Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of EUT is connected to the input of an RF power sensor. Measurement is made using a broadband power meter capable of making peak and average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The maximum permissible conducted output power is 1 Watt per 15.247 and RSS-247. The e.i.r.p. shall not exceed 4 W per RSS-247.

Test Procedure Used

ANSI C63.10-2013 – Section 11.9.1.3 PKPM1 Peak Power Method ANSI C63.10-2013 – Section 11.9.2.3.2 Method AVGPM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Method PKPM1 (Peak Power Measurement)

Peak power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The pulse sensor employs a VBW = 50MHz so this method was only used for signals whose DTS bandwidth was less than or equal to 50MHz.

Method AVGPM-G (Average Power Measurement)

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagrams below.

Figure 7-2. Test Instrument & Measurement Setup for Power Meter Measurements

Test Notes

None.

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 34 of 106

Conducted Power (dbm) Power Limit (dbm) (dBm	(dB)	e.i.r.p Limit [dBm] 36.02	[dBm] 20.77 20.67 20.55 7.86 2.04 23.69 23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99	Gain [dBi] -0.81	Power Margin [dB] -8.42 -8.52 -8.64 -21.33 -27.15 -5.49 -5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.62 -9.37 -21.33	Power Limit [dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 - Conducted Power Limit [dBm] 30.00 30.00 30.00	MIMO 21.58 21.48 21.36 8.67 2.85 24.51 24.39 26.39 11.58 5.79 IBM MIMO	ANT2 18.39 18.19 18.08 5.96 -0.01 21.32 21.09 24.62 8.87 2.99 g MIMO)	ANT1 18.74 18.74 18.61 5.33 -0.32 21.67 21.65 21.65 8.24 2.56	Average	1 6 11 12 13 1 6 11	2412 2437 2462 2467 2472 2412 2437 2462 2467	IEEE 802.11b
1	15.25	36.02 36.02	20.77 20.67 20.55 7.86 2.04 23.69 23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	-8.42 -8.52 -8.64 -21.33 -27.15 -5.49 -5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.62 -9.37	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm]	21.58 21.48 21.36 8.67 2.85 24.51 24.39 26.39 11.58 5.79 IBM] MIMO	18.39 18.19 18.08 5.96 -0.01 21.32 21.09 24.62 8.87 2.99 gMIMO)	18.74 18.74 18.61 5.33 -0.32 21.67 21.65 21.65 8.24 2.56		6 11 12 13 1 6 11	2412 2437 2462 2467 2472 2412 2437 2462 2467	IEEE 802.11
1	16.02	36.02 36.02	20.67 20.55 7.86 2.04 23.69 23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 Directional Ant. Gain [dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	-8.52 -8.64 -21.33 -27.15 -5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] [dBm] 30.00 30.00	21.48 21.36 8.67 2.85 24.51 24.39 26.39 11.58 5.79	18.19 18.08 5.96 -0.01 21.32 21.09 24.62 8.87 2.99 g MIMO)	18.74 18.61 5.33 -0.32 21.67 21.65 21.65 8.24 2.56		6 11 12 13 1 6 11	2437 2462 2467 2472 2412 2437 2462 2467	IEEE 802.1
1	15.47	36.02 36.02	20.55 7.86 2.04 23.69 23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	-8.64 -21.33 -27.15 -5.49 -5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00	21.36 8.67 2.85 24.51 24.39 26.39 11.58 5.79	18.08 5.96 -0.01 21.32 21.09 24.62 8.87 2.99 g MIMO)	18.61 5.33 -0.32 21.67 21.65 21.65 8.24 2.56		11 12 13 1 6 11	2462 2467 2472 2412 2437 2462 2467	IEEE 802
1	18.02 -28.16 18.02 -33.98 18.02 -12.33 18.02 -12.45 18.02 -10.44 18.02 -25.26 18.02 -31.04 19.02 -31.04 19.02 -31.04 19.02 -16.35 18.02 -16.35 18.02 -16.45 18.02 -28.16 18.02 -34.11 18.02 -9.75 18.02 -9.75 18.02 -22.09 18.02 -27.71 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 e.i.r.p Limit [dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	7.86 2.04 23.69 23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	-21.33 -27.15 -5.49 -5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.62 -9.37 -21.33	30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00	8.67 2.85 24.51 24.39 26.39 11.58 5.79	5.96 -0.01 21.32 21.09 24.62 8.87 2.99	5.33 -0.32 21.67 21.65 21.65 8.24 2.56		12 13 1 6 11 12	2467 2472 2412 2437 2462 2467	IEEE 80
1	16.02 -33.98 16.02 -12.33 16.02 -12.45 16.02 -12.45 16.02 -10.44 16.02 -25.26 16.02 -31.04 16.02 -31.04 16.02 -16.35 16.02 -16.45 16.02 -16.20 16.02 -28.16 16.02 -34.11 16.02 -34.11 16.02 -9.75 16.02 -9.75 16.02 -22.09 16.02 -27.71 1.p.Limit e.i.r.p.Margin	36.02 36.02 36.02 36.02 36.02 36.02 e.i.r.p Limit [dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	2.04 23.69 23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81 Directional Ant. Gain (dBi) -0.81 -0.81 -0.81 -0.81 -0.81	-27.15 -5.49 -5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00	2.85 24.51 24.39 26.39 11.58 5.79	-0.01 21.32 21.09 24.62 8.87 2.99	-0.32 21.67 21.65 21.65 8.24 2.56	Peak	13 1 6 11 12	2472 2412 2437 2462 2467	IEEE 8
Preq MHz Channel Conducted Power (dBm) Conducted Power (dBm) (16.02	36.02 36.02 36.02 36.02 36.02 e.i.r.p Limit [dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	23.69 23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	-5.49 -5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	30.00 30.00 30.00 30.00 30.00 • Conducted Power Limit [dBm] 30.00 30.00	24.51 24.39 26.39 11.58 5.79	21.32 21.09 24.62 8.87 2.99 g MIMO)	21.67 21.65 21.65 8.24 2.56	Peak	1 6 11 12	2412 2437 2462 2467	Ш
Preq MHz Channel Conducted Power (dBm) Conducted Power (dBm) (16.02	36.02 36.02 36.02 36.02 e.i.r.p Limit [dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	23.57 25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 Directional Ant. Gain [dBi] -0.81 -0.81 -0.81 -0.81 -0.81	-5.61 -3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00	24.39 26.39 11.58 5.79	21.09 24.62 8.87 2.99 g MIMO)	21.65 21.65 8.24 2.56	Peak	6 11 12	2437 2462 2467	Ш
Preq MHz Channel Conducted Power (dBm) Conducted Power (dBm) (10.44	36.02 36.02 36.02 e.i.r.p Limit [dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	25.58 10.76 4.98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 Directional Ant. Gain [dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	-3.61 -18.42 -24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00	26.39 11.58 5.79 IBm]	24.62 8.87 2.99 g MIMO)	21.65 8.24 2.56	Peak	11 12	2462 2467	Ш
Preq MHz Channel Conducted Power (dBm) Conducted Power (dBm) (.p.Limit e.i.r.p.Margin [dB] 66.02 -16.35 66.02 -16.35 66.02 -16.45 66.02 -28.16 66.02 -28.16 66.02 -28.16 66.02 -34.11 66.02 -10.25 66.02 -10.03 66.02 -9.75 66.02 -22.09 66.02 -27.71 .p.Limit e.i.r.p.Margin	36.02 e.i.r.p Limit [dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	4,98 Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 Directional Ant. Gain [dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	-24.21 Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	30.00 Conducted Power Limit [dBm] 30.00 30.00	5.79 IBm] MIMO	2.99 g MIMO)	2.56]			_
Conducted Power Limit Claring Conducted Power Limit Claring Conducted Power Limit Claring Conducted Power Limit Claring	e.i.r.p Margin [dB] 6.02 -16.35 6.02 -16.45 6.02 -16.20 6.02 -28.16 6.02 -28.16 6.02 -34.11 6.02 -10.25 6.02 -10.03 6.02 -9.75 6.02 -22.09 6.02 -27.71 e.i.r.p Margin	e.i.r.p Limit [dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	Max e.i.r.p [dBm] 19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	Directional Ant. Gain [dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	Conducted Power Margin [dB] -9.52 -9.62 -9.37 -21.33	Conducted Power Limit [dBm] 30.00 30.00	IBm] MIMO	g MIMO)			12	2472	
Conducted Power [dBm]	dBm] [dB] 66.02 -16.35 86.02 -16.45 86.02 -16.20 86.02 -28.16 86.02 -34.11 86.02 -34.11 86.02 -10.03 86.02 -9.75 86.02 -9.75 86.02 -22.09 86.02 -27.71 p.Limit e.i.r.p Margin	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	Gain [dBi] -0.81 -0.81 -0.81 -0.81 -0.81	Power Margin [dB] -9.52 -9.62 -9.37 -21.33	Power Limit [dBm] 30.00 30.00	MIMO		(20MHz 802.11			2412	
Channel Detector Conducted Power (dBm) Power Limit (dBm) (dBm] [dB] 66.02 -16.35 86.02 -16.45 86.02 -16.20 86.02 -28.16 86.02 -34.11 86.02 -34.11 86.02 -10.03 86.02 -9.75 86.02 -9.75 86.02 -22.09 86.02 -27.71 p.Limit e.i.r.p Margin	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -9.52 -9.62 -9.37 -21.33	[dBm] 30.00 30.00	MIMO						
ANT1 ANT2 MIMO (abm) (abs) (abs)	16.02 -16.35 16.02 -16.45 16.02 -16.20 16.02 -28.16 16.02 -34.11 16.02 -10.25 16.02 -10.03 16.02 -9.75 16.02 -22.09 16.02 -27.71 15.00 -27.71	36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.67 19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81	-9.52 -9.62 -9.37 -21.33	30.00 30.00		nducted Fower [0	Co	Detector	Channal	From (MUm)	D
191 360 2472 13 2437 6 2437 6 2467 12 13 2472 1472	16.02 -16.45	36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81	-9.62 -9.37 -21.33	30.00		ANTO	ANIT4	Detector	Chamilei	rreq [winz]	_
191 360 2472 13 -0.45 -0.14 2.72 30.00 -27.28 -0.81 1.91 360 360 2437 6 2437 6 2462 11 2437 6 2467 12 13 2467 12 14 2413 23.79 26.81 30.00 -3.19 -0.81 25.77 36.0 36.0 2462 11 2472 13 2472 1472	16.02 -16.45	36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.57 19.82 7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81 -0.81 -0.81	-9.62 -9.37 -21.33	30.00	ZU.48				1	2412	<u> </u>
191 360 2472 13 -0.45 -0.14 2.72 30.00 -27.28 -0.81 1.91 360 361 2437 6 2437 6 2462 11 2437 6 2467 12 13 2472 2473 2683 30.00 3.00 3.00 3.00 3.00 2.081	16.02 -28.16 16.02 -34.11 16.02 -10.25 16.02 -10.03 16.02 -9.75 16.02 -22.09 16.02 -27.71 15. p Limit e.i.r.p Margin	36.02 36.02 36.02 36.02 36.02 36.02	7.86 1.91 25.77 25.99 26.27	-0.81 -0.81 -0.81	-21.33	30.00					6		ζ.
191 360 2472 13 -0.45 -0.14 2.72 30.00 -27.28 -0.81 1.91 360 361 2437 6 2437 6 2462 11 2437 6 2467 12 13 2472 2473 2683 30.00 3.00 3.00 3.00 3.00 2.081	66.02 -34.11 16.02 -10.25 16.02 -10.03 16.02 -9.75 16.02 -9.75 16.02 -22.09 16.02 -27.71 1.p Limit e.i.r.p Margin	36.02 36.02 36.02 36.02 36.02	1.91 25.77 25.99 26.27	-0.81 -0.81			20.63	17.61	17.63	Average	11	2462	\ddot{c}
191 360 2472 13 -0.45 -0.14 2.72 30.00 -27.28 -0.81 1.91 360 361 2437 6 2437 6 2462 11 2437 6 2467 12 13 2472 2473 2683 30.00 3.00 3.00 3.00 3.00 2.081	86.02 -10.25 86.02 -10.03 86.02 -9.75 86.02 -22.09 86.02 -27.71 :p Limit e.i.r.p Margin	36.02 36.02 36.02 36.02	25.77 25.99 26.27	-0.81	-27.28						12	2467	$\widetilde{\infty}$
The color of the	36.02 -10.03 36.02 -9.75 36.02 -22.09 36.02 -27.71 p Limit e.i.r.p Margin	36.02 36.02 36.02	25.99 26.27								13		1111
The color of the	36.02 -9.75 36.02 -22.09 36.02 -27.71 .p Limit e.i.r.p Margin	36.02 36.02	26.27	-0.81						1 1	_		
The color of the	36.02 -22.09 36.02 -27.71 c.p Limit e.i.r.p Margin	36.02								De-1			
Conducted Power Limit Conducted Power Limit Conducted Power Margin Conducted Power Mar	26.02 -27.71 c.p Limit e.i.r.p Margin									reak			
Conducted Power Limit Channel	.p Limit e.i.r.p Margin	00.02											
Conducted Power [dBm]			5.51				0.12			2.4GHz WIFI		-112	
2472 13 -0.53 -0.15 2.68 30.00 -27.32 -0.81 1.87 36.0 2412 1 24.13 23.79 26.97 30.00 -3.03 -0.81 26.16 36.0 2437 6 2404 23.59 26.83 30.00 -3.17 -0.81 26.02 36.0 2462 11 Peak 24.27 24.38 27.34 30.00 -2.66 -0.81 26.52 36.0	dBm] [dB]	e.i.r.p Limit	Max e.i.r.p				ID1		0-				_
2472 13 -0.53 -0.15 2.68 30.00 -27.32 -0.81 1.87 36.0 2412 1 24.13 23.79 26.97 30.00 -3.03 -0.81 26.16 36.0 2437 6 2404 23.59 26.83 30.00 -3.17 -0.81 26.02 36.0 2462 11 Peak 24.27 24.38 27.34 30.00 -2.66 -0.81 26.52 36.0		[dBm]	[dBm]							Detector	Channel	Freq [MHz]	<u> </u>
2472 13 -0.53 -0.15 2.68 30.00 -27.32 -0.81 1.87 36.0 2412 1 24.13 23.79 26.97 30.00 -3.03 -0.81 26.16 36.0 2437 6 2404 23.59 26.83 30.00 -3.17 -0.81 26.02 36.0 2462 11 Peak 24.27 24.38 27.34 30.00 -2.66 -0.81 26.52 36.0													$\overline{}$
2472 13 -0.53 -0.15 2.68 30.00 -27.32 -0.81 1.87 36.0 2412 1 24.13 23.79 26.97 30.00 -3.03 -0.81 26.16 36.0 2437 6 2404 23.59 26.83 30.00 -3.17 -0.81 26.02 36.0 2462 11 Peak 24.27 24.38 27.34 30.00 -2.66 -0.81 26.52 36.0		36.02											` ;
2472 13 -0.53 -0.15 2.68 30.00 -27.32 -0.81 1.87 36.0 2412 1 24.13 23.79 26.97 30.00 -3.03 -0.81 26.16 36.0 2437 6 24.04 23.59 26.83 30.00 -3.17 -0.81 26.02 36.0 2462 11 Peak 24.27 24.38 27.34 30.00 -2.66 -0.81 26.52 36.0										1 .			Ñ
2472 13 -0.53 -0.15 2.68 30.00 -27.32 -0.81 1.87 36.0 2412 1 24.13 23.79 26.97 30.00 -3.03 -0.81 26.16 36.0 2437 6 24.04 23.59 26.83 30.00 -3.17 -0.81 26.02 36.0 2462 11 Peak 24.27 24.38 27.34 30.00 -2.66 -0.81 26.52 36.0										Average			O
2412 1 24.13 23.79 26.97 30.00 3.03 -0.81 26.16 36.0 24.07 6 24.04 23.59 26.83 30.00 -3.17 -0.81 26.02 36.0 24.04 23.59 27.34 30.00 -2.66 -0.81 26.52 36.0 25.00 2										1			∞
		36.02											Ш
		36.02								Peak			Ш
2.01 12 11.00 12.20 14.00 00.00 10.02 10.01 14.10 30.0		36.02	14.16	-0.81	-15.02	30.00	14.98	12.23	11.68]	12	2467	_
2472 13 5.92 6.38 9.17 30.00 -20.83 -0.81 8.35 36.0	36.02 -27.67	36.02	8.35	-0.81	-20.83	30.00	9.17	6.38	5.92		13	2472	
2.4GHz WFI (20MHz 802.11ac MIMO) Conducted Conducted Directional Ant.				Directional Ant.	Conducted	Conducted		ac MIMO)	(20MHz 802.11a	2.4GHz WIFI			
Conducted Power [dBm] Power Limit Power Margin Gain Max e.t.r.p e.t.r.p1		e.i.r.p Limit	•				IBm]	nducted Power [c	Co		٠		ည္က
Freq [MHz] Channel Detector Office and MMO (dBm) (dBm) (dBm) (dBm) (dBm) (dBm)	dBm] [dB]	[dBm]	[dBm]	[dBi]		[dBm]				Detector	Channel	Freq[MHZ]	10
ANT1 ANT2 MIMO (LIGHT)	36.02 -17.21	36.02	18.81	-0.81		30.00					1	2/12	$\overline{}$
		36.02											` ;
2462 11 Average 16.71 16.62 19.68 30.00 -10.32 -0.81 18.87 36.0		36.02								Average			Ñ
2467 12 5.39 5.99 8.71 30.00 -21.29 -0.81 7.90 36.0	36.02 -28.12	36.02	7.90	-0.81	-21.29	30.00	8.71	5.99	5.39]	12	2467	Ö
2472 13 -0.59 -0.25 2.59 30.00 -27.41 -0.81 1.78 36.0		36.02									13		ω
<u>11 2412 1 23.19 22.98 26.10 30.00 -3.90 -0.81 25.28 36.0</u>		36.02								(J			
2437 6 22.91 22.62 25.78 30.00 4.22 -0.81 24.96 36.0		36.02								De-1:			
2462 11 Peak 23.68 23.29 26.50 30.00 -3.50 -0.81 25.68 36.0		36.02								reak	- 11		ij
		36.02 36.02								, 1		2462	Ш
3 ACH- MEI (20MH- 803 11av MIMO)	0.02 -21.40	30.02	0.30				9.37		6.12		12	2462 2467	Ë
	p Limit e.i.r.p Margin			Directional Ant.					6.13	2 4GHz WIFI		2462	
Freg [MHz] Channel Detector Conducted Power [dBm] Power Limit Power Margin Gain [dBm] [dBm] [dBm]		e.i.r.p Limit	Max e.i.r.p						(20MHz 802.11a	2.4GHz WIFI	12	2462 2467	
ANT1 ANT2 MIMO (dBm) (dBi) (dBi)		e.i.r.p Limit [dBm]	Max e.i.r.p [dBm]	Gain	Power Margin	Power Limit	lBm]		(20MHz 802.11a		12 13	2462 2467	
2412 1 16.95 16.73 19.85 30.00 -10.15 -0.81 19.04 36.0		[dBm]	[dBm]	[dBi]	[dB]	[dBm]	MIMO	nducted Power [d	(20MHz 802.11a Coi ANT1		12 13	2462 2467 2472 Freq [MHz]	
2437 6 16.91 16.31 19.63 30.00 -10.37 -0.81 18.82 36.0	36.02 -16.98	[dBm] 36.02	[dBm] 19.04	[dBi] -0.81	[dB] -10.15	[dBm] 30.00	MIMO 19.85	ANT2 16.73	(20MHz 802.11a Coi ANT1 16.95		12 13 Channel	2462 2467 2472 Freq [MHz]	
2462 11 Average 16.96 16.84 19.91 30.00 -10.09 -0.81 19.10 36.0	36.02 -16.98 36.02 -17.20	[dBm] 36.02 36.02	[dBm] 19.04 18.82	[dBi] -0.81 -0.81	[dB] -10.15 -10.37	[dBm] 30.00 30.00	MIMO 19.85 19.63	ANT2 16.73 16.31	Coi ANT1 16.95 16.91	Detector	12 13 Channel 1 6	2462 2467 2472 Freq [MHz] 2412 2437	
2467 12 5.50 5.99 8.76 30.00 -21.24 -0.81 7.95 36.0	36.02 -16.98 36.02 -17.20 36.02 -16.92	[dBm] 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10	[dBi] -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09	[dBm] 30.00 30.00 30.00	MIMO 19.85 19.63 19.91	ANT2 16.73 16.31 16.84	Con ANT1 16.95 16.91 16.96	Detector	12 13 Channel 1 6	2462 2467 2472 Freq [MHz] 2412 2437 2462	
	36.02 -16.98 36.02 -17.20 36.02 -16.92 36.02 -28.07	36.02 36.02 36.02 36.02 36.02	19.04 18.82 19.10 7.95	-0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24	30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76	nducted Power [d ANT2 16.73 16.31 16.84 5.99	Con ANT1 16.95 16.91 16.96 5.50	Detector	12 13 Channel 1 6 11 12	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467	
	36.02 -16.98 36.02 -17.20 36.02 -16.92 36.02 -28.07 36.02 -34.42	36.02 36.02 36.02 36.02 36.02 36.02	19.04 18.82 19.10 7.95 1.60	-0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59	[dBm] 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41	ANT2 16.73 16.31 16.84 5.99 -0.34	(20MHz 802.11a Coi ANT1 16.95 16.91 16.96 5.50 -0.89	Detector	12 13 Channel 1 6 11 12 13	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472	802.11ax
	36.02 -16.98 36.02 -17.20 36.02 -16.92 36.02 -28.07 36.02 -34.42 36.02 -9.85	36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.04 18.82 19.10 7.95 1.60 26.17	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98	ANT2 16.73 16.31 16.84 5.99 -0.34 23.70	ComHz 802.11a Com ANT1 16.95 16.91 16.96 5.50 -0.89 24.23	Detector	12 13 Channel 1 6 11 12 13	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412	E802.11ax
<u>2437</u> 6 <u>24.16</u> <u>23.88</u> <u>27.03</u> <u>30.00</u> <u>-2.97</u> <u>-0.81</u> <u>26.22</u> <u>36.0</u>	16.02 -16.98 16.02 -17.20 16.02 -16.92 16.02 -28.07 16.02 -34.42 16.02 -9.85 16.02 -9.85	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.04 18.82 19.10 7.95 1.60 26.17 26.22	-0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03	nducted Power [d ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88	Con ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16	Detector Average	12 13 Channel 1 6 11 12 13 1 6	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437	EE 802.11ax
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0	36.02 -16.98 36.02 -17.20 36.02 -16.92 36.02 -28.07 36.02 -34.42 36.02 -9.85 36.02 -9.80 36.02 -9.79	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23	(dBi) -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03	ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96	Col ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11	Detector Average	12 13 Channel 1 6 11 12 13 1 6 6 11	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462	EE 802.11ax
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 24.62 11 24.67 12 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 24.67 12	66.02 -16.98 66.02 -17.20 66.02 -16.92 66.02 -28.07 66.02 -34.42 66.02 -9.85 66.02 -9.80 66.02 -9.79 66.02 -9.79	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79	(dBi) -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61	ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92	COMHz 802.11a Cor ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25	Detector Average	12 13 Channel 1 6 11 12 13 1 6 11 12	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462 2467	EE 802.11ax
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02 -16.98 16.02 -17.20 16.02 -16.92 16.02 -28.07 16.02 -34.42 16.02 -9.85 16.02 -9.80 16.02 -9.79 16.02 -9.79 16.02 -27.56	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61	ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59	Communication (2004) 24.16 (2004) 24.16 (24.11 (2.25 (5.92 (2.21 (Average Peak	12 13 Channel 1 6 11 12 13 1 6 11 12	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462 2467	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	66.02 -16.98 66.02 -17.20 66.02 -16.92 66.02 -28.07 66.02 -34.42 66.02 -9.85 66.02 -9.80 66.02 -9.79 66.02 -21.23 66.02 -27.56 c.p.Limit e.i.r.p Margin	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28	nducted Power [d ANT2 16.73 16.31 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO)	ComHz 802.11a Coi ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11b	Average Peak 2.4GHz WIFI	12 13 Channel 1 6 11 12 13 1 6 11 12 13 1 1 1 2 13	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2472 2472 2472 2472 2472 2472 247	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	66.02 -16.98 66.02 -17.20 66.02 -16.92 66.02 -28.07 66.02 -34.42 66.02 -9.85 66.02 -9.80 66.02 -9.79 66.02 -21.23 66.02 -27.56 c.p.Limit e.i.r.p Margin	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28	nducted Power [d ANT2 16.73 16.31 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) nducted Power [d	(20MHz 802.11a Coi ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11b	Average Peak 2.4GHz WIFI	12 13 Channel 1 6 11 12 13 1 6 11 12 13 1 1 1 2 13	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2472 2472 2472 2472 2472 2472 247	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02 -16.98 16.02 -17.20 16.02 -16.92 16.02 -28.07 16.02 -34.42 16.02 -9.85 16.02 -9.80 16.02 -9.79 16.02 -27.56 16.02 -27.56 16.02 -27.56 16.02 -27.56	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 6.02 6.02 6.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm]	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin [dB]	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm]	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28	nducted Power [d ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) inducted Power [d ANT2	ComHz 802.11a Com ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11t Com ANT1	Average Peak 2.4GHz WIFI	12 13 Channel 1 6 11 12 13 1 6 6 11 12 13 13 Channel	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 Freq [MHz]	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02 -16.98 16.02 -17.20 16.02 -16.92 16.02 -28.07 16.02 -9.85 16.02 -9.85 16.02 -9.80 16.02 -9.80 16.02 -21.23 16.02 -27.56 16.02 -27.56 16.02 -27.56 17.03	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm]	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 Directional Ant. Gain [dBi]	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin [dB] -10.20	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm]	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28 MIMO 19.80	nducted Power [d ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) nducted Power [d ANT2 16.68	ComHz 802.11a Com ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11b Com ANT1 16.89	Average Peak 2.4GHz WIFI	12 13 Channel 1 6 11 12 13 1 6 6 11 12 13 1 1 1 2 13	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2467 2472 2472 2472 2472 2472 2472	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02 -16.98 16.02 -17.20 16.02 -16.92 16.02 -28.07 16.02 -34.42 16.02 -9.85 16.02 -9.85 16.02 -9.79 16.02 -21.23 16.02 -27.56 16.02 -27.56 16.02 -17.03 16.02 -17.03	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm] 18.99 18.78	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin [dB] -10.20 -10.41	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00 30.00	MIMO 19.85 19.63 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28 Bm] MIMO 19.80 19.59	nducted Power [d ANT2 16.73 16.31 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) nducted Power [d ANT2 16.68 16.29	(20MHz 802.11a Coi ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11b Coi ANT1 16.89 16.89	Peak 2.4GHz WIFI Detector	12 13 Channel 1 6 11 12 13 1 1 1 1 2 13 1 1 1 1 1 1 1 1 1	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 2472 2472 242 2437	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02 -16.98 16.02 -17.20 16.02 -16.92 16.02 -28.07 16.02 -34.42 16.02 -9.85 16.02 -9.85 16.02 -9.80 16.02 -9.79 16.02 -27.56 16.02 -27.56 16.02 -27.56 16.02 -27.56 16.02 -27.56 16.02 -27.56 16.02 -17.03 16.02 -17.24 16.02 -17.24	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm] 18.98 19.10	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin [dB] -10.20 -10.41 -10.09	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28 Bm] MIMO 19.80 19.59 19.91	nducted Power [d ANT2 16.73 16.31 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) inducted Power [d ANT2 16.68 16.69 16.89	ComHz 802.11a Com ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 20MHz 802.11b Com ANT1 16.89 16.86 16.95	Peak 2.4GHz WIFI Detector	12 13 Channel 1 6 11 12 13 1 6 11 12 13 Channel 1 6 11	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 Freq [MHz] 242 2437 2462	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02 -16.98 16.02 -17.20 16.02 -16.92 16.02 -28.07 16.02 -9.85 16.02 -9.85 16.02 -9.80 16.02 -9.80 16.02 -27.56 16.02 -27.56 16.02 -27.56 16.02 -17.03 16.02 -17.03 16.02 -17.03 16.02 -16.92 16.02 -16.92 16.02 -16.92	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm] 18.99 18.78 19.10 7.93	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin [dB] -10.20 -10.41 -10.09 -21.26	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28	nducted Power [d ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) nducted Power [d ANT2 16.84 16.29 16.84 5.99	(20MHz 802.11a Cor ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11b Cor ANT1 16.86 16.86 16.95 5.46	Peak 2.4GHz WIFI Detector	12 13 Channel 1 6 11 12 13 1 6 11 12 13 1 1 1 2 13 1 1 1 2 13 1 1 1 2 1 1 1 1	2462 2467 2472 Freq [MHz] 2412 2437 2462 2472 2412 2437 2462 2467 2472 2412 2437 2462 2472	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02 -16.98 16.02 -17.20 16.02 -18.92 16.02 -28.07 16.02 -34.42 16.02 -9.85 16.02 -9.85 16.02 -9.79 16.02 -27.56 16.02 -27.56 16.02 -17.03 16.02 -17.03 16.02 -17.03 16.02 -17.24 16.02 -18.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00 16.02 -3.00	[dBm] 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm] 18.99 18.78 19.10 7.93	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin [dB] -10.20 -10.41 -10.09 -21.26 -27.62	[dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Conducted Power Limit [dBm] 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 2.698 27.03 27.05 15.61 9.28 MIMO 19.80 19.59 19.91 8.74 2.38	nducted Power [d ANT2 16.73 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) nducted Power [d ANT2 16.68 16.68 16.99 -0.38	(20MHz 802.11a Coi ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11b Coi ANT1 16.89 16.86 16.95 5.46	Peak 2.4GHz WIFI Detector	12 13 Channel 1 6 11 12 13 1 1 6 11 12 13 Channel 1 1 12 13 1 1 1 1 12 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 Freq [MHz] 2412 2437 2462 2467	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02	[dBm] 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm] 18.99 18.78 19.10 7.93 1.57	[dBi] -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81 -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -14.39 -20.72 Conducted Power Margin [dB] -10.20 -10.41 -10.09 -21.26 -27.62 -2.97	[dBm] 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28 MIMO 19.80 19.59 19.91 8.74 2.38 27.03	nducted Power [d ANT2 16.73 16.31 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) inducted Power [d ANT2 16.68 16.29 16.84 5.99 -0.38 23.79	ComHz 802.11a Com ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 20MHz 802.11b Com ANT1 16.89 16.86 16.86 16.95 5.46 -0.90 24.24	Peak 2.4GHz WIFI Detector	12 13 Channel 1 6 11 12 13 1 1 6 11 12 13 Channel 1 6 11 12 13	2462 2467 2472 Freq [MHz] 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 Freq [MHz] 242 2437 2462 2467 2472 2412 2437	IEEE 802.11ax SU
2437 6 24.16 23.88 27.03 30.00 -2.97 -0.81 26.22 36.0 2462 11 Peak 24.11 23.96 27.05 30.00 -2.95 -0.81 26.23 36.0 2467 12 12.25 12.92 15.61 30.00 -14.39 -0.81 14.79 36.0 2472 13 5.92 6.59 9.28 30.00 -20.72 -0.81 8.46 36.0	16.02	[dBm] 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm] 18.99 18.78 19.10 7.93 1.57 26.22 26.23	[dBi] -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -2.95 -14.39 -20.72 Conducted Power Margin [dB] -10.20 -10.41 -10.09 -21.26 -27.62 -2.97 -3.25	[dBm] 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28	nducted Power [d ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 be MIMO) nducted Power [d ANT2 16.84 5.99 -0.38 -0.38 23.79 23.79	ComHz 802.11a Coi ANT1 16.96 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 5.92 (20MHz 802.11b Coi ANT1 16.86 16.95 5.46 -0.90 24.24 24.03	Peak 2.4GHz WIFI Detector Average	12 13 Channel 1 6 11 12 13 1 6 11 12 13 1 1 1 1 12 13 1 1 6 11 1 1 6 11 1 1 6 11 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1 6 1	2462 2467 2472 Freq [MHz] 2412 2437 2462 2472 2412 2437 2462 2467 2472 2412 2437 2462 2472 2412 2437 2462 2472 2412 2437	IEEE 802.11ax SU
Conducted Power Limit Power Margin Channel Power Limit Power Limit Channel Power Limit Channel Power Limit P	16.02	[dBm] 36.02	[dBm] 19.04 18.82 19.10 7.95 1.60 26.17 26.22 26.23 14.79 8.46 Max e.i.r.p [dBm] 18.99 18.78 19.10 7.93 1.57 26.22 25.93 26.33 26.33 14.75	[dBi] -0.81	[dB] -10.15 -10.37 -10.09 -21.24 -27.59 -3.02 -2.97 -14.39 -20.72 Conducted Power Margin [dB] -10.20 -10.41 -10.09 -21.26 -27.62 -27.62 -2.86 -14.44	[dBm] 30.00	MIMO 19.85 19.63 19.91 8.76 2.41 26.98 27.03 27.05 15.61 9.28	nducted Power [d ANT2 16.73 16.31 16.84 5.99 -0.34 23.70 23.88 23.96 12.92 6.59 bom MIMO) nducted Power [d ANT2 16.68 16.29 -0.38 23.79 23.42 23.87	(20MHz 802.11a Cor ANT1 16.95 16.91 16.96 5.50 -0.89 24.23 24.16 24.11 12.25 20MHz 802.11b Cor ANT1 16.89 16.86 16.95 5.46 -0.99 24.24 24.34 16.86 16.95 16.96	Peak 2.4GHz WIFI Detector Average	12 13 Channel 1 6 11 12 13 1 6 11 12 13 Channel 1 1 12 13 1 6 11 1 1 1 6 11 1 1 1 6 1 1 1 1 1 1	2462 2467 2472 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 2412 2437 2462 2467 2472 2412 2437	IEEE 802.11ax SU

Table 7-3. Conducted Output Power Measurements MIMO

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 35 of 106

Note:

Per ANSI C63.10-2013 Section 14.2, the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted output power was measured to be 18.74 dBm for Antenna 1 and 18.39 dBm for Antenna 2.

(18.74 dBm + 18.39 dBm) = (74.82 mW + 69.02 + mW) = 143.84 mW = 21.58 dBm

FCC ID: A3LSMS928B		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 30 UI 100

7.4 Power Spectral Density

Test Overview and Limit

The peak power density is measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates are investigated and the worst-case configuration results are reported in this section.

The maximum permissible power spectral density shall not be greater than 8 dBm in any 3 kHz band.

Test Procedure Used

ANSI C63.10-2013 – Section 11.10.2 Method PKPSD ANSI C63.10-2013 – Section 14.3.1 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 10kHz
- 4. VBW = 1MHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

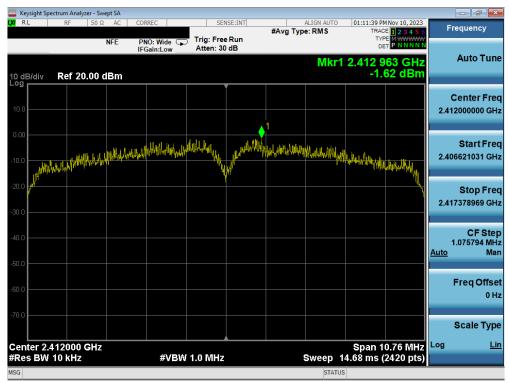
Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None.

7.4.1 MIMO Power Spectral Density Measurements

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 37 of 106



Frequency [MHz]	Channel No.	802.11 Mode	ANT 1 Power Spectral Density [dBm]	ANT 2 Power Spectral Density [dBm]	Summed MIMO Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm/3kHz]	Margin [dB]	Pass / Fail
2412	1	b	-1.62	-2.01	1.20	8.00	-6.80	Pass
2437	6	b	-1.91	-1.59	1.26	8.00	-6.74	Pass
2462	11	b	-2.33	-1.60	1.06	8.00	-6.94	Pass
2412	1	g	-3.59	-1.34	0.69	8.00	-7.31	Pass
2437	6	g	-3.11	-2.41	0.27	8.00	-7.73	Pass
2462	11	g	-3.16	-2.76	0.06	8.00	-7.94	Pass
2412	1	n	-2.24	-2.03	0.88	8.00	-7.12	Pass
2437	6	n	-3.04	-2.13	0.45	8.00	-7.55	Pass
2462	11	n	-2.13	-2.08	0.91	8.00	-7.09	Pass
2412	1	ac	-4.31	-3.30	-0.76	8.00	-8.76	Pass
2437	6	ac	-3.45	-2.99	-0.20	8.00	-8.20	Pass
2462	11	ac	-4.01	-1.25	0.60	8.00	-7.40	Pass
2412	1	ax	-3.68	-3.50	-0.58	8.00	-8.58	Pass
2437	6	ax	-4.82	-3.75	-1.24	8.00	-9.24	Pass
2462	11	ax	-3.89	-4.68	-1.25	8.00	-9.25	Pass
2412	1	be	-4.35	-3.78	-1.04	8.00	-9.04	Pass
2437	6	be	-5.03	-4.35	-1.66	8.00	-9.66	Pass
2462	11	be	-4.81	-4.68	-1.73	8.00	-9.73	Pass

Table 7-4. Conducted Power Spectral Density Measurements MIMO

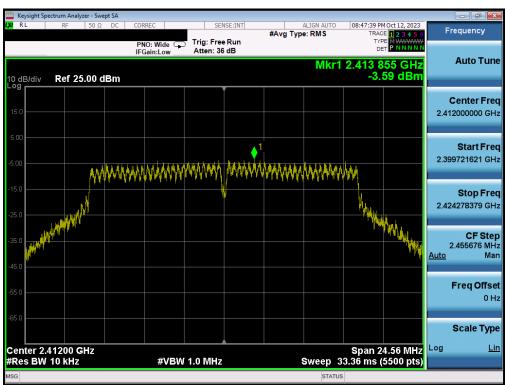
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 20 of 400
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 38 of 106
© 2023 ELEMENT			V11.0 07/06/2023

Plot 7-37. Power Spectral Density Plot MIMO ANT1 (802.11b - Ch. 1)

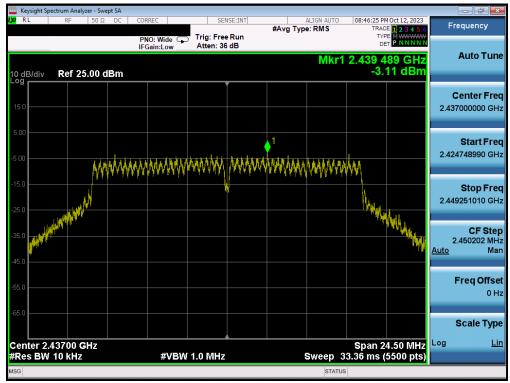
Plot 7-38. Power Spectral Density Plot MIMO ANT1 (802.11b - Ch. 6)

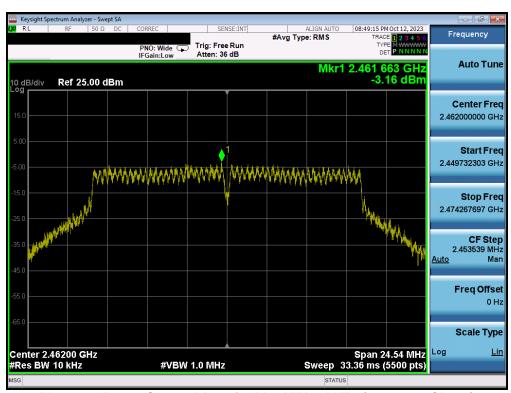
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 39 of 106

© 2023 ELEMENT

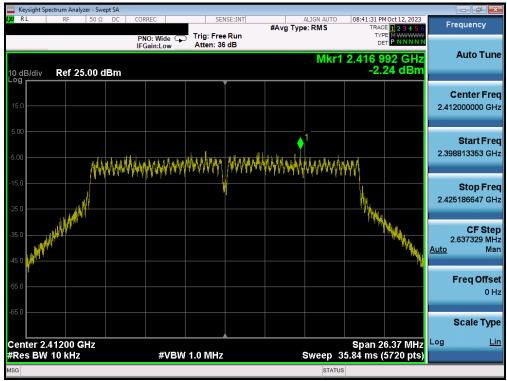

V11.0 07/06/2023

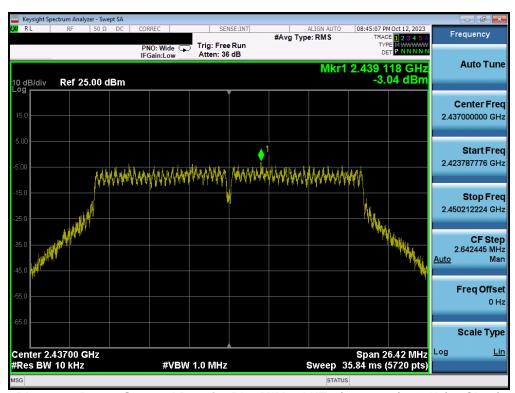
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without


Plot 7-39. Power Spectral Density Plot MIMO ANT1 (802.11b - Ch. 11)

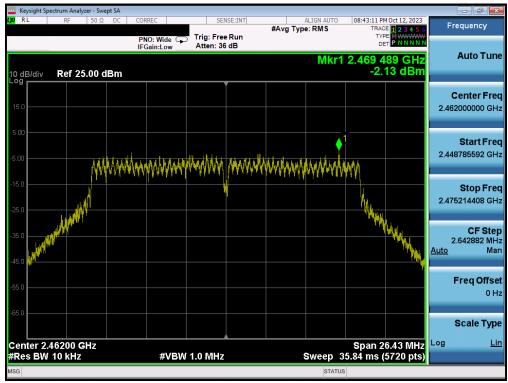

Plot 7-40. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 1)

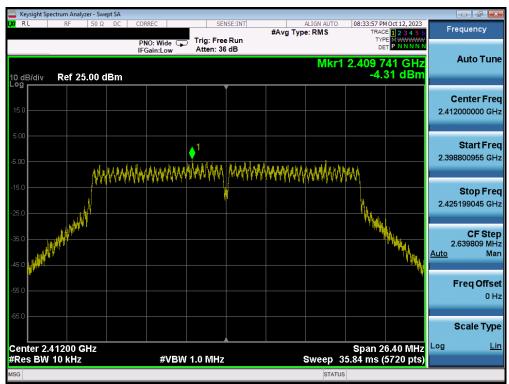
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 40 of 106


Plot 7-41. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 6)


Plot 7-42. Power Spectral Density Plot MIMO ANT1 (802.11g - Ch. 11)

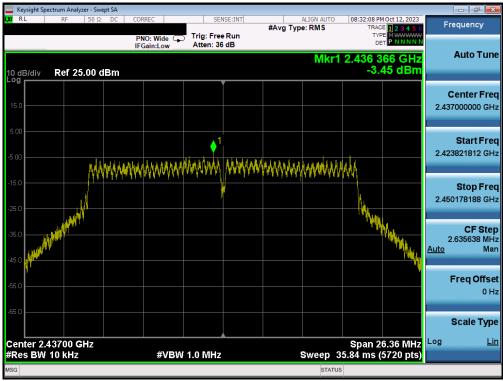
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 41 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 41 of 106


Plot 7-43. Power Spectral Density Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 1)

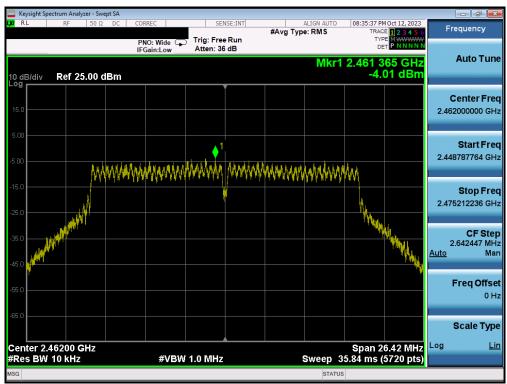

Plot 7-44. Power Spectral Density Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 42 of 106

Plot 7-45. Power Spectral Density Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 11)

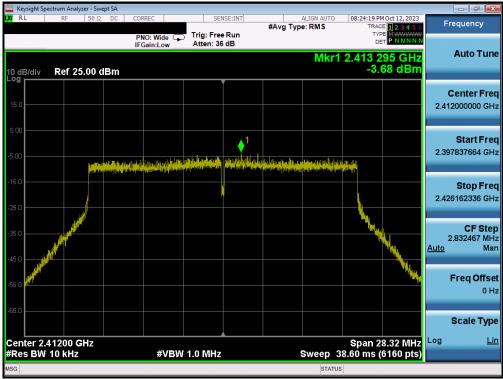


Plot 7-46. Power Spectral Density Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 1)

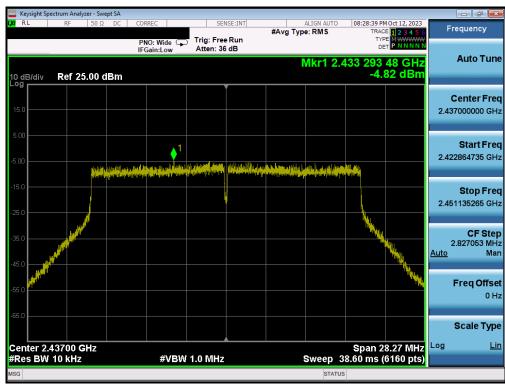

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 43 of 106

© 2023 ELEMENT

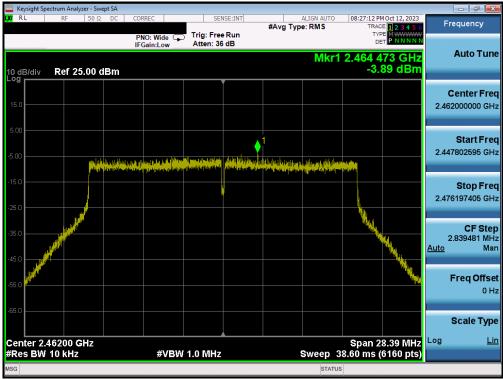
Plot 7-47. Power Spectral Density Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 6)

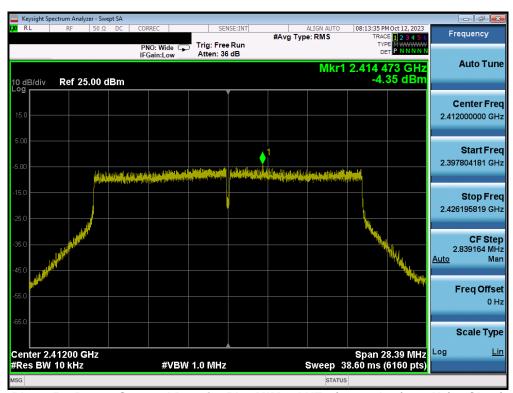


Plot 7-48. Power Spectral Density Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 11)

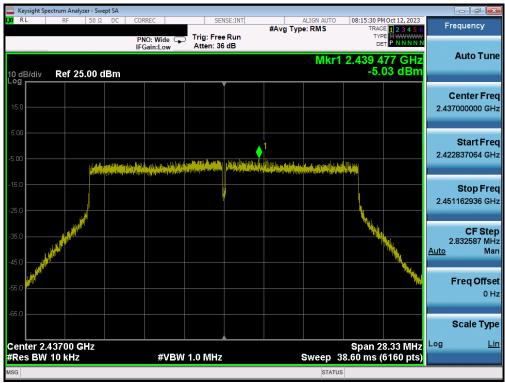

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 44 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 44 of 106

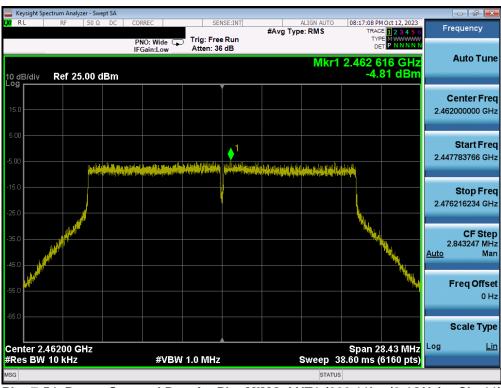
© 2023 ELEMENT


Plot 7-49. Power Spectral Density Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 1)


Plot 7-50. Power Spectral Density Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 45 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 45 of 106


Plot 7-51. Power Spectral Density Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 11)


Plot 7-52. Power Spectral Density Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 1)

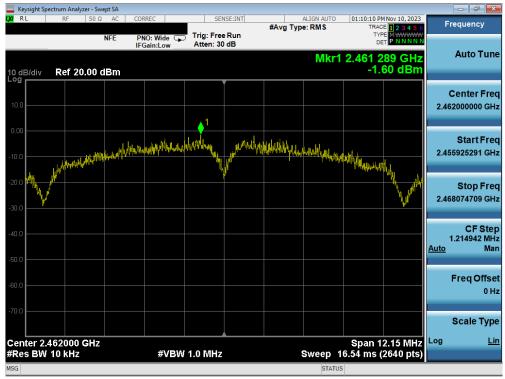
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 46 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 46 of 106

Plot 7-53. Power Spectral Density Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 6)

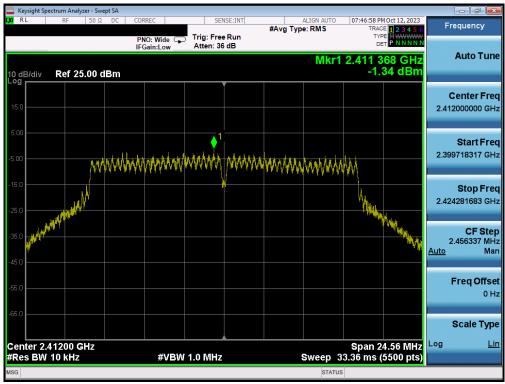
Plot 7-54. Power Spectral Density Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 47 of 106

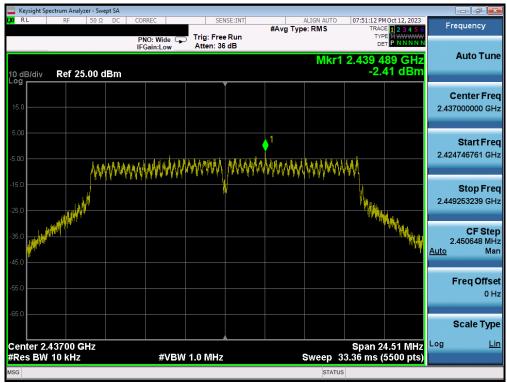
Plot 7-55. Power Spectral Density Plot MIMO ANT2 (802.11b - Ch. 1)

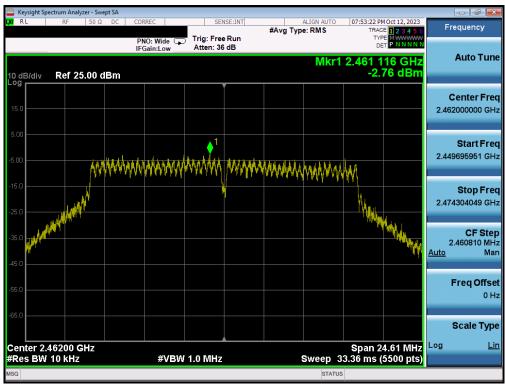

Plot 7-56. Power Spectral Density Plot MIMO ANT2 (802.11b - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 40 of 100


© 2023 ELEMENT

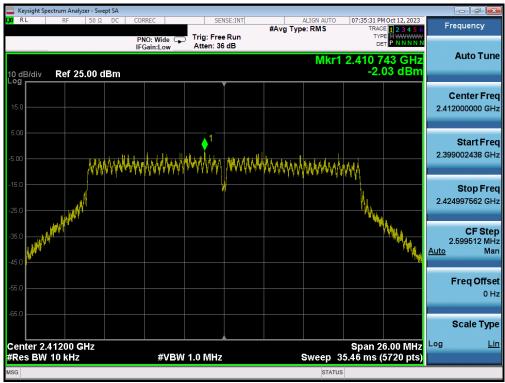
V11.0 07/06/2023
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, withou


Plot 7-57. Power Spectral Density Plot MIMO ANT2 (802.11b - Ch. 11)

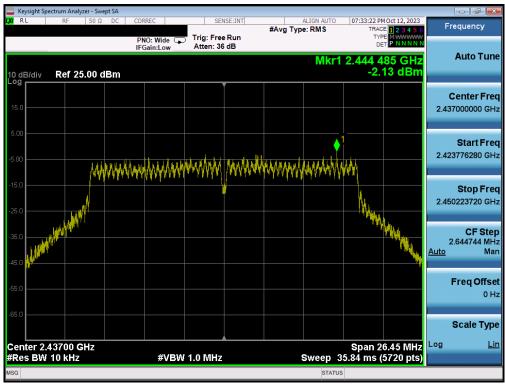

Plot 7-58. Power Spectral Density Plot MIMO ANT2 (802.11g - Ch. 1)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 49 of 106

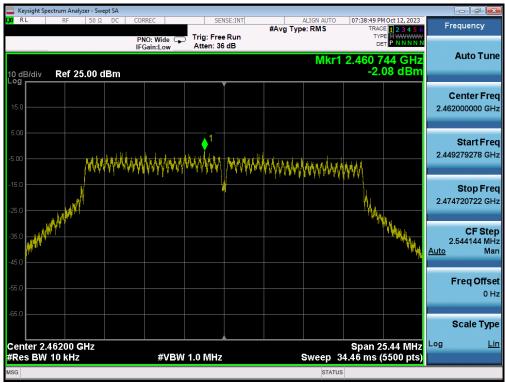
Plot 7-59. Power Spectral Density Plot MIMO ANT2 (802.11g - Ch. 6)

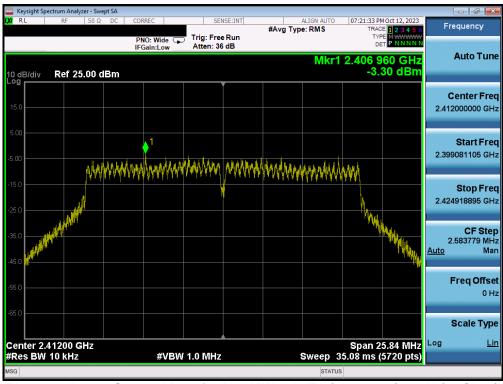


Plot 7-60. Power Spectral Density Plot MIMO ANT2 (802.11g - Ch. 11)

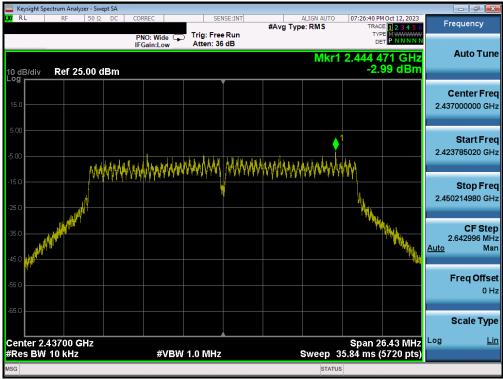

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 50 of 106

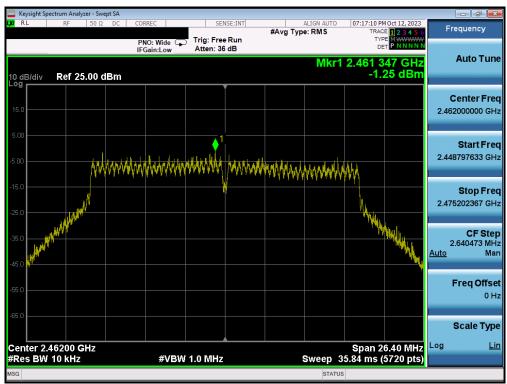
© 2023 ELEMENT


Plot 7-61. Power Spectral Density Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 1)


Plot 7-62. Power Spectral Density Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 6)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 51 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 51 of 106


Plot 7-63. Power Spectral Density Plot MIMO ANT2 (802.11n (2.4GHz) - Ch. 11)

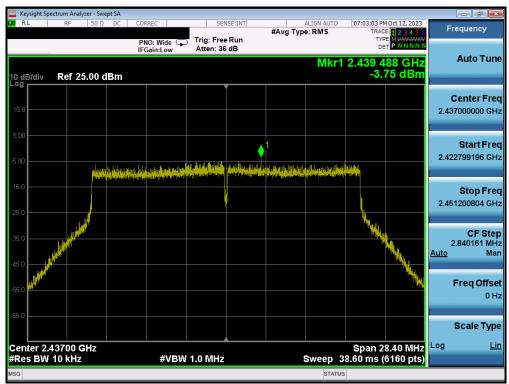

Plot 7-64. Power Spectral Density Plot MIMO ANT2 (802.11ac (2.4GHz) - Ch. 1)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 52 of 106

Plot 7-65. Power Spectral Density Plot MIMO ANT2 (802.11ac (2.4GHz) - Ch. 6)

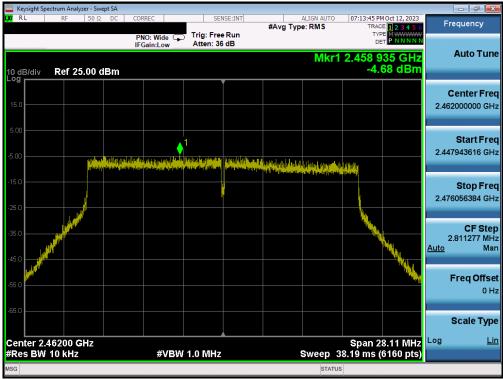
Plot 7-66. Power Spectral Density Plot MIMO ANT2 (802.11ac (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 55 of 106

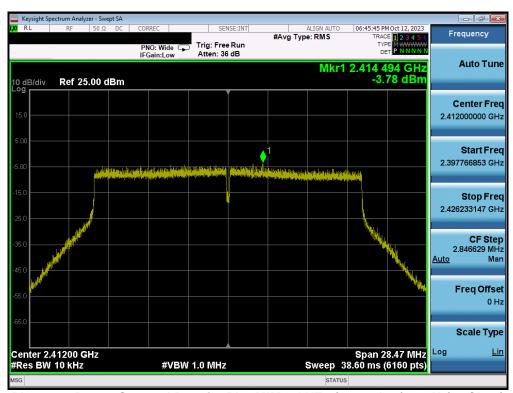

© 2023 ELEMENT

V11.0 07/06/202:
Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without

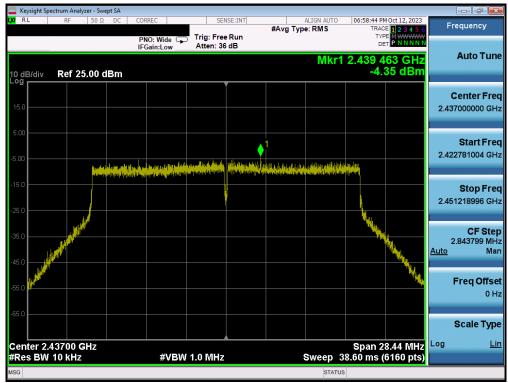
Plot 7-67. Power Spectral Density Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 1)

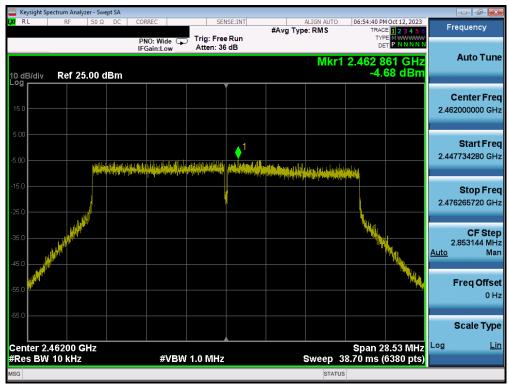


Plot 7-68. Power Spectral Density Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 6)


FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 34 of 106

© 2023 ELEMENT V11.0 07/06/2023


Plot 7-69. Power Spectral Density Plot MIMO ANT2 (802.11ax (2.4GHz) - Ch. 11)


Plot 7-70. Power Spectral Density Plot MIMO ANT2 (802.11be (2.4GHz) - Ch. 1)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EE of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 55 of 106

Plot 7-71. Power Spectral Density Plot MIMO ANT2 (802.11be (2.4GHz) - Ch. 6)

Plot 7-72. Power Spectral Density Plot MIMO ANT2 (802.11be (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage 50 of 100

Note:

Per ANSI C63.10-2013 Section 14.3.1, the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 2412MHz the average conducted power spectral density was measured to be -1.62 dBm for Antenna 1 and -2.01 dBm for Antenna 2.

$$(-1.62dBm + -2.01 dBm) = (0.69mW + 0.63 mW) = 1.32 mW = 1.20 dBm$$

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 57 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 57 of 106

7.5 Conducted Band Edge Emissions

Test Overview and Limit

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. For the following out of band conducted spurious emissions plots at the band edge, the EUT was set at a data rate of 1Mbps for "b" mode, 6 Mbps for "g" mode, 6.5\\7.2Mbps for "n" mode, and 8.6Mbps for "ax" mode as these settings produced the worst-case emissions.

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental emission level, as determined from the in-band power measurement of the DTS channel performed in a 100kHz bandwidth per the PSD procedure (Section 7.4).

Test Procedure Used

ANSI C63.10-2013 - Section 11.11.3

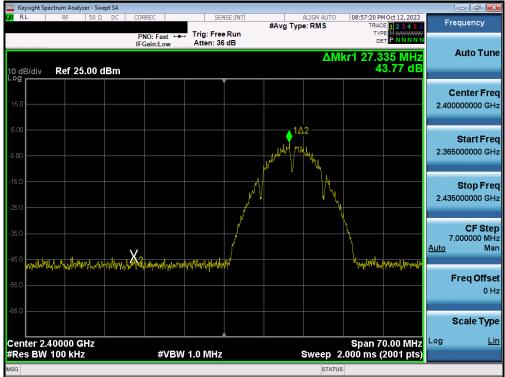
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 100kHz
- 4. VBW = 1MHz
- 5. Detector = Peak
- Number of sweep points ≥ 2 x Span\\RBW
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

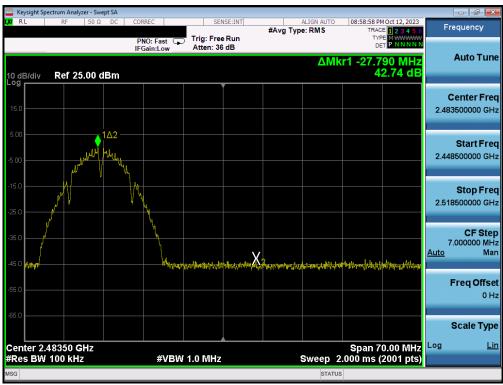
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

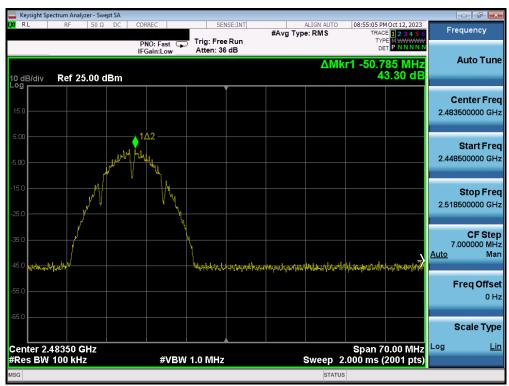
Figure 7-4. Test Instrument & Measurement Setup

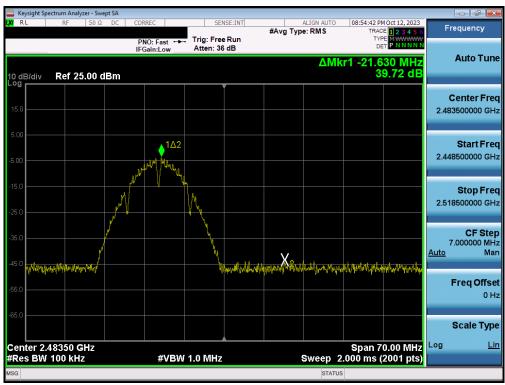

Test Notes

None.

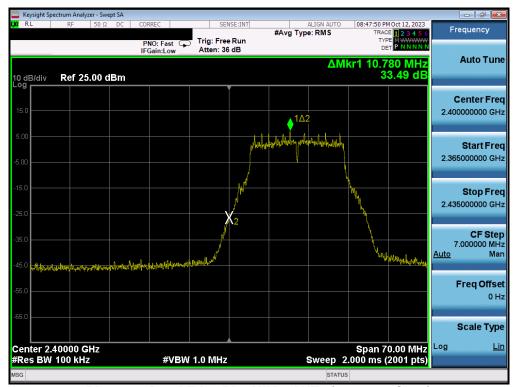

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 59 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 58 of 106

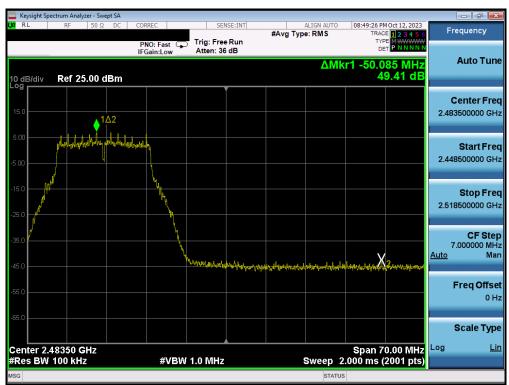
7.5.1 MIMO Conducted Band Edge Emissions


Plot 7-73. Band Edge Plot MIMO ANT1 (802.11b - Ch. 1)

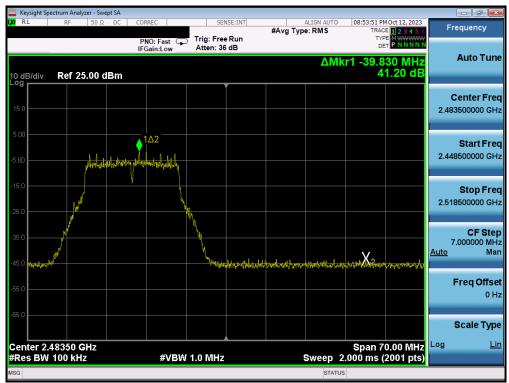

Plot 7-74. Band Edge Plot MIMO ANT1 (802.11b - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 59 of 106


Plot 7-75. Band Edge Plot MIMO ANT1 (802.11b - Ch. 12)

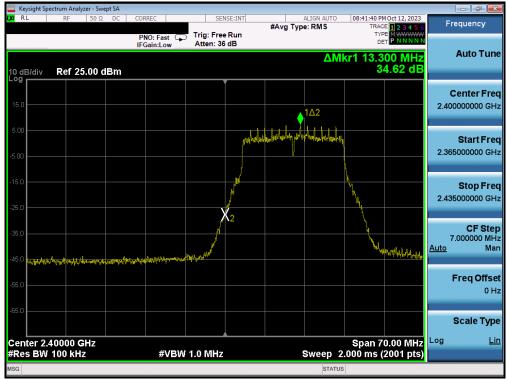

Plot 7-76. Band Edge Plot MIMO ANT1 (802.11b - Ch. 13)

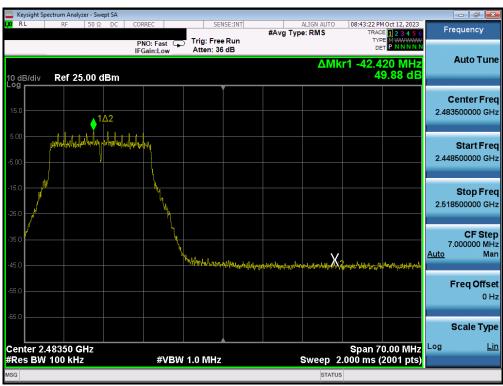
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 60 of 106


Plot 7-77. Band Edge Plot MIMO ANT1 (802.11g- Ch. 1)

Plot 7-78. Band Edge Plot MIMO ANT1 (802.11g - Ch. 11)

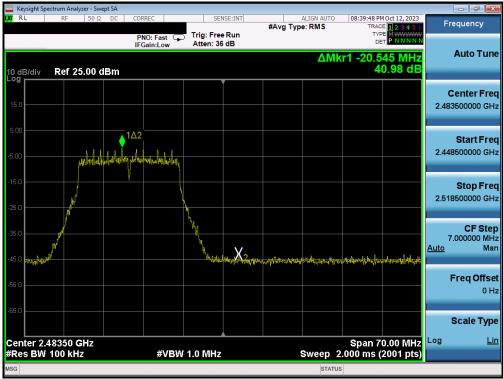
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 61 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 61 of 106


Plot 7-79. Band Edge Plot MIMO ANT1 (802.11g - Ch. 12)

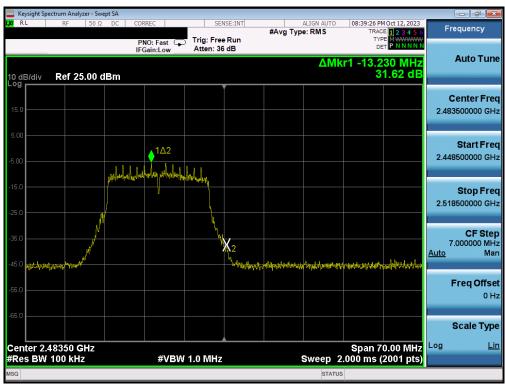

Plot 7-80. Band Edge Plot MIMO ANT1 (802.11g - Ch. 13)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 62 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 62 of 106

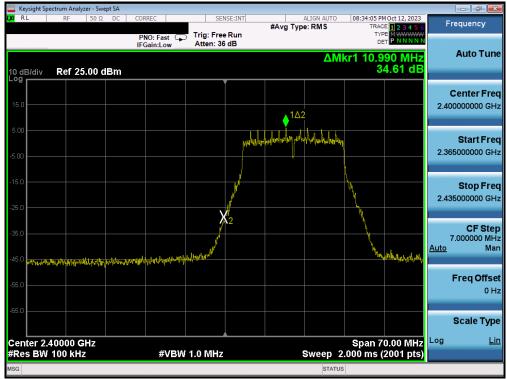
Plot 7-81. Band Edge Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 1)

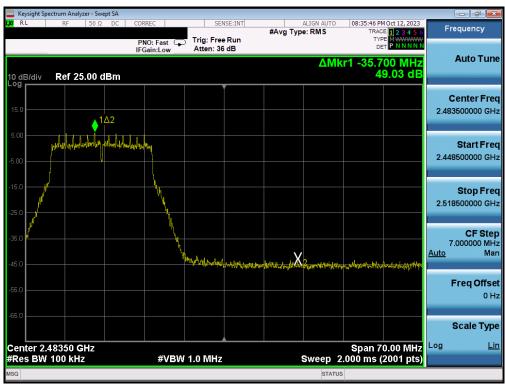


Plot 7-82. Band Edge Plot MIMO ANT1 (802.11n (2.4GHz) - Ch.11)

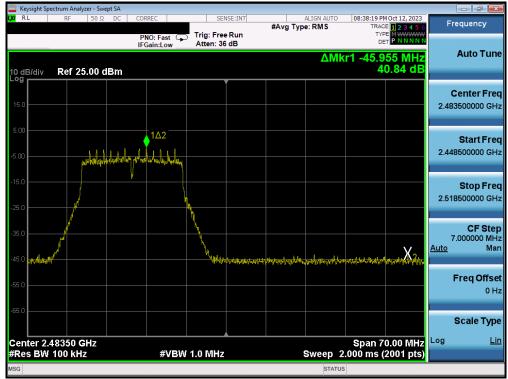

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	rage os oi 106

© 2023 ELEMENT V11.0 07/06/202:


Plot 7-83. Band Edge Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 12)

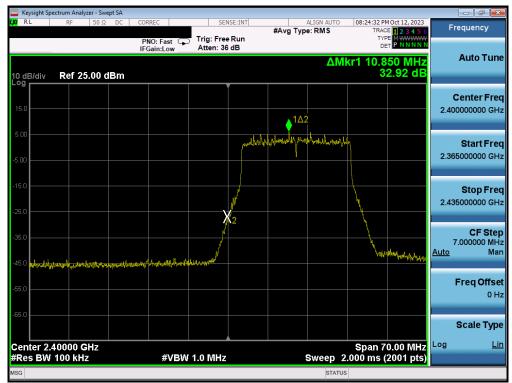

Plot 7-84. Band Edge Plot MIMO ANT1 (802.11n (2.4GHz) - Ch. 13)

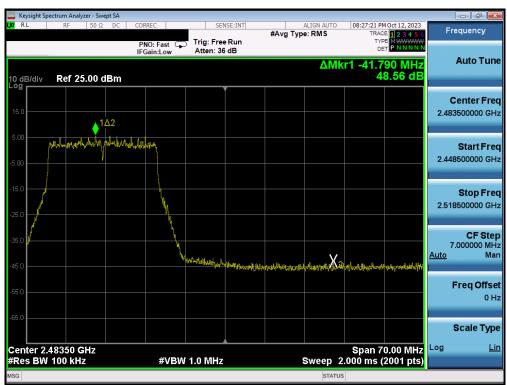
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 64 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 64 of 106


Plot 7-85. Band Edge Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 1)

Plot 7-86. Band Edge Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 65 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 65 of 106


Plot 7-87. Band Edge Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 12)


Plot 7-88. Band Edge Plot MIMO ANT1 (802.11ac (2.4GHz) - Ch. 13)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 66 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 66 of 106

Plot 7-89. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 1)

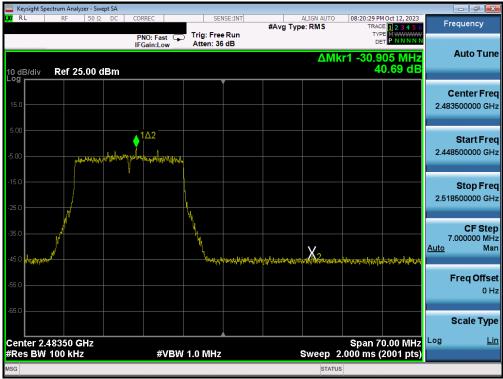

Plot 7-90. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 11)

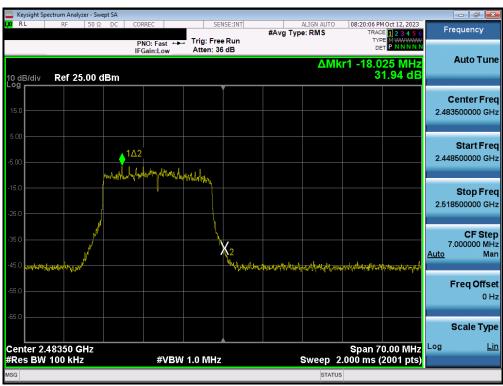
FCC ID: A3LSMS928B		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dogg 67 of 100
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 67 of 106
© 2023 ELEMENT	•	•	V11.0 07/06/2023

Plot 7-91. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 12)

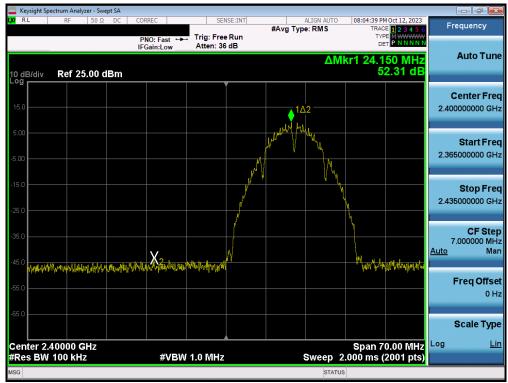
Plot 7-92. Band Edge Plot MIMO ANT1 (802.11ax (2.4GHz) - Ch. 13)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 69 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 68 of 106


Plot 7-93. Band Edge Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 1)

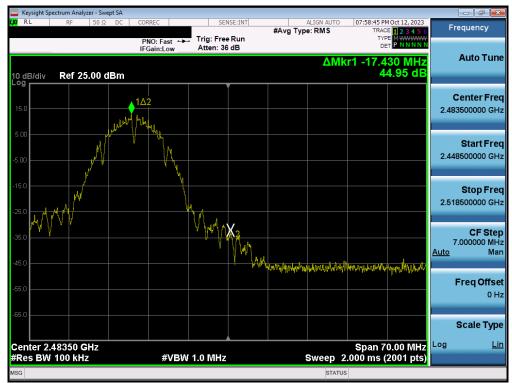

Plot 7-94. Band Edge Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 11)

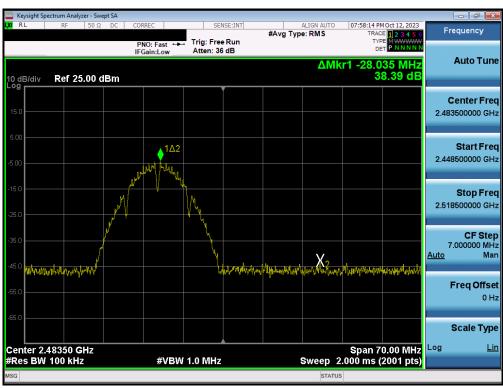
FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 69 of 106


Plot 7-95. Band Edge Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 12)


Plot 7-96. Band Edge Plot MIMO ANT1 (802.11be (2.4GHz) - Ch. 13)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 70 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 70 of 106


Plot 7-97. Band Edge Plot MIMO ANT2 (802.11b - Ch. 1)


Plot 7-98. Band Edge Plot MIMO ANT2 (802.11b - Ch. 11)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 71 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	Page 71 of 106

Plot 7-99. Band Edge Plot MIMO ANT2 (802.11b - Ch. 12)

Plot 7-100. Band Edge Plot MIMO ANT2 (802.11b - Ch. 13)

FCC ID: A3LSMS928B	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 72 of 106
1M2308210093-11.A3L	8/21/2023 - 11/10/2023	Portable Handset	