Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

FCC RADIO TEST REPORT

The device described below is tested by Dongguan Nore Testing Center Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and E.U.T.'s performance criterion. The test results, data evaluation, test procedures, and equipment of configurations shown in this report were made in accordance with the procedures in ANSI C63.10(2013).

Applicant : EXPRESS LUCK INDUSTRIAL (SHENZHEN) LIMITED

Address : Floor1, Workshop1, NO.88, SOUTH BAOTONG ROAD, XIKENG COMMUNITY,

YUANSHAN STREET, LONGGANG DISTRICT, SHENZHEN, CHINA

Manufacturer/Factory : EXPRESS LUCK INDUSTRIAL (SHENZHEN) LIMITED

Address : Floor1, Workshop1, NO.88, SOUTH BAOTONG ROAD, XIKENG COMMUNITY,

YUANSHAN STREET, LONGGANG DISTRICT, SHENZHEN, CHINA

E.U.T. : WIFI Bluetooth module

Brand Name : Caixun

Model No. : SKI.WB7638U.1_MT7668BU

FCC ID : 2AWY6-MT7668BU

Measurement Standard : FCC PART 15.247

Date of Receiver : July 11, 2020

Date of Test : July 15, 2020 to August 10, 2020

Date of Report : August 10, 2020

This Test Report is Issued Under the Authority of:

Prepared by

Sundiy Jiang / Engineer

lori and Atholization atory

TEL: +86-769-2202/2444 FAX: +86-769-22022799 Web: www.ntc-c.com Address: Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong, China

This test report is for the customer shown above and their specific product only. This report applies to above tested sample only and shall not be reproduced in part without written approval of Dongguan Nore Testing Center Co., Ltd.

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

Table of Contents

1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST	5
1.2 RELATED SUBMITTAL(S) / GRANT (S)	7
1.3 Test Methodology	
1.4 EQUIPMENT MODIFICATIONS	7
1.5 SUPPORT DEVICE	
1.6 TEST FACILITY AND LOCATION	
1.7 DEVIATIONS AND ABNORMALITIES FROM STANDARD CONDITIONS	
1.8 SUMMARY OF TEST RESULTS	
2. SYSTEM TEST CONFIGURATION	10
2.1 EUT CONFIGURATION	10
2.2 DESCRIPTION OF TEST MODES	10
2.3 EUT EXERCISE	10
3. CONDUCTED EMISSIONS TEST	11
3.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	11
3.2 TEST CONDITION	
3.3 MEASUREMENT RESULTS	11
4. RADIATED EMISSION TEST	14
4.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	14
4.2 MEASUREMENT PROCEDURE	
4.3 LIMIT	16
4.4 MEASUREMENT RESULTS	16
5. CHANNEL SEPARATION TEST	20
5.1 MEASUREMENT PROCEDURE	20
5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
5.3 MEASUREMENT RESULTS	20
6. 20DB BANDWIDTH	24
6.1 MEASUREMENT PROCEDURE	24
6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	24
6.3 MEASUREMENT RESULTS	24
7. HOPPING CHANNEL NUMBER	28
7.1 MEASUREMENT PROCEDURE	28
7.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	28
7.3 MEASUREMENT RESULTS	28

8. TIME OF OCCUPANCY (DWELL TIME)	29
8.1 MEASUREMENT PROCEDURE	29
8.2 MEASUREMENT RESULTS	29
9. MAXIMUM PEAK OUTPUT POWER	33
9.1 MEASUREMENT PROCEDURE	33
9.2 MEASUREMENT RESULTS	33
10. BAND EDGE AND RESTRICTION BANDS	37
10.1 MEASUREMENT PROCEDURE	37
10.2 LIMIT	37
10.3 Measurement Results	37
11. ANTENNA APPLICATION	40
11.1 ANTENNA REQUIREMENT	40
11.2 MEASUREMENT RESULTS	40
12. CONDUCTED SPURIOUS EMISSIONS	40
12.1 MEASUREMENT PROCEDURE	40
12.2. MEASUREMENT RESULTS	40
13 TEST FOUIPMENT LIST	42

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

Revision History

Report Number	Description	Issued Date
NTC2007100FV00	Initial Issue	2020-08-10

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

1. General Information

1.1 Product Description for Equipment under Test

Product Name : WIFI Bluetooth module

Main Model Number : SKI.WB7638U.1_MT7668BU

Additional Model

Number

: N/A

Description of Model

Difference

: N/A

Brand Name : Caixun

Rating : DC 3.3V (By PCB Board)

Adapter : N/A

Test voltage : AC 120V 60Hz

Cable : N/A

Hardware Version : V1.0

Software Version : V1.0

Note : N/A

Remark : This product contains multiple wireless features, and this

report applies only to BR+EDR technology.

Technical parameters

Bluetooth Version : V 5.0

Frequency Range : 2402-2480MHz

Modulation : GFSK, π/4-DQPSK, 8DPSK

Number of Channel : 79 (See Appendix I for a list of channels and test channels)

Channel space : 1MHz

Date Rate : 1Mbps for GFSK

2Mbps for $\pi/4$ -DQPSK

3Mbps for 8DPSK

Antenna Type : FPC antenna

Antenna Gain : 2.3 dBi (Declared by manufacturer)

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

Appendix I - Channel List and Test Channel

	7,72	CHAIX	Onamici		icst onai		
Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz
1	2402	21	2422	41	2442	61	2462
2	2403	22	2423	42	2443	62	2463
3	2404	23	2424	43	2444	63	2464
4	2405	24	2425	44	2445	64	2465
5	2406	25	2426	45	2446	65	2466
6	2407	26	2427	46	2447	66	2467
7	2408	27	2428	47	2448	67	2468
8	2409	28	2429	48	2449	68	2469
9	2410	29	2430	49	2450	69	2470
10	2411	30	2431	50	2451	70	2471
11	2412	31	2432	51	2452	71	2472
12	2413	32	2433	52	2453	72	2473
13	2414	33	2434	53	2454	73	2474
14	2415	34	2435	54	2455	74	2475
15	2416	35	2436	55	2456	75	2476
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461	-	-

Note: According to section 15.31(m), regards to the operating frequency range over 10MHz, the lowest, middle, and the highest frequency of channel were selected to perform the test. The selected frequency and test software see below:

Channel	Frequency MHz
1	2402
40	2441
79	2480
Test SW version	Signalling

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: 2AWY6-MT7668BU** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rule.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

Notebook : Manufacturer: IBM

Model: 1834 P/N: 13N5615

Adapter : Manufacturer: Huntkey (For Notebook) Model: HKA09019047-6D

I/P: AC 100-240V 50-60Hz, 1.5A

O/P: DC 19V 4.74A

TV : Provided by the manufacturer (Terminal Product) : Manufacturer: Express Luck

Model: LE-50N3

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

1.6 Test Facility and Location

Site Description

EMC Lab : Listed by CNAS, August 13, 2018

The certificate is valid until August 13, 2024

The Laboratory has been assessed and proved to be in

compliance with CNAS/CL01

The Certificate Registration Number is L5795.

Listed by A2LA, November 01, 2017

The certificate is valid until December 31, 2021

The Laboratory has been assessed and proved to be in

compliance with ISO17025

The Certificate Registration Number is 4429.01

Listed by FCC, November 06, 2017 The Designation Number is CN1214 Test Firm Registration Number: 907417

Listed by Industry Canada, June 08, 2017

The Certificate Registration Number is 46405-9743A

Name of Firm : Dongguan Nore Testing Center Co., Ltd.

(Dongguan NTC Co., Ltd.)

Site Location : Building D, Gaosheng Science and Technology Park,

Hongtu Road, Nancheng District, Dongguan City,

Guangdong Province, China

Dongguan Nore Testing Center Co., Ltd. Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

1.7 Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

1.8 Summary of Test Results

FCC Rules	Description Of Test	Uncertainty	Result
§15.247(a)(1)	Channel Separation test	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)	20dB Bandwidth	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)(iii)	Hopping Channel Number	±1.42 x10 ⁻⁴ %	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	±5%	Compliant
§15.247(b)	Max Peak output Power test	±0.84dB	Compliant
§15.247(d)	Band edge test	±1.70dB	Compliant
§15.207 (a)	AC Power Conducted Emission	±2.52dB	Compliant
§15.247(d),§15.209, §15.205	Radiated Emission	±4.68dB	Compliant
§15.203	Antenna Requirement	N/A	Compliant
§15.247(d)	Conducted Spurious Emission	±1.14dB	Compliant

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

2. System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 Description of test modes

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and normal mode is programmed. The Lowest, middle and highest channel were chosen for testing, and all packets DH1, DH3 and DH5 mode in all modulation type GFSK, $\pi/4$ -DQPSK, 8DPSK were tested.

2.3 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

3. Conducted Emissions Test

3.1 Test SET-UP (Block Diagram of Configuration)

3.2 Test Condition

Test Requirement: FCC Part 15.207

Frequency Range: 150KHz ~ 30MHz

Detector: RBW 9KHz, VBW 30KHz

Operation Mode: TX

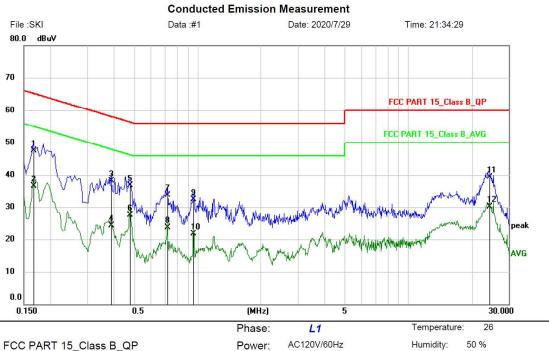
3.3 Measurement Results

PASS

Please refer to the following pages of the worst case: 8DPSK (High Channel).

 $\label{eq:configuration} \textbf{Dongguan Nore Testing Center Co., Ltd.}$

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU



Dongguan NTC Co., Ltd.

Tel: +86-769-22022444 Fax: +86-769-22022799

Web: Http://www.ntc-c.com

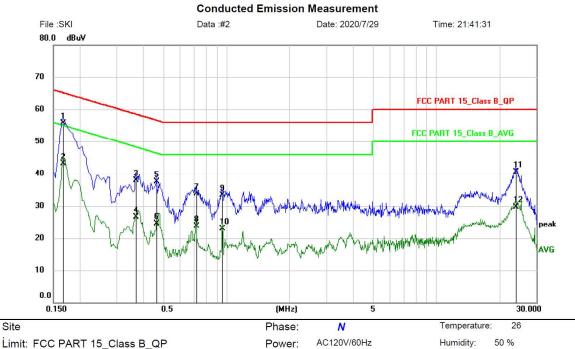
Limit: FCC PART 15_Class B_QP EUT: WIFI Bluetooth module M/N: SKI.WB7638U.1_MT7668BU

Mode: TX Note:

Site

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1660	37.00	10.60	47.60	65.16	-17.56	QP	
2	0.1660	26.00	10.60	36.60	55.16	-18.56	AVG	
3	0.3899	27.59	10.61	38.20	58.07	-19.87	QP	
4	0.3899	13.79	10.61	24.40	48.07	-23.67	AVG	
5	0.4780	26.07	10.63	36.70	56.37	-19.67	QP	
6	0.4780	16.87	10.63	27.50	46.37	-18.87	AVG	
7	0.7220	23.14	10.66	33.80	56.00	-22.20	QP	
8	0.7220	13.04	10.66	23.70	46.00	-22.30	AVG	
9	0.9540	21.61	10.69	32.30	56.00	-23.70	QP	
10	0.9540	11.01	10.69	21.70	46.00	-24.30	AVG	
11	24.2420	28.52	10.78	39.30	60.00	-20.70	QP	
12	24.2420	19.32	10.78	30.10	50.00	-19.90	AVG	

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU



Dongguan NTC Co., Ltd.

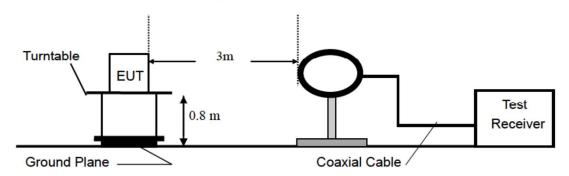
Tel: +86-769-22022444 Fax: +86-769-22022799

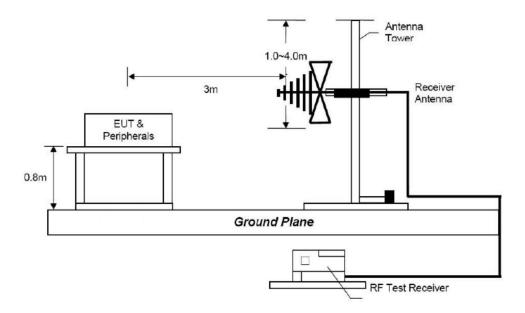
Web: Http://www.ntc-c.com

EUT: WIFI Bluetooth module M/N: SKI.WB7638U.1_MT7668BU

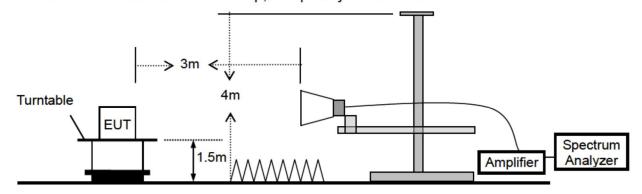
Mode: TX Note:

Site


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1660	45.10	10.60	55.70	65.16	-9.46	QP	
2		0.1660	32.50	10.60	43.10	55.16	-12.06	AVG	
3		0.3700	27.39	10.61	38.00	58.50	-20.50	QP	
4		0.3700	15.89	10.61	26.50	48.50	-22.00	AVG	
5		0.4660	26.98	10.62	37.60	56.58	-18.98	QP	
6		0.4660	13.88	10.62	24.50	46.58	-22.08	AVG	
7		0.7220	23.04	10.66	33.70	56.00	-22.30	QP	
8		0.7220	13.04	10.66	23.70	46.00	-22.30	AVG	
9		0.9580	22.71	10.69	33.40	56.00	-22.60	QP	
10		0.9580	12.21	10.69	22.90	46.00	-23.10	AVG	
11		23.8940	29.72	10.78	40.50	60.00	-19.50	QP	
12		23.8940	19.02	10.78	29.80	50.00	-20.20	AVG	



4. Radiated Emission Test


4.1 Test SET-UP (Block Diagram of Configuration)

4.1.1 Radiated Emission Test Set-Up, Frequency Below 30MHz

4.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

4.2 Measurement Procedure

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:
 - The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
Above 1000	Average	1 MHz	10 Hz

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

4.3 Limit

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz	m	μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

Note: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

4.4 Measurement Results

PASS

Please refer to following plots of the worst case: 8DPSK (High Channel).

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: Http://www.ntc-c.com

Radiated Emission Measurement File:SKI'WB7638U.1_MT7668BU Time: 19:14:23 Data:#32 Date: 2020/7/28 80.0 dBuV/m 70 60 FCC Part 15_ClassB_3M 50 40 30 20 10 0.0 1000.00 MHz

30.000 Site: 3m Chamber

Limit: FCC Part 15_ClassB_3M EUT: WIFI Bluetooth module

M/N: SKI`WB7638U.1_MT7668BU

127.00

224.00

321.00

418.00

Mode: TX Note:

Polarizatio	n: Horizontal	remperature	. 20
Power:	AC120V/60Hz	Humidity:	47 %

806.00

709.00

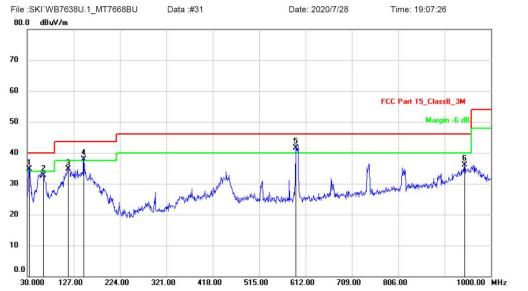
Distance: 3m

612.00

515.00

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	79.4700	42.03	-11.83	30.20	40.00	-9.80	QP
2	147.3700	46.62	-10.92	35.70	43.50	-7.80	QP
3	160.9500	42.90	-10.40	32.50	43.50	-11.00	QP
4	191.0200	41.30	-8.20	33.10	43.50	-10.40	QP
5 *	591.6300	41.35	0.45	41.80	46.00	-4.20	QP
6	741.9800	36.00	2.90	38.90	46.00	-7.10	QP

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.


Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: Http://www.ntc-c.com

Radiated Emission Measurement

Polarization:

Site: 3m Chamber Limit: FCC Part 15_ClassB_3M

EUT: WIFI Bluetooth module M/N: SKI`WB7638U.1_MT7668BU

Freq.

MHz

34.8500

63.9500

115.3600

148.3400

591.6300

944.7100

Reading

Level

dBuV

43.86

41.76

45.65

49.71

42.01

31.05

Correct

Factor

dB/m

-9.16

-9.06

-10.85

-11.81

-0.51

5.05

34.80

37.90

41.50

36.10

43.50

46.00

46.00

-5.60

-4.50

-9.90

QP

QP

QP

Mode: TX Note:

No. Mk.

1 !

4 !

5

6

2 3

Power:	AC120V/60Hz	Humidity:	47 %
Distance:	3m		

Temperature:

Vertical

Measure- ment	Limit	Over	
dBuV/m	dBuV/m	dB	Detector
34.70	40.00	-5.30	QP
32.70	40.00	-7.30	QP
34.80	43 50	-8.70	QP

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

Modulation: 8DPSK (the worst case)

Frequency Range: 1-25GHz Test Date: July 27, 2020

Test Result: PASS Temperature : 26 $^{\circ}$ C Measured Distance: 3m Humidity : 47 $^{\circ}$

Test By: Sance

Freq. Ant. Pol. (MHz)			ding dBuV)	Factor		n Level uV)	Limit (dBu)			rgin B)	
(1011 12)	(H/V)	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV	
Operation Mode: TX Mode (Low)											
4804	V	45.68	31.64	6.30	51.98	37.94	74.00	54.00	-22.02	-16.06	
7206	V	44.26	30.65	10.44	54.70	41.09	74.00	54.00	-19.30	-12.91	
4804	Н	45.21	31.03	6.30	51.51	37.33	74.00	54.00	-22.49	-16.67	
7206	Н	45.08	30.59	10.44	55.52	41.03	74.00	54.00	-18.48	-12.97	
			Ор	eration N	/lode: TX	Mode (M	lid)				
4882	V	47.46	31.12	6.60	54.06	37.72	74.00	54.00	-19.94	-16.28	
7323	V	45.79	33.90	10.55	56.34	44.45	74.00	54.00	-17.66	-9.55	
4882	Н	45.50	31.09	6.60	52.10	37.69	74.00	54.00	-21.90	-16.31	
7323	Н	45.10	31.58	10.55	55.65	42.13	74.00	54.00	-18.35	-11.87	
			Ope	eration M	lode: TX	Mode (Hi	gh)				
4960	V	44.82	30.86	6.89	51.71	37.75	74.00	54.00	-22.29	-16.25	
7440	V	45.10	31.26	10.60	55.70	41.86	74.00	54.00	-18.30	-16.06	
4960	Н	45.07	31.04	6.89	51.96	37.93	74.00	54.00	-22.04	-16.07	
7440	Н	46.54	31.26	10.60	57.14	41.86	74.00	54.00	-16.86	-12.14	

Note:

- (1) All Readings are Peak Value and AV.
- (2) Emission Level= Reading Level + Factor
- (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (4) Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
- (5) Measurement uncertainty: ±5.14dB.
- (6) Horn antenna used for the emission over 1000MHz.

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

5. Channel Separation test

5.1 Measurement Procedure

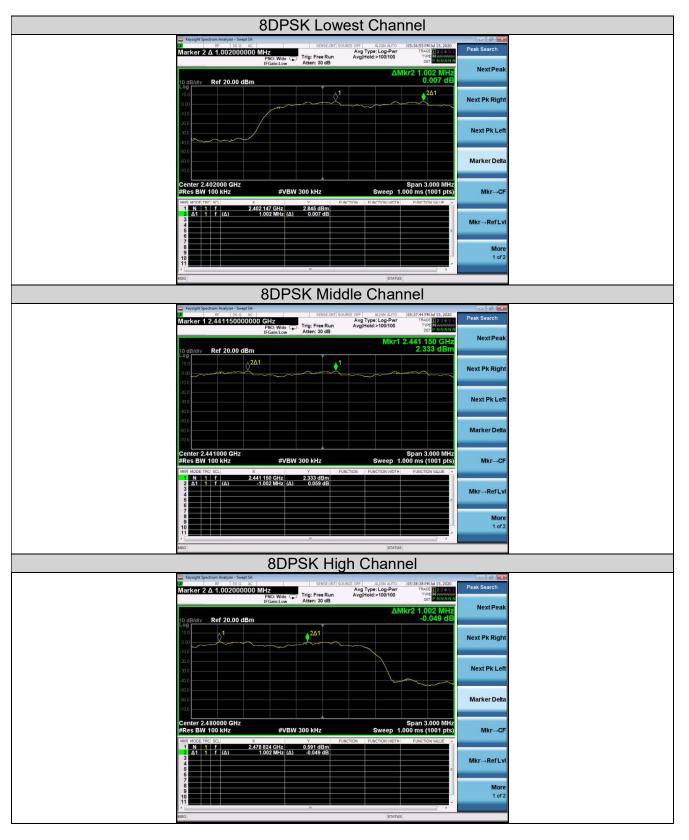
Minimum Hopping Channel Carrier Frequency Separation, FCC Rule 15.247(a)(1):

Connect EUT antenna terminal to the spectrum analyzer with a low loss cable, and using the MARKER and Max-Hold function to record the separation of two adjacent channels.


5.2 Test SET-UP (Block Diagram of Configuration)

5.3 Measurement Results

Modulation:	Modulation: GFSK, π/4-DQPSK, 8DPSK							
RBW:	100KHz	VBW:	300KHz					
Packet:	DH5, 2-DH5, 3-DH5	Spectrum Detector:	PK					
Test By:	Lee	Test Date :	July 15, 2019					
Temperature :	22 ℃	Humidity:	53 %					
Test Result:	PASS							
Channel number	Channel frequency (MHz)	Separation Read Value (KHz)	Separation Limit 2/3 20dB Bandwidth (KHz)					
	GFSK							
Lowest	2402	1002	>636.3					
Middle	2441	1002	>636.9					
Highest	2480	1002	>636.8					
	π/4-DC	PSK						
Lowest	2402	1002	>859.3					
Middle	2441	1002	>878.0					
Highest	2480	1002	>873.3					
	8DPSK							
Lowest	2402	1002	>862.0					
Middle	2441	1002	>863.3					
Highest	2480	1002	>862.7					



Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

6. 20dB Bandwidth

6.1 Measurement Procedure

Maximum 20dB RF Bandwidth, FCC Rule 15.247(a)(1):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

6.2 Test SET-UP (Block Diagram of Configuration)

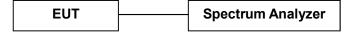
6.3 Measurement Results

Refer to attached data chart.

Madulation	CECK -// DODCK OD	nek					
Modulation:	GFSK, π/4-DQPSK, 8DF						
RBW:	30KHz	VBW:	100KHz				
Packet:	DH5, 2-DH5, 3-DH5	Spectrum Detector:	PK				
Test By:	Lee	Test Date :	November 07, 2019				
Temperature :	22 °C	Humidity :	53 %				
Test Result:	PASS						
Channe	el frequency (MHz)	20dB Do	wn BW(kHz)				
		GFSK					
	2402	954.5					
	2441	955.3					
	2480	955.2					
	π/	4-DQPSK					
	2402	1289.0					
	2441	1317.0					
	2480	1:	1310.0				
	8DPSK						
	2402	1293.0					
	2441	1295.0					
	2480	1:	294.0				



Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU


7. Hopping Channel Number

7.1 Measurement Procedure

Minimum Number of Hopping Frequencies, FCC Rule 15.247(a)(1)(iii):

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum, and the spectrum analyzer set to MAX HOLD readings were taken for 3-5 minutes. The channel peaks so recorded were added together, and the total number compared to the minimum number of channels required in the regulation.

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Results

Temperature : 22 °C	Humidity: 53 %	Test Date : July 15, 2020	
Modulation: GFSK, τ	r/4-DQPSK, 8DPSK	Test By: Sance	
RBW: 100KHz	VBW: 300KHz	Packet: DH5, 2-DH5, 3-DH	5
Test Result:	PASS		
Hopping	g Channel	Number of Hopping	Limit
Frequer	ncy Range	Channels	
(N	1Hz)		
2402	2-2480	79	≥15
	8DPSK (*	The Worst Case)	
		ENSE:INT SOURCE OFF ALIGN AUTO 06:00:33 PM Jul 15, 2020	er
	Marker 1 2.401503000000 GHz PNO: Fast PNO: Fast FIFGain:Low Atten:	ee Run Avg Hold:>100/100 TYPE MWWWW	arker
	10 dB/div Ref 20.00 dBm	Mkr1 2.401 503 0 GHz -3.728 dBm	1
	10.0	2∆1	lormal
	-10.0	and the second s	
	30.0		Delta
	-40.0		
	-60.0	, , , , , , , , , , , , , , , , , , ,	Fixed⊳
	Start 2.40000 GHz	Stop 2.48350 GHz	
	#Res BW 100 kHz		Off
	1 N 1 f 2.401 503 0 GHz -3.728 α 2 Δ1 1 f (Δ) 78.907 5 MHz (Δ) -0.19	dBm	
	4 5	Prope	erties >
	7 8		More
	10 11		1 of 2
	MSG	STATUS	

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

8. Time of Occupancy (Dwell Time)

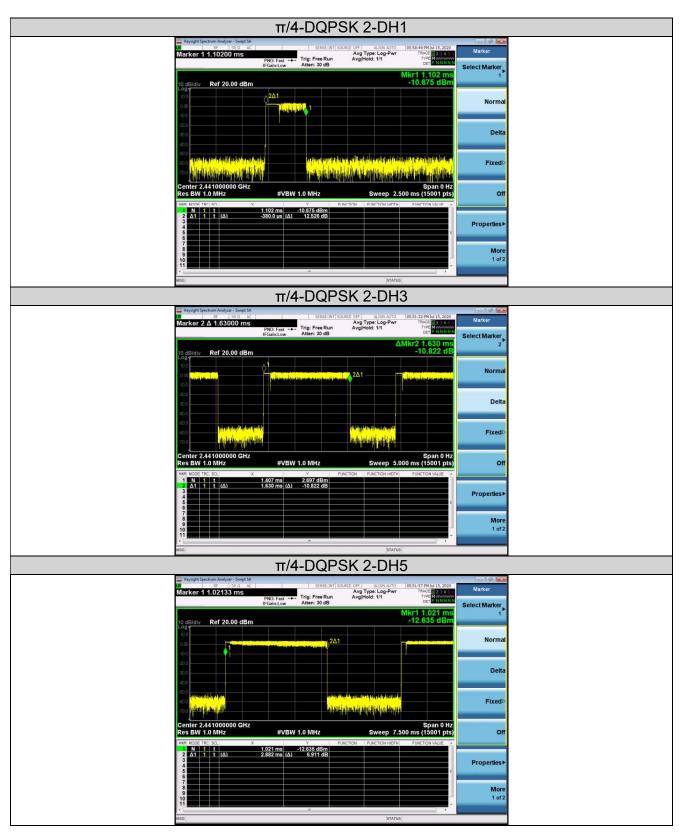
8.1 Measurement Procedure

Average Channel Occupancy Time, FCC Ref:15.247(a)(1)(iii):

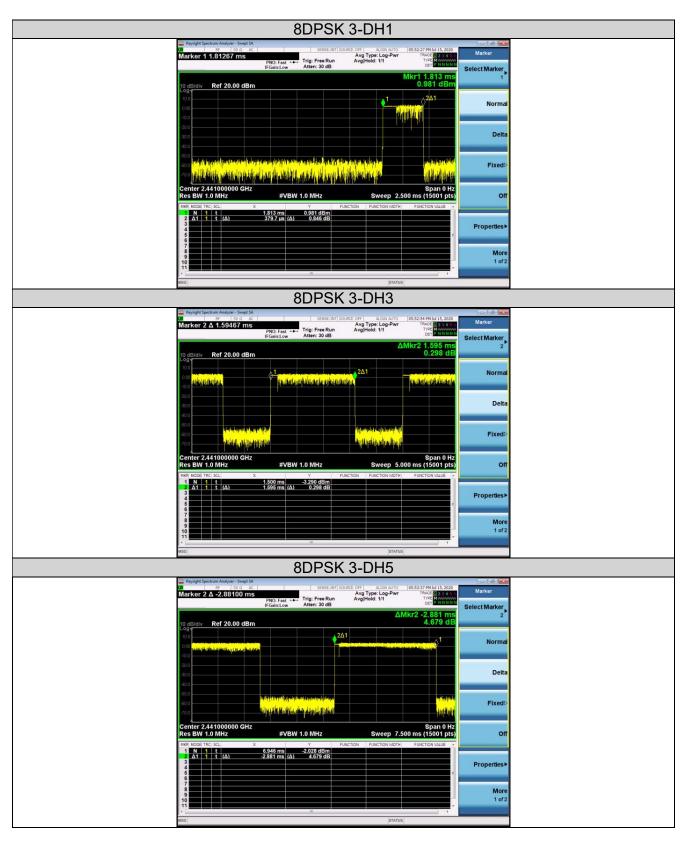
Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. The spectrum analyzer center frequency was set to one of the known hopping channels. The Sweep was set to 10 ms, the SPAN was set to Zero SPAN. The time duration of the transmissions so captured was measured with the Marker Delta function

8.2 Measurement Results

The maximum number of hopping channels in 31.6s (0.4s/Channel x 79 Channel)


Refer to attached data chart.

Modulation :	GFSK, π/4-DQPSK, 8DPSK							
RBW:		1MHz		VBW:	1MHz			
Spectrum Detec	ctor:	PK		Test By:	Lee			
Test Date :		November	07, 2019	Temperature :	22 ℃			
Test Result:		PASS		Humidity:	53 %			
Packet	Frequency			Result		Limit		
	(MHz)	_		(msec)		(msec)		
			GFSK					
DH1	2441	0.370	(ms)*(160	00/(2*79))*31.6=	118.400	400		
DH3	2441	1.626	1.626 (ms)*(1600/(4*79))*31.6			400		
DH5	2441	2.875	(ms)*(160	00/(6*79))*31.6=	306.667	400		
			π/4-DQPS	SK .				
2-DH1	2441	0.380	(ms)*(160	00/(2*79))*31.6=	121.600	400		
2-DH3	2441	1.630	(ms)*(160	00/(4*79))*31.6=	260.800	400		
2-DH5	2441	2.882	(ms)*(160	00/(6*79))*31.6=	307.413	400		
	8DPSK							
3-DH1	2441	0.380	(ms)*(160	00/(2*79))*31.6=	121.600	400		
3-DH3	2441	1.595	(ms)*(160	00/(4*79))*31.6=	255.200	400		
3-DH5	2441	2.881	(ms)*(160	00/(6*79))*31.6=	307.307	400		

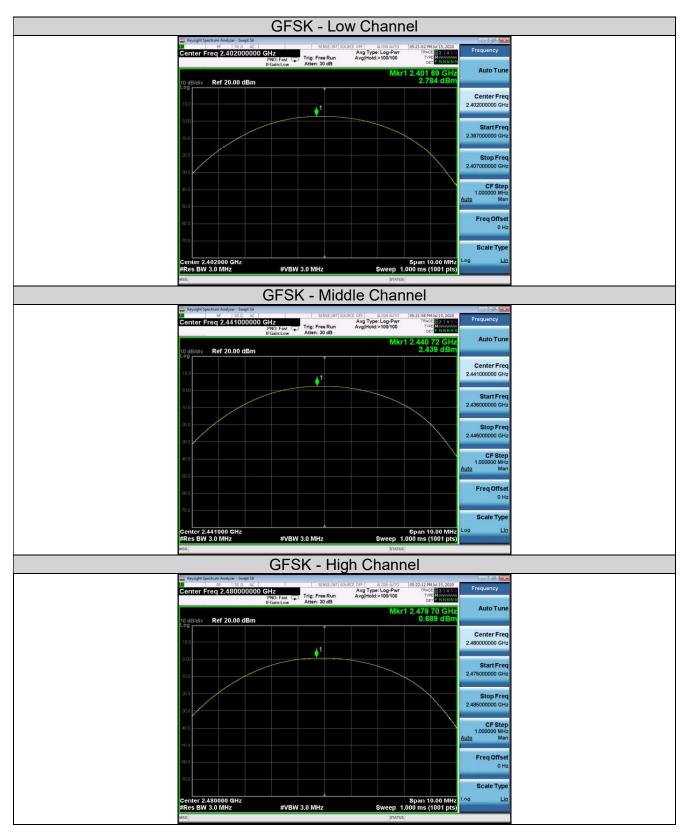


Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

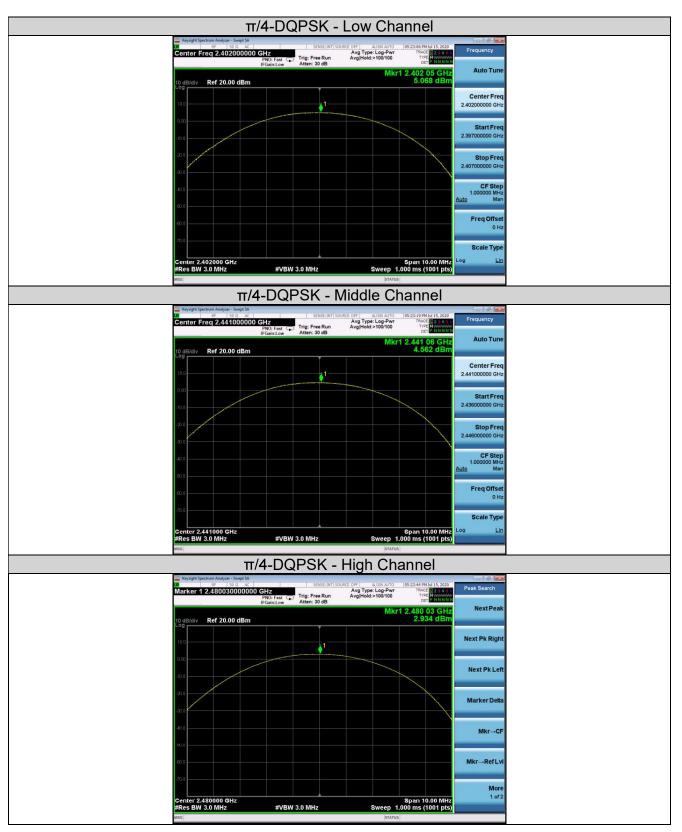
9. MAXIMUM PEAK OUTPUT POWER

9.1 Measurement Procedure

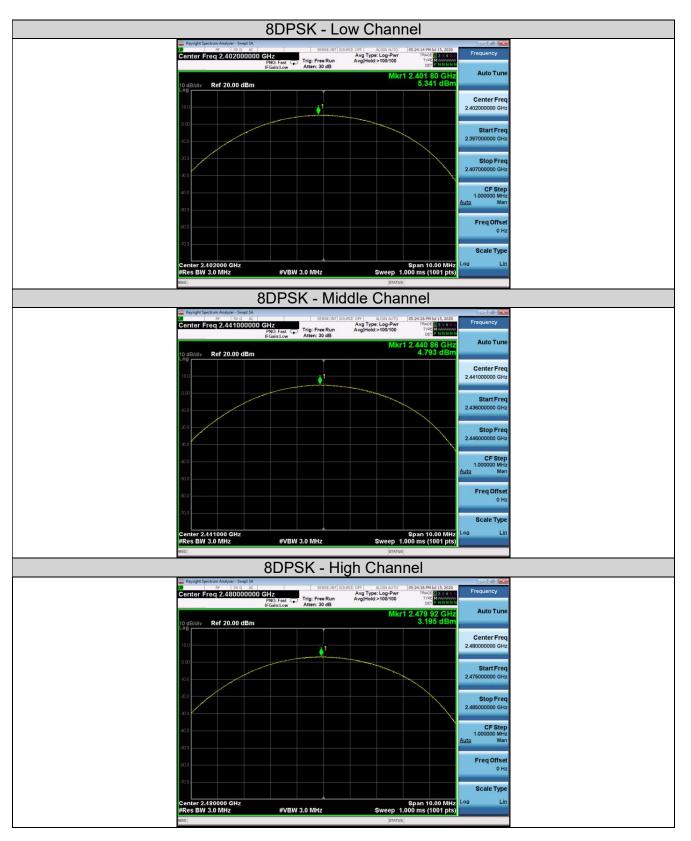
Maximum Conducted Output Power at Antenna Terminals, FCC Rules 15.247(b)(1):


Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum. The analyzer was set for RBW > 20dB bandwidth and power was read directly in dBm. Cable loss was considered during this measurement.

9.2 Measurement Results


Refer to attached data chart.

Modulation : GFSK, π/4-DQPSK, 8DPSK								
RBW:	3MHz	VBW:	3MHz					
Spectrum Detector:	PK	Test Date :	November 07, 2019					
Test By:	Lee	Temperature :	22 ℃					
Test Result:	PASS	Humidity:	53 %					
Channel Frequency	Peak Power	Peak Power	Peak Power	Result				
(MHz)	output	output	Limit					
	(dBm)	(mW)	(dBm)					
GFSK								
2402.00	2.784	1.898	21	PASS				
2441.00	2.439	1.753	21	PASS				
2480.00	0.689	1.172	21	PASS				
	π/4	-DQPSK						
2402.00	5.068	3.212	21	PASS				
2441.00	4.562	2.859	21	PASS				
2480.00	2.934	1.965	21	PASS				
8DPSK								
2402.00	5.341	3.421	21	PASS				
2441.00	4.793	3.015	21	PASS				
2480.00	3.195	2.087	21	PASS				



Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

10. Band Edge and Restriction Bands

10.1 Measurement Procedure

Out of Band Conducted Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. The resolution bandwidth is set to 100KHz, and the video bandwidth set to 300KHz.

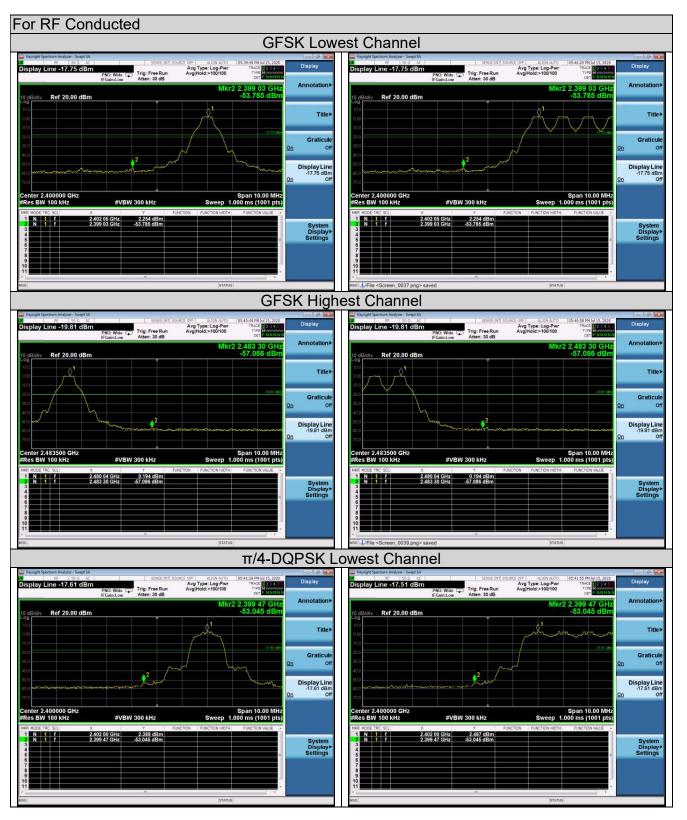
For Restriction Bands please refer to clause 4 of this report for the measurement methods.

10.2 Limit

15.247(d)In any 100KHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.3 Measurement Results

Please see below test table and plots.


For Restriction bands (The worst case: 8DPSK)

Freq.	Ant. Pol.	9		(V) Factor		n Level uV)		it 3m ıV/m)	Mai (d	rgin B)
(IVITZ)	(H/V)	PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
2390.00	Н	48.03	33.48	0.09	48.12	33.57	74.00	54.00	-25.88	-20.43
2390.00	V	33.32	47.26	0.09	33.41	47.35	74.00	54.00	-40.59	-6.65
2483.50	Н	47.42	32.99	0.35	47.77	33.34	74.00	54.00	-26.23	-20.66
2483.50	V	48.06	34.06	0.35	48.41	34.41	74.00	54.00	-25.59	-19.59

Note: (1) Emission Level= Reading Level + Factor

- (2) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (3) Horn antenna used for the emission over 1000MHz
- (4) Other emission in restriction bands are lower than 10dB below the allowable limit.

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

11. Antenna Application

11.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

11.2 Measurement Results

The antenna is FPC antenna and no consideration of replacement, and the best case gain of the antenna is 2.3 dBi. Therefore, the antenna is consider meet the requirement.

12. Conducted Spurious Emissions

12.1 Measurement Procedure

Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

The transmitter output is connected to spectrum analyzer. All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the pass band.

12.2. Measurement Results

Please refer to following plots, the worst case (8DPSK) was shown.

Report No.: NTC2007100FV00 FCC ID: 2AWY6-MT7668BU

13. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2020	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2020	1 Year
3.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2020	1 Year
4.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 13, 2020	1 Year
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	101094	Mar. 13, 2020	1 Year
6.	Horn Antenna	Schwarzbeck	BBHA9170	9170-172	Mar. 22, 2019	2 Year
7.	Power Sensor	DARE	RPR3006W	15I00041SN O64	Mar. 13, 2020	1 Year
8.	Power Sensor	DARE	RPR3006W	15I00041SN O88	Mar. 13, 2020	1 Year
9.	Communication Tester	Rohde & Schwarz	CMW500	149004	Mar. 13, 2020	1 Year
10.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2020	1 Year
11.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2020	1 Year
12.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2020	1 Year
13.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2020	1 Year
14.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 14, 2020	1 Year
15.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2020	1 Year
16.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 13, 2020	1 Year
17.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar.13, 2020	1 Year
18.	Temperature & Humidity Chamber	REMAFEE	SYHR225L	N/A	Mar. 13, 2020	1 Year
19.	DC Source	Maynuo	MY8811	N/A	Mar. 13, 2020	1 Year
20.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
21.	Chamber	SAEMC	9*7*7m	N/A	Jun. 20, 2019	2 Year
22.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.