

TEST REPORT

Applicant	ARKON ELECTRONICS (HUIZHOU) CO., LIMITED
Address	NO.4 Taihao Road, High-tech Industrial Park,Sandong Town, Huicheng District, Huizhou, Guangdong, China

Manufacturer or Supplier	ARKON ELECTRONICS (HUIZHOU) CO., LIMITED
Address	NO.4 Taihao Road, High-tech Industrial Park,Sandong Town, Huicheng District, Huizhou, Guangdong, China
Product	2.4GHz Digital Wireless Headphone
Brand Name	ARKON; ARTISTE
Model	DHP380A
Additional Model & Model Difference	DHP380; ADH300; (See item 3.1 note)
Date of tests	Apr. 02, 2020 ~ May. 06, 2020

the tests have been carried out according to the requirements of the following standards:

IX FCC Part 15, Subpart C, Section 15.247

CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

Tested by Ryan Lu Project Engineer / EMC Department	Tested by Glyn He Assistant Manager / EMC Department
Dan	Colin

Date: May 21, 2020

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

TABLE OF CONTENTS

R	ELEASE	CONTROL RECORD	5
1	SUMN	IARY OF TEST RESULTS	6
2	MEAS	UREMENT UNCERTAINTY	6
3	GENE	RAL INFORMATION	7
	3.1 GEI	NERAL DESCRIPTION OF EUT	7
	3.2 DES	SCRIPTION OF TEST MODES	8
	3.2.1.	CONFIGURATION OF SYSTEM UNDER TEST	9
	3.2.2.	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
	3.3 GEI	NERAL DESCRIPTION OF APPLIED STANDARDS	11
		SCRIPTION OF SUPPORT UNITS	
4		TYPES AND RESULTS	
	4.1.	CONDUCTED EMISSION MEASUREMENT	
	4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
	4.1.2	TEST INSTRUMENTS	
	4.1.3	TEST PROCEDURES	
	4.1.4	DEVIATION FROM TEST STANDARD	
	4.1.5	TEST SETUP	
	4.1.6	EUT OPERATING CONDITIONS	
	4.1.7	TEST RESULTS	
	4.2. F	RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	4.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	4.2.2	TEST INSTRUMENTS	
	4.2.3	TEST PROCEDURES	
	4.2.4	DEVIATION FROM TEST STANDARD	
	4.2.5	TEST SETUP	
	4.2.6	EUT OPERATING CONDITIONS	
	4.2.7	TEST RESULTS	
	4.3 NUI	MBER OF HOPPING FREQUENCY USED	
	4.3.1	LIMIT OF HOPPING FREQUENCY USED	
	4.3.2	TEST SETUP	
	4.3.3	TEST INSTRUMENTS	
	4.3.4	TEST PROCEDURES	
	4.3.5	DEVIATION FROM TEST STANDARD	
	4.3.6	TEST RESULTS	
	4.4 DW	ELL TIME ON EACH CHANNEL	33

4.4.1 L	IMIT OF DWELL TIME USED	33
4.4.2	TEST SETUP	33
4.4.3	TEST INSTRUMENTS	33
4.4.4	TEST PROCEDURES	33
4.4.5	DEVIATION FROM TEST STANDARD	34
4.4.6	TEST RESULTS	34
4.5 CH	ANNEL BANDWIDTH	35
4.5.1	LIMITS OF CHANNEL BANDWIDTH	35
4.5.2	TEST SETUP	35
4.5.3	TEST INSTRUMENTS	35
4.5.4	TEST PROCEDURE	35
4.5.5	DEVIATION FROM TEST STANDARD	35
4.5.6	EUT OPERATING CONDITION	35
4.5.7	TEST RESULTS	36
4.6 HO	PPING CHANNEL SEPARATION	38
4.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	38
4.6.2	TEST SETUP	38
4.6.3	TEST INSTRUMENTS	38
4.6.4	TEST PROCEDURES	38
4.6.5	DEVIATION FROM TEST STANDARD	38
4.6.6	TEST RESULTS	39
4.7 CO	NDUCTED OUTPUT POWER	41
4.7.1	LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT	41
4.7.2	TEST SETUP	41
4.7.3	TEST INSTRUMENTS	41
4.7.4	TEST PROCEDURES	41
4.7.5	DEVIATION FROM TEST STANDARD	41
4.7.6	EUT OPERATING CONDITION	42
4.7.7	TEST RESULTS	42
4.8 OU	T OF BAND EMISSION MEASUREMENT	43
4.8.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	43
4.8.2	TEST INSTRUMENTS	43
4.8.3	TEST PROCEDURE	43
4.8.4	DEVIATION FROM TEST STANDARD	43
4.8.5	EUT OPERATING CONDITION	43
4.8.6	TEST RESULTS	43
5 PHOT	OGRAPHS OF THE TEST CONFIGURATION	46

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

Test Report	No.:	RF200	402N033
-------------	------	--------------	---------

6	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING
CH.	ANGES TO THE EUT BY THE LAB47

Email: customerservice.dg@cn.bureauveritas.com

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF200402N033	Original release	May 21, 2020

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

 $\textbf{Email:} \ \underline{\text{customerservice.dg@cn.bureauveritas.com}}$

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C			
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK	
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit.	
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.	
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.	
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.	
15.247(b)	Conducted Output Power	PASS	Meet the requirement of limit.	
15.247(d)& 15.209	Transmitter Radiated Emission	PASS	Meet the requirement of limit.	
15.247(d)	Out of band Emission Measurement	PASS	Meet the requirement of limit.	
15.203	Antenna Requirement	PASS	No antenna connector is used.	

2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
	9KHz ~ 30MHz	+/-2.66 dB
Radiated emissions	30MHz ~ 1GMHz	+ /-3.47 dB
Nadiated emissions	1GHz ~ 18GHz	+ /-4.84 dB
	18GHz ~ 40GHz	+ /-4.96dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	2.4GHz Digital Wireless Headphone
MODEL NO.	DHP380A
ADDITIONAL MODEL	DHP380; ADH300
FCC ID	2APBSDHP381A-01TX
POWER SUPPLY	TX: DC 5V from adapter
TOWER SOFT ET	RX: DC1.2V*2 (AAA)battery, or DC 5V Charging by TX
MODULATION TECHNOLOGY	FHSS
MODULATION TYPE	GFSK,
OPERATING FREQUENCY	2406MHz~2472MHz
NUMBER OF CHANNEL	31
PEAK OUTPUT POWER	7.464mW (Max. Measured)
ANTENNA TYPE	TX Antenna: PIFA Antenna, -2.2dBi Gain (ANT 2)
ANTENNA TIPE	RX Antenna: PCB Antenna, 0 dBi Gain (ANT 1)
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	N/A

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Please refer to the EUT photo document (Reference No.: 200402N033) for detailed product photo.
- Deviation among models: DHP380; ADH300; DHP380A; are only difference of brand name and model name. The brand name of model DHP380A & DHP380 are "ARKON" and the brand name of model ADH300 was "ARTISTE"

5. The EUT can be powered by adapter as list as below

	ADAPTER
BRAND:	N/A
MODEL:	YLJXA-T050055
INPUT:	AC ~100-240V, 0.2A, 50/60Hz 0.5A Max.
OUTPUT:	DC 5V, 0.55A 2.75W
DC LINE:	Unshielded, Non-detachable, 1.5m without Cores

3.2 DESCRIPTION OF TEST MODES

31 channels are provided to FHSS (The total support channels)

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2406	8	2422	16	2444	24	2460
1	2408	9	2424	17	2446	25	2462
2	2410	10	2426	18	2448	26	2464
3	2412	11	2428	19	2450	27	2466
4	2414	12	2430	20	2452	28	2468
5	2416	13	2432	21	2454	29	2470
6	2418	14	2438	22	2456	30	2472
7	2420	15	2440	23	2458		

4 Frequency Hopping Sequence types:

Hopping Se Channe			Hopping Sequence 2 Channel list		Hopping Sequence 3 Channel list		Hopping Sequence 4 Channel list	
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	
0	2406	0	2406	13	2432	0	2406	
7	2420	1	2408	15	2440	1	2408	
8	2422	2	2410	18	2448	2	2410	
9	2424	3	2412	19	2450	3	2412	
10	2426	4	2414	20	2452	4	2414	
11	2428	5	2416	21	2454	5	2416	
16	2444	6	2418	22	2456	6	2418	
17	2446	7	2420	23	2458	10	2426	
18	2448	8	2422	24	2460	21	2454	
19	2450	9	2424	25	2462	25	2462	
20	2452	10	2426	26	2464	26	2464	
22	2456	11	2428	27	2466	27	2466	
28	2468	12	2430	28	2468	28	2468	
29	2470	14	2438	29	2470	29	2470	
30	2472	17	2446	30	2472	30	2472	

Note: the UUT will operation in the above four frequency hopping sequences.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

3.2.1. CONFIGURATION OF SYSTEM UNDER TEST

Please see section 5 photograph of the test configuration for reference.

3.2.2. TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE		APPLIC	ABLE TO		DESCRIPTION		
MODE	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION		
Α	√	V	√	\checkmark	DC5V from adapter		

Where

RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission

RE≥1G: Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 30	hopping	FHSS	GFSK	1Mbps

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	PACKET TYPE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	
0 to 30	0, 30	FHSS	GFSK	1Mbps

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

Following channels were selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 30	hopping	FHSS	GFSK	1Mbps

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 30	0, 30	FHSS	GFSK	1Mbps

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RE<1G	25deg. C, 55%RH	DC 5V from adapter	Tank Tan
RE≥1G	25deg. C, 55%RH	DC 5V from adapter	Tank Tan
PLC	25deg. C, 55%RH	DC 5V from adapter	Tank Tan
APCM	25deg. C, 60%RH	DC 5V from adapter	Tank Tan

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C, Section 15.247 KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit without any other necessary accessory or support units.

4 TEST TYPES AND RESULTS

4.1. CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
	Quasi-peak	Average	
0.15 ~ 0.5	66 to 56	56 to 46	
0.5 ~ 5	56	46	
5 ~ 30	60	50	

NOTES: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

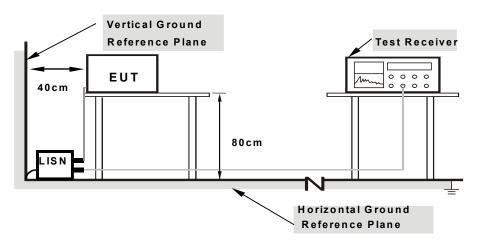
Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
EMI Test Receiver Rohde&Schwarz	ESCI3	101418	2019-09-18	2020-09-17
Artificial Mains Network Rohde&Schwarz	ENV216	3560.6550.15	2019-10-18	2020-10-17
Test software FARAD	EZ_EMC V1.1.4.2	N/A	N/A	N/A
Hygrothermograph Yuhuaze	HTC-1	NA	2019-10-18	2020-10-17
Digital Multimeter FLUKE	15B+	43512617WS	2019-10-18	2020-10-17

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA.

2. The test was performed in Hwa-Hsing(Dongguan) Testing Co., Ltd.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

4.1.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30MHz was searched. Emission levels under Limit 20dB was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

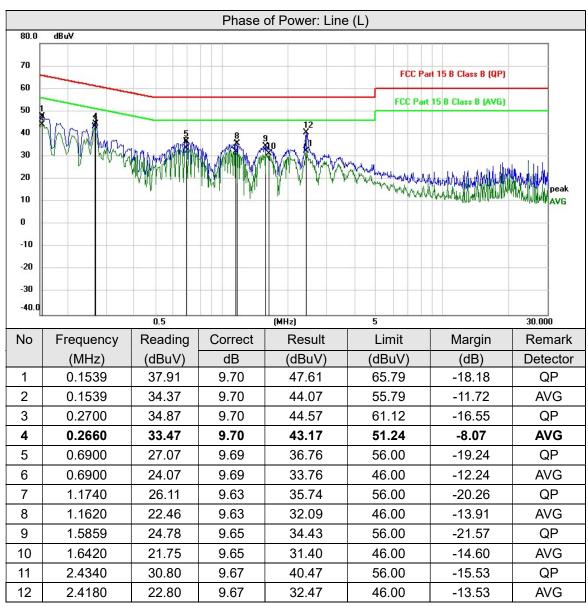
No deviation.

4.1.5 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).


4.1.6 EUT OPERATING CONDITIONS

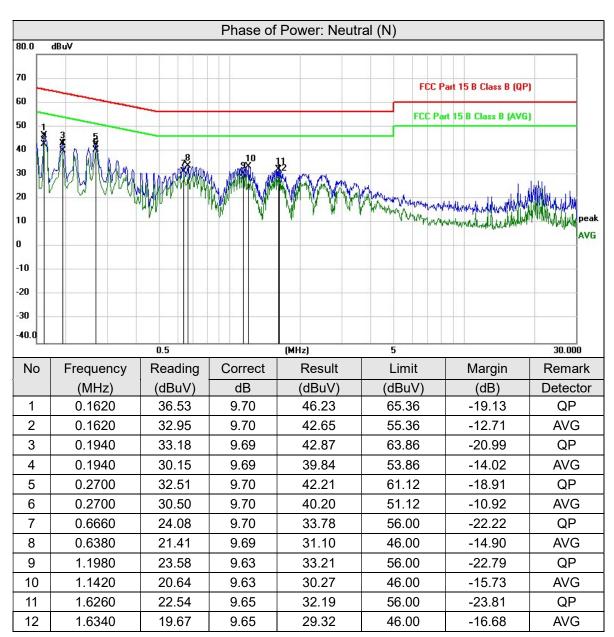
- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

4.1.7 TEST RESULTS

Frequency Range 150kHz ~ 30MHz Detector Function & Resolution bandwidth Quasi-Peak (QP) / Average (AV), 9kHz

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.


Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

Email: customerservice.dg@cn.bureauveritas.com

Frequency Range 150kHz ~ 30MHz	Detector Function & Resolution bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
--------------------------------	--	---

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

Email: <u>customerservice.dg@cn.bureauveritas.com</u>

4.2. RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

4.2.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
EMI Test Receiver Rohde&Schwarz	ESCI 7	100962	2019-7-16	2020-07-15
Broadband antenna Schwarzbeck	VULB 9168	00937	2019-10-18	2020-10-17
3m Semi-anechoic Chamber MAORUI	9m*6m*6m	NSEMC003	2018-10-20	2020-10-19
Signal Amplifier Com-power	PAM-103	18020051	2019-10-18	2020-10-17
Attenuator Rohde&Schwarz	TS2GA-6dB	18101101	N/A	N/A
Test software FARAD	FARAD	EZ_EMCV1.1.4 .2	N/A	N/A
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-0 1	2019-10-18	2020-10-17
Loop Antenna	HLA 6121	45745	2019-10-18	2020-10-17
Preamplifier EMCI	EMC001340	980201	2019-10-18	2020-10-17
Digital Multimete FLUKE	15B+	43512617WS	2019-10-18	2020-10-17
Horn Antenna Schwarzbeck	BBHA 9170	01959	2019-10-18	2020-10-17
Spectrum Analyzer Rohde&Schwarz	FSV-40N	101783	2019-10-18	2020-10-17
Broadband Coaxial Preamplifier Schwarzbeck	BBV 9718	00025	2019-10-18	2020-10-17

NOTE:

- 1. The test was performed in 966 Chamber and was witness in Hwa-Hsing (Dongguan) Testing Co., Ltd.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

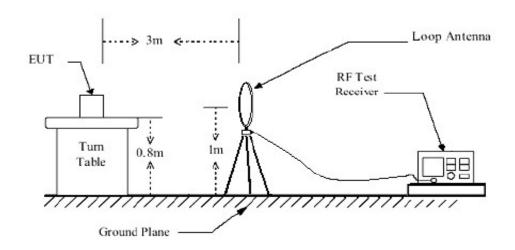
Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

4.2.3 TEST PROCEDURES

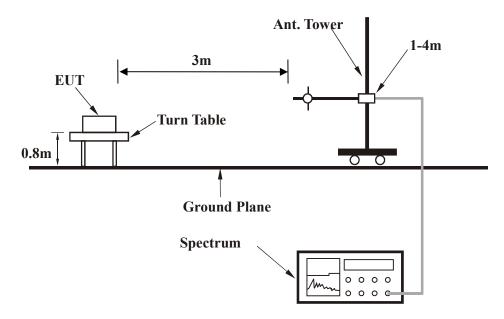
- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.


4.2.4 DEVIATION FROM TEST STANDARD

No deviation.



4.2.5 TEST SETUP

Below 30MHz test setup

Below 1GHz test setup

Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

Above 1GHz test setup

Note: For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

4.2.7 TEST RESULTS

9kHz ~ 30MHz Data:

The amplitude of spurious emissions attenuated more than 20dB below the permissible value is not required to be report.

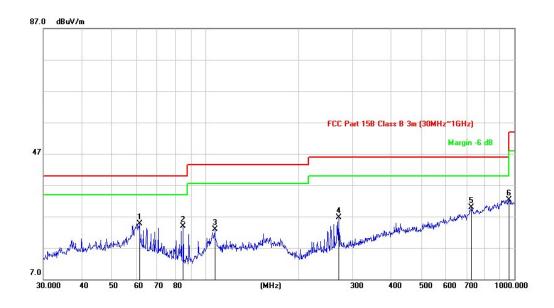
Below 1GHz worst-case data:

CHANNEL	Hopping mode	DETECTOR FUNCTION	Ougoi Book (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)		
1	119.8555	21.98	43.50	-21.52	200	302	36.68	-14.70		
2	144.3348	25.82	43.50	-17.68	200	280	40.25	-14.43		
3	267.5455	30.95	46.00	-15.05	100	143	44.38	-13.43		
4	414.7223	33.12	46.00	-12.88	100	218	42.05	-8.93		
5	807.4290	30.84	46.00	-15.16	100	218	31.03	-0.19		
6	916.0687	33.00	46.00	-13.00	200	321	31.17	1.83		

REMARKS:

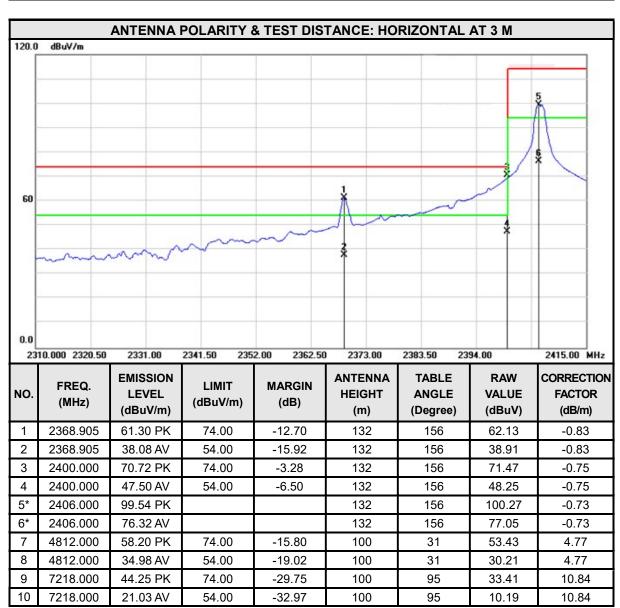
- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.



CHANNEL	Hopping mode	DETECTOR FUNCTION	Ougai Dagle (OD)
FREQUENCY RANGE	9KHz ~ 1GHz		Quasi-Peak (QP)

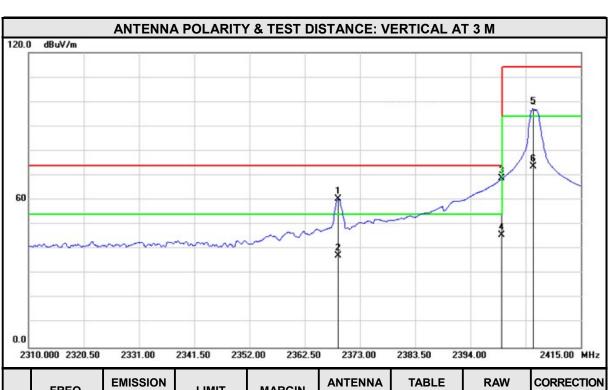
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)		
1	61.3463	24.72	40.00	-15.28	200	296	39.28	-14.56		
2	84.9995	23.92	40.00	-16.08	100	290	43.05	-19.13		
3	107.5101	22.84	43.50	-20.66	100	301	39.57	-16.73		
4	270.3748	26.67	46.00	-19.33	200	157	39.88	-13.21		
5	724.2611	29.99	46.00	-16.01	200	19	31.58	-1.59		
6	958.7943	32.37	46.00	-13.63	200	354	30.81	1.56		

REMARKS:


- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.

ABOVE 1GHz DATA

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)


REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

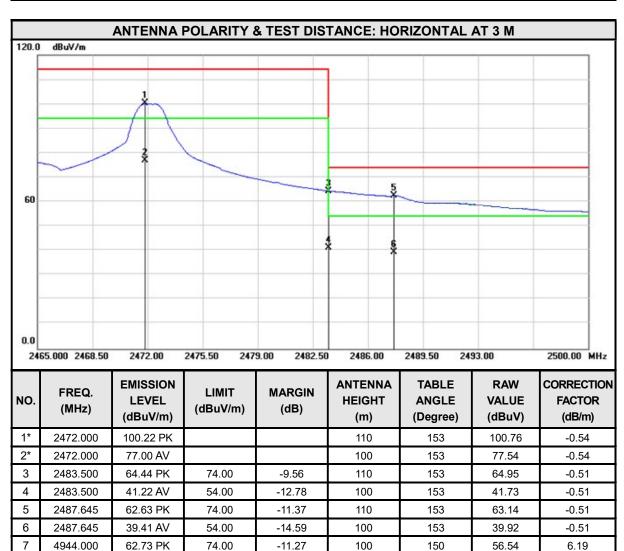
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2368.905	60.45 PK	74.00	-13.55	117	224	61.28	-0.83
2	2368.905	37.23 AV	54.00	-16.77	117	224	38.06	-0.83
3	2400.000	68.90 PK	74.00	-5.10	117	224	69.65	-0.75
4	2400.000	45.68 AV	54.00	-8.32	117	224	46.43	-0.75
5*	2406.000	96.95 PK			117	224	97.68	-0.73
6*	2406.000	73.73 AV			117	224	74.46	-0.73
7	4812.000	57.95 PK	74.00	-16.05	384	33	53.18	4.77
8	4812.000	34.73 AV	54.00	-19.27	384	33	29.96	4.77
9	7218.000	48.38 PK	74.00	-25.62	100	249	37.54	10.84
10	7218.000	25.16 AV	54.00	-28.84	100	249	14.32	10.84

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 16	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1*	2444.000	99.31 PK			141	265	100.36	-1.05	
2*	2444.000	76.09 AV			141	265	77.14	-1.05	
3	4888.000	59.03 PK	74.00	-14.97	121	53	53.39	5.64	
4	4888.000	35.81 AV	54.00	-18.19	121	53	30.17	5.64	
5	7332.000	45.11 PK	74.00	-28.89	100	135	33.90	11.21	
6	7332.000	21.89 AV	54.00	-32.11	100	135	10.68	11.21	
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1*	2444.000	95.19 PK			105	142	96.24	-1.05	
2*	2444.000	71.97 AV			105	142	73.02	-1.05	
3	4888.000	57.73 PK	74.00	-16.27	378	274	52.09	5.64	
4	4888.000	34.51 AV	54.00	-19.49	378	274	28.87	5.64	
5	7332.000	47.77 PK	74.00	-26.23	100	68	36.56	11.21	
6	7332.000	34.24 AV	54.00	-19.76	100	68	23.03	11.21	


REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

CHANNEL	TX Channel 30	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

REMARKS:

9

10

4944.000

7416.000

7416.000

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

-14.50

-25.24

-28.46

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.

100

100

100

150

193

193

4. Margin value = Emission level – Limit value.

54.00

74.00

54.00

5. " * ": Fundamental frequency.

39.50 AV

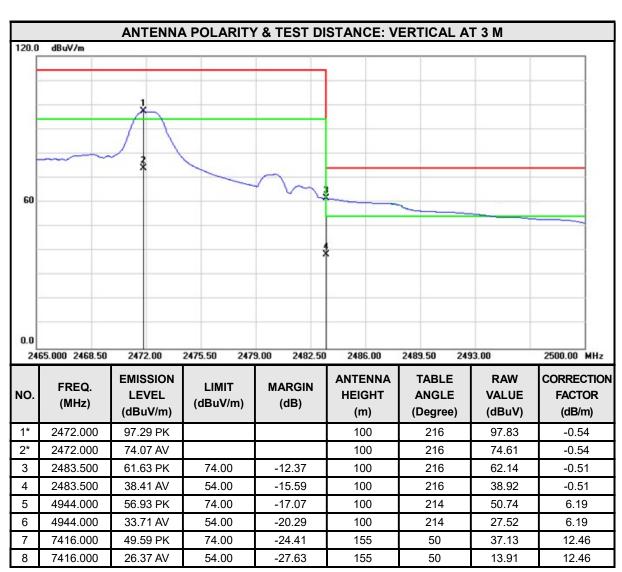
48.76 PK

25.54 AV

33.31

36.30

13.08


6.19

12.46

12.46

CHANNEL	TX Channel 30	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The emission levels of other frequencies were less than 20dB margin against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.



4.3 NUMBER OF HOPPING FREQUENCY USED

4.3.1 LIMIT OF HOPPING FREQUENCY USED

At least 15 channels frequencies, and should be equally spaced.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Spectrum Keysight	N9020A	MY51240612	2019/10/18	2020/10/17
Spectrum Analyzer Rohde&Schwarz	FSV-40N	101783	2019/10/18	2020/10/17
Power Meter10Hz~18GHz Tonscend	JS0806-2	188060126	2019/10/18	2020/10/17
Signal generator Keysight	N5182A	GB40051020	2019/10/18	2020/10/17
Signal generator Keysight	N5182A	MY47420944	2019/10/18	2020/10/17
Test Software Tonscend	JS0806-2	NA	NA	NA
Hygrothermograph Yuhuaze	HTC-1	NA	2019/10/18	2020/10/17

NOTES:

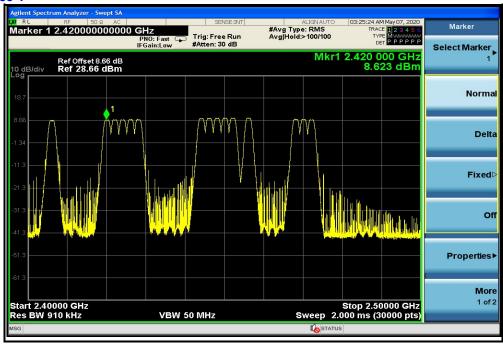
- 1. The test was performed in RF Oven room in Hwa-Hsing (Dongguan) Testing Co., Ltd..
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

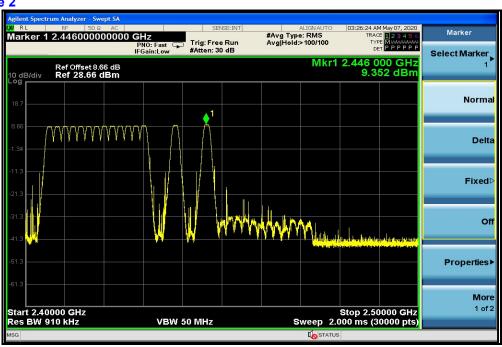
4.3.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

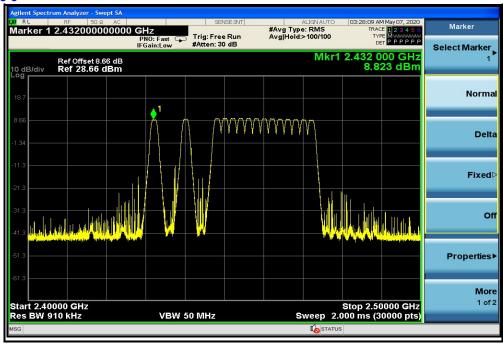
4.3.5 DEVIATION FROM TEST STANDARD


No deviation.

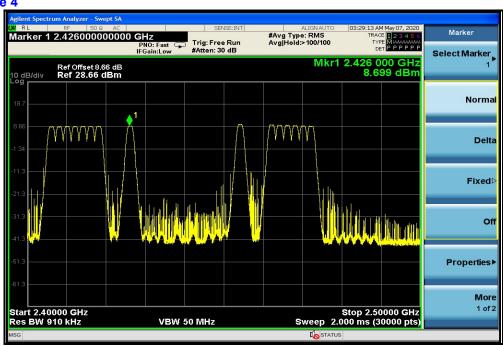
4.3.6 TEST RESULTS


There are 15 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Sequence 1

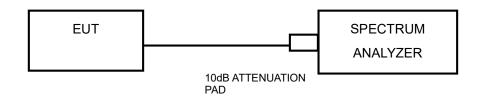


Sequence 2



Sequence 3

Sequence 4



4.4 DWELL TIME ON EACH CHANNEL

4.4.1 LIMIT OF DWELL TIME USED

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 TEST SETUP

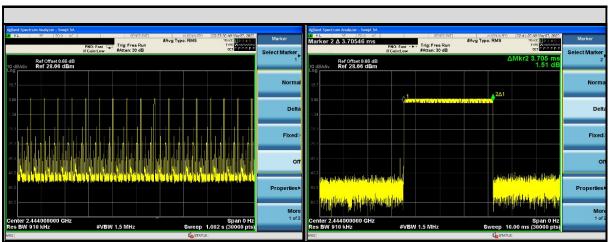
4.4.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.4.4 TEST PROCEDURES

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 DEVIATION FROM TEST STANDARD


No deviation.

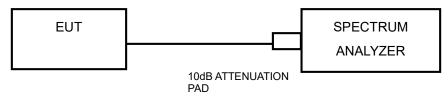
4.4.6 TEST RESULTS

GFSK

	Number	_	ber of tra			Length of	Result	Limit (msec)	PASS / FAIL
Mode	Hopping Channel	period (sec)	sweep time (sec)	times in a sweep	times in a period	transmission time (msec)	(msec)		
-	15	6	1	17	102	3.71	330.42	400	PASS

GFSK

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080



4.5 CHANNEL BANDWIDTH

4.5.1 LIMITS OF CHANNEL BANDWIDTH

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.5.4 TEST PROCEDURE

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 DEVIATION FROM TEST STANDARD

No deviation.

4.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	20dB BANDWIDTH (MHz)	
0	2406	1.959	
16	2444	1.914	
30	2472	2.070	

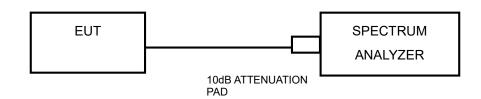
CH 0

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

CH 16

CH 30

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080



4.6 HOPPING CHANNEL SEPARATION

4.6.1 LIMIT OF HOPPING CHANNEL SEPARATION

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.6.4 TEST PROCEDURES

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

4.6.5 DEVIATION FROM TEST STANDARD

No deviation.

4.6.6 TEST RESULTS

GFSK

CHANNEL	FREQUENCY (MHz)	ADJACENT CHANNEL SEPARATION (MHz)	20dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	1.99	1.959	1.959	PASS
16	2444	2.00	1.914	1.914	PASS
30	2472	2.01	2.070	2.070	PASS

NOTE: The minimum limit is two-third 20dB bandwidth.

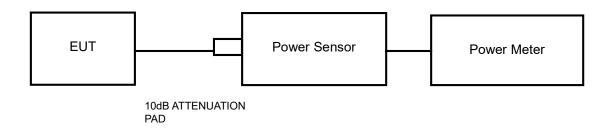
CH₀

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

CH 16

CH 30

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080



4.7 CONDUCTED OUTPUT POWER

4.7.1 LIMITS OF CONDUCTED OUTPUT POWER MEASUREMENT

The Maximum Output Power Measurement is 125mW.

4.7.2 TEST SETUP

4.7.3 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.7.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor and set the detector to PEAK. Record the power level.

An average power sensor was used on the output port of the EUT. A power meter was used to read the response of the average power senso and set the detector to AVERAGE. Record the power level.

4.7.5 DEVIATION FROM TEST STANDARD

No deviation.

4.7.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.7.7 TEST RESULTS

MAXIMUM PEAK OUTPUT POWER

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER (dBm)	PEAK POWER (mW)	PEAK POWER LIMIT (dBm)	PASS/FAIL
0	2406	8.62	7.230	30	PASS
16	2444	8.58	7.211	30	PASS
30	2472	8.73	7.464	30	PASS

AVERAGE OUTPUT POWER(FOR REFERENCE)

GFSK

CHANNEL	CHANNEL FREQUENCY (MHz)	AVERAGE POWER (dBm)	AVERAGE POWER (mW)
0	2402	8.41	6.934
16	2441	8.37	6.871
30	2480	8.49	7.063

4.8 OUT OF BAND EMISSION MEASUREMENT

4.8.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz RBW).

4.8.2 TEST INSTRUMENTS

Refer to section 4.3.3 to get information of above instrument.

4.8.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low loss cable. of Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

4.8.4 DEVIATION FROM TEST STANDARD

No deviation.

4.8.5 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.8.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level. D2 line indicates the 20dB offset below D1. It shows compliance to the requirement.

GFSK

GFSK

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080

6 APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---

Tel: +86 769 8998 2098 Fax: +86 769 8593 1080