

TESTING CENTRE TEC	TEST REP	ORT				
FCC ID:	2BE6N-W150					
Test Report No::	TCT240418E032					
Date of issue::	Apr. 29, 2024					
Testing laboratory:	SHENZHEN TONGCE TE	ESTING LAB				
Testing location/ address:	2101 & 2201, Zhenchang Fuhai Subdistrict, Bao'an 518103, People's Republ	District, Shenzhen				
Applicant's name:	GIRAFIT INC					
Address::	21642 GOLDEN POPPY States	COURT, WALNUT	, CA 91749, United			
Manufacturer's name:	GIRAFIT INC					
Address::	21642 GOLDEN POPPY States	COURT WALNUT	CA 91749 United			
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01					
Product Name::	W150 Window Camera					
Trade Mark:	N/A	(5)	(C)			
Model/Type reference:	GRF-W150W					
Rating(s):	Adapter Information: Model: SA0101-0501000 Input: AC 100–240V, 50/6 Output: DC 5.0V, 1.0A, 5.	60Hz, 0.35A Max				
Date of receipt of test item	Apr. 18, 2024	(C ¹)	(c ¹)			
Date (s) of performance of test:	Apr. 18, 2024 ~ Apr. 29, 2	2024				
Tested by (+signature) :	Yannie ZHONG	Yannie	TOMECET			
Check by (+signature):	Beryl ZHAO	Boyl	TCT ST			
Approved by (+signature):	Tomsin	(Jomsi	(s s s s)			

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Information		
1.1. EUT description	(0)	3
1.2. Model(s) list		3
1.3. Test Frequency		
2. Test Result Summary		5
3. General Information		
3.1. Test environment and mode	(3)	6
3.2. Description of Support Units		7
4. Facilities and Accreditations		
4.1. Facilities	<u>((</u>	8
4.2. Location		8
4.3. Measurement Uncertainty		
5. Test Results and Measurement Data	(6)	9
5.1. Antenna requirement		9
5.2. Conducted Emission		
5.3. Maximum Conducted Output Power		14
5.4. 6dB Emission Bandwidth		
5.5. 26dB Bandwidth and 99% Occupied Bandw	idth	17
5.6. Power Spectral Density		18
5.7. Band edge		
5.8. Unwanted Emissions	<u>)</u>	30
5.9. Frequency Stability Measurement		45
Appendix A: Test Result of Conducted Tes	st	
Appendix B: Photographs of Test Setup		
Appendix C: Photographs of EUT		

1. General Product Information

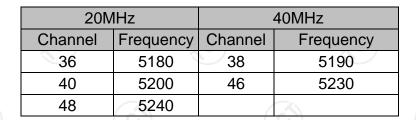
1.1. EUT description

Product Name:	W150 Window Camera	(5)	
Model/Type reference:	GRF-W150W		
Sample Number:	TCT240418E008-0101		
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz		
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz 802.11ax: 20MHz, 40MHz		
Modulation Technology:	Orthogonal Frequency Division Mu	Itiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK,	QPSK	
Antenna Type:	Metal Antenna		
Antenna Gain:	Band 1: 4.09dBi Band 3: 4.54dBi	(C)	
Rating(s)::	Adapter Information: Model: SA0101-0501000UA Input: AC 100–240V, 50/60Hz, 0.3 Output: DC 5.0V, 1.0A, 5.0W	5A Max	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.



TESTING CENTRE TECHNOLOGY Report No.: TCT240418E032

1.3. Test Frequency

Band 1

Band 3

20N	1Hz	40MHz		
Channel	Frequency	Channel	Frequency	
149	5745	151	5755	
157	5785	159	5795	
165	5825	(

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 137

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

TESTING CENTRE TECHNOLOGY Report No.: TCT240418E032

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Conducted Emission	Radiated Emission					
Temperature:	23.6 °C	24.9 °C					
Humidity:	56 % RH	51 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Software:							
Software Information:	SSCOM V5.13.1						
Power Level:	15						
Test Mode:							
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with max duty cycle							

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ax(VHT20)	6.5Mbps
802.11ax(VHT40)	13.5Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

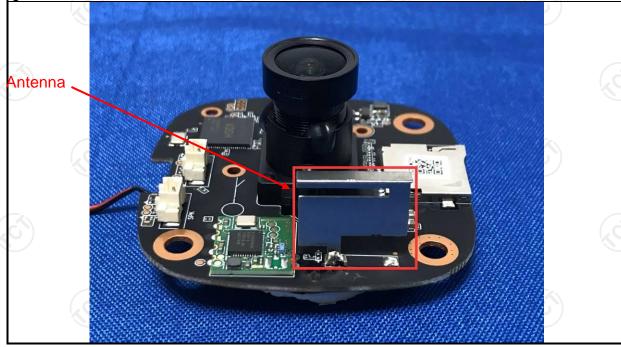
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT240418E032

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The WIFI antenna is metal antenna which permanently attached, and the best case gain of the antenna is 4.54dBi of Band 3.

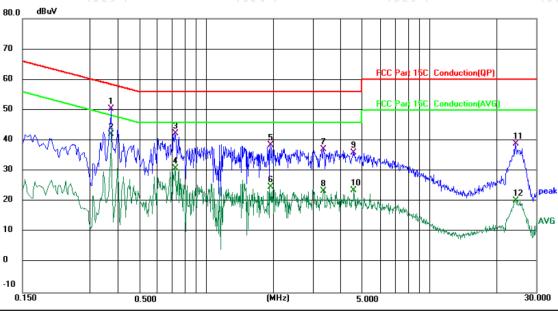
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Reference	e Plane			
Test Setup:	Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	Filte Filte EMI Receiver	r AC power		
Test Mode:	Transmitting Mode				
Test Procedure:	 The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the modern power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	e impedance state ovides a 500hm easuring equipm ses are also connects. With 500hm terrodiagram of the line are checked in ce. In order to five positions of equals must be change	pilization network of 50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum and the maximum ipment and all of jed according to		
Test Result:	PASS				

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	ipment Manufacturer Model Serial Number Calibration							
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024				
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025				
Line-5	TCT	CE-05	/	Jul. 03, 2024				
EMI Test Software	Shurple Technology	EZ-EMC	1 (6)	1 6				



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 23.6 (°C)

lumidity: 56 %

Report No.: TCT240418E032

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/ 60 Hz

			Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.3738	41.02	9.46	50.48	58.42	-7.94	QP	
2	*	0.3738	32.60	9.46	42.06	48.42	-6.36	AVG	
3		0.7259	33.28	9.13	42.41	56.00	-13.59	QP	
4		0.7259	21.66	9.13	30.79	46.00	-15.21	AVG	
5		1.9339	28.57	10.02	38.59	56.00	-17.41	QP	
6		1.9339	14.73	10.02	24.75	46.00	-21.25	AVG	
7		3.3580	26.93	10.22	37.15	56.00	-18.85	QP	
8		3.3580	13.15	10.22	23.37	46.00	-22.63	AVG	
9		4.5939	25.59	10.38	35.97	56.00	-20.03	QP	
10		4.5939	13.26	10.38	23.64	46.00	-22.36	AVG	
11		24.2379	28.14	10.77	38.91	60.00	-21.09	QP	
12		24.2379	9.42	10.77	20.19	50.00	-29.81	AVG	

Note:

Freq. = Emission frequency in MHz

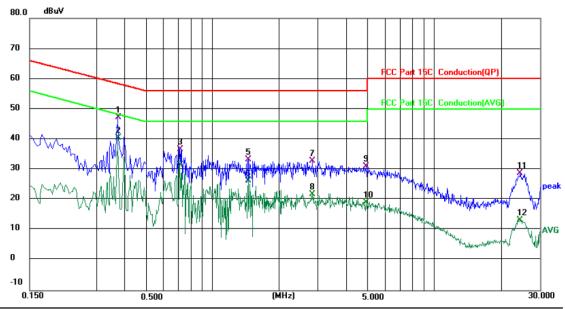
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N
Power: AC 120 V/ 60 Hz

Temperature: 23.6 (℃) Humidity: 56 %

Limit: FCC Part 15C Conduction(QP)

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.3740	37.76	9.44	47.20	58.41	-11.21	QP	
2 *	0.3740	31.18	9.44	40.62	48.41	-7.79	AVG	
3	0.7140	27.61	9.12	36.73	56.00	-19.27	QP	
4	0.7140	22.43	9.12	31.55	46.00	-14.45	AVG	
5	1.4540	23.44	9.92	33.36	56.00	-22.64	QP	
6	1.4540	16.36	9.92	26.28	46.00	-19.72	AVG	
7	2.8340	22.67	10.10	32.77	56.00	-23.23	QP	
8	2.8340	11.63	10.10	21.73	46.00	-24.27	AVG	
9	4.9420	20.74	10.31	31.05	56.00	-24.95	QP	
10	4.9420	8.72	10.31	19.03	46.00	-26.97	AVG	
11	24.4980	18.14	10.72	28.86	60.00	-31.14	QP	
12	24.4980	2.51	10.72	13.23	50.00	-36.77	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

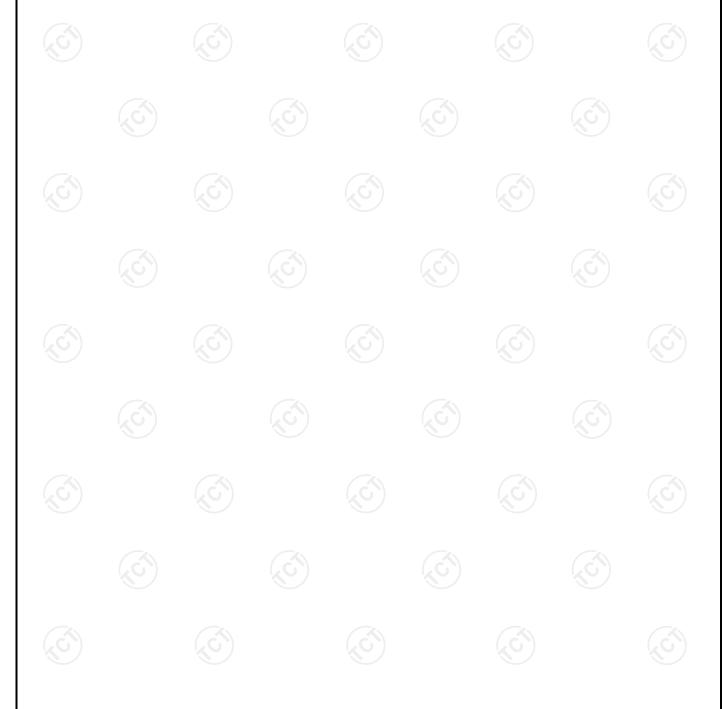
Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(VHT40) and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E					
	Frequency Band (MHz)	Limit				
	5180 - 5240	24dBm(250mW) for client device				
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz				
	5745 - 5825	30dBm(1W)				
Test Setup:	Power meter	EUT				
Test Mode:	Transmitting mode w	vith modulation				
Test Procedure:	KDB789033 D02 Rules v02r01 Set 2. The RF output of limeter by RF cablicompensated to the maximum EUT transmit corrections.	EUT was connected to the power le and attenuator. The path loss was the results for each measurement. Impower setting and enable the attinuously. Incred output power and record the				
Test Result:	PASS					
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power					

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2024
Power Sensor	Agilent	8481A	MY41091497	Jun. 27, 2024
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section
Test Method:	2.1049 KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1 (6)	/ (3

Page 16 of 137

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
No restriction limits
Spectrum Analysis EUT
Spectrum Analyzer
Transmitting mode with modulation
 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	1	1

Page 17 of 137

5.6. Power Spectral Density

5.6.1. Test Specification

FCC Part15 E Section 15.407 (a)					
KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F					
≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz					
Spectrum Analyzer EUT					
Transmitting mode with modulation					
 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 					
PASS					

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

Page 18 of 137

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407							
Test Method:	ANSI C63.10 20	013						
	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:							
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
	< 5650	-27	5850~5855	27~15.6				
Limit:	5650~5700	-27~10	5855~5875	15.6~10				
	5700~5720 5720~5725	10~15.6 15.6~27	5875~5925 > 5925	10~-27 -27				
	E[dBµV/m] = EIR In restricted band:	P[dBm] + 95.2						
	Peal		74dBµ					
	AVG							
Test Setup:	Ground Reference Place Test Receiver In 19 Agrosia Continuo							
Test Mode:	Transmitting mo	de with mode	ulation					
Test Procedure:	meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a variance of the antenna meters above the value of the field polarizations of measurement. 4. For each sussessible to its worst case heights from 1 received from 0 demaximum readiance.	Transmitting mode with modulation 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The tabl was rotated 360 degrees to determine the position of th highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect						

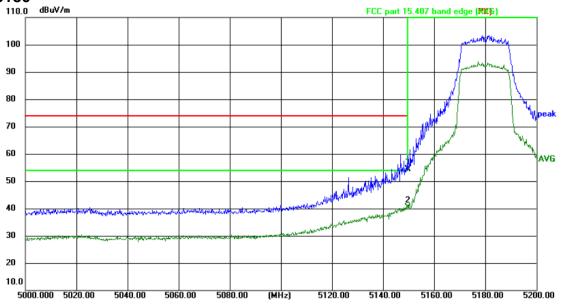
Report No.: TCT240418E032

Mode.

Report No.: TCT240418E032

	10dB lo stopped reported 10dB m quasiped	ower than the pland the pl	ne limit spe eak values se the emis d be re-tes age metho	cified, ther of the EU sions that ted one by	n testing co I would be did not hav one using	uld be e peak,
Result:	PASS		(C)			
		6. If the 10dB lostopped reported 10dB m quasiped 10dB	6. If the emission I 10dB lower than the stopped and the preported. Otherwise 10dB margin would quasipeak or average reported in a data. Result: PASS ASS ASS ASS ASS ASS ASS A	6. If the emission level of the 10dB lower than the limit spe stopped and the peak values reported. Otherwise the emis 10dB margin would be re-tes quasipeak or average metho reported in a data sheet. PASS Result: PASS	6. If the emission level of the EUT in pe 10dB lower than the limit specified, ther stopped and the peak values of the EUT reported. Otherwise the emissions that 10dB margin would be re-tested one by quasipeak or average method as specification in a data sheet. Result: PASS Result:	6. If the emission level of the EUT in peak mode w 10dB lower than the limit specified, then testing co stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not hav 10dB margin would be re-tested one by one using quasipeak or average method as specified and the reported in a data sheet. PASS PASS

5.7.2. Test Instruments


Radiated Emission Test Site (966)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024				
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024				
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024				
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025				
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025				
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024				
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024				
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024				
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024				
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025				
Coaxial cable	SKET	RC-18G-N-M) 1	Jan. 31, 2025				
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025				
Antenna Mast	Keleto	CC-A-4M	(0)	1 (6)				
EMI Test Software	Shurple Technology	EZ-EMC	1	1				

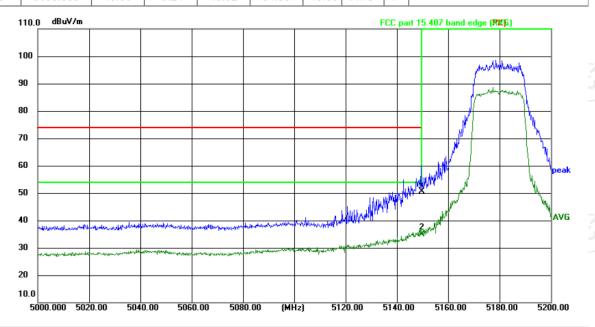
5.7.3. Test Data

Report No.: TCT240418E032

AX20-5180

Site: 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 25(°C)

Humidity: 56 %

Limit: FCC part 15.407 band edge (PK)

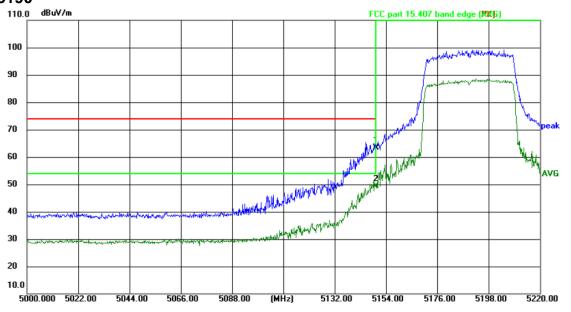
Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	63.53	-9.24	54.29	74.00	-19.71	peak	Р	
2 *	5150.000	49.56	-9.24	40.32	54.00	-13.68	AVG	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

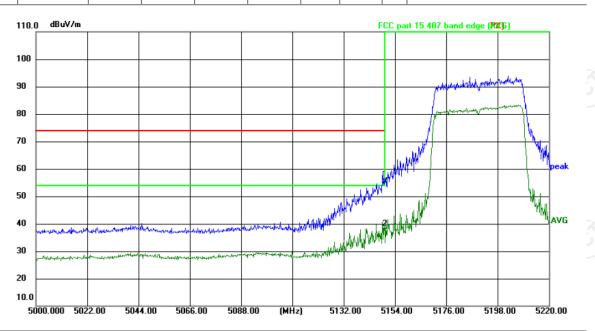
Temperature: 25(°C)


Humidity: 56 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	59.88	-9.24	50.64	74.00	-23.36	peak	Р	
2 *	5150.000	44.06	-9.24	34.82	54.00	-19.18	AVG	Р	

AX40-5190

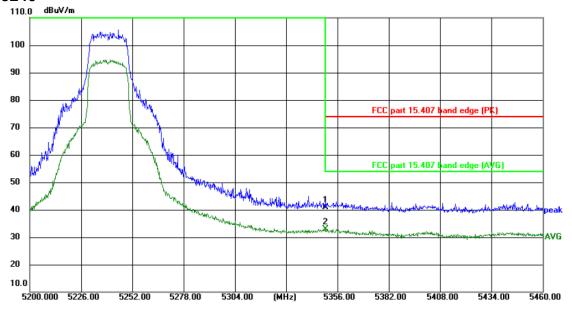


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 25(°C) Humidity: 56 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	72.69	-9.24	63.45	74.00	-10.55	peak	Р	
2 *	5150.000	58.67	-9.24	49.43	54.00	-4.57	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 25(°C) Humidity: 56 %

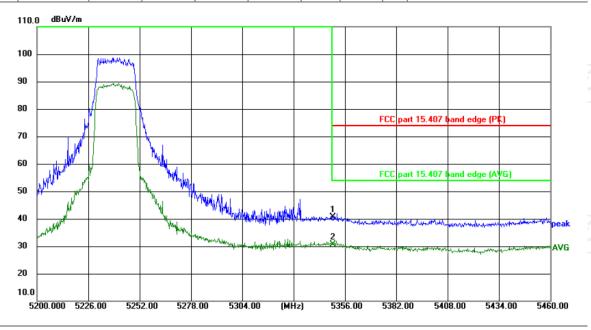
Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	64.51	-9.24	55.27	74.00	-18.73	peak	Р	
2 *	5150.000	46.55	-9.24	37.31	54.00	-16.69	AVG	Р	

AX20-5240

Site: 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 25(°C)

Humidity: 56 %

Limit: FCC part 15.407 band edge (PK)

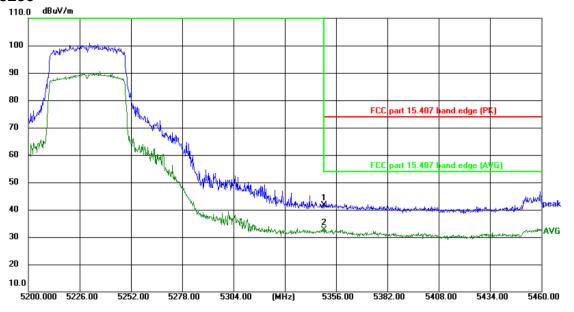
Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	48.96	-8.15	40.81	74.00	-33.19	peak	Р	
2 *	5350.000	41.11	-8.15	32.96	54.00	-21.04	AVG	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

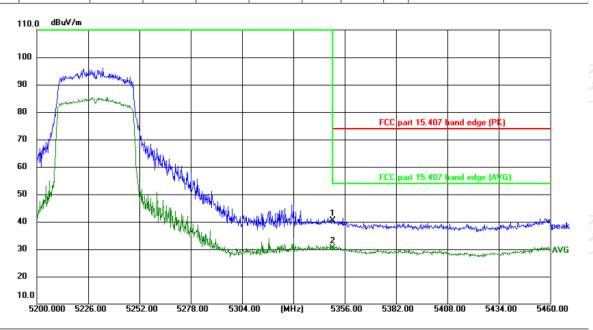
Temperature: 25(°C)


Humidity: 56 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	48.73	-8.15	40.58	74.00	-33.42	peak	Р	
2 *	5350.000	38.82	-8.15	30.67	54.00	-23.33	AVG	Р	

AX40-5230

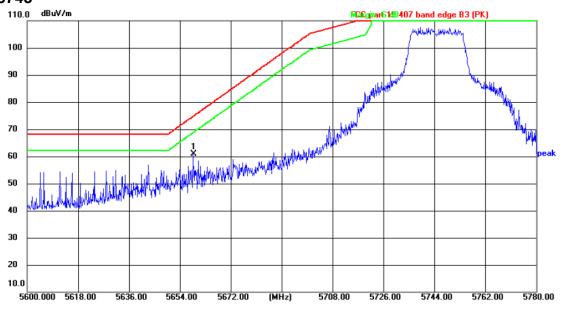


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 25(°C) Humidity: 56 %

Limit: FCC part 15.407 band edge (PK)

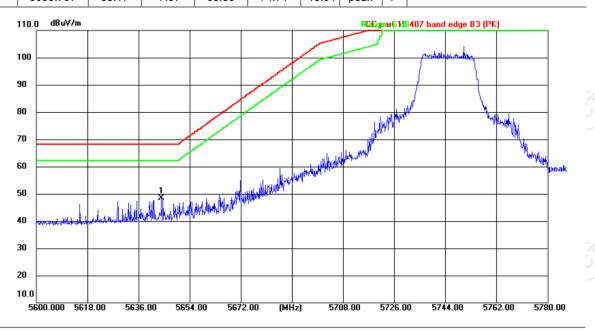
Power:AC 120 V/60 Hz

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	49.77	-8.15	41.62	74.00	-32.38	peak	Р	
ľ	2 *	5350.000	40.71	-8.15	32.56	54.00	-21.44	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 25(°C) Humidity: 56 %

Limit: FCC part 15.407 band edge (PK)

No	Frequen (MHz)		g Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.00	00 48.55	-8.15	40.40	74.00	-33.60	peak	Р	
2	* 5350.00	00 38.49	-8.15	30.34	54.00	-23.66	AVG	Р	


AX20-5745

Site: 3m Anechoic Chamber Pol Limit: FCC part 15.407 band edge B3 (PK)

Polarization: Horizontal Temperature
PK) Power: AC 120 V/60 Hz

	•			•					
No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5658 797	68 17	-7 37	60.80	74 71	-13 91	peak	Р	

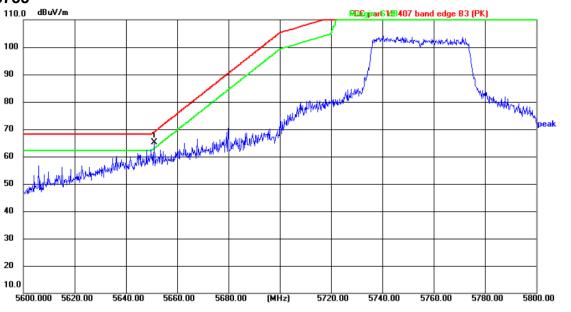
Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 25(°C)

Temperature: 25(°C)

Humidity: 56 %


Humidity: 56 %

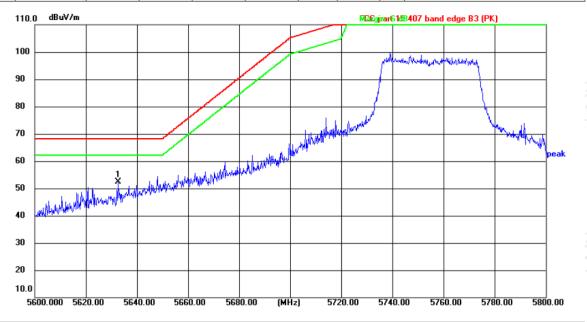
Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5644.154	55.85	-7.35	48.50	68.20	-19.70	peak	Р	

AX40-5755

Site: 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 25(°C)

Humidity: 56 %

Limit: FCC part 15.407 band edge B3 (PK)

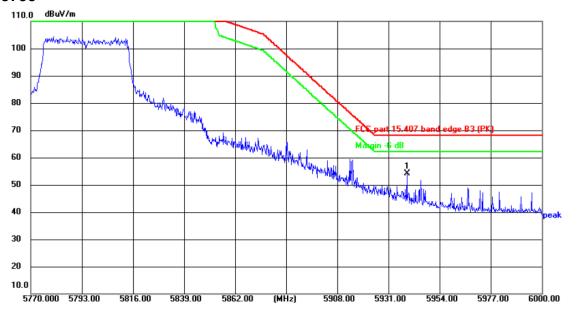
Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5651.010	72.51	-7.28	65.23	68.95	-3.72	peak	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 25(°C)


Humidity: 56 %

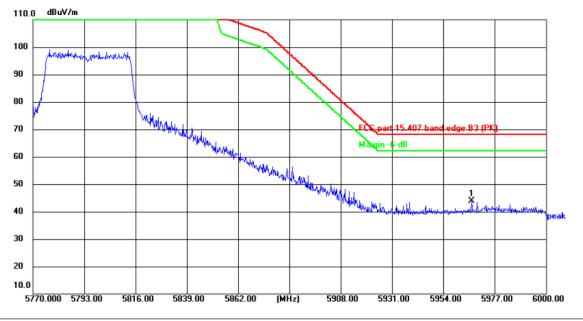
Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5632.730	59.98	-7.52	52.46	68.20	-15.74	peak	Р	

AX40-5795

Site: 3m Anechoic Chamber Polarization

Polarization: *Horizontal*


Temperature: 25(°C)

Humidity: 56 %

Limit: FCC part 15.407 band edge B3 (PK)

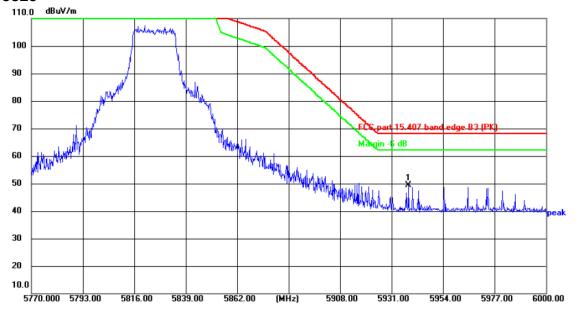
Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5939.383	61.02	-6.84	54.18	68.20	-14.02	peak	Р	

Site: 3m Anechoic Chamber

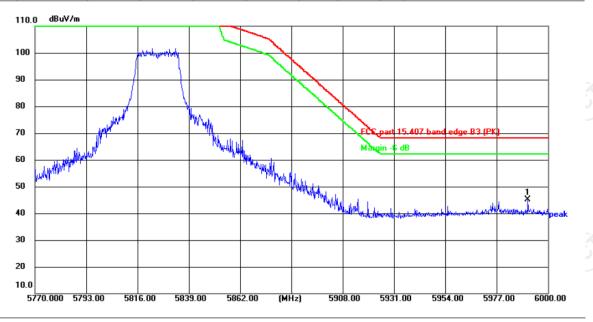
Polarization: Vertical

Temperature: 25(°C)


Humidity: 56 %

Limit: FCC part 15.407 band edge B3 (PK)

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
Y	1 *	5966.868	50.61	-6.69	43.92	68.20	-24.28	peak	Р	



AX20-5825

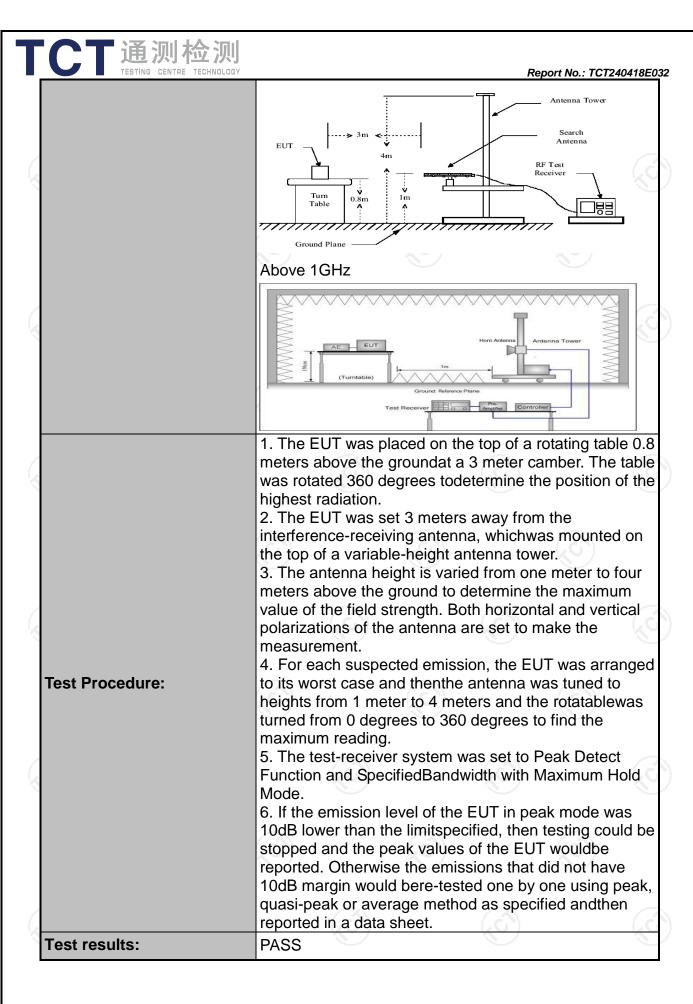
Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 25(°C) Humidity: 56 %

Limit: FCC part 15.407 band edge B3 (PK) Power: AC 120 V/60 Hz Margin Frequency Reading Factor Level Limit No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 5938.889 56.10 -6.84 49.26 68.20 -18.94 peak

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 25(°C) Humidity: 56 %

Limit: FCC part 15.407 band edge B3 (PK) Power:AC 120 V/60 Hz

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
\mathbf{q}	1 *	5991.099	51.63	-6.55	45.08	68.20	-23.12	peak	Р	


Note: All modulation (802.11a, 802.11n, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be reported.

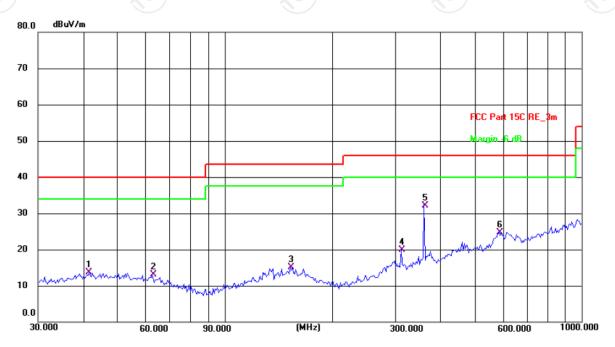
5.8. Unwanted Emissions

5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	ection 15.	407 & 1	5.209 & 15.205					
Test Method:	KDB 789033	D02 v02i	[.] 01		(C)					
Frequency Range:	9kHz to 40G	Hz								
Measurement Distance:	3 m	3 m								
Antenna Polarization:	Horizontal &	Vertical								
Operation mode:	Transmitting	mode wit	h modulat	ion						
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	9kHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value					
Limit:	per FCC Par	t15.205 sl strength bands:	Detection Pea AVC Field Strengti (microvolts/m 2400/F(KHz) 24000/F(KHz) 30 100 150 200 500	y with the torth in t	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3 3					
Test setup:	For radiated	Turn table	lm [Pre -	Computer Amplifier					

5.8.2. Test Instruments

	Radiated Em	nission Test Site	e (966)			
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024		
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024		
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025		
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025		
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024		
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024		
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024		
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025		
Antenna Mast	Keleto	RE-AM	1			
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025		
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025		
EMI Test Software	Shurple Technology	EZ-EMC		, 6		



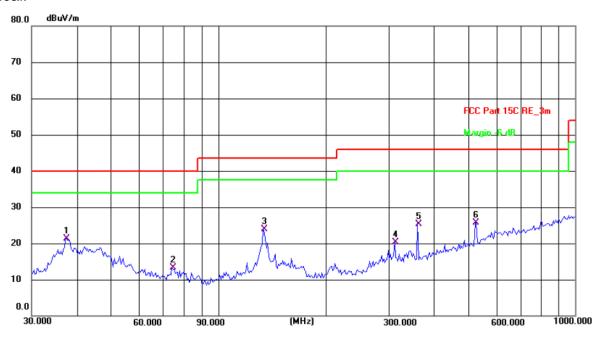
5.8.3. Test Data

Please refer to following diagram for individual

Below 1GHz


Horizontal:

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.9(C) Humidity: 51 %


Limit: FCC Part 15C RE_3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	41.7129	26.06	-12.34	13.72	40.00	-26.28	QP	Р	
2	62.6507	26.33	-13.32	13.01	40.00	-26.99	QP	Р	
3	152.6641	26.05	-10.89	15.16	43.50	-28.34	QP	Р	
4	312.1794	29.90	-9.90	20.00	46.00	-26.00	QP	Р	
5 *	361.7139	41.35	-9.21	32.14	46.00	-13.86	QP	Р	
6	586.8437	29.62	-4.86	24.76	46.00	-21.24	QP	Р	

Vertical:

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.9(C) Humidity: 51 %

Limit: FCC Part 15C RE 3m

Power: AC 120 V/60 Hz

	001 411 1001											
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark			
1 *	37.5478	33.98	-12.68	21.30	40.00	-18.70	QP	Р				
2	74.1351	28.21	-14.91	13.30	40.00	-26.70	QP	Р				
3	133.6188	36.02	-12.18	23.84	43.50	-19.66	QP	Р				
4	312.1794	30.17	-9.90	20.27	46.00	-25.73	QP	Р				
5	361.7138	34.61	-9.21	25.40	46.00	-20.60	QP	Р				
6	528.2458	31.91	-6.25	25.66	46.00	-20.34	QP	Р				

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(VHT40) and the worst case Mode (Lowest channel and 802.11n(HT20)) was submitted only.
- 3.Measurement ($dB\mu V$) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			N	/lodulation 1	Type: Band	1			
			<u> </u>		: 5180MHz	<u>·</u>			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(. ,, .	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(======================================	(« р. т.т.)	(0.2)
10360	Н	38.14		8.02	46.16		68.2		-22.04
15540	Н	38.06	-/-	9.87	47.93	<u></u>	74	54	-6.07
	H		140		🖔	٠		30)	
	.,								
10360	V	38.39		8.02	46.41		68.2		-21.79
15540	V	38.63		9.87	48.5	/	74	54	-5.5
<u> </u>	V	(2)							(<u></u>)
					: 5200MHz				
Frequency	Ant. Pol.	Peak reading	AV	Correctio	Emissio	on Level	Peak limit	AV limit (dBµV/m)	Margin
(MHz)	H/V	V reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV	(dBµV/m)		(dB)
		, , ,	(αΔμν)	, ,	(dBµV/m)	(dBµV/m)			
10400	Н	39.48		7.97	47.45		68.2		-20.75
15600	Н	39.32		9.83	49.15		74	54	-4.85
(C)	Н	(,C))		(_k C		((C) }-		<u>(, e,)</u>
						1		ı	
10400	V	41.36		7.97	49.33		68.2		-18.87
15600	V	38.67		9.83	48.5		74	54	-5.5
	V		f-G)		(,			(.C .	
				11a CH48	: 5240MHz				
Frequency		Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.27		7.97	46.24		68.2		-21.96
15720	Н	37.86		9.83	47.69		74	54	-6.31
	Н				((4)	
	(2)		K.		X			(2)	
10480	V	39.51		7.97	47.48		68.2		-20.72
15720	V	36.45		9.83	46.28		74	54	-7.72
	V								
				n(HT20) Ch	136: 5180M	lHz			
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	n Factor	Dools	A \ /	(dBµV/m)	(dBµV/m)	(dB)
		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	,		` ′
10360	7	41.23		8.02	49.25	J	68.2		-18.95
15540	Н	38.74		9.87	48.61		74	54	-5.39
	Н	<u></u> ,							 ,
(G)		(G)		(,c			(G)		(G)
10360	V	42.38		8.02	50.4		68.2		-17.8
15540	V	38.15		9.87	48.02		74	54	-5.98
	V								

Report No.: TCT240418E032 11n(HT20) CH40: 5200MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading reading n Factor H/V $(dB\mu V/m)$ (MHz) (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10400 Η 40.14 7.97 48.11 68.2 -20.0915600 Н 38.32 ---9.83 48.15 ---74 54 -5.85Н ------10400 V 40.56 7.97 48.53 68.2 -19.67 15600 38.08 9.83 47.91 74 54 -6.09 ٧ -------------11n(HT20) CH48: 5240MHz Correctio Peak ΑV **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) A۷ (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m)$ $(dB\mu V/m)$ 10480 Н 41.7 7.97 49.67 -18.53 68.2 15720 Н 40.44 ---9.83 50.27 ---74 54 -3.73 Н 10480 ٧ 41.66 7.97 49.63 68.2 -18.57٧ 15720 40.13 ---9.83 49.96 74 54 -4.04----------------------11n(HT40) CH38: 5190MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Margin Frequency reading reading n Factor H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (MHz) (dB) (dBµV) (dBµV) (dB/m) Peak ΑV (dBµV/m) (dBµV/m) 10380 Н 39.02 7.75 46.77 68.2 -21.43 15570 Η 37.94 9.87 47.81 74 54 -6.19Н ------10380 ٧ 40.98 ---7.75 48.73 ---68.2 -19.4715570 V 38.19 9.87 74 48.06 54 -5.94 11n(HT40) CH46: 5230MHz ΑV Correctio Peak **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) (dB/m) Peak ΑV (dBµV) (dBµV) (dBµV/m) (dBµV/m) 10460 Н 41.24 7.97 68.2 -18.99 49.21 15690 Н 39.85 9.83 49.68 74 54 -4.32H ---------------------------10460 V 42.47 7.97 50.44 68.2 -17.76 15690 ٧ 9.83 39.11 48.94 74 54 -5.06٧ ---___

Report No.: TCT240418E032 11ac(VHT20) CH36: 5180MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading reading n Factor H/V $(dB\mu V/m)$ (MHz) (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10360 Η 41.43 8.02 49.45 68.2 -18.7515540 Н 37.16 ---9.87 47.03 ---74 54 -6.97Н ---------V 10360 38.64 8.02 68.2 -21.54 46.66 15540 40.18 9.87 50.05 74 54 -3.95 ٧ ----------------11ac(VHT20) CH40: 5200MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) A۷ (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m)$ $(dB\mu V/m)$ 47.22 10400 Н 39.25 7.97 -20.98 68.2 Н 15600 39.02 ---9.83 48.85 ---74 54 -5.15 Н -20.04 10400 ٧ 40.19 7.97 48.16 68.2 ٧ 15600 38.01 9.83 47.84 74 54 -6.16----------------------11ac(VHT20) CH48:5240 ΑV Peak Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor H/V $(dB\mu V/m)$ (dBµV/m) (MHz) (dB) (dBµV) (dBµV) (dB/m) Peak ΑV (dBµV/m) (dBµV/m) 10480 Н 38.36 7.97 46.33 68.2 -21.87 15720 Η 38.03 9.83 47.86 74 54 -6.14Н ------10480 ٧ 39.15 ---7.97 47.12 ---68.2 -21.08 15720 V 38.62 9.83 74 48.45 54 -5.55 ---11ac(VHT40) CH38:5190 ΑV Correctio Peak **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) (dB/m) Peak ΑV (dBµV) (dBµV) (dBµV/m) (dBµV/m) 10380 Н 40.28 7.75 48.03 68.2 -20.17 15570 Н 40.11 9.87 49.98 74 54 -4.02H ---------------------------10380 V 39.33 7.75 47.08 68.2 -21.12 15570 ٧ 9.87 38.56 48.43 74 54 -5.57٧

٧

39.07

15720

Report No.: TCT240418E032 11ac(VHT40) CH46:5230 Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin n Factor reading reading H/V $(dB\mu V/m)$ (MHz) $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 10460 Н 38.77 7.97 46.74 68.2 -21.46 15690 Н 39.16 9.83 ---48.99 ---74 54 -5.01Н ------10460 V 40.59 7.97 48.56 68.2 -19.64 37.12 15690 9.83 46.95 74 54 -7.05 ٧ ------------11ax(VHT20) CH36: 5180MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Margin Frequency n Factor reading reading H/V (dBµV/m) (dBµV/m) (dB) (MHz) A۷ (dBµV) Peak (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10360 H 41.21 8.02 49.23 68.2 -18.9754 15540 H 37.56 9.87 47.43 74 -6.57 ---Η ------------------------10360 68.2 38.19 8.02 46.21 -21.99 ---٧ 15540 40.53 ---9.87 50.4 ---74 54 -3.6٧ 11ax(VHT20) CH40: 5200MHz Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 47.95 10400 Η 39.98 7.97 68.2 -20.2515600 Н 39.22 9.83 49.05 74 54 -4.95Η 10400 40.01 7.97 47.98 68.2 -20.22 15600 V 38.37 9.83 -4-48.2 **}---**74 54 -5.8 ٧ 11ax(VHT20) CH48:5240 Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10480 Н 38.28 7.97 46.25 -21.95 68.2 H 48.09 74 -5.91 15720 38.26 9.83 54 --4 ---H ياد ---UL. ---10480 ٧ 39.33 ---7.97 47.3 68.2 ----20.9

-5.1

54

74

48.9

9.83

	TESTING	CENTRE TECHNOI					Rep	ort No.: TCT2	40418E032
			1	1ax(VHT40) CH38:519	90			
Frequency	Frequency Ant. Pol. (MHz) H/V	reading re		Correctio n Factor	I Emission		Peak limit	AV limit	Margin (dB)
(IVITZ)	□/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(ub)
10380	Н	40.29		7.75	48.04		68.2		-20.16
15570	Н	40.13		9.87	50		74	54	-4
	Н								
10380	V	39.36	40	7.75	47.11	G`)	68.2	(2G-2)	-21.09
15570	V	38.45		9.87	48.32	<u> </u>	74	54	-5.68
	V								
			1	1ax(VHT40) CH46:523	30			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	H	38.04	- /- c.\	7.97	46.01		68.2		-22.19
15690	H	39.11		9.83	48.94)	74	54	-5.06
	Н								
10460	V	40.55		7.97	48.52		68.2		-19.68
15690	V	37.68		9.83	47.51		74	54	-6.49

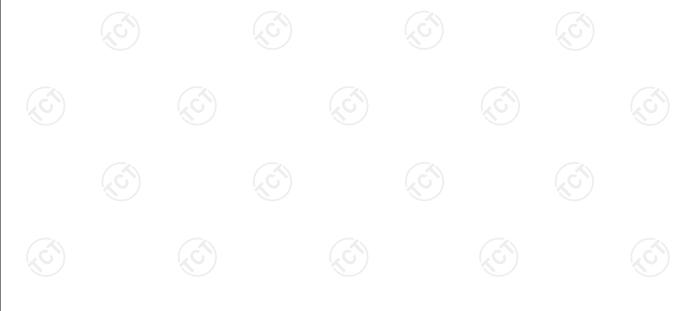
Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	/lodulation 1	Гуре: Band	3			
				11a CH149	• •				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	39.44		8.09	47.53		74	54	-6.47
17235	4	37.92		9.67	47.59	Z	68.2		-20.61
	H		[2 6]		(,	<u></u>		(-C- 	
				7					
11490	V	41.58		8.09	49.67		74	54	-4.33
17235	V	39.46		9.67	49.13		68.2		-19.07
(, c) -1	V			(.c)	·)	(<u> </u>		
				11a CH157	': 5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak	on Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
					(dBµV/m)	(dBµV/m)			
11570	Н	39.03		8.10	47.13		74	54	-6.87
17355	Н	38.35		9.65	48		68.2		-20.2
44-	Η					/			
11570	V	38.08		8.10	46.18		74	54	-7.82
17355	V	40.16		9.65	49.81		68.2		-18.39
	V		7		(Z		<u> </u>	
				11a CH165	i: 5825MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissic	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	n Factor			(dBµV/m)	(dBµV/m)	(dB)
, ,		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)		(αΣμ 1/)	(db)
11650	Н	37.44		8.12	45.56		74	54	-8.44
17475	Н	36.29		9.62	45.91		68.2		-22.29
	Н								
	(G)		(G)			G')		(G)	
11650	V	39.07		8.12	47.19	<u> </u>	74	54	-6.81
17475	V	38.66		9.62	48.28		68.2		-19.92
	V								
				(HT20) CH	149: 5745N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1711-12)	Γ1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμ ν/ιτι)	(ub)
11490	H	39.27	<u> </u>	8.09	47.36	9)	74	54	-6.64
17235	Έ	38.55		9.67	48.22		68.2		-19.98
	Η								
			-					t	
11490	V	40.18		8.09	48.27	(74	54	-5.73
17235	V	38.21		9.67	47.88		68.2		-20.32
	V								

			11n	(HT20) CH	157: 5785N	ИHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVITIZ)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμν/π)	(ub)
11570	Н	38.58		8.10	46.68		74	54	-7.32
17355	Н	39.16		9.65	48.81		68.2		-19.39
	Н					Z			
	(,G)		(,G)			51		(,G)	
11570	V	39.23		8.10	47.33	/ 	74	54	-6.67
17355	V	39.12		9.65	48.77		68.2		-19.43
<u></u>	V								 ,
			11n	(HT20) CH	165: 5825N	ИHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
(IVITZ)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	H	39.18		8.12	47.3)	74	54	-6.7
17475	Н	37.49		9.62	47.11		68.2		-21.09
	Н								
11650	V	38.51		8.12	46.63		74	54	-7.37
17475	V	39.04		9.62	48.66		68.2		-19.54
	V								
			11n	(HT40) CH	151: 5755N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	41.07		8.09	49.16		74	54	-4.84
17265	H	37.94		9.67	47.61		68.2		-20.59
	H								
11510	V	42.85	4-0	8.09	50.94		74	54	-3.06
17265	V	39.02		9.67	48.69	<i>—</i>	68.2	<u></u>	-19.51
	V								
			11n	(HT40) CH	159: 5795N	ИHz			
_	A . D .	Peak	AV	Correctio		n Level	D 1 11 14	A	
Frequency	Ant. Pol.	reading	reading	n Factor	EIIIISSIC	n Levei	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
11590	Ĥ	39.66	- -	8.10	47.76		74	54	-6.24
17385	H	38.43	-150	9.65	48.08	9)	68.2	(<u>)</u>	-20.12
	Н								
								•	
11590	V	39.04		8.10	47.14		74	54	-6.86
17385	V	38.16		9.65	47.81		68.2		-20.39
	V								

		CENTRE TECHNOL	_				Repo	ort No.: TCT24	0418E032
			11ac	(VHT20) C	H149: 5745	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11490	Н	41.31		8.09	49.4		74	54	-4.6
17235	Н	38.65		9.67	48.32		68.2		-19.88
	Н								
						Z \			
11490	V	40.59	(X)	8.09	48.68	(`ز	74	54	-5.32
17235	V	39.13		9.67	48.8		68.2	<u></u>	-19.4
	V								
			11ac	(VHT20) C	H157: 5785	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak	Emission Level F		AV limit (dBµV/m)	Margin (dB)
		(αΒμν)	(αΒμν)	(dB/III)	(dBµV/m)	(dBµV/m)			
11570		38.14	+:0	8.10	46.24		74	54	-7.76
17355	Н	36.68		9.65	46.33)	68.2		-21.87
	Н								
11570	V	38.22		8.10	46.32	/	74	54	-7.68
17355	V	38.01		9.65	47.66		68.2		-20.54
	V								
			11ac	(VHT20) C	H165: 5825	MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	40.08		8.12	48.2		74	54	-5.8
17475	Н	38.84		9.62	48.46	(68.2		-19.74
<u></u>	Н	<u></u>					<u> </u>		
						•	•	•	
11650	V	39.31	-7.4	8.12	47.43		74	54	-6.57
17475	V	40.83	42C)	9.62	50.45	<u>ن)</u>	68.2	(, G)	-17.75
	V								
				(VHT40) C	H151: 5755	MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	H	39.78		8.09	47.87		74	54	-6.13
17265	H	38.99	+-6	9.67	48.66		68.2		-19.54
	H					·			
11510	V	40.06		8.09	48.15		74	54	-5.85
17265	V	36.87		9.67	46.54	/	68.2		-21.66
<u> </u>	V			/	/		(O 1-		<u> </u>


Report No.: TCT240418E032 11ac(VHT40) CH159: 5795MHz Peak ΑV Correctio Ant. Pol. **Emission Level AV** limit Peak limit Frequency Margin reading reading n Factor H/V $(dB\mu V/m)$ (MHz) (dBµV/m) (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 11590 Η 40.25 8.10 48.35 74 54 -5.65 17385 Н 38.66 ---9.65 48.31 ---68.2 ----19.89Н ---------------V 11590 39.78 1__ 8.10 47.88 74 -6.1254 17385 38.19 9.65 47.84 68.2 -20.36 ٧ -------------------11ax(VHT20) CH149: 5745MHz Peak AV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) A۷ (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m)$ $(dB\mu V/m)$ 74 11490 Н 39.44 47.53 54 -6.478.09 17235 Н 38.37 ---9.67 48.04 ---68.2 -54 -20.16 Н 11490 ٧ 40.95 8.09 49.04 -4.9674 54 ٧ 17235 39.18 9.67 48.85 68.2 -19.35----------------------11ax(VHT20) CH157: 5785MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor H/V $(dB\mu V/m)$ (MHz) $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak ΑV (dBµV/m) (dBµV/m) 11570 Н 38.26 8.10 46.36 74 -7.64 54 17355 Η 36.33 9.65 45.98 68.2 -22.22 Н ---___ ---11570 ٧ 38.74 ---8.10 46.84 ---74 -7.16 54 17355 V 39.49 9.65 49.14 68.2 -19.0611ax(VHT20) CH165: 5825MHz ΑV Correctio Peak **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) (dB/m) Peak ΑV (dBµV) (dBµV) (dBµV/m) (dBµV/m) 11650 Н 40.38 8.12 48.5 74 54 -5.5 17475 Н 38.07 9.62 47.69 68.2 -20.51 H ---------------------------11650 V 39.95 8.12 48.07 74 54 -5.93 ---17475 ٧ 40.01 9.62 49.63 68.2 ----18.57٧ ---

	TESTING CENTRE TECHNOLOGY Report No.: TCT240418E032								
			11ax	(VHT40) C	H151: 5755	MHz			
Frequency	Ant. Pol.	l reading		Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin (dB)
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(ub)
11510	Н	39.34		8.09	47.43	/	74	54	-6.57
17265	Н	38.42		9.67	48.09		68.2		-20.11
	Н								
11510	V	40.89	1 0	8.09	48.98	(`ز	74	54	-5.02
17265	V	36.46		9.67	46.13	<i></i>	68.2		-22.07
	V								
			11ax	(VHT40) C	H159: 5795	MHz			
Frequency	Ant. Pol.	Pol. reading reading		Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	(H)	40.07	(. 6)	8.10	48.17		74	54	-5.83
17385	H	38.54		9.65	48.19	J	68.2		-20.01
	Н								
11590	V	39.33		8.10	47.43	/	74	54	-6.57
17385	V	38.52		9.65	48.17		68.2		-20.03
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. In the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. In the test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n,11ac, 11ax), the worst case (11ac) was found and test data was shown in this report.

Report No.: TCT240418E032

Test plots as follows:

Test mode:	802.11ac(\	/HT20)	Frequency(MHz):			5180	
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result	
remperature (C)	voltage(v _{AC})	Frequen	cy(MHz)	Frequency(Hz)		Nesuit	
45		5179.98		-20000		PASS	
35		518	80	0		PASS	
25	120V	5180		0		PASS	
15	1200	518	80	0		PASS	
5		518	80	0		PASS	
0		5179	9.98	-20000		PASS	
	102V	51	80	0		PASS	
25	120V	5179	9.98	-20000		PASS	
	138V	5179	9.98	-20000		PASS	

Test mode:	802.11ac(V	/HT20) Freque	ency(MHz):	5200
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5200.02	20000	PASS
35		5200.02	20000	PASS
25	4201/	5200	0	PASS
15	120V	5199.98	-20000	PASS
5		5200	0	PASS
0		5200	0	PASS
	102V	5200	0	PASS
25	120V	5200	0	PASS
	138V	5200	0	PASS

Test mode:	802.11ac(\	/HT20)	Freque	ency(MHz):	5240
Temperature (°C)	Voltage(V _{AC})	Measure	Measurement		Result
remperature (C)	voltage(v _{AC})	Frequency	Frequency(MHz)		Hz)
45		5240)	0	PASS
35		5240		0	PASS
25	120V	5239.98		-20000	PASS
15	1200	5240	5240		PASS
5		5239.	5239.98		PASS
0		5240)	0	PASS
	102V	5240)	0	PASS
25	120V	5240	0 (0	PASS
	138V	5240)	0	PASS

Test mode:	802.11ac(\	/HT20)	Freque	ency(MHz)	:	5745	
Temperature (°C)	Voltage(V _{AC})	Measu	Measurement		a	Result	
Temperature (C)	voitage(v _{AC})	Frequency(MHz)		Frequency(Hz)		Nesuit	
45		57	5745		0		
35		57	45	0		PASS	
25	120V	57	45	0		PASS	
15	1200	574	5.02	2000	00	PASS	
5		57	45	0		PASS	
0		57	45	0		PASS	
	102V	5744	4.98	-2000	00	PASS	
25	120V	57	45	0		PASS	
(C)	138V	5744	4.98	-2000	00	PASS	(O,)

Test mode:	802.11ac(VHT20)	Freque	ency(MHz):	5785		
Temperature (°C)	Voltage(V _{AC})	Measurer	Measurement			Result	
Temperature (C)	voitage(v _{AC})	Frequency	(MHz)	Frequency(Hz)	Nesuit	
45		5785		0		PASS	
35		5785		0		PASS	
25	120V	5785.0	2	20000		PASS	
15	1200	5785		0		PASS	
5		5785		0		PASS	
0		5784.9	8	-20000		PASS	
(C)	102V	5784.9	8	-20000		PASS	
25	120V	5784.9	5784.98			PASS	
	138V	5784.9	8	-20000		PASS	

Test mode:	802.11ac(\)	/HT20) Freq	uency(MHz):	5825
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz		Result
45		5824.98	-20000	PASS
35		5825	0	PASS
25	120V	5824.98	-20000	PASS
15	1200	5824.98	-20000	PASS
5		5825	0	PASS
0		5825	0	PASS
	102V	5825.02	20000	PASS
25 120V		5825	0	PASS
	138V	5825.02	20000	PASS

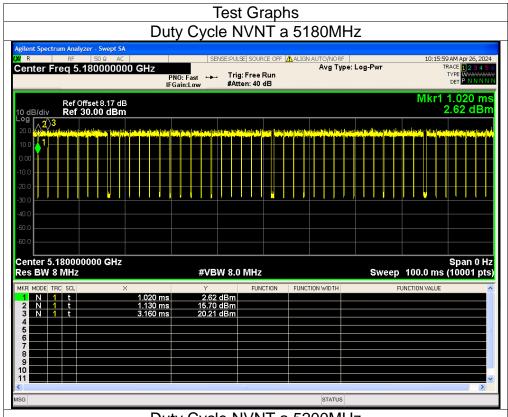
Test mode:	802.11ac(V	/HT40)	Freque	ency(MHz):		5190	
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result	
Temperature (C)	voitage(v _{AC})	Frequency(MHz)		Frequency(Hz)			
45		5190		0		PASS	
35		5190		0		PASS	
25	120V	5190		0		PASS	
15	1200	5189	9.96	-40000		PASS	
5		519	90	0		PASS	
0		519	90	0		PASS	
	102V	519	90	0		PASS	
25	120V	519	90	0		PASS	
(C)	138V	519	90	0	(` د	PASS	(O_{i})

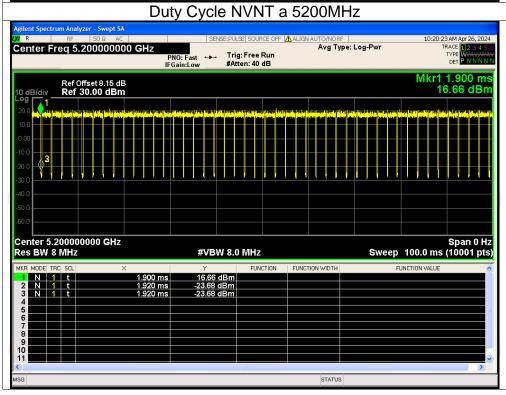
Test mode:	802.11ac(VHT40)	Freque	ency(MHz):	5230
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta	Result
Temperature (C)	voitage(v _{AC})	Frequen	cy(MHz)	Frequency(I	Hz)
45		5230		0	PASS
35		52	30	0	PASS
25	120V	5230		0	PASS
15	1200	52	30	0	PASS
5		52	30	0	PASS
0		52	30	0	PASS
(c)	102V	52	30	0	PASS
25	120V	52	30	0	PASS
	138V	52	30	0	PASS

Test mode:	802.11ac(\	/HT40) Frequ	ency(MHz):	5755	
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result	
45		5755	0	PASS	
35		5755	0	PASS	
25	120V	5755	0	PASS	
15	1200	5755	0	PASS	
5		5755.04	40000	PASS	
0		5755	0	PASS	
	102V	5755	0	PASS	
25	120V	5754.96	-40000	PASS	
	138V	5755	0	PASS	

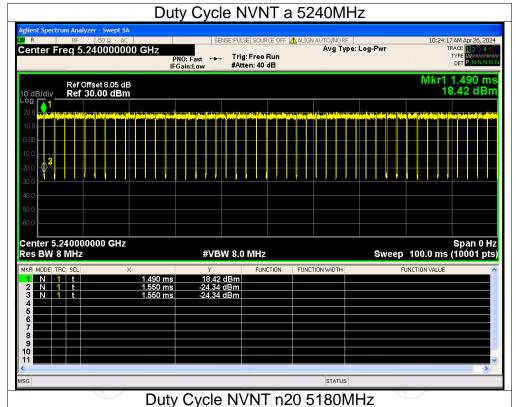
Report No.: TCT240418E032

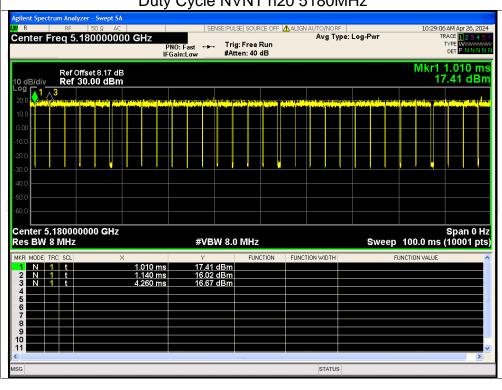
Test mode:	802.11ac	802.11ac(VHT40) F		Frequency(MHz):		5795	
Temperature (°C)	Voltage(V _{AC})		rement cy(MHz)	Delta Frequency(Hz)		Result	
45	(,c)	57	95	0		PASS	
35		57	5795 0			PASS	
25	120V	57	95	0		PASS	
15	1200	579	5.04	40000		PASS	
5		57	95	0		PASS	
0			4.96	-40000		PASS	
	102V	57	'95	0		PASS	
25	120V	579	4.96	-40000		PASS	
	138V	57	95	0,0	*)	PASS	(C_j)

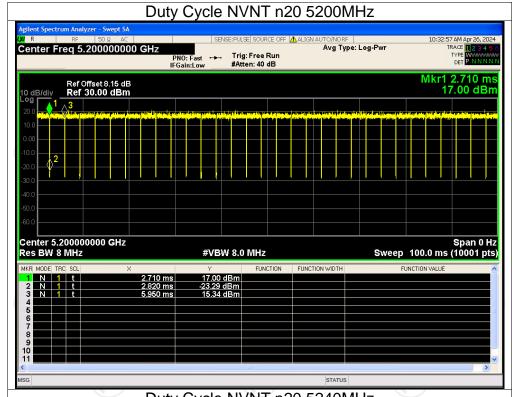

Appendix A: Test Result of Conducted Test

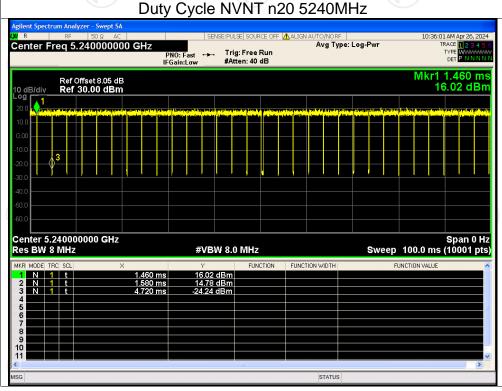

Duty Cycle

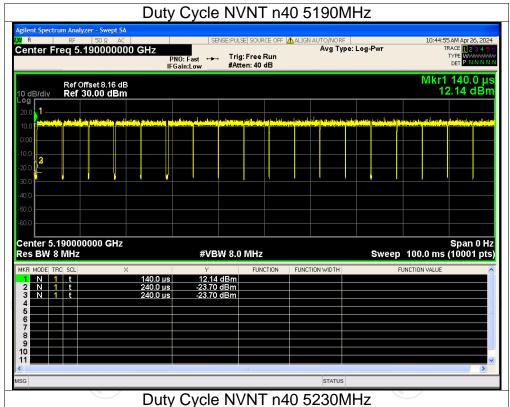
		Duty (
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	
NVNT	а	5180	93.18	0.31	
NVNT	а	5200	93.06	0.31	
NVNT	а	5240	94.26	0.26	
NVNT	n20	5180	94.96	0.22	
NVNT	n20	5200	96.45	0.16	
NVNT	n20	5240	96.51	0.15	
NVNT	n40	5190	96.74	0.14	
NVNT	n40	5230	93.54	0.29	
NVNT	ac20	5180	95.59	0.2	
NVNT	ac20	5200	96.12	0.17	
NVNT	ac20	5240	97.02	0.13	
NVNT	ac40	5190	96.16	0.17	
NVNT	ac40	5230	98.08	0	
NVNT	ax20	5180	92.97	0.32	
NVNT	ax20	5200	96.41	0.16	
NVNT	ax20	5240	94.89	0.23	
NVNT	ax40	5190	95.40	0.2	
NVNT	ax40	5230	97.31	0.12	
NVNT	а	5745	98.34	0	
NVNT	а	5785	97.37	0.12	
NVNT	а	5825	96.30	0.16	
NVNT	n20	5745	99.05	0	
NVNT	n20	5785	98.39	0	
NVNT	n20	5825	97.87	0.09	
NVNT	n40	5755	99.39	0	
NVNT	n40	5795	99.25	0	
NVNT	ac20	5745	98.99	0	
NVNT	ac20	5785	98.97	0	
NVNT	ac20	5825	97.80	0.10	
NVNT	ac40	5755	99.66	0	
NVNT	ac40	5795	99.17	0	
NVNT	ax20	5745	99.08	0	
NVNT	ax20	5785	98.37	0	
NVNT	ax20	5825	98.16	0	
NVNT	ax40	5755	99.50	0	
NVNT	ax40	5795	99.04	0	

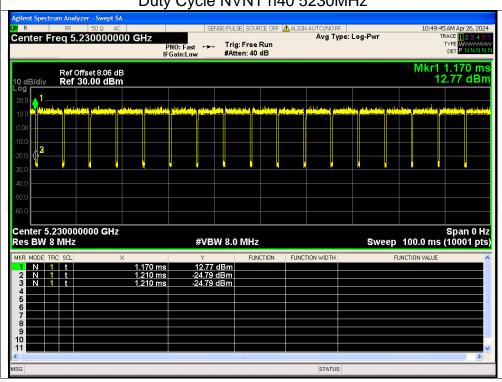


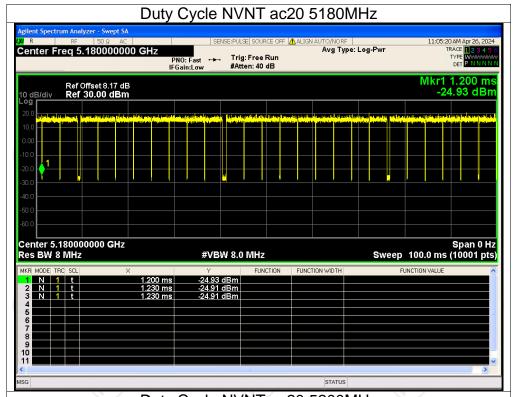


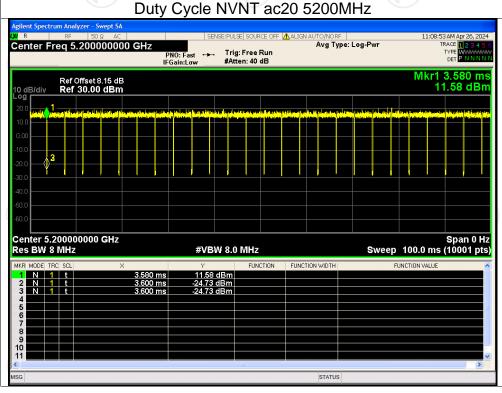


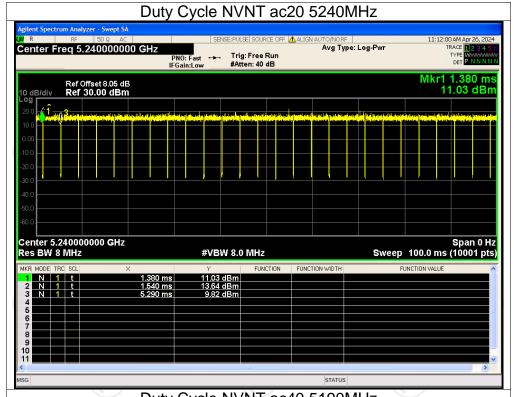


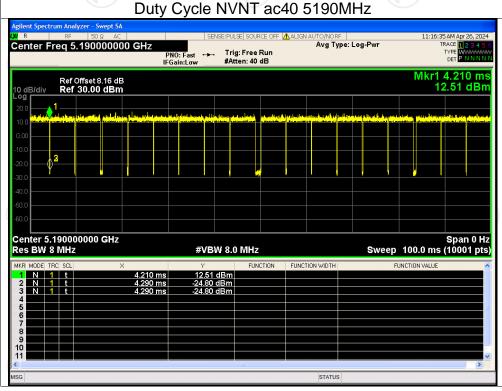


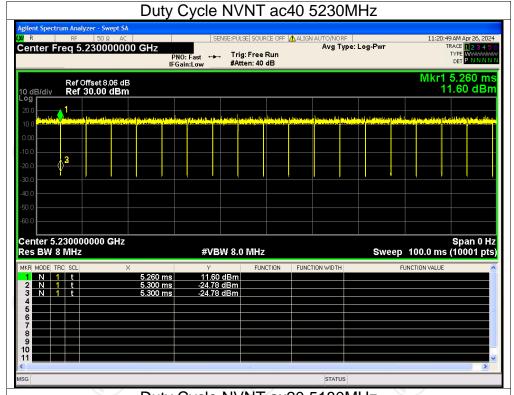


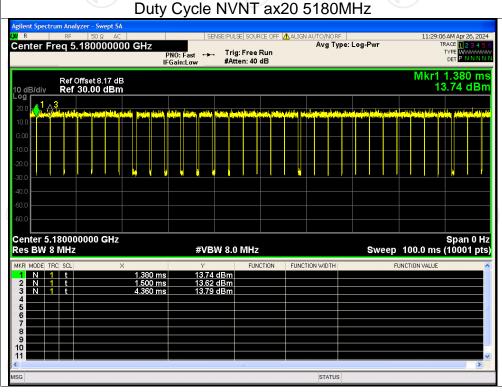


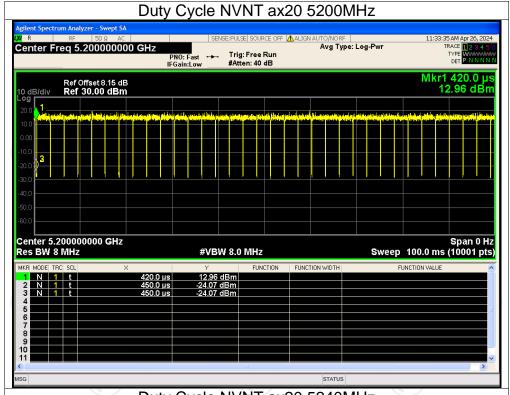


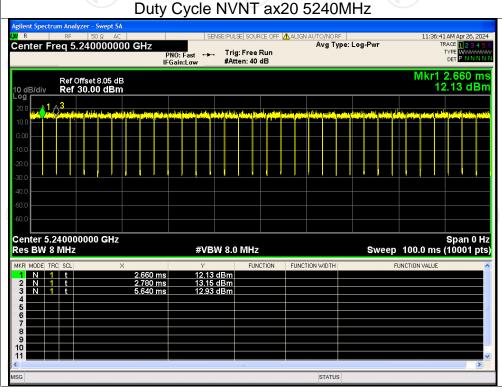


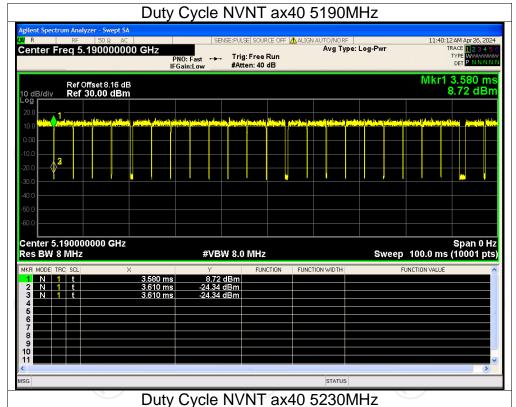


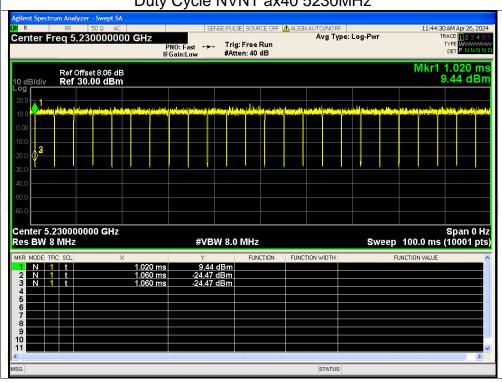


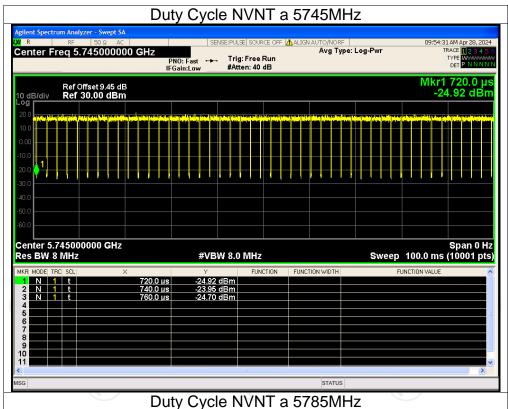


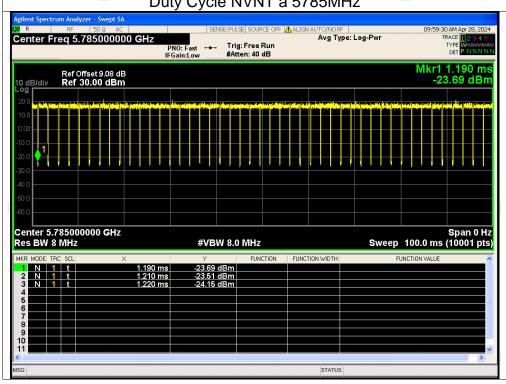


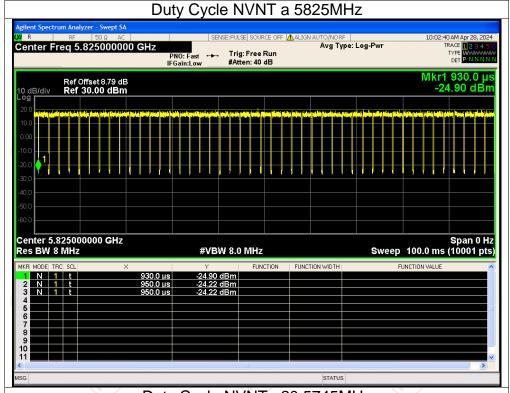


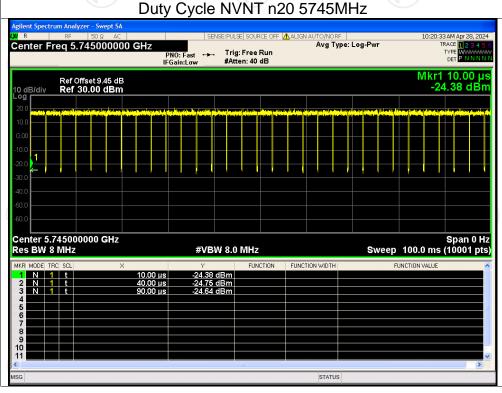


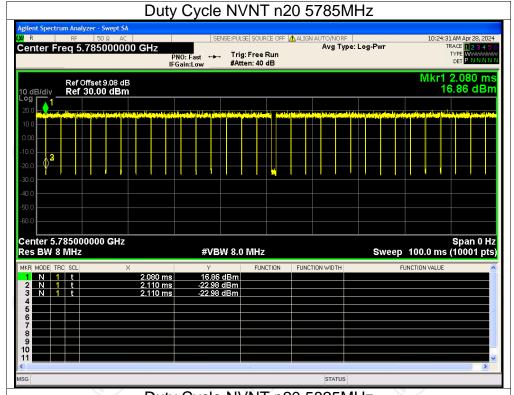


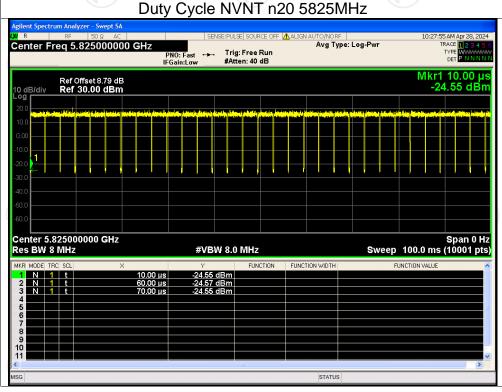


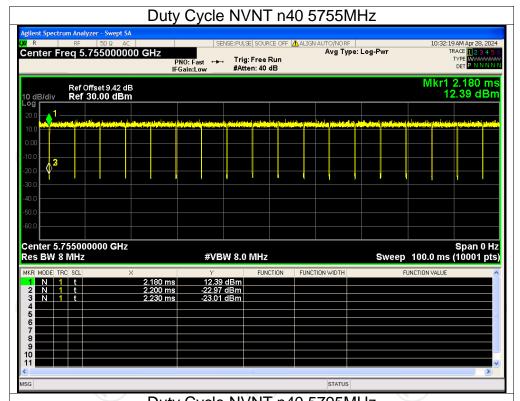


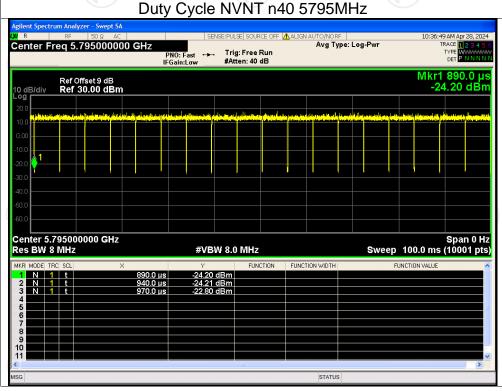


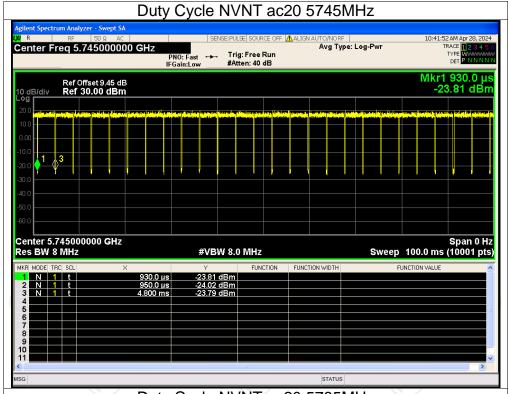


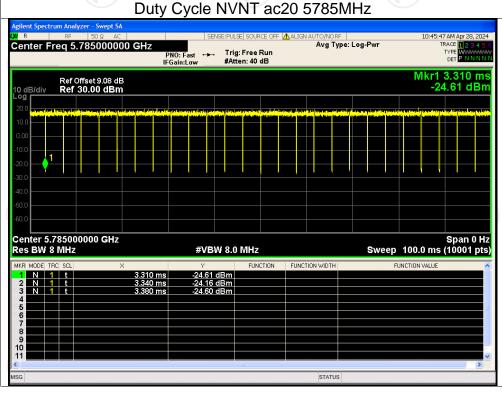


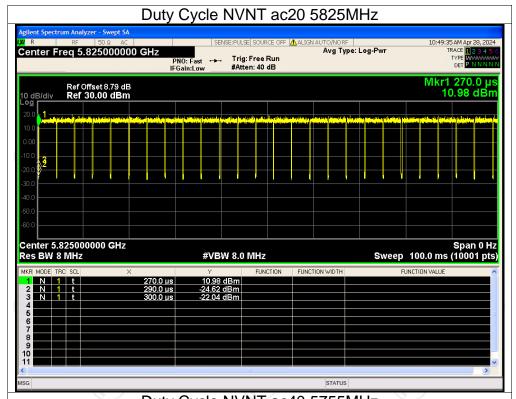


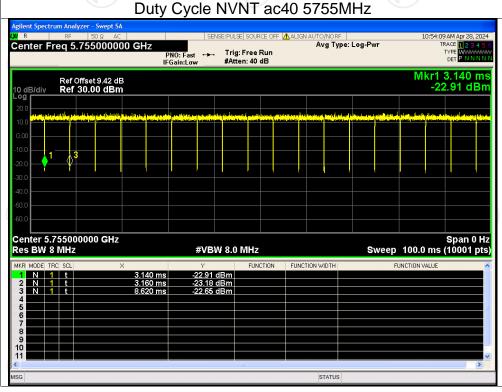


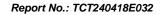


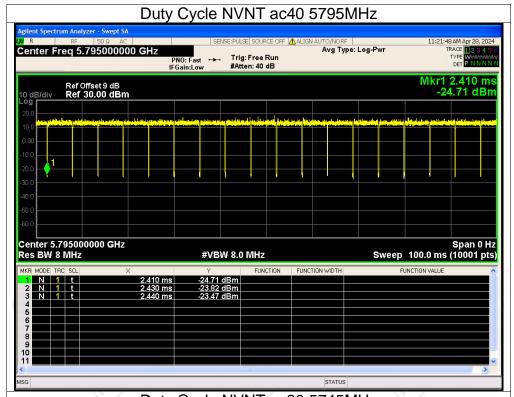


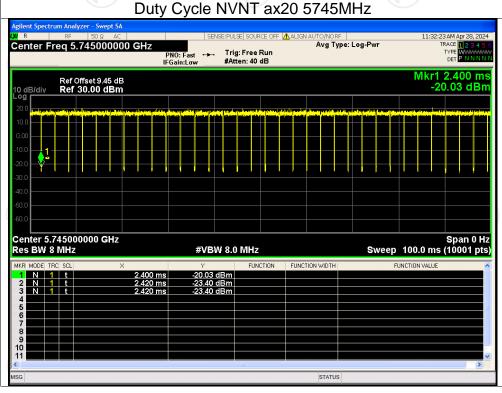


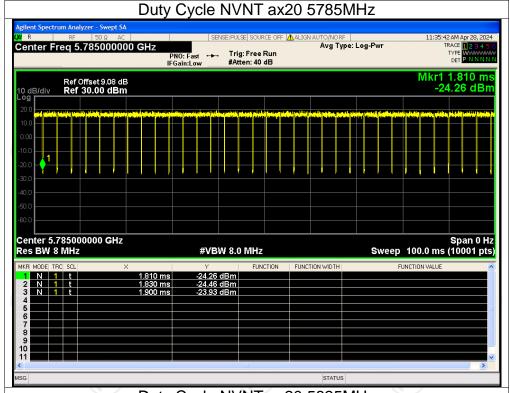


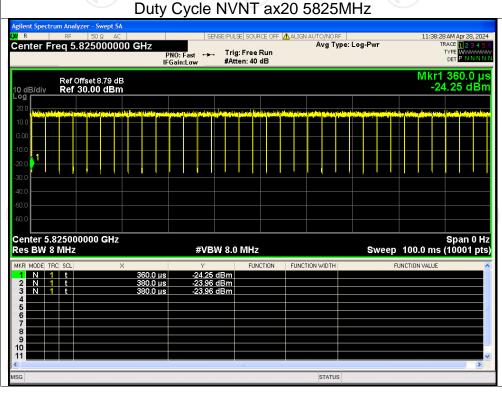


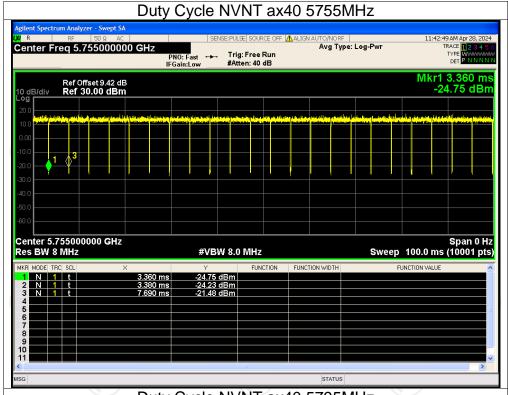


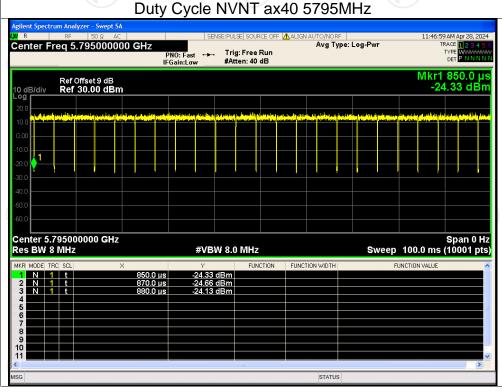


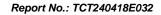


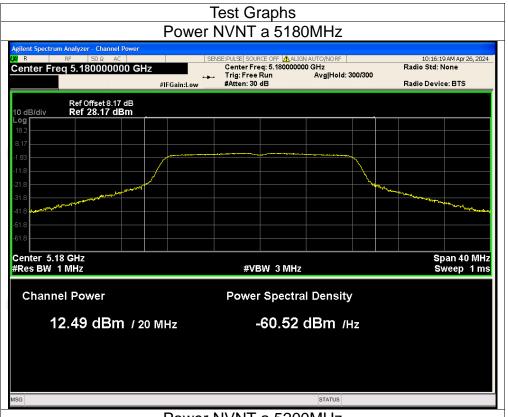


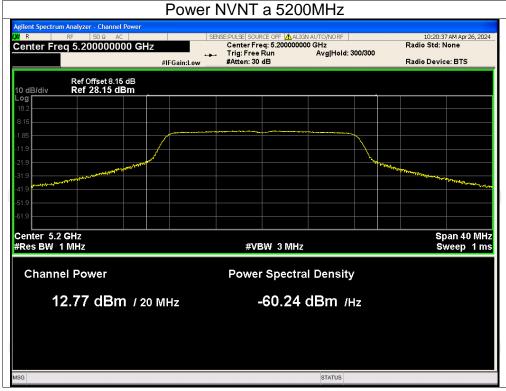




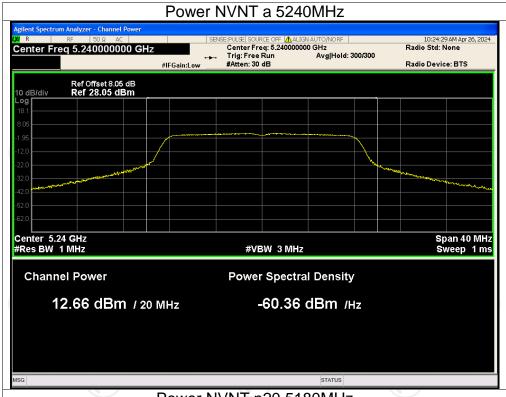


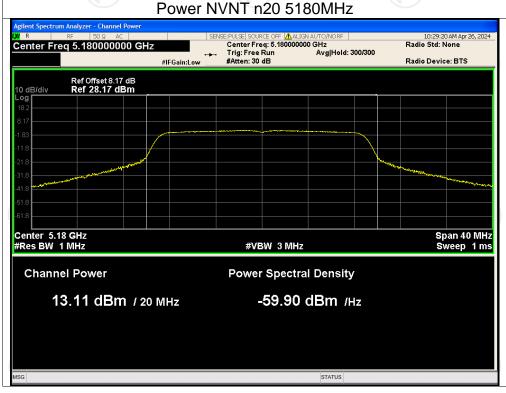


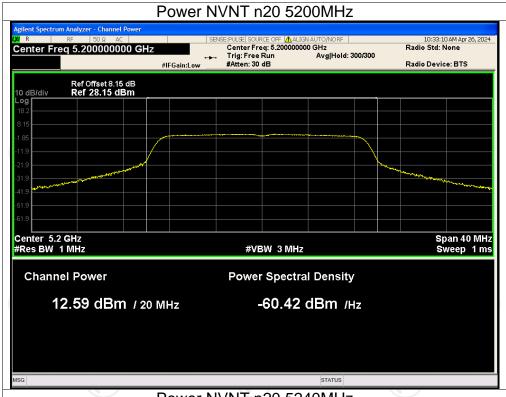


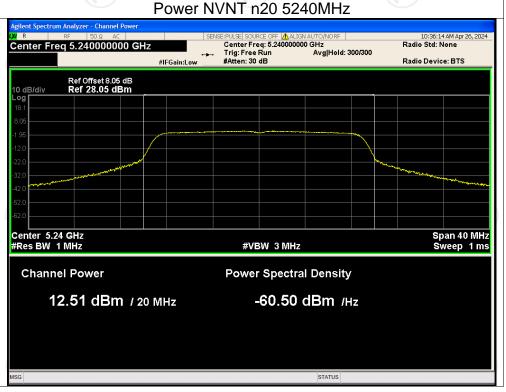

Maximum Conducted Output Power

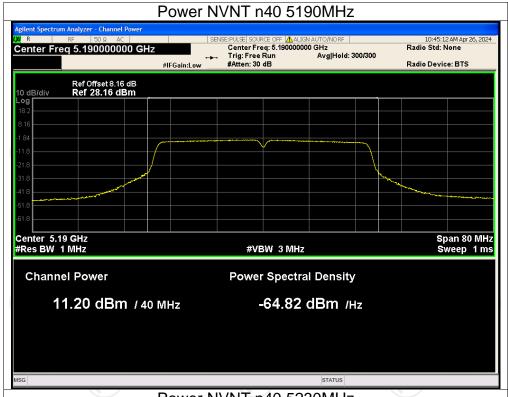
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	12.49	0.31	12.80	24	Pass
NVNT	а	5200	12.77	0.31	13.08	24	Pass
NVNT	а	5240	12.66	0.26	12.92	24	Pass
NVNT	n20	5180	13.11	0.22	13.33	24	Pass
NVNT	n20	5200	12.59	0.16	12.75	24	Pass
NVNT	n20	5240	12.51	0.15	12.66	24	Pass
NVNT	n40	5190	11.20	0.14	11.34	24	Pass
NVNT	n40	5230	11.01	0.29	11.30	24	Pass
NVNT	ac20	5180	11.46	0.20	11.66	24	Pass
NVNT	ac20	5200	11.15	0.17	11.32	24	Pass
NVNT	ac20	5240	11.11	0.13	11.24	24	Pass
NVNT	ac40	5190	11.34	0.17	11.51	24	Pass
NVNT	ac40	5230	11.10	0	11.10	24	Pass
NVNT	ax20	5180	11.06	0.32	11.38	24	Pass
NVNT	ax20	5200	10.65	0.16	10.81	24	Pass
NVNT	ax20	5240	10.52	0.23	10.75	24	Pass
NVNT	ax40	5190	10.86	0.2	11.06	24	Pass
NVNT	ax40	5230	10.50	0.12	10.62	24	Pass
NVNT	а	5745	13.05	0	13.05	30	Pass
NVNT	а	5785	12.76	0.12	12.88	30	Pass
NVNT	а	5825	12.58	0.16	12.74	30	Pass
NVNT	n20	5745	13.40	0	13.40	30	Pass
NVNT	n20	5785	13.04	0	13.04	30	Pass
NVNT	n20	5825	12.38	0.09	12.47	30	Pass
NVNT	n40	5755	13.34	0	13.34	30	Pass
NVNT	n40	5795	13.02	0	13.02	30	Pass
NVNT	ac20	5745	13.30	0	13.30	30	Pass
NVNT	ac20	5785	12.92	0	12.92	30	Pass
NVNT	ac20	5825	12.29	0.10	12.39	30	Pass
NVNT	ac40	5755	13.20	0	13.20	30	Pass
NVNT	ac40	5795	13.01	0	13.01	30	Pass
NVNT	ax20	5745	13.19	0	13.19	30	Pass
NVNT	ax20	5785	12.93	0	12.93	30	Pass
NVNT	ax20	5825	12.28	0	12.28	30	Pass
NVNT	ax40	5755	13.23	0	13.23	30	Pass
NVNT	ax40	5795	12.96	0	12.96	30	Pass

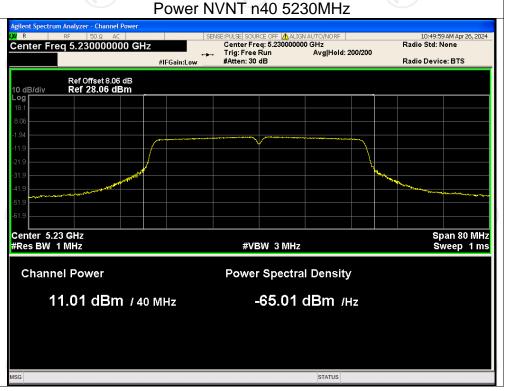


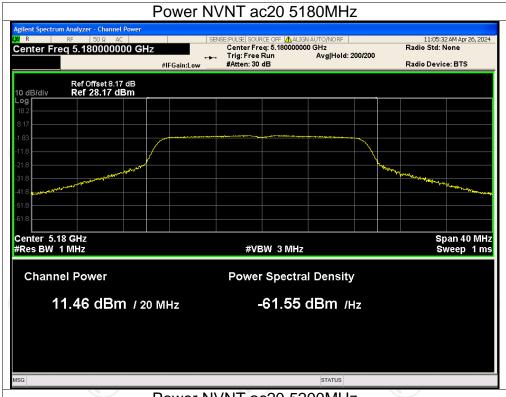


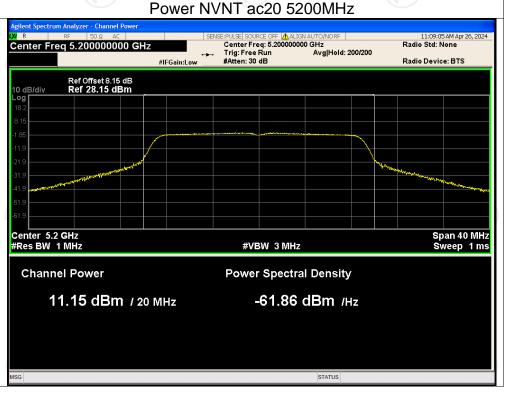


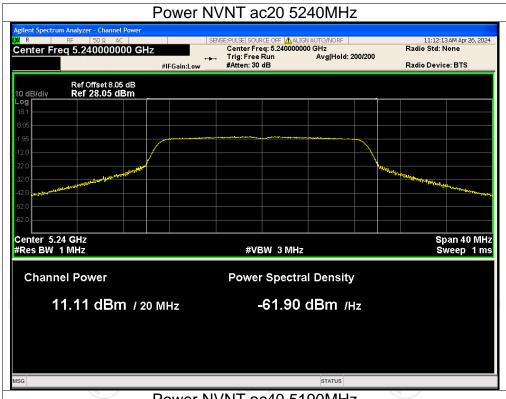


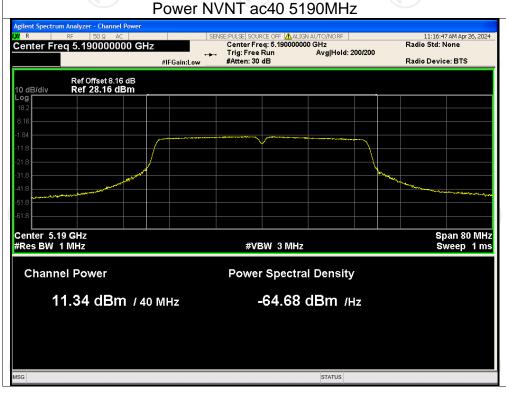


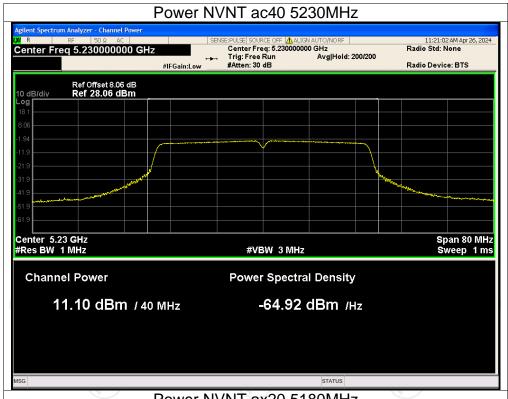


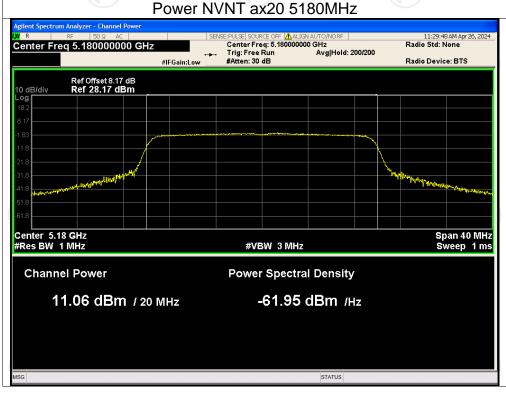


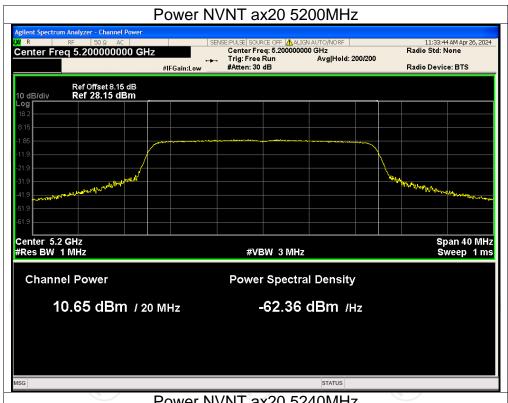


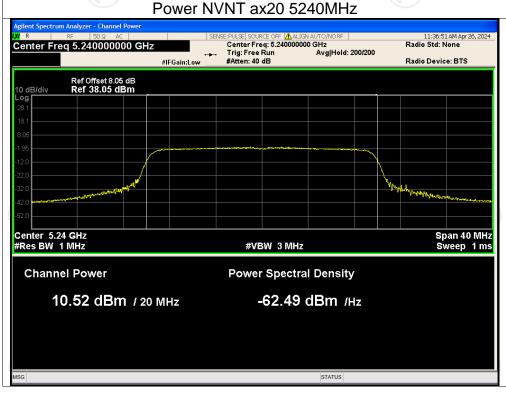


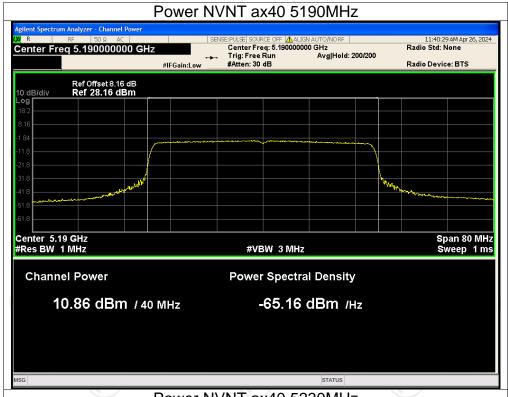


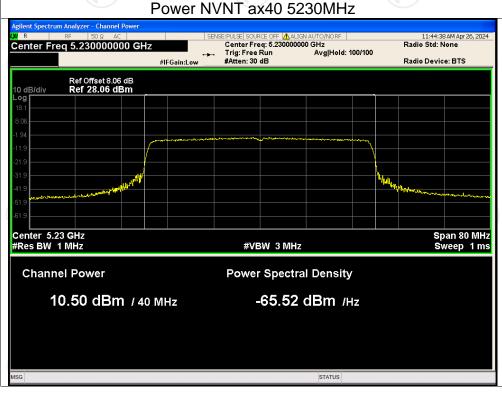












Report No.: TCT240418E032

-26dB Bandwidth

Condition	Mode	Frequency (MHz)	-26 dB Bandwidth (MHz)	Verdict
NVNT	а	5180	27.161	Pass
NVNT	а	5200	27.245	Pass
NVNT	а	5240	27.806	Pass
NVNT	n20	5180	27.270	Pass
NVNT	n20	5200	28.869	Pass
NVNT	n20	5240	27.297	Pass
NVNT	n40	5190	47.969	Pass
NVNT	n40	5230	47.319	Pass
NVNT	ac20	5180	27.611	Pass
NVNT	ac20	5200	27.998	Pass
NVNT	ac20	5240	27.817	Pass
NVNT	ac40	5190	47.283	Pass
NVNT	ac40	5230	47.853	Pass
NVNT	ax20	5180	26.924	Pass
NVNT	ax20	5200	25.362	Pass
NVNT	ax20	5240	26.330	Pass
NVNT	ax40	5190	44.071	Pass
NVNT	ax40	5230	42.018	Pass

