

Test Report

Applicant	:	PEAG, LLC dba JLab Audio		
Address	:	5927 LANDAU CT, Carlsbad, CA 92008, United States		
Product Name	:	Wireless Speaker		
Brand Mark	:	Contraction of the second seco		
Model	:	JLab JBuds Party		
Series model	:	N/A		
FCC ID	:	2AHYV-JBUDSSP		
Report Number	:	BLA-EMC-202501-A3001		
Date of Receipt	:	Jan. 10, 2025		
Date of Test	:	Jan. 10, 2025 to Jan. 20, 2025		
Test Standard	:	47 CFR Part 15, Subpart C 15.247		
Test Result	:	Pass		

Compiled by: Mark then Review by: Sweet

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

The test report is effective only with both signature and specialized stamp and The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full. The results described in this report do not represent the quality or characteristics of the sampled batch, nor do they represent any similar or identical products that are not explicitly stated.

Page 2 of 81

Table of Contents

1 General information	5
1.1 General information	5
1.2 General description of EUT	
2 Test summary	6
3 Test Configuration	
5 Test Configuration	
3.1 Test mode	
3.2 Operation Frequency each of channel	
3.3 Test channel	
3.4 Auxiliary equipment	
3.5 Test environment	8
4 Laboratory information	9
4.1 Laboratory and accreditations	0
4.2 Measurement uncertainty	
·	
5 Test equipment	
6 Test result	
6.1 Antenna requirement	13
6.2 Conducted emissions at AC power line (150 kHz-30 MHz)	14
6.3 Conducted peak output Power	18
6.4 Minimum 6dB bandwidth	19
6.5 Power spectrum density	20
6.6 Conducted Band Edges Measurement	21
6.7 Conducted spurious emissions	22
6.8 Radiated spurious emissions	23
6.9 Radiated emissions which fall in the restricted bands	35
7 Appendix A	42
7.1 Maximum Conducted Output Power	
7.2 -6dB Bandwidth	
7.3 Occupied Channel Bandwidth	
7.4 Maximum Power Spectral Density Level	
Blue Asia of Technical Services (Shenzhen) Co., Ltd.	
Tel: +86-755-23059481	

Page 3 of 81

Appendix C: photographs of EUT	72
Appendix B: photographs of test setup	70
7.6 Conducted RF Spurious Emission	
7.5 Band Edge	

Page 4 of 81

Revise Record

Version No.	Date	Date Description		
01	Feb. 10, 2025	Original		

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 5 of 81

1 General information

1.1 General information

Applicant	PEAG, LLC dba JLab Audio		
Address	5927 LANDAU CT, Carlsbad, CA 92008, United States		
Manufacturer	GuangDong Simpreal Intelligent Technology Co., Ltd		
Address	Room 2408, JiaHong ZhenXing DaSha, DongGuan Avenue #13,		
	DongCheng District, DongGuan City, GuangDong Province, P.R. China		
Factory	GuangDong Simpreal Intelligent Technology Co., Ltd		
	Room 2408, JiaHong ZhenXing DaSha, DongGuan Avenue #13,		
Address	DongCheng District, DongGuan City, GuangDong Province, P.R. China		

1.2 General description of EUT

Product name	Wireless Speaker			
Model no.	JLab JBuds Party			
Operation Frequency:	2402MHz-2480MHz			
Modulation Type:	GFSK			
Rate data:	1Mbps, 2Mbps			
Channel Spacing:	2MHz			
Number of Channels:	40			
Antenna Type:	PCB antenna			
Antenna Gain:	-0.58dBi (Provided by customer)			
Power supply:	Battery DC 7.4V			
Test Voltage:	DC 7.4V			
Hardware Version	N/A			
Software Version	N/A			
Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.				

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 6 of 81

2 Test summary

No.	Test item	FCC standard	Test Method(Clause)	Result
1	Antenna Requirement	§15.203	N/A	Pass
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	§15.207	ANSI C63.10-2013 Clause 6.2	Pass
3	Conducted Peak Output Power	§15.247(b)(3)	ANSI C63.10-2013 Cluase 7.8.5	Pass
4	Minimum 6dB Bandwidth	§15.247a(2)	ANSI C63.10-2013 Cluase 11.8.1	Pass
5	Power Spectrum Density	§15.247(d)	ANSI C63.10-2013 Cluase 11.10.2	Pass
6	Conducted Band Edges Measurement	§15.247(d)	ANSI C63.10-2013 Cluase 11.13	Pass
7	Conducted Spurious Emissions	§15.247(d)	ANSI C63.10-2013 Cluase 11.11	Pass
8	Radiated Spurious Emissions	§15.209 §15.247(d)	ANSI C63.10-2013 Cluase 6.4,6.5,6.6	Pass
9	Radiated Emissions which fall in the restricted bands	§15.209 §15.247(d)	ANSI C63.10-2013 Cluase 11.12	Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 7 of 81

3 Test Configuration

3.1 Test mode

Test Mode Note 1	Description		
TX	Keep the EUT in continuously transmitting with modulation mode.		
RX	Keep the EUT in receiving mode		
TX Low channel	Keep the EUT in continuously transmitting mode in low channel		
TX middle channel	Keep the EUT in continuously transmitting mode in middle channel		
TX high channel	Keep the EUT in continuously transmitting mode in high channel		

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use.

Power level setup in software					
Test Software Name	FCC Assist				
Mode	Channel Frequency (MHz) Soft Set				
	CH00	2402			
ТХ	CH20	2442	TX level : Default		
	CH39	2480			

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 8 of 81

3.2 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

3.3 Test channel

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2442MHz		
The Highest channel	2480MHz		

3.4 Auxiliary equipment

3.4 Auxiliary equipment						
Device Type						
PC	Lenovo	E460C	N/A	From lab (No.BLA-ZC-BS-2022005)		
AC adapter PISEN ZY2207-A521H / /						
Note:						
"" mean no any auxiliary device during testing.						

3.5 Test environment

Environment	Temperature	Voltage
Normal	25 ℃	DC 7.4V

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 9 of 81

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name:	BlueAsia of Technical Services(Shenzhen) Co., Ltd.				
Address:	Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China				
CNAS accredited No.:	L9788				
A2LA Cert. No.:	5071.01				
FCC Designation No.:	CN1252				
ISED CAB identifier No.:	CN0028				
Telephone:	+86-755-28682673				
FAX:	+86-755-28682673				

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 10 of 81

5 Test equipment

Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date	
BLA-EMC-002-01	Anechoic	9*6*6			2024/3/27	2027/2/26	
BLA-ENIC-002-01	chamber	chamber	SKET	N/A	2024/3/27	2027/3/26	
BLA-EMC-002-02	Control room	966 control	SKET	N/A	2024/2/27	2027/2/26	
BLA-ENIC-002-02	Control room	room		N/A	2024/3/27	2027/3/26	
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07	
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck	00102	2024/06/29	2026/06/28	
BLA-EMC-065	Broadband	VULB9168	Schwarzbeck	01065P	2024/06/20	2026/06/27	
BLA-ENIC-005	antenna	VULB9100	Schwarzbeck	01065P	2024/06/29	2026/06/27	
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A	
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A	
Padiated Spurious Emissions (Above 1CHz)							

Radiated Spurious Emissions (Above 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date	
BLA-EMC-001	Anechoic	9*6*6	SKET	N/A	2023/11/16	2026/11/15	
-01	chamber	chamber					
BLA-EMC-001 -02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15	
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07	
BLA-EMC-012	Broadband	VULB9168	Schwarzbeck	00836	2022/10/12	2025/10/11	
BLA-ENIC-012	antenna	VULB9100	Schwarzbeck	P:00227	2022/10/12	2025/10/11	
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarzbeck	01892	2024/06/29	2026/06/28	
BLA-EMC-014	Amplifier	PA_000318G-	SKET	PA201804300	2024/08/08	2025/08/07	
BLA-ENIC-014	Ampiller	45	SKET	3	2024/00/08	2025/08/07	
BLA-EMC-046	Filter bank	2.4G/5G Filter	SKET	N/A	2024/06/28	2025/06/27	
		bank	ONET		202 1100120	2020/00/21	
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2024/06/28	2025/06/27	
BLA-EMC-066	Amplifier	LNPA_30M01	SKET	SK202106080	2024/06/28	2025/06/27	
	Amplifier	G-30	SKEI	1	2024/00/20	2023/00/27	
BLA-EMC-086	Amplifier	LNPA_18G40	SKET	SK202207130	2024/06/28	2025/06/27	
	Amplifier	G-50dB		1	2024/00/28	2025/06/27	
BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28	

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 11 of 81

BLA-XC-03	Coaxial Ca	ble	N/A	۹	BI	ueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Ca	ble	N/A	۹	BI	ueAsia	V04	N/A	N/A
RF conducted									
Equipment	Nan	ne	N	lodel	Ma	anufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003- 003	Shield	room	Ę	5*3*3		SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-016	Signal Ge	enerator	N	5182A		Agilent	MY52420567	2024/06/28	2025/06/27
BLA-EMC-038	Spect	rum	N	9020A		Agilent	MY49100060	2024/08/08	2025/08/07
BLA-EMC-042	Power s	ensor	RPF	R3006W		DARE	14100889SN042	2024/08/08	2025/08/07
BLA-EMC-044	Rad commun test	ication	CN	/W500		R&S	132429	2024/08/08	2025/08/07
BLA-EMC-064	Signal Ge	enerator	N	5182B	K	EYSIGHT	MY58108892	2024/06/28	2025/06/27
BLA-EMC-079	Spect	rum	N	9020A		Agilent	MY54420161	2024/08/08	2025/08/07
BLA-EMC-088	Audio Ar	nalyzer	Д	ATS-1	F	Audio Precision	ATS141094	2024/06/28	2025/06/27
Conducted Em	issions								
Equipment		Name		Mod	el	Manufactu re	J S/N	Cal. Date	Due. Date
BLA-EMC-003-0	01 SI	nield roo	m	8*3*	3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	E	/I receiv	ceiver ESR7		.7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011		LISN		ENV2	16	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033		npedanc		DC-20	GHz	DFXP	N/A	2024/06/28	2025/06/27

Equipment	Name	Model	Manufactu re	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033	Impedance transformer	DC-2GHz	DFXP	N/A	2024/06/28	2025/06/27
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600 0003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat 6	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01045	2024/06/28	2025/06/27
BLA-EMC-096	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01075	2024/06/28	2025/06/27

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

S 蓝亚 BLUE ASIA					Page 12	2 of 81	
BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A	

Test Software Record:

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 13 of 81

6 Test result

6.1 Antenna requirement

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

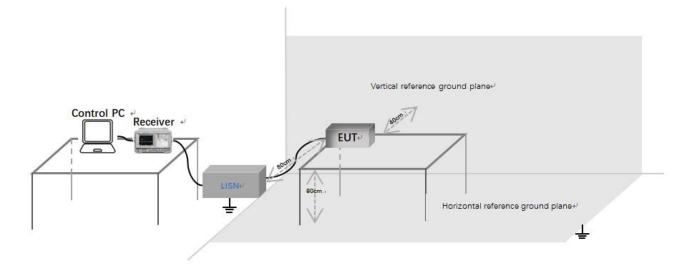
EUT antenna:

The antenna is PCB antenna. The best case gain of the antenna is -0.58dBi.

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 14 of 81

6.2 Conducted emissions at AC power line (150 kHz-30 MHz)


Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 6.2			
Test Mode (Pre-Scan)	ТХ			
Test Mode (Final Test)	TX			

6.2.1 Limit

6.2.1 Limit					
	Conducted	l limit(dBµV)			
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
*Decreases with the logarithm of the frequency					

*Decreases with the logarithm of the frequency.

6.2.2 Test setup

Description of test setup connection:

Connect the control PC to the receiver through a USB to GPIB cable; a)

The receiver is connected to the LISN through a coaxial line; b)

Connect the power port of LISN to the EUT. c)

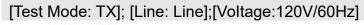
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

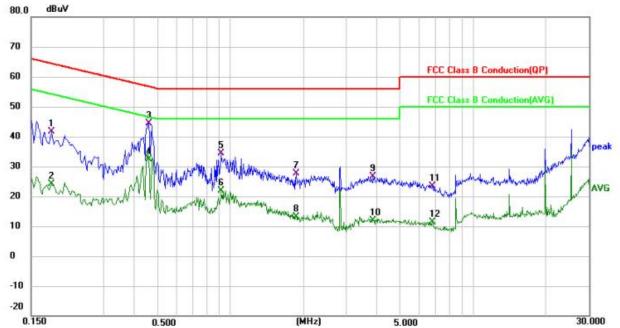
Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 15 of 81

6.2.3 Procedure

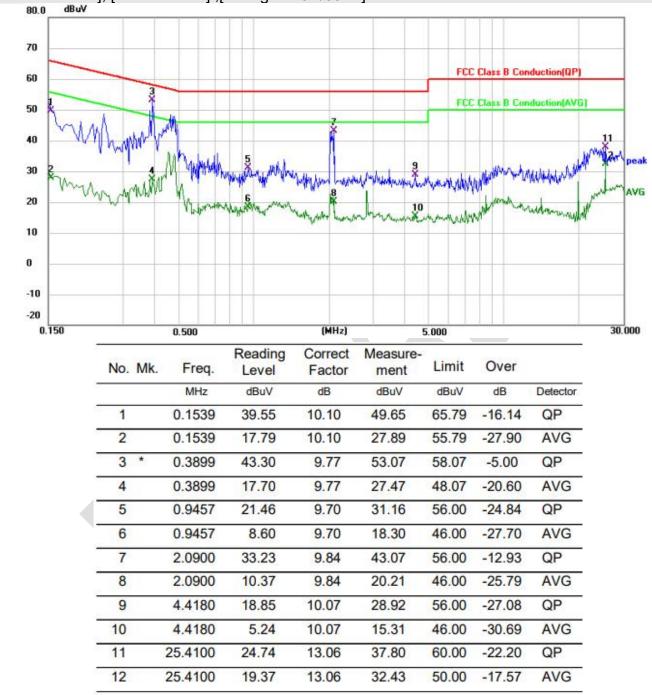
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


LISN=Read Level+ Cable Loss+ LISN Factor


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 16 of 81

6.2.4 Test data



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1819	31.47	10.22	41.69	64.40	-22.71	QP
2		0.1819	13.79	10.22	24.01	54.40	-30.39	AVG
3	*	0.4580	34.64	9.84	44.48	56.73	-12.25	QP
4		0.4580	22.48	9.84	32.32	46.73	-14.41	AVG
5		0.9180	24.71	9.72	34.43	56.00	-21.57	QP
6		0.9180	12.12	9.72	21.84	46.00	-24.16	AVG
7		1.8620	17.78	9.91	27.69	56.00	-28.31	QP
8		1.8620	3.15	9.91	13.06	46.00	-32.94	AVG
9		3.8780	16.50	10.13	26.63	56.00	-29.37	QP
10		3.8780	1.85	10.13	11.98	46.00	-34.02	AVG
11		6.7938	13.25	10.24	23.49	60.00	-36.51	QP
12		6.7938	1.23	10.24	11.47	50.00	-38.53	AVG

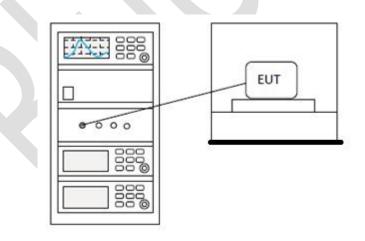
Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 17 of 81

[Test Mode: TX]; [Line: Neutral] ;[Voltage:120V/60Hz]

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 18 of 81


6.3 Conducted peak output Power

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.3.1 Limit

6.3.1 Limit	
Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

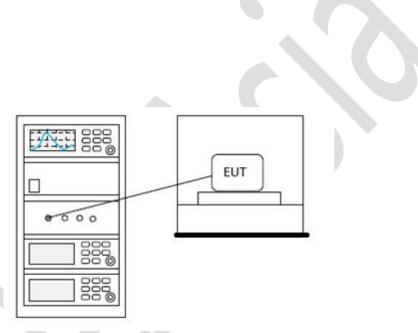
6.3.2 Test setup

6.3.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 19 of 81


6.4 Minimum 6dB bandwidth

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ

6.4.1 Limit

≥500 kHz

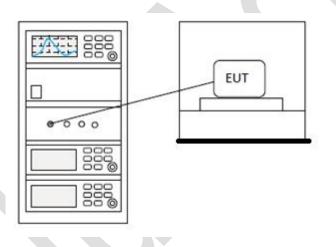
6.4.2 Test setup

6.4.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 20 of 81


6.5 Power spectrum density

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.5.1 Limit

≤8dBm in any 3 kHz band during any time interval of continuous transmission

6.5.2 Test setup

6.5.3 Test data

Pass: Please refer to appendix A for details

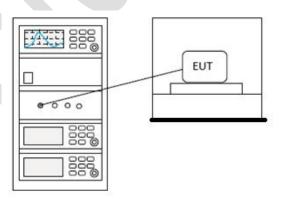
Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 21 of 81

6.6 Conducted Band Edges Measurement

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.6.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.6.2 Test setup

6.6.3 Test data

Pass: Please refer to appendix A for details

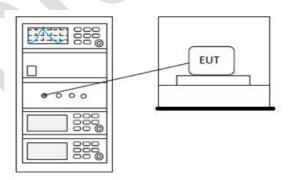
Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 22 of 81

6.7 Conducted spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.7.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.7.2 Test setup

6.7.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 23 of 81

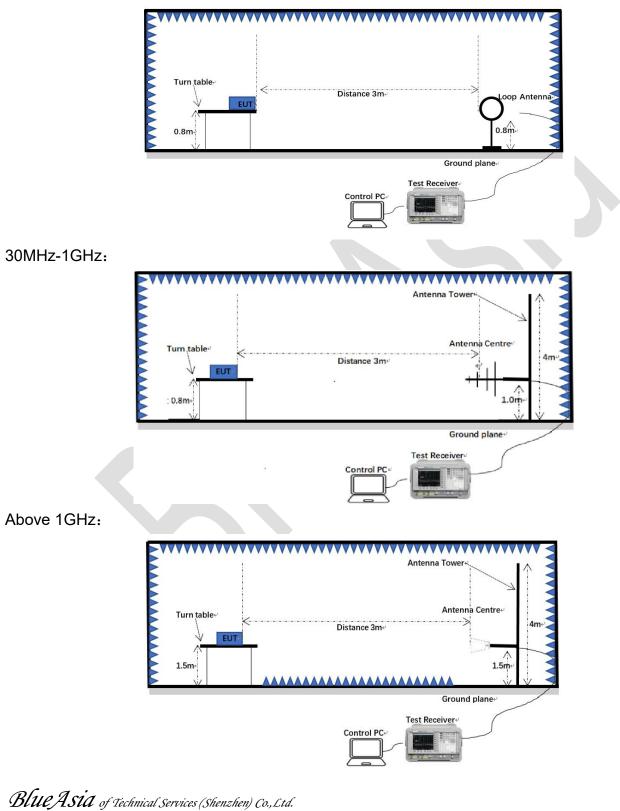
6.8 Radiated spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ

6.8.1 Limit

6.8.1 Limit										
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)								
0.009-0.490	2400/F(kHz)	300								
0.490-1.705	24000/F(kHz)	30								
1.705-30.0	30	30								
30-88	100	3								
88-216	150	3								
216-960	200	3								
Above 960	500	3								

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 24 of 81

6.8.2 Test setup

Below 1GHz:

Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 25 of 81

6.8.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown. Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only

the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

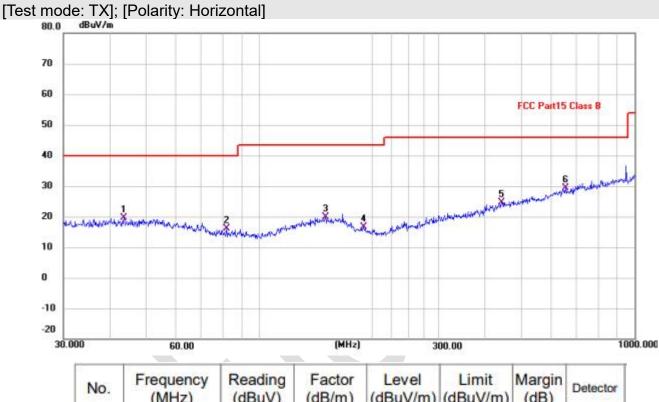
Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 26 of 81

equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

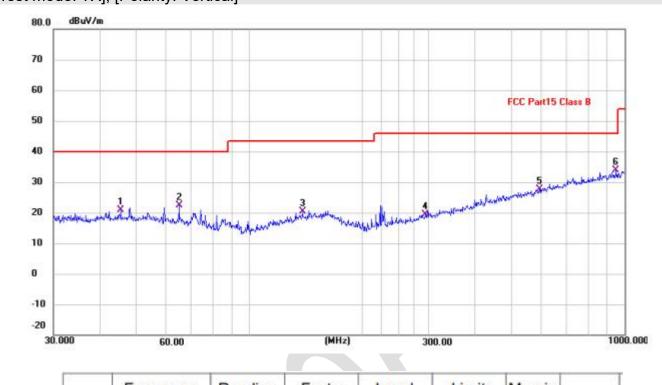


Page 27 of 81

6.8.4 Test data

Below 1GHz

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M low channel mode which it is worse case.



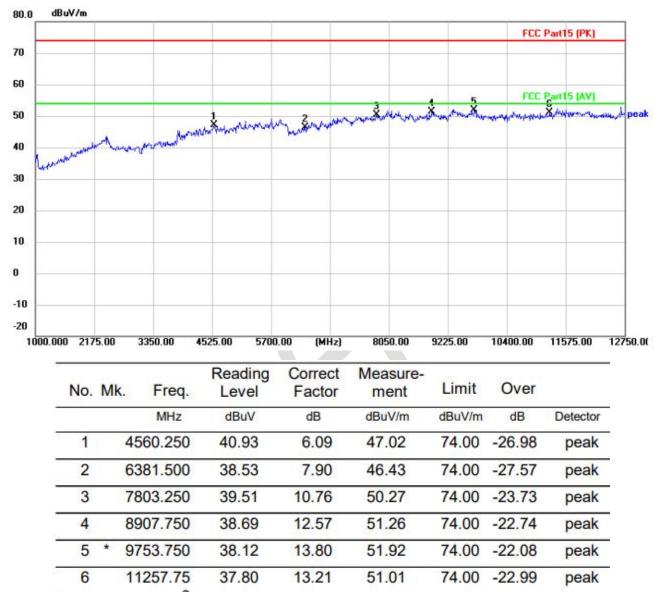
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector QP QP QP	
1	43.5057	-0.11	19.77	19.66	40.00	-20.34		
2	81.7833	1.01	15.17	16.18	40.00	-23.82		
3	150.0108	-0.78	20.57	19.79	43.50	-23.71		
4	189.7385	-0.56	17.26	16.70	43.50	-26.80	QP	
5	441.7426	0.83	23.85	24.68	46.00	-21.32	QP	
6 *	654.2318	1.52	27.78	29.30	46.00	-16.70	QP	

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 28 of 81

[Test mode: TX]; [Polarity: Vertical]

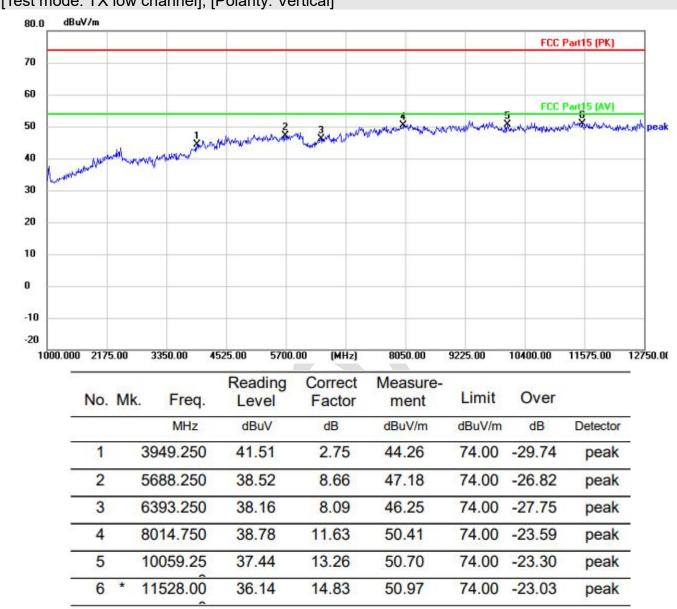
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector QP QP QP	
1	45.3755	1.25	19.70	20.95	40.00	-19.05		
2	64.8865	4.40	17.88	22.28	40.00	-17.72		
3	138.3873	0.49	20.00	20.49	43.50	-23.01		
4	294.1137	-0.30	19.66	19.36	46.00	-26.64	QP	
5	593.0497	1.13	26.44	27.57	46.00	-18.43	QP	
6 *	948.7610	2.51	31.46	33.97	46.00	-12.03	QP	


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 29 of 81

Above 1GHz:

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case.



[Test mode: TX low channel]; [Polarity: Horizontal]

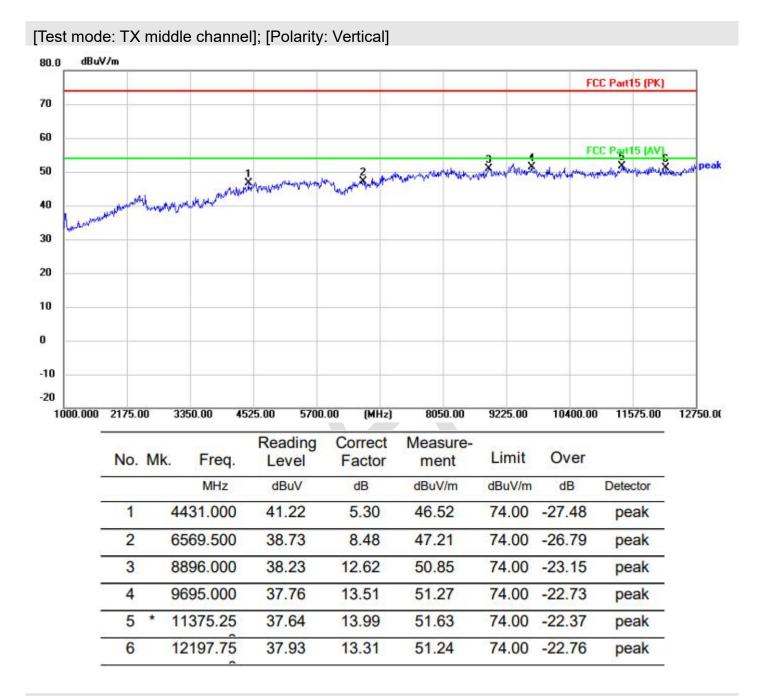
Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 30 of 81

[Test mode: TX low channel]; [Polarity: Vertical]

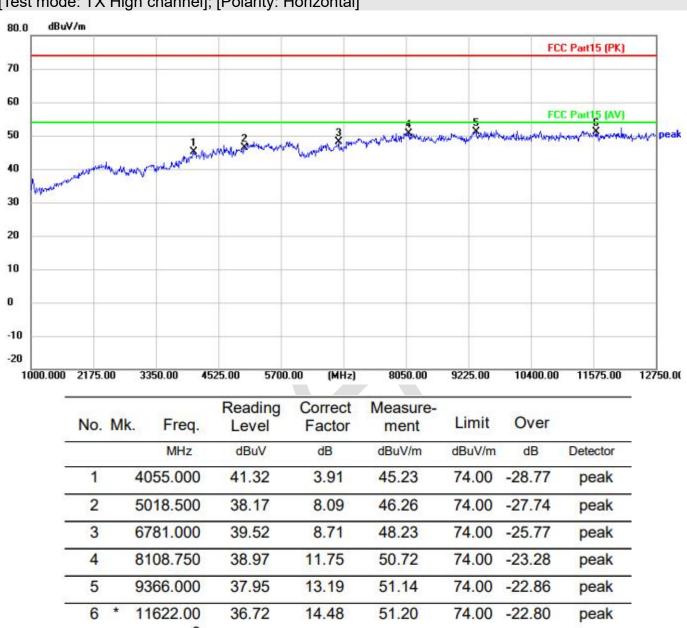
Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 31 of 81


						_		-						FC	C Part1	15 (PK)	_
							5.18X		j.			4		FC	C Part1	5 (/2/)	
			me all all a	marvin	man	merina	13 hours	- John	nyter	where	harmi	Prophy	houghing	-transfill	hann	contractioned	wwit ^{ia} pe
Limor	mention	-	MV-4														
-					_			_		_						-	
					-												_
-			_					+								-	_
										-							
000.000	2175	.00	3350.00	4	525.00	570	D.00 (I	(Hz)	805	0.00	922	5.00	104	00.00	115	575.00	12750
	No.	Mk	. Fr	eq.	Rea		Corre Facto		Measu		Lin	nit	Ove	er			
_			1.000	Ηz	dB	o part si	dB		dBuV/	102.5	dBu	Concerna in	dB		Detec	tor	
_	1	8	4560.2	250	40.	68	6.09	9	46.7	7	74.	00	-27.2	23	pea	ak	
	2		5946.7	750	38.	16	9.03	3	47.19	9	74.	00	-26.8	31	pea	ak	
	3	2	7685.7	750	39.	72	10.5	2	50.24	4	74.	00	-23.7	76	pea	ak	
	4		9330.7	750	38.	41	13.29	9	51.7	0	74.	00	-22.3	30	pea	ak	
_	5		10893	.50	37.	13	13.2	1	50.34	4	74.	00	-23.6	6	pea	ak	
	6		11974	~	38.		14.09	_	52.3			00	-21.6		pea		

[Test mode: TX middle channel]; [Polarity: Horizontal]

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com


Page 32 of 81

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 33 of 81

[Test mode: TX High channel]; [Polarity: Horizontal]

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 34 of 81

										FCC	Part15 (PK)	
; k=								_				
				_		-	2	-	4		Part15 (AV)	6
-				1	wander Minnaphy	2 May - normal Mar	Shan Andrew	ormand	Annorman	- And the state of	ionerstand particulation	date of the last
	a watter	Man	www	annexis	manapatringalis	- Maria						_
have	waterallow							-				
_												
				_				_	_			
	000 217	5.00	33	50.00 4	525.00 5700	0.00 (MH	z) 80)50.00	9225.00	10400.00	11575.00	1275
		5.00 Mk		50.00 4 Freq.	525.00 5700 Reading Level	.00 (мн Correc Facto	t Me	asure-	9225.00 Limit	10400.00 Over	11575.00	1275
					Reading	Correc	t Me r m	asure-		192703	11575.00 Detector	_
1000.0			i.	Freq.	Reading Level	Correc Facto	t Me r m dB	asure- nent	Limit	Over		ŝ.
1	No.		385	Freq. MHz	Reading Level dBuV	Correc Facto dB	r m dB	asure- nent uV/m	Limit dBuV/m	Over dB	Detector	
	No.		385	Freq. MHz 55.250	Reading Level dBuV 41.77	Correct Facto dB 1.76	r m dB 43	asure- nent uV/m 3.53	Limit dBuV/m 74.00	Over dB -30.47	Detector peak	
1	No.		385 589 703	Freq. MHz 55.250 99.750	Reading Level dBuV 41.77 39.51	Correct Facto dB 1.76 9.10	t Me r m dB 43 48 49	asure- nent uV/m 3.53 3.61	Limit dBuV/m 74.00 74.00	Over dB -30.47 -25.39	Detector peak peak	
1	No.		385 589 703 887	Freq. MHz 55.250 99.750 39.500	Reading Level dBuV 41.77 39.51 39.28	Correct Facto dB 1.76 9.10 10.08	t Me r m dB 43 43 48 49 51	asure- nent uV/m 3.53 3.61 9.36	Limit dBuV/m 74.00 74.00 74.00	Over dB -30.47 -25.39 -24.64	Detector peak peak peak	

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 35 of 81

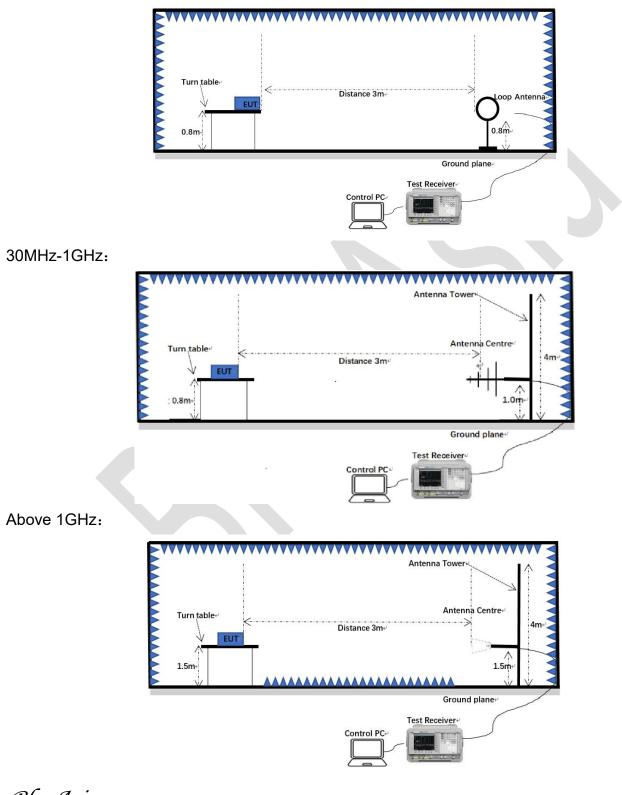
6.9 Radiated emissions which fall in the restricted bands

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	TX

6.9.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 36 of 81

6.9.2 Test setup

Below 1GHz:

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

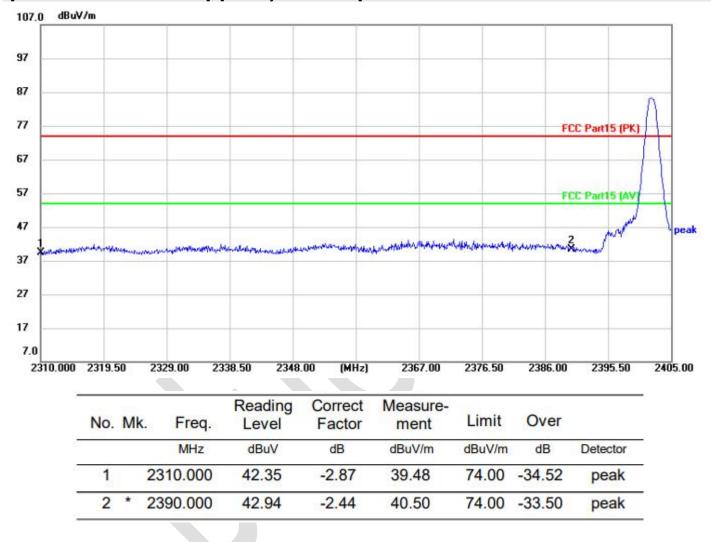
Page 37 of 81

6.9.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

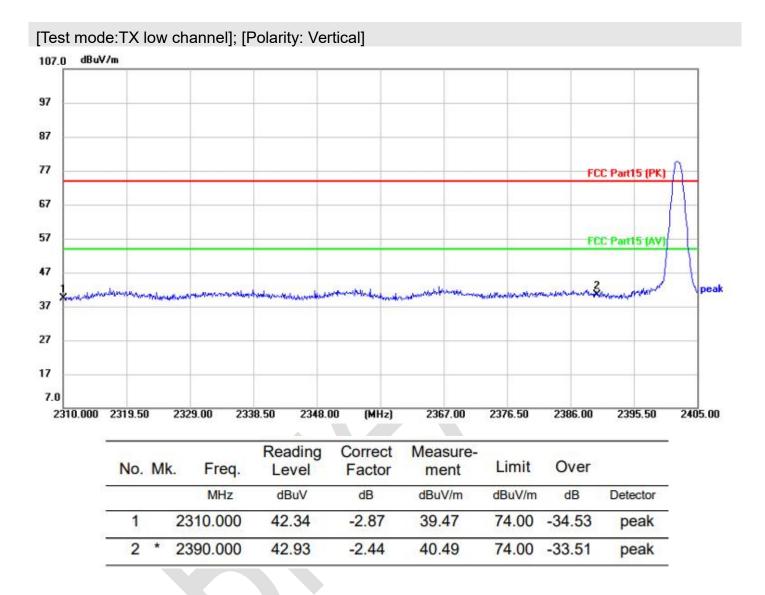
Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)

Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

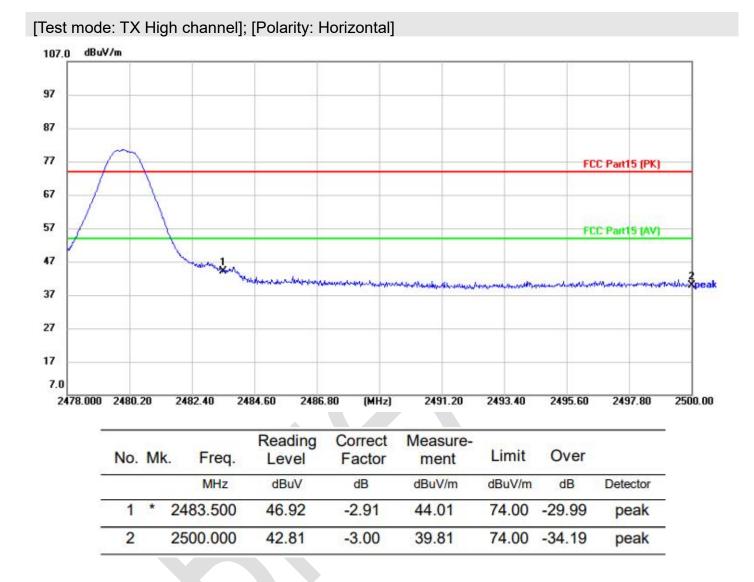

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 38 of 81

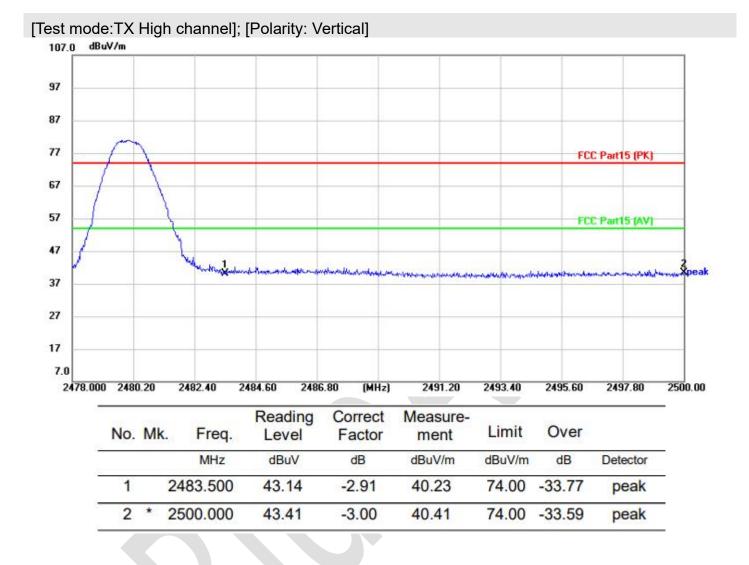
6.9.4 Test data


Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case. [Test mode: TX low channel]; [Polarity: Horizontal]

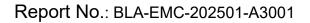
Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481


Page 39 of 81

Blue Asia of technical Services (Shenzhen) Co., Ltd.


Page 40 of 81

Page 41 of 81


Page 42 of 81

7 Appendix A

7.1 Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	1.018	30	Pass
NVNT	BLE 1M	2442	Ant1	0.155	30	Pass
NVNT	BLE 1M	2480	Ant1	0.396	30	Pass
NVNT	BLE 2M	2402	Ant1	1.144	30	Pass
NVNT	BLE 2M	2442	Ant1	0.239	30	Pass
NVNT	BLE 2M	2480	Ant1	0.518	30	Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 43 of 81

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Page 44 of 81

Power NVNT BLE 1M 2480MHz Ant1

Power NVNT BLE 2M 2402MHz Ant1

Page 45 of 81

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

RT	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	-	12:28:27 PM Jan 17, 202
Center F	req 2.480000000 GH	IZ PNO: Fast ↔ IFGain:Low	. Trig: Free Run #Atten: 30 dB	Avg Type: Log Avg Hold: 100/′	100	TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N
0 dB/div	Ref Offset 2.49 dB Ref 20.00 dBm				Mkr1 :	2.479 497 GH 0.518 dBr
10.0			12211			
0.00			↓ ¹			
0.0						
0.0						
0.0						
0.0						
0.0						
0.0						
0.0						
	480000 GHz 3.0 MHz	#VE	W 8.0 MHz		Sweep 1.3:	Span 10.00 MH 33 ms (10001 pt

Page 46 of 81

7.2-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.649	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.654	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.647	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.117	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.117	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.129	0.5	Pass

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 47 of 81

	RF 50 Ω AC		SENSE:INT	ALIGNAUTO	12:19:59 PM Jan 17, 2025
enter F	req 2.402000000		Center Freq: 2.402000 Trig: Free Run	000 GHz Avg Hold: 100/100	Radio Std: None
		#IFGain:Low	#Atten: 30 dB	Avginola, 100/100	Radio Device: BTS
0 dB/div	Ref Offset 2.28 dB Ref 22.28 dBm				Mkr3 2.402343 GHz -4.5330 dBm
2.3					
28		A2	\bigcirc	3	
.72		- Part	Marrie Marr	man	
7.7				and the second	m
7.7	mark				mon
7.7	- markener -				mannen
7.7					
7.7					
7.7					
	.402 GHz 100 kHz		#VBW 300 k	Hz	Span 2 MHz Sweep 1.333 ms
Occu	pied Bandwidth	ı	Total Power	7.31 dBm	
	1.0	0329 MHz			
		10 500 111	OBW Power	99.00 %	
Transr	mit Freq Error	18.589 kHz	OBW Fower		
	mit Freq Error Bandwidth	18.589 кнz 649.1 kHz	x dB	-6.00 dB	

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

Page 48 of 81

R T RF 50 Ω A	2		ALIGNAUTO		12:25:42 PM Jan 17, 20
enter Freq 2.4800000		Center Freq: 2.4800000 Trig: Free Run	000 GHz Avg Hold: 100/100	Rad	dio Std: None
	++ #IFGain:Low	#Atten: 30 dB	Avginola, loorioo	Rad	dio Device: BTS
Ref Offset 2.45				Mkr3	2.480343 GH -5.3776 dB
pg				1	
2.5		01	2		
49	2 Dim	man Vinne			
51				m	
.5	armente .			- mon	
5 mm market					Conference and and
.5					
5					2
.5					
enter 2.48 GHz Res BW 100 kHz		#VBW 300 k	H7		Span 2 MH Sweep 1.333 n
	-141-	Total Power	6.35 dBm		
Occupied Bandwi		TULAI FUWEI	0.35 UBIII		
	1.0358 MHz				
Transmit Freq Error	19.433 kHz	OBW Power	99.00 %		
x dB Bandwidth	647.2 kHz	x dB	-6.00 dB		
22					

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

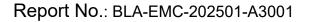
-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

Page 49 of 81

R T RF 50Ω AC Senter Freq 2.442000000	GHz #IEGain:Low	Center Freq: 2.4420000	ALIGN AUTO D00 GHz Avg Hold: 100/100	12:27:21 PM Jan 17, 2025 Radio Std: None Radio Device: BTS
Ref Offset 2.03 dl	3	WALLEH. SO YES		Mkr3 2.442578 GHz -3.9238 dBm
og				
2.0			A3	
2.03	\wedge^2	man home		
.97	monora		martin service and	W
8.0	-M			and the second s
8.0 month and the				my my
80				m
80				
8.0				
Center 2.442 GHz Res BW 100 kHz		#VBW 300 k	Hz	Span 4 MHz Sweep 1.333 ms
Occupied Bandwidt	h	Total Power	6.40 dBm	
2.	0460 MHz			
Transmit Freq Error	19.498 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.117 MHz	x dB	-6.00 dB	

-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1



Page 50 of 81

7.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0145
NVNT	BLE 1M	2442	Ant1	1.0196
NVNT	BLE 1M	2480	Ant1	1.0164
NVNT	BLE 2M	2402	Ant1	2.0360
NVNT	BLE 2M	2442	Ant1	2.0370
NVNT	BLE 2M	2480	Ant1	2.0407

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 51 of 81

GH7			12:19:53 PM Jan 17, 2025 Radio Std: None
		Avg Hold: 100/100	Radio Device: BTS
		1	
	n n - m n - m	m	
mont		mon	
- And		The second secon	
~~~		- No C	mm
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- man
			- my man
	#VBW 100 k	Hz	Span 3 MHz Sweep 3.333 ms
	Total Power	8.39 dBm	
0145 MHz			
23.847 kHz	<b>OBW Power</b>	99.00 %	
1.209 MHz	x dB	-26.00 dB	
	#IFGain:Low	GHz Center Freq: 2.402000 Trig: Free Run #Atten: 30 dB #Atten: 30 dB #Atten: 40 dB #VBW 100 ki Total Power D145 MHz 23.847 kHz OBW Power	GHz Center Freq: 2.40200000 GHz Trig: Free Run #Atten: 30 dB Aug Hold: 100/100 #Atten: 30 dB #VBW 100 kHz #VBW 100 kHz Total Power 8.39 dBm D145 MHz 23.847 kHz OBW Power 99.00 %

#### OBW NVNT BLE 1M 2402MHz Ant1

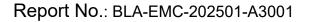
OBW NVNT BLE 1M 2442MHz Ant1



Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481 Email: <u>marketing@cblueasia.com</u> www.cblueasia.com




Page 52 of 81

R T RF 50 Ω AC   Center Freq 2.480000000 C C C C	GHz	Center Freq: 2.4800000 Trig: Free Run	ALIGNAUTO 000 GHz Avg Hold: 100/100	12:25:36 PM Jan 17, 2025 Radio Std: None
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
Ref Offset 2.49 dB 10 dB/div Ref 22.49 dBm				
12.5				
2.49				
-7.51		ward pours	Ad	
-17.5			- mark	
-27.5			h	
-37.5	$\sim$		W	- Marine -
-57.5 hmmm				man and a second
-67.5				
Center 2.48 GHz				Span 3 MHz
#Res BW 30 kHz		#VBW 100 k	Hz	Sweep 3.333 ms
Occupied Bandwidt	h	Total Power	7.52 dBm	
	0164 MHz			
Transmit Freq Error	26.905 kHz	<b>OBW Power</b>	99.00 %	
x dB Bandwidth	1.214 MHz	x dB	-26.00 dB	

### OBW NVNT BLE 1M 2480MHz Ant1

OBW NVNT BLE 2M 2402MHz Ant1







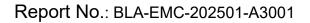
Page 53 of 81

<b>K</b> R T   RF   50Ω AC		SENSE:INT Center Freq: 2.4420000		12:27:15 PM Jan 17, 2025 Radio Std: None
Center Freq 2.442000000	GHz	. Trig: Free Run	Avg Hold: 100/100	
	#IFGain:Low	#Atten: 30 dB	2011	Radio Device: BTS
Ref Offset 2.03 dl Ref 22.03 dBn				
_og 12.0				
2.03				
7.97		-	A. A.	
-18.0	amount		and provident	
-28.0				Long
-38.0 monorman				m month
-48.0		C		
-58.0				
-68.0				
Center 2.442 GHz				Span 4 MHz
#Res BW 43 kHz		#VBW 120 k	HZ	Sweep 2.667 ms
Occupied Bandwidt	h	Total Power	6.63 dBm	
2.	0370 MHz			
Transmit Freq Error	33.313 kHz	<b>OBW Power</b>	99.00 %	
x dB Bandwidth	2.288 MHz	x dB	-26.00 dB	

#### OBW NVNT BLE 2M 2442MHz Ant1

OBW NVNT BLE 2M 2480MHz Ant1






Page 54 of 81

## 7.4 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-9.318	8	Pass
NVNT	BLE 1M	2442	Ant1	-10.458	8	Pass
NVNT	BLE 1M	2480	Ant1	-10.131	8	Pass
NVNT	BLE 2M	2402	Ant1	-10.683	8	Pass
NVNT	BLE 2M	2442	Ant1	-11.051	8	Pass
NVNT	BLE 2M	2480	Ant1	-10.81	8	Pass

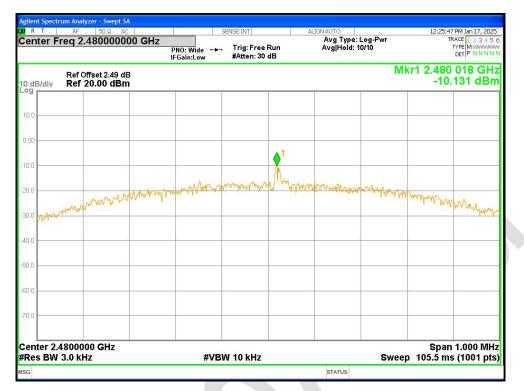
Blue Asia of technical Services (Shenzhen) Co., Ltd.



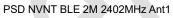


Page 55 of 81




### PSD NVNT BLE 1M 2402MHz Ant1

### PSD NVNT BLE 1M 2442MHz Ant1







Page 56 of 81



#### PSD NVNT BLE 1M 2480MHz Ant1



