

EMC Technologies Pty Ltd

ABN 82 057 105 549 176 Harrick Road Keilor Park Victoria Australia 3042

Ph: + 613 9365 1000 Fax: + 613 9331 7455 email: melb@emctech.com.au

SAR Test Report

Report Number: M150813_FCC_8260NGW_SAR_2.4

Test Sample: Portable T series LifeBook

Convertible PC

Radio Modules: WLAN 2x2 IEEE802.11ac/abgn and

Bluetooth BT4.1(BDR/EDR/AFH/BLE)

Host PC Model Number: T726

PC System FCC ID: EJE-WB0095 PC System IC: 337J-WB0095

Date of Issue: 16th September 2015

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

CONTENTS

1.0	GENERAL I	NFORMATION	3
2.0	INTRODUC	TION	4
3.0		PLE TECHNICAL INFORMATION	
		Radio Modules) Details	
		Notebook PC) Details	
		ample Accessoriesery Types	
4.0		AL, FREQUENCY AND OUTPUT POWER	
4.0		y Status	
5.0		, F TEST LABORATORY	
		on	
		ditations	
		nmental Factors	
6.0		ON AND VERIFICATION PROCEDURES AND DATA	
	6.1 Syster 6.1.1 System	n verificationtem verification Results @ 2450MHz	13
		id Temperature and Humidity	
7.0	•	UREMENT PROCEDURE USING DASY5	
8.0		MENT UNCERTAINTY	
9.0		T LIST AND CALIBRATION DETAILS	
		HODOLOGY	
		ons	
		Held" Position Definition (0mm spacing)	
		ge On" Position (Portrait or Landscape)	
		stander" Position (25mm spacing)	
44.0		All Test Cases (Antenna In/Out, Test Frequencies, User Modes) UREMENT RESULTS	
11.0	-	1Hz SAR Results	
12.0		CE STATEMENT	
		D EVALUATION CONSIDERATIONS	
APP	ENDIX A1	TEST SAMPLE PHOTOGRAPHS	24
APP	ENDIX A2	TEST SAMPLE PHOTOGRAPHS	25
APP	ENDIX A3	TEST SAMPLE PHOTOGRAPHS	26
APP	ENDIX A4	TEST SETUP PHOTOGRAPHS	27
APP	ENDIX A5	TEST SETUP PHOTOGRAPHS	28
APP	ENDIX A6	TEST SETUP PHOTOGRAPHS	29
APP	ENDIX A7	TEST SETUP PHOTOGRAPHS	30
APP	ENDIX A8	TEST SETUP PHOTOGRAPHS	31
		OTS OF THE SAR MEASUREMENTS	
APP	ENDIX C DE	SCRIPTION OF SAR MEASUREMENT SYSTEM	75
APF	ENDIX D CA	LIBRATION DOCUMENTS	79

SAR TEST REPORT

Report Number: M150813_FCC_8260NGW_SAR_2.4

1.0 GENERAL INFORMATION

Test Sample: Portable T series LifeBook Convertible PC

Model Name: T726

Radio Modules: WLAN and Bluetooth combo Snowfield Peak 8260NGW

Interface Type:M.2 Wireless LAN ModuleDevice Category:Portable TransmitterTest Device:Pre-Production UnitPC System FCC ID:EJE-WB0095PC System IC:337J-WB0095

RF exposure Category: General Population/Uncontrolled

Manufacturer: Fujitsu Limited

Test Standard/s: 1. KDB 248227 D01 SAR measurements for 802 11 a b g v02r01

KDB 447498 D01 General RF Exposure Guidance v05r02 KDB 616217 D04 SAR for laptop and tablets v01r01

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04

KDB 865664 D02 RF Exposure Reporting v01r01

2. Radio Frequency Exposure Compliance of Radiocommunication

Apparatus (All Frequency Bands), RSS-102

3. EN 62209-2:2010

Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices. Human models, instrumentation, and procedures

instrumentation, and procedures.

Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human

body (frequency range of 30 MHz to 6 GHz)

4. IEEE 1528: 2013

Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless

Communications Devices: Measurement Techniques.

Statement Of Compliance: The Fujitsu convertible Tablet Computer T726 with Wireless LAN and

Bluethooth model 8260NGW module complied with the FCC General public/uncontrolled RF exposure limits of 1.6mW/g per requirements of 47CFR2.1093(d). It also complied with IC RSS-102 requirements.

2450 MHz WLAN Band – 0.158 mW/g

Test Dates: 7th to 14th September 2015

Peter Jakubiec

Authorised Signature:

Chris Zombolas Technical Director

Highest Reported SAR:

Test Officer:

SAR TEST REPORT Portable T series LifeBook Convertible PC Model: T726

Report Number: M150813_FCC_8260NGW_SAR_2.4

Table 1

Table of Revisions							
Report Number	Revision	Description	Pages	Date			
	Number		affected				
M150813_FCC_8260NGW_SAR_2.4	1	Original	N/A	15th Sep. 2015			

2.0 INTRODUCTION

Testing was performed on the Fujitsu convertible Tablet PC, Model: T726 with INTEL Half Mini-PCI Wireless LAN and Bluetooth Module (Snowfield Peak 802.11a/b/g/n/ac), Model: 8260NGW. The 8260NGW WLAN module was originally certified by INTEL Corporation as a modular approval under FCC ID: PD98260NG. The Snowfield Peak module is an OEM product. The M.2 Wireless LAN Module was tested in the dedicated host – LIFEBOOK T SERIES, Model T726. The system tested will be referred to as the DUT throughout this report. The Wireless LAN Module incorporates Bluetooth Transmitter, which can only transmit via Antenna B (2), the Bluetooth maximum power was 7dBm (including tune-up) therefore it did not require SAR testing as a standalone transmitter. This is in accordance with KDB 447498 section 4.3.1 exemption formula: The shortest distance between the BT antenna (Antenna 2) and the user is 8mm. The closest distance between

WLAN 1 and WLAN2 antennas was 94 mm.

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR Result - [(5.01)/(8mm)] $\cdot [\sqrt{f(2.45GHz)}] = 0.98$

The measurement test results mentioned hereon only apply to the 2450MHz frequency band; an additional report titled "M150813_FCC_8260NGW_SAR_5.6" applies to the 5GHz range.

Table 2

Applicable Head Configurations	: None
Applicable Body Configurations	: Lap Held Position
	: Edge On Position
	: Bystander

3.0 TEST SAMPLE TECHNICAL INFORMATION

(Information supplied by the client)

3.1 DUT (Radio Modules) Details

Radio Modules: WLAN 2x2 IEEE802.11ac/abgn and Bluetooth

BT4.1(BDR/EDR/AFH/BLE)

WLAN Model Number: 8260NGW WLAN Manufacturer: Intel Corp.

Interface Type: M.2 Wireless LAN Module

Transmitter: Mini-Card Wireless LAN Module

FCC ID:

IC:

Wireless Module: WIFINAME (802.11a/b/g/n)

Model Number: 8260NGW
Manufacturer: Intel Corporation

Modulation Type: Direct Sequence Spread Spectrum (DSSS for 802.11b)

Orthogonal Frequency Division Multiplexing (OFDM for 802.11g) Orthogonal Frequency Division Multiplexing (OFDM for 802.11a) Orthogonal Frequency Division Multiplexing (OFDM for 802.11n)

2.4 GHz (802.11b/g/n): DBPSK, DQPSK, CCK, 16QAM and 64QAM

5 GHz (802.11a/n): BPSK, QPSK, 16QAM and 64QAM

Maximum Data Rate: 802.11b = 11Mbps, 802.11g and 802.11a = 54Mbps

802.11n = 300 Mbps

Frequency Ranges: 2.412 –2.462 GHz for 11b/g/n

5.18 - 5.825 GHz for 11a/n

Number of Channels: 11 channels (OR 13 EU) for 11b/g/n

13 channels (OR 15 EU) for 11a/n with 20 MHz bandwidth

6 channels for 11n with 40 MHz bandwidth

Antenna Types: Tx: Yokowo Monopole Antenna - Model: CP335166

Location: Top edge of LCD screen

Rx: Yokowo Monopole Antenna - Model: CP335176-02

Power Supply: 3.3 VDC from PCI bus

Table 3 Channels and Output power setting

2.4 GHz (802.11b, 802.11g and 802.11n/ac)

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tx BW (MHz)	_	je Power t (dBm)	Power Control		Average Power Measured (dBm)	
					Ch A	Ch B	Power Control Tx A	Power Control Tx B	Tx A	ТхВ
	1	2412					15.375	15.500	15.01	15.05
802.11b	6	2437	CCK				15.375	15.375	15.07	15.01
2.4 GHz	7	2442	1	20MHz	15.0	15.0	15.250	15.625	15.01	15.05
	11	2462	1	99%DC						
	<mark>12</mark>	2467	1				15.250	15.125	15.01	15.07
	13	<mark>2472</mark>	1		12.0	10.0	12.375	10.125	12.01	10.02

2.4 GHz	10	2457	OFDM	20MHz						
	11	2462	6	99%DC						
	12	2467			13.5	13.5				
	13	2472			2.0	1.0				
	3F	2422	CCK HT0				15.250	15.375	15.04	15.04
	4F	2427								
	5F	2432								
	6F	2437		40	15.0	15.0	15.250	15.375	15.06	15.09
	<mark>7F</mark>	2442		98%DC	13.0	13.0	15.250	15.250	15.08	15.02
802.11n	8F	2447								
2.4 GHz	9F	2452								
2.4 0112	10F	2457					15.250	15.375	15.09	15.01
	11F	2462			12.0	10.0				
	3F	2422			14.0	15.0				
	4F	2427								
	5F	2432								
	6F	2437			4-0	4.5				
	7F	2442	OFDM	40	15.0	15.0				
	8F	2447	HT0	98%DC						
	9F	2452								
	10F	2457	1		12.5	12.5				
ŀ	11F	2462	1		1.0	0.0				

5 GHz (802.11a)

Mode	Channel	Frequency (MHz)	Data Rate	Tx BW (MHz)	Avera Targ	age Power get (dBm)	Power	Control	Average Measure	
			(Mbps)		Ch A	Ch B	Power Control Tx A	Power Control Tx B	Тх А	ТхВ
	5.3	2 GHz								
	36	5180								
	40	5200			13.5	13.5				
	44	5220			13.3	13.3				
	48	5240								
	5.3	3 GHz								
	52	5260								
	56	5280			13.5	13.5				
	60	5300			10.0	13.3				
	64	5320								
	5.0	6 GHz								
	100	5500								
	104	5520	05514	-00						
802.11a	108	5540	OFDM 6	20 99%DC						
	112	5560	0	997000						
	116	5580			40.5	40.5				
	120 124	5600 5620			13.5	13.5				
	128	5640								
	40									
	25 89 13 49 14									
	49 14		-							
	2	₽ 5.8 GHz								
	9. 14	9 5745			13.5	13.5				
	ى	3 5765			13.5	13.5				

157	5785					
161	5805					
165	5825					

5 GHz (802.11n)

5 GHz (8 Mode	Channel Frequency (MHz)		Data Rate (Mbps)	Tx BW (MHz)		ge Power et (dBm)	Power	Control	Average Power Measured (dBm)	
		(WII 12)	(MDPS)	(1411 12)	Ch A	Ch B	Power Control Tx A	Power Control Tx B	Tx A	Tx B
	5.2	2 GHz								
	36	5180								
	40	5200			13.5	13.5				
	44	5220			10.0	10.0				
	48	5240								
		GHz						1 1		
	52 56	5260 5280	-		13.5					
	60	5260 5300	-		13.5	13.5	13.250		13.50	
	64	5320	1		13.5		13.125		13.57	
			-		10.0		10.120		10.01	
	100	5 GHz 5500					13.750	13.375	13.53	13.54
	104	5520	1	20			101100	10.010		
	108	5540]	99%DC						
	112	5560								
	116	5580	-							
	120	5600	-		<mark>13.5</mark>	<mark>13.5</mark>	13.875	13.375	13.50	13.53
	124 128	5620 5640	1							
	132		1							
			1							
02.11n	ပ် <mark>140</mark>		OFDM				13.375	13.500	13.54	13.53
		5.8 GHz	HT0							
	⁸⁹ 149									
	<u>.e</u> 153		-							
	\$ 157 \$ 161		1		13.5	13.5				
	165									
	· ·	-	-							
	38	2 GHz 5190			10.5	40.5				
	46	5230			13.5	13.5				
	5.3	3 GHz								
	54 54	5270	1		13.5	13.5	13.750	13.625	13.56	13.57
	62	5310			13.0	13.5		13.500		13.58
	F (
	102	5 GHz 5510	-	40 98%DC	13.5		13.625	13.375	13.50	13.59
	110	5550		30 70 DC	13.5		13.375	13.500	13.57	13.60
	118	5590				13.5	· · · · · · · · · · · · · · · · · · ·		-	
	126	5630			13.5	10.0				
	N 134									
	된 134 142 9	5710	-							
	5.65 to 5.835 121 121 129	5.8 GHz								
	\$					<u> </u>				
	<u>151</u>				13.5	13.5				
	ம் 159	5795			13.3	13.3				

5 GHz (802.11ac)

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tx BW (MHz)			Power Control		Average Power Measured (dBm)		
					Ch A		Ch B	Power Control Tx A	Power Control Tx B	Тх А	Тх В
	5.2	GHz									
	<mark>42</mark>	5210			13.5		13.5	13.625	13.875	13.53	13.58
	5.3	GHz									
	58	5290			12.0		10.0				
000 44	5.6	GHz									
802.11 ac	<mark>106</mark>	5530	HT0		13.0		13.5		13.625	13.05	13.52
ac	122	5610		80	13.5		13.5	13.875	13.500	13.52	13.56
	N 138	5690		95%DC	13.5		13.5	13.500	13.500	13.50	13.61
	5.65 to 5.835 GHz	.8 GHz									
	155	5775			13.5		13.5	13.875	13.625	13.57	13.59

NOTE: For 5GHz SAR results refer to report titled "M150813_FCC_8260NGW_SAR_5.6".

Table 4

Channel Number	Frequency (MHz)	Bluetooth power
1	2402	
2	2403	
-	-	
39	2440	
40	2441	7 dBm
41	2442	
-	-	
78	2479	
79	2480]

3.2 DUT (Notebook PC) Details

Host notebook: LIFEBOOK T series

Model Name: T726

Serial Number: Pre-production Sample **Manufacturer:** FUJITSU LIMITED

CPU Type and Speed: Core i7 2.6GHz

LCD 12.5"HD+(1366x768): LP125WH2

Graphics chip Non

Wired LAN: Intel 219LM: 10 Base-T/100 Base-TX/1000Base-T

Modem: Non

Port Replicator Model: FPCPR231

AC Adapter Model: 90W: A13-090P1A(Chicony), A13-090P2A (Chicony)

ADP-90BE D(Delta), ADP-90BE C(Delta) 80W: ADP-80SB A(Delta), ADP-80SB B(Delta)

65W:PC only

ADP-65MD B(Delta), ADP-65MD C(Delta) A13-065N2A(Chicony), A13-065N3A(Chicony)

Voltage: 19 V

Current Specs: 4.74A / 4.22A / 3.42A Watts: 90W / 80W / 65W

Battery type Li-ion
Brand FUJITSU
Manufacturer Samsung

Rating 6400mAh, 11.25Vdc, 72Wh

3.3 Test Sample Accessories

3.3.1 Battery Types

One type of Fujitsu Lithium Ion battery is used to power the DUT.

Table 5 Battery Details

Model	FPCBP446
V/mAh	6400mAh, 11.25V

4.0 TEST SIGNAL, FREQUENCY AND OUTPUT POWER

INTEL's DRTU test tool was used to configure the WLAN for testing. The DUT Wireless LAN operates in 2 modes, OFDM and DSSS. For the SAR measurements the device was operating in continuous transmit mode using programming codes supplied by Fujitsu.

The test results mentioned in this report only apply to the 2450MHz frequency range. An additional report titled "M150813 FCC 8260NGW SAR 5.6" is specific to the 5GHz range.

The DUT is capable of using two antennas transmitting simultaneously the power level is 3dB lower (50%) than if a single antenna was transmitting, There were no wires or other connections to the DUT during the SAR measurements.

At the beginning of the SAR tests, the conducted power of the device was measured after temporary modification of antenna connector inside the device's TX RX compartment. Measurements were performed with a calibrated Power Meter, and the results of the measurements include the tune up tolerance of 1 dB. The Transmitter power was set to be equal or higher than power specified by the manufacturer including tune-up.

Table 6 Frequency and Conducted Power Results Bluetooth

Channel	Channel Frequency MHz	Data Rate (Mbps)	Maximum Conducted Output Power Measured (dBm)
Channel 40	2441	N/A	6.4

4.1 Battery Status

The device battery was fully charged prior to commencement of measurement. The battery condition was monitored by measuring the RF field at a defined position inside the phantom before the commencement of each test and again after the completion of the test. It was not possible to perform conducted power measurements at the output of the device, at the beginning and end of each scan due to lack of a suitable antenna port. The uncertainty associated with the power drift was less than 5% and was assessed in the uncertainty budget.

5.0 DETAILS OF TEST LABORATORY

5.1 Location

EMC Technologies Pty Ltd 176 Harrick Road Keilor Park, (Melbourne) Victoria Australia 3042

 Telephone:
 +61 3 9365 1000

 Facsimile:
 +61 3 9331 7455

 email:
 melb@emctech.com.au

 website:
 www.emctech.com.au

5.2 Accreditations

EMC Technologies Pty. Ltd. is accredited by the National Association of Testing Authorities, Australia (NATA). **NATA Accredited Laboratory Number: 5292**

EMC Technologies Pty Ltd is NATA accredited for the following standards:

AS/NZS 2772.2 2011: RF and microwave radiation hazard measurement

ACMA: Radio communications (Electromagnetic Radiation - Human Exposure) Standard 2014

EN 50360: 2001 Product standard to demonstrate the compliance of Mobile Phones with the

basic restrictions related to human exposure to electromagnetic fields (300

MHz - 3 GHz)

EN 62209-1:2006 Human exposure to radio frequency fields from hand-held and body-mounted

devices-Human models, instrumentation and procedures.

Part 1: Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range 300 MHz to 3

GHz)

EN 62209-2:2010 Human Exposure to radio frequency fields from hand-held and body-mounted

wireless communication devices - Human models instrumentation and

procedures

Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency

range of 30 MHz to 6 GHz

IEEE 1528: 2013 Recommended Practice for Determining the Peak Spatial-Average Specific

Absorption Rate (SAR) in the Human Head Due to Wireless Communications

Devices: Measurement Techniques.

Refer to NATA website www.nata.asn.au for the full scope of accreditation.

5.3 Environmental Factors

The measurements were performed in a shielded room with no background RF signals. The temperature in the laboratory was controlled to within $21\pm1^{\circ}$ C, the humidity was in the range 36% to 38%. The liquid parameters are measured daily prior to the commencement of each test. Tests were performed to check that reflections within the environment did not influence the SAR measurements. DASY5 SAR measurement system using either the EX3DV4 or ET3DV6 E-field probe is less than 5μ V in both air and liquid mediums.

6.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA

6.1 System verification

6.1.1 System verification Results @ 2450MHz

The following table lists the results of the System Verification. The forward power into the reference dipole for SAR System Verification was adjusted to 250 mW.

The SPEAG calibration reference SAR value is the SAR system verification result obtained in a specific dielectric liquid using the validation dipole (D2450V2) during calibration. The measured one-gram SAR should be within 10% of the expected target reference values shown in table below (2450MHz) below.

Table 7 Deviation from reference system verification values @ 2450MHz

Frequency and Date	Measured SAR 1g (mW/g)	Measured SAR 1g (Normalize d to 1W)	SPEAG Calibration reference SAR Value 1g (mW/g)	Deviation From SPEAG Reference 1g (%)	Last Validation Date
2450MHz 11 th Sept 2015	14.0	56.00	51.5	8.74	26 March 2015
2450MHz 14 th Sept 2015	12.8	51.20	51.5	-0.58	26 March 2015

NOTE: All reference system verification values are referenced to 1W input power.

6.1.2 Liquid Temperature and Humidity

The humidity and dielectric/ambient temperatures were recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C.

Table 8 Temperature and Humidity recorded for each day

Date	Ambient Temperature (°C)	Liquid Temperature (°C)	Humidity (%)	
11 th Sept 2015	21.3	21.0	37	
14 th Sept 2015	21.3	21.0	38	

7.0 SAR MEASUREMENT PROCEDURE USING DASY5

The SAR evaluation was performed with the SPEAG DASY5 system. A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the DUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the DUT and the horizontal grid spacing is 12 mm x 12 mm. The actual Area Scan has dimensions of 60mm x 90mm surrounding the test device. Based on this data, the area of the maximum absorption is determined by Spline interpolation.
- c) Around this point, a volume of 30 mm x 30 mm x 30 mm is assessed by measuring 7 x 7 x 7 points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 4 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
 - (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

8.0 MEASUREMENT UNCERTAINTY

The uncertainty analysis is based on the template listed in the IEEE Std 1528-2013 for both device SAR tests and System verification uncertainty. The measurement uncertainty of a specific device is evaluated independently and the total uncertainty for both evaluations (95% confidence level) must be less than 30%.

Table 9 Uncertainty Budget for DASY5 Version 52 - DUT SAR test 2450MHz

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i	10g u _i	Vi
Measurement System								
Probe Calibration	6	N	1.00	1	1	6.00	6.00	8
Axial Isotropy	4.7	R	1.73	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.6	R	1.73	0.7	0.7	3.88	3.88	8
Boundary Effects	2	R	1.73	1	1	1.15	1.15	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	8
System Detection Limits	1	R	1.73	1	1	0.58	0.58	8
Modulation response	2.4	R	1.73	1	1	1.39	1.39	8
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	8
Response Time	0.8	R	1.73	1	1	0.46	0.46	8
Integration Time	2.6	R	1.73	1	1	1.50	1.50	8
RF Ambient Noise	3	R	1.73	1	1	1.73	1.73	8
RF Ambient Reflections	3	R	1.73	1	1	1.73	1.73	8
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	8
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	8
Post Processing	4	R	1.73	1	1	2.31	2.31	8
Test Sample Related								
Power Scaling	0	R	1.73	1	1	0.00	0.00	8
Test Sample Positioning	2.9	N	1.00	1	1	2.90	2.90	145
Device Holder Uncertainty	3.6	N	1.00	1	1	3.60	3.60	5
Output Power Variation – SAR Drift Measurement	4.72	R	1.73	1	1	2.73	2.73	8
Phantom and Setup								
Phantom Uncertainty	7.6	R	1.73	1	1	4.39	4.39	∞
Liquid Conductivity – Deviation from target values	5	R	1.73	0.64	0.43	1.85	1.24	∞
Liquid Permittivity – Deviation from target values	5	R	1.73	0.6	0.49	1.73	1.41	80
Liquid Conductivity – Measurement uncertainty	2.5	N	1.00	0.64	0.71	1.60	1.78	8
Liquid Permittivity – Measurement uncertainty	2.5	N	1.00	0.6	0.26	1.50	0.65	8
Temp.unc Conductivity	3.4	R	1.73	0.78	0.71	0.77	0.70	8
Temp. unc Permittivity	0.4	R	1.73	0.23	0.26	0.04	0.05	∞
Combined standard Uncertainty (u _c)						12.43	12.26	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		24.86	24.52	

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 12.43\%$. The extended uncertainty (K = 2) was assessed to be $\pm 24.86\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

Table 10 Uncertainty Budget for DASY5 Version 52 – DUT SAR test 2450MHz IEC 62209-2 UNCERTAINTY FOR RSS-102

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i	10g u _i	Vi
Measurement System								
Probe Calibration	6	N	1.00	1	1	6.00	6.00	8
Axial Isotropy	4.7	R	1.73	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.6	R	1.73	0.7	0.7	3.88	3.88	8
Boundary Effects	2	R	1.73	1	1	1.15	1.15	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	8
System Detection Limits	1	R	1.73	1	1	0.58	0.58	8
Modulation response	2.4	R	1.73	1	1	1.39	1.39	8
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	8
Response Time	0.8	R	1.73	1	1	0.46	0.46	8
Integration Time	2.6	R	1.73	1	1	1.50	1.50	8
RF Ambient Noise	3	R	1.73	1	1	1.73	1.73	8
RF Ambient Reflections	3	R	1.73	1	1	1.73	1.73	8
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	8
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	8
Post Processing	4	R	1.73	1	1	2.31	2.31	8
Test Sample Related								
Power Scaling	0	R	1.73	1	1	0.00	0.00	∞
Test Sample Positioning	2.9	N	1.00	1	1	2.90	2.90	145
Device Holder Uncertainty	3.6	N	1.00	1	1	3.60	3.60	∞
Output Power Variation – SAR Drift Measurement	4.72	R	1.73	1	1	2.73	2.73	8
Phantom and Setup								
Phantom Uncertainty	7.6	R	1.73	1	1	4.39	4.39	8
Liquid Conductivity – Deviation from target values	5	R	1.73	0.64	0.43	1.85	1.24	8
Liquid Permittivity – Deviation from target values	5	R	1.73	0.6	0.49	1.73	1.41	8
Liquid Conductivity – Measurement uncertainty	2.5	N	1.00	0.78	0.71	1.95	1.78	∞
Liquid Permittivity – Measurement uncertainty	2.5	N	1.00	0.6	0.49	1.50	1.23	8
Temp.unc Conductivity	3.4	R	1.73	0.78	0.71	1.53	1.39	8
Temp. unc Permittivity	0.4	R	1.73	0.23	0.26	0.05	0.06	8
Combined standard Uncertainty (u _c)						12.55	12.36	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		25.10	24.73	

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 12.55\%$. The extended uncertainty (K = 2) was assessed to be $\pm 25.10\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

Table 11 Uncertainty Budget for DASY5 Version 52 - System verification 2450MHz

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i	10g u _i	Vi
Measurement System								
Probe Calibration	6	N	1.00	1	1	6.00	6.00	8
Axial Isotropy	4.7	R	1.73	1	1	2.71	2.71	8
Hemispherical Isotropy	9.6	R	1.73	0	0	0.00	0.00	8
Boundary Effects	1	R	1.73	1	1	0.58	0.58	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	8
System Detection Limits	1	R	1.73	1	1	0.58	0.58	8
Modulation response	0	R	1.73	1	1	0.00	0.00	8
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	8
Response Time	0	R	1.73	1	1	0.00	0.00	8
Integration Time	0	R	1.73	1	1	0.00	0.00	8
RF Ambient Noise	1	R	1.73	1	1	0.58	0.58	8
RF Ambient Reflections	1	R	1.73	1	1	0.58	0.58	8
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	8
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	8
Post Processing	2	R	1.73	1	1	1.15	1.15	8
Dipole Related								
Deviation of exp. dipole	5.5	R	1.73	1	1	3.18	3.18	8
Dipole Axis to Liquid Dist.	2	R	1.73	1	1	1.15	1.15	8
Input power & SAR drift	3.40	R	1.73	1	1	1.96	1.96	8
Phantom and Setup								
Phantom Uncertainty	4	R	1.73	1	1	2.31	2.31	8
Liquid Conductivity – Deviation from target values	5	R	1.73	0.64	0.43	1.85	1.24	8
Liquid Permittivity – Deviation from target values	5	R	1.73	0.6	0.49	1.73	1.41	8
Liquid Conductivity – Measurement uncertainty	2.5	N	1.00	0.78	0.71	1.95	1.78	8
Liquid Permittivity – Measurement uncertainty	2.5	N	1.00	0.26	0.26	0.65	0.65	8
Temp.unc Conductivity	3.4	R	1.73	0.78	0.71	0.77	0.70	∞
Temp. unc Permittivity	0.4	R	1.73	0.23	0.26	0.04	0.05	8
Combined standard Uncertainty (u _c)						10.02	9.84	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		20.05	19.68	

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 10.02\%$. The extended uncertainty (K = 2) was assessed to be $\pm 20.05\%$ based on 95% confidence level. The uncertainty is not added to the System verification measurement result.

9.0 EQUIPMENT LIST AND CALIBRATION DETAILS

Table 12 SPEAG DASY5 Version 52

Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due	Used For this Test?
Robot - Six Axes	Staubli	RX90BL	N/A	Not applicable	✓
Robot Remote Control	SPEAG	CS7MB	RX90B	Not applicable	✓
SAM Phantom	SPEAG	N/A	1260	Not applicable	
SAM Phantom	SPEAG	N/A	1060	Not applicable	
Flat Phantom	AndreT	10.1	P 10.1	Not Applicable	
Flat Phantom	AndreT	9.1	P 9.1	Not Applicable	
Flat Phantom	SPEAG	ELI 4.0	1101	Not Applicable	✓
Data Acquisition Electronics	SPEAG	DAE3 V1	359	04-June-2016	
Data Acquisition Electronics	SPEAG	DAE3 V1	442	03-Dec-2015	✓
Probe E-Field - Dummy	SPEAG	DP1	N/A	Not applicable	
Probe E-Field	SPEAG	ET3DV6	1380	11-Dec-2015	✓
Probe E-Field	SPEAG	ET3DV6	1377	11-June-2016	
Probe E-Field	SPEAG	ES3DV6	3029	Not Used	
Probe E-Field	SPEAG	EX3DV4	3956	15-June-2016	
Probe E-Field	SPEAG	EX3DV4	7358	21- April-2016	
Validation Source 150 MHz	SPEAG	CLA150	4003	3-Dec-2016	
Antenna Dipole 300 MHz	SPEAG	D300V3	1012	11-Dec-2015	
Antenna Dipole 450 MHz	SPEAG	D450V3	1074	11-Dec-2015	
Antenna Dipole 750 MHz	SPEAG	D750V2	1051	13-Dec-2016	
Antenna Dipole 900 MHz	SPEAG	D900V2	047	09-Dec-2017	
Antenna Dipole 1640 MHz	SPEAG	D1640V2	314	05-Dec-2017	
Antenna Dipole 1800 MHz	SPEAG	D1800V2	242	05-Dec-2017	
Antenna Dipole 1950 MHz	SPEAG	D1950V3	1113	6-Dec -2015	
Antenna Dipole 2300 MHz	SPEAG	D2300V2	1032	22-Aug-2016	
Antenna Dipole 2450 MHz	SPEAG	D2450V2	724	04-Dec-2015	√
Antenna Dipole 2600 MHz	SPEAG	D2600V2	1044	13-Dec-2016	
Antenna Dipole 3500 MHz	SPEAG	D3500V2	1002	13-July-2013	
Antenna Dipole 5600 MHz	SPEAG	D5GHzV2	1008	16-Dec-2016	
RF Amplifier	EIN	603L	N/A	*In test	
RF Amplifier	Mini-Circuits	ZHL-42	N/A	*In test	
RF Amplifier	Mini-Circuits	ZVE-8G	N/A	*In test	√
Synthesized signal generator	Hewlett Packard	86630A	3250A00328	*In test	√
RF Power Meter	Hewlett Packard	437B	3125012786	*In test	√
RF Power Sensor 0.01 - 18 GHz	Hewlett Packard	E9327A	MY44420176	15-Jan-2016	√
RF Power Meter	Rohde & Schwarz	NRP	101415	30-Sept-2015	
RF Power Sensor	Rohde & Schwarz	NRP - Z81	100174	30-Sept-2015	
RF Power Meter Dual	Hewlett Packard	435A	1733A05847	*In test	✓
RF Power Sensor	Hewlett Packard	8482A	2349A10114	*In test	√
Network Analyser	Hewlett Packard	8714B	GB3510035	14-Oct-2015	
Network Analyser	Hewlett Packard	8753ES	JP39240130	10-Nov-2015	
Network Analyser	Hewlett Packard	8753D	3410A04122	28-Jan-2016	✓
Dual Directional Coupler	Hewlett Packard	778D	1144 04700	*In test	
Dual Directional Coupler	NARDA	3022	75453	*In test	√
Thermometer	Digitech	QM7217	T-103	29-Aug-2015	
Thermometer	Digitech	QM7217	T-104	15-Dec-2015	√
Radio Communication Test Set	Rohde & Schwarz	CMU200	101573	Not Applicable	
Radio Communication Test Set	Anritsu	MT8820A	6200240559	Not Applicable	
Radio Communication Test Set	Agilent	PXT E6621A	MY51100168	Not Applicable	

^{*} Calibrated during the test for the relevant parameters.

10.0 TEST METHODOLOGY

Notebooks should be evaluated in normal use positions, typical for lap-held bottom-face only. However the number of positions will depend on the number of configurations the laptop can be operated in. The "LIFEBOOK T SERIES" can be used in either a conventional laptop position (see Appendix A) or a Tablet configuration. The antenna location in the "LIFEBOOK T SERIES" is closest to the top of the screen when used in a conventional laptop configuration and due to the separation distances involved between the phantom and the laptop antenna, testing is not required in this position.

10.1 Positions

10.1.1 "Lap Held" Position Definition (0mm spacing)

The DUT was tested in the 2.00 mm flat section of the ELI4 Flat phantom for the "Lap Held" position. The Transceiver was placed at the bottom of the phantom and suspended in such way that the back of the DUT was touching the phantom. This device orientation simulates the PC's normal use – being held on the lap of the user. A spacing of 0mm ensures that the SAR results are conservative and represent a worst-case position.

10.1.2 "Edge On" Position (Portrait or Landscape)

The DUT was tested in the (2.00 mm) flat section of the ELI4 Flat phantom for the "Edge On" position. The Antenna edge of the Transceiver was placed underneath the flat section of the phantom and suspended until the edge touched the phantom. Refer to Appendix A for photos of measurement positions.

10.1.3 "Bystander" Position (25mm spacing)

The DUT was tested in the 2.00 mm flat section of the ELI4 Flat phantom for the "Bystander" position. The Transceiver was placed at the bottom of the phantom and suspended in such way that the back of it's LCD screen was parallel to phantom and at 25mm distance. This orientation simulates use of the device in a way that allows occasional RF exposure of the nearby person (Bystander).

10.2 List of All Test Cases (Antenna In/Out, Test Frequencies, User Modes)

The DUT has fixed antennas. Depending on the measured SAR level up to three test channels with the test sample operating at maximum power were recorded. The following table represents the matrix used to determine what testing was required. All relevant provisions of KDB 447498 and KDB 616217 are applied for SAR measurements of the host system.

Table 13 Testing configurations

Phantom	Device Mode	Antenna	Test Configurations					
Configuration			Channel (Remaining)	Channel (Highest)	Channel (Remaining)			
Lap Held	DSSS 2.4GHz	Α		X				
		В		X				
Bystander	DSSS 2.4GHz	Α		X				
		В		X				
Edge On	DSSS 2.4GHz	Α		X				
		В		X				

Legend	
X	Testing Required in this configuration
	Testing required in this configuration only if SAR of middle channel is more than
	3dB below the SAR limit or it is the worst case.

NOTE: Throughout this report, Antenna A and B refer to Tx1 and Tx2 in the host respectively.

11.0 SAR MEASUREMENT RESULTS

The SAR values averaged over 1g tissue masses were determined for the sample DUT for all test configurations listed in section 10.2.

11.1 2450MHz SAR Results

There are two modes of operation within the 2450MHz band, they include OFDM and DSSS modulations. Refer to section 10.2 for selection of all device test configurations. Table below displays the SAR results.

Table 14 SAR MEASUREMENT RESULTS

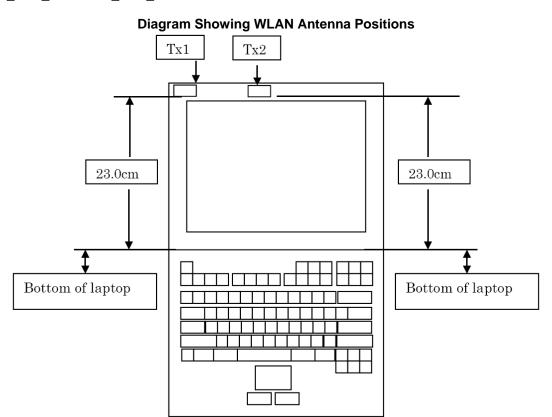
Test Position	Plot No.	Test Mode	Test Ch.	Test Freq. (MHz)	SAR (1g) mW/g	Drift (dB)	∈r (target 52.7 ±5% 50.1 to 55.3)	σ (target 1.95 ±5% 1.85 to 2.05)	100% Duty Cycle SAR (mW/g)
Body Bystander ANT 1 (DSSS) 11-Sept-2015	1.	DSSS 2450 MHz 1Mbs	7	2442	0.028	-0.21	52.98	1.916	0.028
Body Bystander ANT 2 (DSSS) 11-Sept-2015	2.	DSSS 2450 MHz 1Mbs	7	2442	0.0198	-0.2	52.98	1.916	0.020
Body Lap Held ANT 2 (DSSS) 11-Sept-2015	3.	DSSS 2450 MHz 1Mbs	1	2412	0.0449	-0.18	53.15	1.854	0.045
Body Lap Held ANT 2 (DSSS) 11-Sept-2015	4.	DSSS 2450 MHz 1Mbs	6	2437	0.0433	-0.03	53.02	1.905	0.044
Body Lap Held ANT 2 (DSSS) 11-Sept-2015	5.	DSSS 2450 MHz 1Mbs	7	2442	0.0404	-0.15	52.98	1.916	0.041
Body Lap Held ANT 2 (DSSS) 11-Sept-2015	6.	DSSS 2450 MHz 1Mbs	12	2467	0.0488	-0.18	52.84	1.974	0.049
Body Lap Held ANT 1 (DSSS) 11-Sept-2015	7.	DSSS 2450 MHz 1Mbs	1	2412	0.137	-0.05	53.15	1.854	0.138
Body Lap Held ANT 1 (DSSS) 11-Sept-2015	8.	DSSS 2450 MHz 1Mbs	6	2437	0.138	0.04	53.02	1.905	0.139
Body Lap Held ANT 1 (DSSS) 11-Sept-2015	9.	DSSS 2450 MHz 1Mbs	7	2442	0.13	-0.02	52.98	1.916	0.131
Body Lap Held ANT 1 (DSSS) 11-Sept-2015	10.	DSSS 2450 MHz 1Mbs	12	2467	0.119	-0.03	52.84	1.974	0.120
Body Edge 1 ANT 2 (DSSS) 11-Sept-2015	11.	DSSS 2450 MHz 1Mbs	1	2412	0.156	-0.02	51.41	1.89	0.158
Body Edge 1 ANT 2 (DSSS) 11-Sept-2015	12.	DSSS 2450 MHz 1Mbs	6	2437	0.149	-0.1	51.26	1.934	0.151
Body Edge 1 ANT 2 (DSSS) 11-Sept-2015	13.	DSSS 2450 MHz 1Mbs	7	2442	0.133	-0.14	51.23	1.942	0.134
Body Edge 1 ANT 2 (DSSS) 11-Sept-2015	14.	DSSS 2450 MHz 1Mbs	12	2467	0.136	-0.03	51.09	1.984	0.137
Body Edge 1 ANT 1 (DSSS) 14-Sept-2015	15.	DSSS 2450 MHz 1Mbs	1	2412	0.0882	-0.12	51.41	1.89	0.089
Body Edge 1 ANT 1 (DSSS) 14-Sept-2015	16.	DSSS 2450 MHz 1Mbs	6	2437	0.0897	0.18	51.26	1.934	0.091
Body Edge 1 ANT 1 (DSSS) 14-Sept-2015	17.	DSSS 2450 MHz 1Mbs	7	2442	0.0901	-0.09	51.23	1.942	0.091
Body Edge 1 ANT 1 (DSSS) 14-Sept-2015	18.	DSSS 2450 MHz 1Mbs	12	2467	0.0699	-0.11	51.09	1.984	0.071
Body Edge 2 ANT 2 (DSSS) 14-Sept-2015	N/A	DSSS 2450 MHz 1Mbs	7	2442	Noise Floor	N/A	51.23	1.942	N/A
Body Edge 4 ANT 1 (DSSS) 11-Sept-2015	19.	DSSS 2450 MHz 1Mbs	7	2442	0.299	0.18	52.98	1.916	0.302
System Check 11- Sept-2015	20.	CW	1	2450	14	0.05	52.93	1.934	N/A
System Check 14- Sept-2015	21.	CW	1	2450	12.8	-0.08	51.19	1.956	N/A

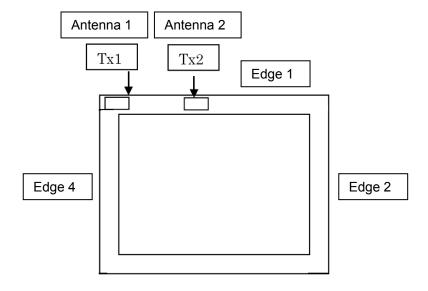
NOTE: The measurement uncertainty of 24.86% for 2.45GHz was not added to the result.

12.0 COMPLIANCE STATEMENT

The Fujitsu convertible Tablet PC, Model: T726 with INTEL M.2 Wireless LAN and Bluetooth Module (Snowfield Peak 802.11a/b/g/n/ac), Model: 8260NGW, was found to comply with the FCC and RSS-102 SAR requirements.

The highest Measured SAR level of the 2.45 MHz band was 0.156 mW/g for a 1g cube. The manufacturer's tune up power is stated to be 1dB and was included in RF power setting during measurement. Scaling the SAR value to the 100% Duty Cycle, the maximum Reported SAR value is D.158 mW/g. This value was measured at 2412 MHz (channel 01) in the "Body Edge 1" position in DSSS modulation mode at the antenna 2. This was below the limit of 1.6 mW/g for uncontrolled exposure, even taking into account the measurement uncertainty of 24.86%.


The SAR test Variability check was not required because the highest measured SAR was less than 0.8 mW/g.



13.0 MULTIBAND EVALUATION CONSIDERATIONS

Worst case WLAN SAR was recorded in 5GHz frequency range, report titled "M150813_FCC_8260NGW_SAR_5.6" contains section that describes multiband evaluation.

