

Test Report

Report No. : MTi250331025-0101E1

Date of issue : 2025-04-25

Applicant : Shenzhen ShengJieTong Technology Co., Ltd

Product : Wireless Microphone

Model(s) : K61, K60

Microtest

FCC ID : 2A6Q3-K61

Shenzhen Microtest Co., Ltd.

Microlest

TEST REPORT

Report No.: MTi250331025-0101E1

Table of contents

1	Gene	ral Description	4
P81	1.1	Description of the EUT	4
#	1.2	Description of test modes	4
	1.3	Environmental Conditions	6
	1.4	Description of support units	6
	1.5	Measurement uncertainty	6
2	Sumi	mary of Test Result	7
3	Test	Facilities and accreditations	
	3.1	Test laboratory	8
4	List	of test equipment	g
5		ation Results (Evaluation)	
	5.1	Antenna requirement	
6	Radio	Spectrum Matter Test Results (RF)	
	6.1	20dB Bandwidth	11
	6.2	Maximum Conducted Output Power	
	6.3	Channel Separation.	
	6.4	Number of Hopping Frequencies	16
	6.5	Dwell Time	
	6.6	RF conducted spurious emissions and band edge measurement	
	6.7	Band edge emissions (Radiated)	21
	6.8	Radiated emissions (below 1GHz)	24
	6.9	Radiated emissions (above 1GHz)	28
Ph	otogra	phs of the test setup	33
Ph	otogra	phs of the EUT	34
Ap	pendix	A: 20dB Emission Bandwidth	36
Ap	pendix	B: Maximum conducted output power	40
		c C: Carrier frequency separation c D: Time of occupancy	
		ε: Number of hopping channels	
Ap	pendix	r F: Band edge measurements	54
Ар	pendix	c G: Conducted Spurious Emission	58

Report No.: MTi250331025-0101E1

Test Result Certifi							
Applicant	Shenzhen	Shenzhen ShengJieTong Technology Co., Ltd					
Applicant Address		n Floor, Building 2, Zone B, Tanç Road, Gushu Community Xixianç China					
Manufacturer	Shenzhen	ShengJieTong Technology Co.,	Ltd				
Manufacturer Address		n Floor, Building 2, Zone B, Tang load, Gushu Community Xixian China					
Product description	on						
Product name	Wireless M	icrophone					
Trademark	N/A	4.0					
Model name	K61	K61					
Series Model(s)	K60						
Standards	47 CFR Pa	rt 15.247					
Test Method	ANSI C63.7 KDB 55807	3.10-2013 6074 D01 15.247 Meas Guidance v05r02					
Testing Information	on						
Date of test	2025-04-16	6 to 2025-04-25					
Test result	Pass	×					
Prepared by:		James Qin	James Qui				
Reviewed by:		David Lee	James and Downd. Lee Lewis lion				
Approved by:		Lewis Lian	lewis lian				
Microfest							
MICI							

Report No.: MTi250331025-0101E1

1 General Description

1.1 Description of the EUT

Product name:	Wireless Microphone
Model name:	K61
Series Model(s):	K60
Model difference:	All the models are the same circuit and module, except the model name.
Electrical rating:	Input: DC 5V Charging case Battery: DC 3.7V, 300mAh Microphone: DC 3.7V, 60mAh
Accessories:	N/A
Hardware version:	V1.0
Software version:	V1.0
Test sample(s) number:	MTi250331025-01-R001
RF specification	St
Bluetooth version:	V5.3
Operating frequency range:	2402-2480 MHz
Channel number:	79
Modulation type:	GFSK, π/4-DQPSK
Antenna(s) type:	Ceramic
Antenna(s) gain:	1.24dBi

1.2 Description of test modes

No.	Emission test modes	
Mode1	TX-GFSK	
Mode2	TX-π/4-DQPSK	

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467

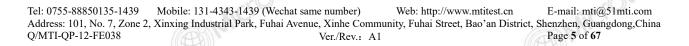
Report No.: MTi250331025-0101E1

					•		The state of the s
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
// 11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Microtest

Operation Band: 2400-2483.5 MHz


Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
1	2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	10	10	10
π/4-DQPSK	10	10	10

Report No.: MTi250331025-0101E1

Microtest

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C	
Humidity:	20% RH ~ 75% RH	
Atmospheric pressure:	98 kPa ~ 101 kPa	

1.4 Description of support units

Support equipment list						
Description	Model	Serial No.	Manufacturer			
1	1	/	1 croke			
Support cable list						
Description	Length (m)	From	То			
atest.	1	/	/			

1.5 Measurement uncertainty

Microtest

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Microfest

TEST REPORT

Report No.: MTi250331025-0101E1

Microtest

Microtest

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	20dB Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
3	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
4	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
5	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
6	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d)	Pass
8	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

Microfest

Microfest

TEST REPORT

Report No.: MTi250331025-0101E1

Microtest

Microtest

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

Microfest

Report No.: MTi250331025-0101E1

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due
M	crotest Er	Maximum Condu Channel Number of Hop	Separation ping Frequencie	es		
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2025-03- 18	2026-03- 17
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB400512 40	2025-03- 14	2026-03- 13
3	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03- 13
4	Synthesized Sweeper	Agilent	83752A	3610A019 57	2025-03- 14	2026-03- 13
5	MXA Signal Analyzer	Agilent	N9020A	MY501434 83	2025-03- 14	2026-03- 13
6	RF Control Unit	Tonscend	JS0806-1	19D80601 52	2025-03- 18	2026-03- 17
7	Band Reject Filter Group	Tonscend	JS0806-F	19D80601 60	2025-03- 14	2026-03- 13
8	ESG Vector Signal Generator	Agilent	N5182A	MY501437 62	2025-03- 14	2026-03- 13
9	DC Power Supply	Agilent	E3632A	MY400276 95	2025-03- 18	2026-03- 17
	<u> </u>	Band edge emi	ssions (Radiated	d)	10	42
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03- 13
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-	2025-06- 16
3	Amplifier	Agilent	8449B	3008A0112 0	2025-03- 18	2026-03- 17
4	MXA signal analyzer	Agilent	N9020A	MY544408 59	2025-03- 14	2026-03- 13
5	PXA Signal Analyzer	Agilent	N9030A	MY513502 96	2025-03- 14	2026-03- 13
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06- 17	2025-06- 16
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2025-03- 19	2026-03- 18
	Er	missions in frequen		1GHz)	- OKE	5 10
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2025-03- 14	2026-03- 13
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06- 10
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03- 23	2026-03- 22
4	Amplifier	Hewlett-Packard	8447F	3113A0618 4	2025-03- 18	2026-03- 17

Report No.: MTi250331025-0101E1

Microtest

Microtest

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

	Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached
1787		antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of
10	(II)	this section.

5.1.1 Conclusion:

Mhicrotest

Microlest

The antenna of the EUT is permanently attached.

The EUT complies with the requirement of FCC PART 15.203.

Report No.: MTi250331025-0101E1

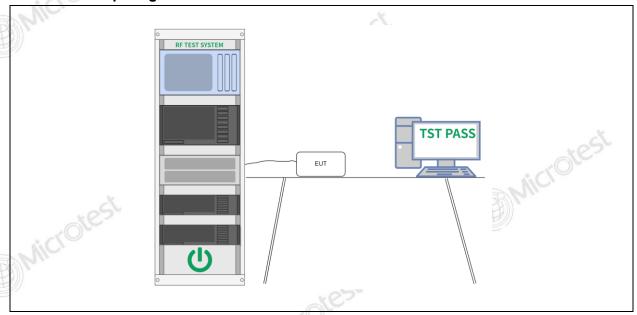
6 Radio Spectrum Matter Test Results (RF)

6.1 20dB Bandwidth

6.1 20dB Bandwid	h (Carlotte Lands and Carlotte L
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be
	approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be
Microtest	more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.
Microtest	i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value.

Report No.: MTi250331025-0101E1

Microtes


The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure: 101 kPa		
Pre test mode:		Mod	e1, Mode2				
Final test mode:		Mod	e1, Mode2				

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

Please Refer to Appendix for Details.

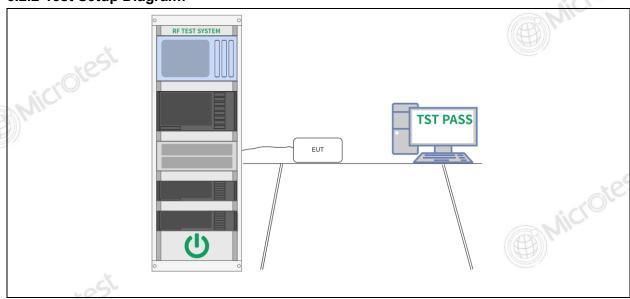
Report No.: MTi250331025-0101E1

6.2 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa	
Pre test mode:	Pre test mode: Mode1, Mode2		e1, Mode2	-10 (O)			
Final test mode: Mode1, Mode2			e1, Mode2	NO.			
						ciotest	



Report No.: MTi250331025-0101E1

Microtest

Microtest

6.2.2 Test Setup Diagram:

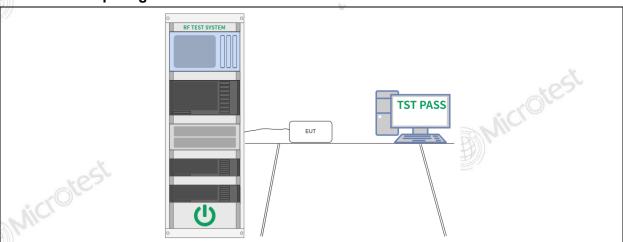
6.2.3 Test Data:

And Control

Microlest

Please Refer to Appendix for Details.

Report No.: MTi250331025-0101E1


6.3 Channel Separation

0.5 Chamile Separe	
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mod	e1, Mode2				
Final test mode:		Mod	e1, Mode2				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi250331025-0101E1

Microtest

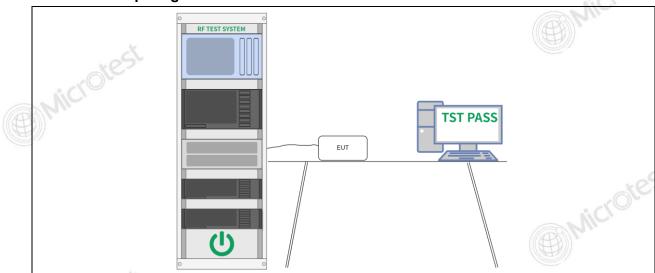
6.4 Number of Hopping Frequencies

3.4 Number of Hopping Frequencies						
Test Requirement:	47 CFR 15.247(a)(1)(iii)					
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.					
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.					

6.4.1 E.U.T. Operation:

Microlest

Operating Environment:						
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode:	Pre test mode:		e1, Mode2	_3		
Final test mode: Mode1, Mod		e1, Mode2	105	V		



Report No.: MTi250331025-0101E1

Microtest

Microtest

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Microlest

Microlest

Please Refer to Appendix for Details.

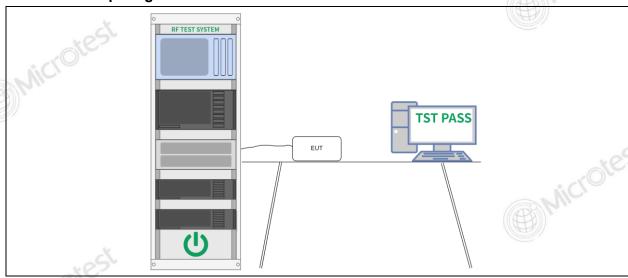
Report No.: MTi250331025-0101E1

6.5 Dwell Time

6.5 Dwell Time	::(1)
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test
Microtest	for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

6.5.1 E.U.T. Operation:

M II I							
Operating Envi	ironme	nt:					
Temperature: 25 °C			Humidity:	59 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mo		Mod	e1, Mode2				re-


Report No.: MTi250331025-0101E1

Microtest

Microtest

Final test mode: Mode1, Mode2

6.5.2 Test Setup Diagram:

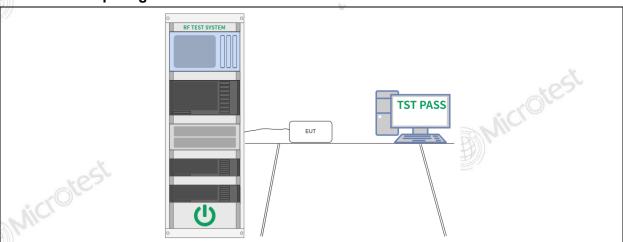
6.5.3 Test Data:

And Control

Microtest

Please Refer to Appendix for Details.

Report No.: MTi250331025-0101E1


6.6 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d)
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

6.6.1 E.U.T. Operation:

Operating Envi	Operating Environment:									
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa				
Pre test mode:	Mod	e1, Mode2								
Final test mode	Mod	e1, Mode2								

6.6.2 Test Setup Diagram:

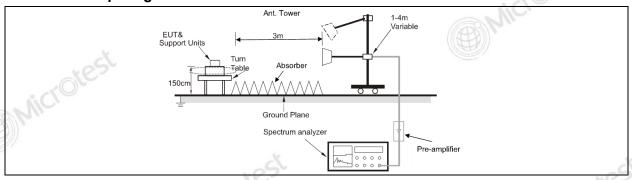
6.6.3 Test Data:

Please Refer to Appendix for Details.

Report No.: MTi250331025-0101E1

6.7 Band edge emissions (Radiated)

Test Requirement:	in the restricted bands,	7(d), In addition, radiated em as defined in § 15.205(a), m sion limits specified in § 15.20	nust also comply			
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Microtest	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2013 sed	etion 6.10.5.2	MICIO			


6.7.1 E.U.T. Operation:

141//								
Operating Env	ironmeı	nt:						
Temperature: 24.7		°C Humidity: 5		57 %	Atmospheric Pressure:	101 kPa		
Pre test mode:	Mod	e1, Mode2						
Final test mode	e:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report					
NI (

Note

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.7.2 Test Setup Diagram:

Report No.: MTi250331025-0101E1

6.7.3 Test Data:

									ED, 70, 10, 1 A **	
/lod	e2 / P	olariz	zation: Horiz	zontal / CH:	L			(CA	DAN PAR	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	1 301111	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
7	1		2310.000	47.42	-4.83	42.59	74.00	-31.41	peak	_
	2		2310.000	37.72	-4.83	32.89	54.00	-21.11	AVG	_
	3		2390.000	53.18	-4.31	48.87	74.00	-25.13	peak	
	4	*	2390.000	42.71	-4.31	38.40	54.00	-15.60	AVG	Ke,

Mode2	/ Polarization:	Vertical /	CH· I
IVIOUCE	i olalization.	v Ci tiCai /	OI 1. L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1		2310.000	48.56	-4.83	43.73	74.00	-30.27	peak	
2		2310.000	37.90	-4.83	33.07	54.00	-20.93	AVG	
3		2390.000	49.45	-4.31	45.14	74.00	-28.86	peak	
4	*	2390.000	38.79	-4.31	34.48	54.00	-19.52	AVG	

4

Microtest

2500.000

40.43

TEST REPORT

Report No.: MTi250331025-0101E1

										215
Mod	e2 / P	olari	zation: Horiz	zontal / CH:	H				Ni Cre	9)
	No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
	1		2483.500	59.71	-4.21	55.50	74.00	-18.50	peak	_
	2	*	2483.500	52.32	-4.21	48.11	54.00	-5.89	AVG	_
9)) .	3		2500.000	57.66	-4.10	53.56	74.00	-20.44	peak	-
	4		2500.000	48.04	-4.10	43.94	54.00	-10.06	AVG	

B	Mod	e2 / P	olari	zation: Verti	cal / CH: H		rest				
	21)	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
				MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
		1		2483.500	51.76	-4.21	47.55	74.00	-26.45	peak	
		2	*	2483.500	41.74	-4.21	37.53	54.00	-16.47	AVG	-
		3		2500.000	49.81	-4.10	45.71	74.00	-28.29	peak	

-4.10

36.33

54.00 -17.67

AVG

Bhiciotest

Report No.: MTi250331025-0101E1

6.8 Radiated emissions (below 1GHz)

Test Requirement:	in the restricted bands	7(d), In addition, radiated em , as defined in § 15.205(a), m sion limits specified in § 15.2	nust also comply			
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Microtest	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2013 sed	ction 6.6.4	· NICI			

6.8.1 E.U.T. Operation:

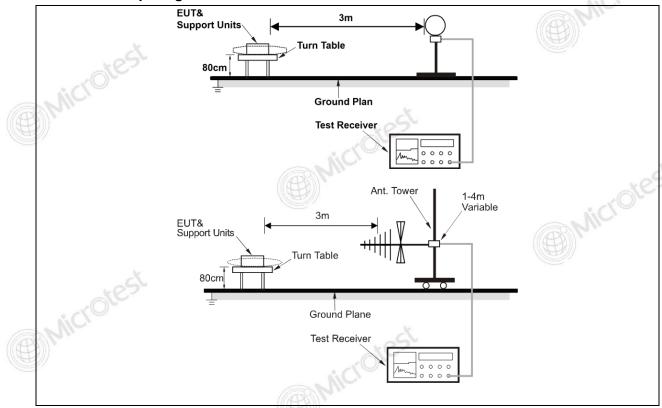
Operating Envi	ronmer	nt:					
Temperature: 24.7 °		°C Humidity: 57 %		57 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mode1, Mode2							
Final test mode	e:	All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report					

Note

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

Mhicrotest


TEST REPORT

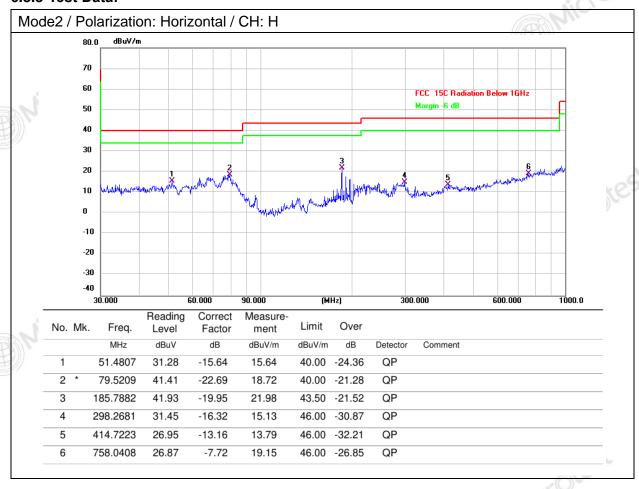
Report No.: MTi250331025-0101E1

Microtest

Microtest

6.8.2 Test Setup Diagram:

Microtest Microtest


Report No.: MTi250331025-0101E1

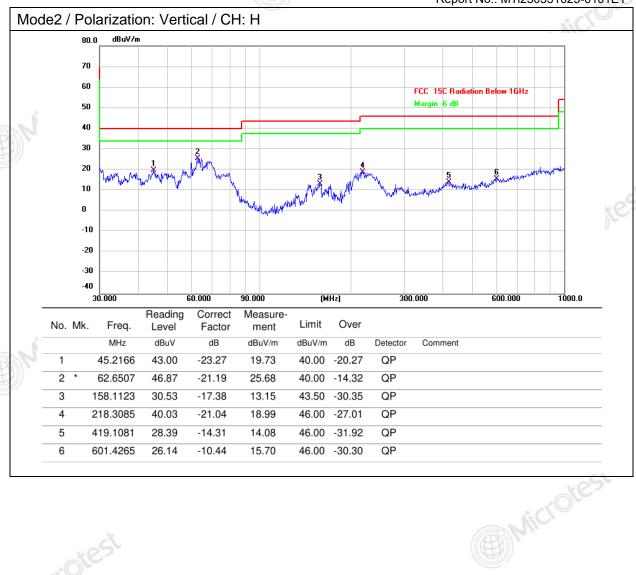
Microtest

6.8.3 Test Data:

Bhicrotest

Microtest

Microlest



Microlest

TEST REPORT

Report No.: MTi250331025-0101E1

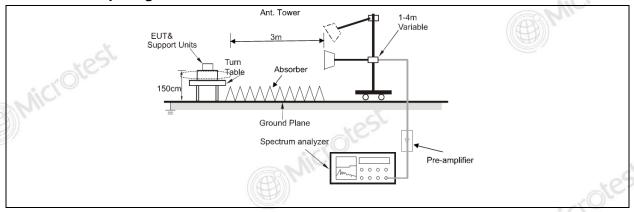
Microtest

Report No.: MTi250331025-0101E1

6.9 Radiated emissions (above 1GHz)

Test Requirement:	the restricted bands, a	7(d), in addition, radiated em s defined in § 15.205(a), mus imits specified in § 15.209(a)	t also comply with
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Microtest	intentional radiators op the frequency bands 5 806 MHz. However, op permitted under other s In the emission table a The emission limits sho measurements employ frequency bands 9–90 Radiated emission limit	n paragraph (g), fundamenta erating under this section shad-72 MHz, 76-88 MHz, 174-2 eration within these frequence sections of this part, e.g., §§ above, the tighter limit applies own in the above table are basing a CISPR quasi-peak detections in these three bands are basing an average detector.	all not be located in 16 MHz or 470- by bands is 15.231 and 15.241. at the band edges. ased on ector except for the e 1000 MHz.
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	test
Procedure:	ANSI C63.10-2013 sed	etion 6.6.4	MICIO

6.9.1 E.U.T. Operation:


400							
Operating Envi	ironmer	nt:					
Temperature: 24.7 °		С	Humidity:	57 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mod	e1, Mode2				
Final test mode	e:	All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report					
Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported. All modes of operation of the EUT were investigated, and only the worst-case results are reported.							

Report No.: MTi250331025-0101E1

Microtest

6.9.2 Test Setup Diagram:

Report No.: MTi250331025-0101E1

6.9.3 Test Data:

									0.44	
Mod	e2 / P	olari	zation: Horiz	zontal / CH:	L			(f)	EN PIL	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	3. 20111	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
N	1		4804.000	45.20	0.53	45.73	74.00	-28.27	peak	
9))	2		4804.000	39.69	0.53	40.22	54.00	-13.78	AVG	
,	3		7206.000	43.84	7.90	51.74	74.00	-22.26	peak	
,	4		7206.000	38.67	7.90	46.57	54.00	-7.43	AVG	Ke
,	5		9608.000	47.86	8.85	56.71	74.00	-17.29	peak	
'	6	*	9608.000	42.15	8.85	51.00	54.00	-3.00	AVG	
										_

Mc	nde2 /	Polarization:	Vertical /	CH- I	
111	JUCE /	i dianzadon.	v Ci ticai /	OI 1. L	-

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4804.000	42.94	0.53	43.47	74.00	-30.53	peak	w
	2		4804.000	36.71	0.53	37.24	54.00	-16.76	AVG	
	3		7206.000	42.69	7.90	50.59	74.00	-23.41	peak	
	4		7206.000	36.69	7.90	44.59	54.00	-9.41	AVG	
j.	5		9608.000	44.85	8.85	53.70	74.00	-20.30	peak	
	6	*	9608.000	38.73	8.85	47.58	54.00	-6.42	AVG	

Report No.: MTi250331025-0101E1

Microtest

Mod	le2 / P	olariz	zation: Horiz	zontal / CH:	M				N'CY"	9
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
	1		4882.000	47.12	0.57	47.69	74.00	-26.31	peak	
	2		4882.000	41.57	0.57	42.14	54.00	-11.86	AVG	_
9))	3		7323.000	43.38	7.57	50.95	74.00	-23.05	peak	_
,	4		7323.000	38.12	7.57	45.69	54.00	-8.31	AVG	
,	5		9764.000	46.82	9.33	56.15	74.00	-17.85	peak	ie
'	6	*	9764.000	41.67	9.33	51.00	54.00	-3.00	AVG	
										_

	Mode2 / Polarization:	Vertical / CH: M
333	<i>11</i>	Reading

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1		4882.000	44.33	0.57	44.90	74.00	-29.10	peak	
2		4882.000	37.99	0.57	38.56	54.00	-15.44	AVG	6
3		7323.000	43.95	7.57	51.52	74.00	-22.48	peak	
4		7323.000	37.90	7.57	45.47	54.00	-8.53	AVG	
5		9764.000	44.69	9.33	54.02	74.00	-19.98	peak	
6	*	9764.000	39.24	9.33	48.57	54.00	-5.43	AVG	
	1 2 3 4 5	1 2 3 4 5	MHz 1 4882.000 2 4882.000 3 7323.000 4 7323.000 5 9764.000	No. Mk. Freq. Level MHz dBuV 1 4882.000 44.33 2 4882.000 37.99 3 7323.000 43.95 4 7323.000 37.90 5 9764.000 44.69	No. Mk. Freq. Level Factor MHz dBuV dB 1 4882.000 44.33 0.57 2 4882.000 37.99 0.57 3 7323.000 43.95 7.57 4 7323.000 37.90 7.57 5 9764.000 44.69 9.33	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 1 4882.000 44.33 0.57 44.90 2 4882.000 37.99 0.57 38.56 3 7323.000 43.95 7.57 51.52 4 7323.000 37.90 7.57 45.47 5 9764.000 44.69 9.33 54.02	No. Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 1 4882.000 44.33 0.57 44.90 74.00 2 4882.000 37.99 0.57 38.56 54.00 3 7323.000 43.95 7.57 51.52 74.00 4 7323.000 37.90 7.57 45.47 54.00 5 9764.000 44.69 9.33 54.02 74.00	No. Mk. Freq. Level Factor ment Limit Over MHz	No. Mk. Freq. Level Factor ment Limit Over MHz

Report No.: MTi250331025-0101E1

Microtest

							•			15 70 70 70
Mod	e2 / P	olariz	zation: Hori	zontal / CH:	Н				n'C	
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4960.000	48.62	0.66	49.28	74.00	-24.72	peak	
	2		4960.000	43.91	0.66	44.57	54.00	-9.43	AVG	_
100	3		7440.000	42.90	7.94	50.84	74.00	-23.16	peak	
	4		7440.000	37.71	7.94	45.65	54.00	-8.35	AVG	_
	5		9920.000	46.45	9.69	56.14	74.00	-17.86	peak	Je.
	6	*	9920.000	41.29	9.69	50.98	54.00	-3.02	AVG	_

Madeo	/ Dalani-ations	1/4:1	/ ОП. П
IVIOGEZ	/ Polarization:	vertical	/ Сп. п

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4960.000	44.12	0.66	44.78	74.00	-29.22	peak	
	2		4960.000	37.91	0.66	38.57	54.00	-15.43	AVG	-
	3		7440.000	43.76	7.94	51.70	74.00	-22.30	peak	
	4		7440.000	37.65	7.94	45.59	54.00	-8.41	AVG	
Ţ	5		9920.000	46.48	9.69	56.17	74.00	-17.83	peak	
)	6	*	9920.000	40.45	9.69	50.14	54.00	-3.86	AVG	

Microtest

Microtest

TEST REPORT

Report No.: MTi250331025-0101E1

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Mobile: 131-4343-1439 (Wechat same number) Tel: 0755-88850135-1439 Web: http://www.mtitest.cn Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Q/MTI-QP-12-FE038 Ver./Rev.: A1

E-mail: mti@51mti.com Page 33 of 67

TEST REPORT

Report No.: MTi250331025-0101E1

Photographs of the EUT

Refer to Appendix - EUT Photos

Microtest

Mhicrotest

TEST REPORT

Report No.: MTi250331025-0101E1

Microtest

Microtest

Microtest

Appendix

Report No.: MTi250331025-0101E1

Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]			
		2402	0.951			
DH5	Ant1	2441	0.960			
11.		2480	0.957			
		2402	1.281			
2DH5	Ant1	2441	1.317			
		2480	1.281			
			Microte			

Report No.: MTi250331025-0101E1

Microtest

Test Graphs

Microfest

Microfest

TEST REPORT

Report No.: MTi250331025-0101E1

Microfest

TEST REPORT

Report No.: MTi250331025-0101E1

Report No.: MTi250331025-0101E1

Microtest

Microtest

Appendix B: Maximum conducted output power

Test Result Peak

Microlest

Microfest

Antenna	Frequency [MHz]	Conducted Peak Power	Limit	
	[۱۷۱۱ ۱۷]	[dBm]	[dBm]	Verdict
Ant1	2402	-1.52	≤30	PASS
	2441	-1.81	≤30	PASS
	2480	-3.05	≤30	PASS
Ant1	2402	-0.68	≤20.97	PASS
	2441	-1.08	≤20.97	PASS
	2480	-2.31	≤20.97	PASS
				Microte
		2480	2480 -2.31	2480 -2.31 ≤20.97

Microlest

Microfest

TEST REPORT

Report No.: MTi250331025-0101E1

Microtest

Test Graphs

MANICIOlest

TEST REPORT

Report No.: MTi250331025-0101E1

Microfest

TEST REPORT

Report No.: MTi250331025-0101E1

Milicrofest

Report No.: MTi250331025-0101E1

Appendix C: Carrier frequency separation

Test Result

Microtest

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	0.994	≥0.960	PASS
2DH5	Ant1	Нор	1.004	≥0.878	PASS

Report No.: MTi250331025-0101E1

Microtest

Test Graphs

Microfest

