

TEST REPORT					
FCC ID:	2A8T7KING8				
Test Report No::	TCT221205E042				
Date of issue::	Dec. 28, 2022				
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Fuhai Subdistrict, Bao'an District 518103, People's Republic of Ch	, Shenzhen, Guangdong,			
Applicant's name::	Shenzhen Kingbolen Electrics To	echnology Co., Ltd.			
Address:	B1020-1028 Yousong Technolog Longhua Dist., Shenzhen, 51810				
Manufacturer's name:	Shenzhen Kingbolen Electrics To	echnology Co., Ltd.			
Address:	B1020-1028 Yousong Technolog Longhua Dist., Shenzhen, 51810				
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01				
Product Name::	Automotive Diagnostic Tool				
Trade Mark::	KINGBOLEN	(0)			
Model/Type reference:	K8				
Rating(s):	Adapter Information: Model: PSYB00502500 Input: AC 100-240V, 50/60Hz, 0.6A Max Output: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC 7.6V				
Date of receipt of test item:	Dec. 05, 2022				
Date (s) of performance of test:	Dec. 05, 2022 - Dec. 28, 2022				
Tested by (+signature):	RIEO LIU PRO CHU ZONGCE				
Check by (+signature):	Beryl ZHAO Roy(10 TCT)				
Approved by (+signature):	Tomsin Tomsin				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General Product Information		
	1.1. EUT description	(0)	3
	1.2. Model(s) list		3
	1.3. Test Frequency		
2.	Test Result Summary		5
3.	General Information		6
	3.1. Test environment and mode		
	3.2. Description of Support Units		7
4.	Facilities and Accreditations		8
	4.1. Facilities	(,6	8
	4.2. Location		8
	4.3. Measurement Uncertainty		
5 .	Test Results and Measurement Data	(0)	9
	5.1. Antenna requirement		9
	5.2. Conducted Emission		10
	5.3. Maximum Conducted Output Power		14
	5.4. 6dB Emission Bandwidth		16
	5.5. 26dB Bandwidth and 99% Occupied Bandwidth .		
	5.6. Power Spectral Density		18
	5.7. Band edge		
	5.8. Unwanted Emissions		
	5.9. Frequency Stability Measurement		45
A	ppendix A: Test Result of Conducted Test		
4	ppendix B: Photographs of Test Setup		
A	ppendix C: Photographs of EUT		

1. General Product Information

1.1. EUT description

Product Name:	Automotive Diagnostic Tool	
Model/Type reference:	K8	
Sample Number:	TCT221205E007-0101	
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz	
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	Internal Antenna	
Antenna Gain:	Band 1: 1.73dBi Band 3: 3.49dBi	(S)
Rating(s)::	Adapter Information: Model: PSYB00502500 Input: AC 100-240V, 50/60Hz, 0.6A Max Output: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC 7.6V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 126

1.3. Test Frequency

Band 1

20N	20MHz 40MHz 80M		40MHz		MHz
Channel	Frequency	Channel	Channel Frequency (Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 3

20N	1Hz	40MHz		80	MHz
Channel	Frequency	Channel	Channel Frequency (Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 126

2. Test Result Summary

CFR 47 Section	Result
§15.203	PASS
§15.207	PASS
§15.407(a)	PASS
§15.407(b)	PASS
§15.407(b)	PASS
§15.407(g)	PASS
	§15.203 §15.207 §15.407(a) §15.407(a) §15.407(a) §15.407(b) §15.407(b)

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 126

3. General Information

3.1. Test environment and mode

25.0 °C
56 % RH
1010 mbar
Engineer Mode
Default
Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps

Report No.: TCT221205E042

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1(0)	1 (6)) / (6) /	(6)

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 126

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT221205E042

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FC

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is internal antenna which permanently attached, and the maximum gain of the antenna is 3.49dBi at UNII-B3.

Page 9 of 126

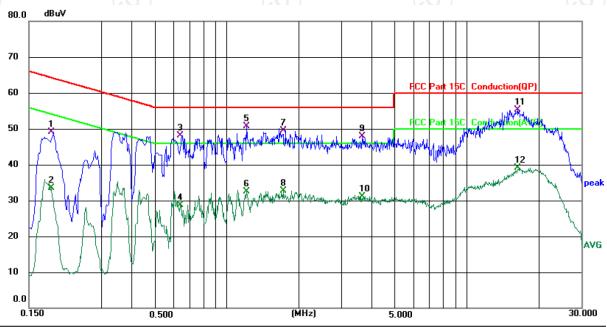
5.2. Conducted Emission


5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
Limits:	Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50				
	Reference	o Plane	120		
Test Setup:	Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Ne Test table height=0.8m	EMI Receiver	— AC power		
Test Mode:	Charging + Transmitting Mode				
Test Procedure:	1. The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the magnetic power through a LI coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013	e impedance state ovides a 500hm neasuring equipm ces are also connects. SN that provides with 500hm terridiagram of the line are checked ince. In order to five positions of equals must be change	pilization network of 2004 coupling ent. ected to the main a 500hm/50uH mination. (Please test setup and ed for maximum and the maximum ipment and all of ged according to		
Test Result:	PASS				

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023	
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023	
Line-5	TCT	CE-05	/	Jul. 03, 2024	
EMI Test Software	Shurple Technology	EZ-EMC	1 (6)	1 6	



5.2.3. Test data

Report No.: TCT221205E042

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 25.3 (°C)

Humidity: 56 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1853	38.52	10.51	49.03	64.24	-15.21	QP	
2		0.1853	22.94	10.51	33.45	54.24	-20.79	AVG	
3		0.6419	38.05	10.10	48.15	56.00	-7.85	QP	
4		0.6419	18.70	10.10	28.80	46.00	-17.20	AVG	
5		1.2100	40.58	10.09	50.67	56.00	-5.33	QP	
6		1.2100	22.43	10.09	32.52	46.00	-13.48	AVG	
7		1.7177	39.42	10.04	49.46	56.00	-6.54	QP	
8		1.7177	22.58	10.04	32.62	46.00	-13.38	AVG	
9		3.6700	37.92	10.05	47.97	56.00	-8.03	QP	
10		3.6700	21.12	10.05	31.17	46.00	-14.83	AVG	
11	*	16.3018	44.97	10.36	55.33	60.00	-4.67	QP	
12		16.3018	28.66	10.36	39.02	50.00	-10.98	AVG	

Note:

Freq. = Emission frequency in MHz

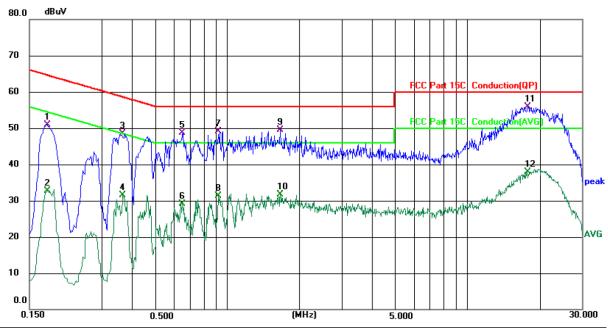
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 25.3 (°C)

Humidity: 56 %

Limit: FCC Part 15C Conduction(QP)

Power:AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1779	40.40	10.51	50.91	64.58	-13.67	QP	
2		0.1779	22.27	10.51	32.78	54.58	-21.80	AVG	
3		0.3659	38.21	10.21	48.42	58.59	-10.17	QP	
4		0.3659	21.20	10.21	31.41	48.59	-17.18	AVG	
5		0.6500	38.60	10.10	48.70	56.00	-7.30	QP	
6		0.6500	18.91	10.10	29.01	46.00	-16.99	AVG	
7		0.9220	38.96	10.11	49.07	56.00	-6.93	QP	
8		0.9220	21.20	10.11	31.31	46.00	-14.69	AVG	
9		1.6700	39.55	10.04	49.59	56.00	-6.41	QP	
10		1.6700	21.69	10.04	31.73	46.00	-14.27	AVG	
11	*	17.8580	45.59	10.39	55.98	60.00	-4.02	QP	
12		17.8580	27.53	10.39	37.92	50.00	-12.08	AVG	
				_					

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

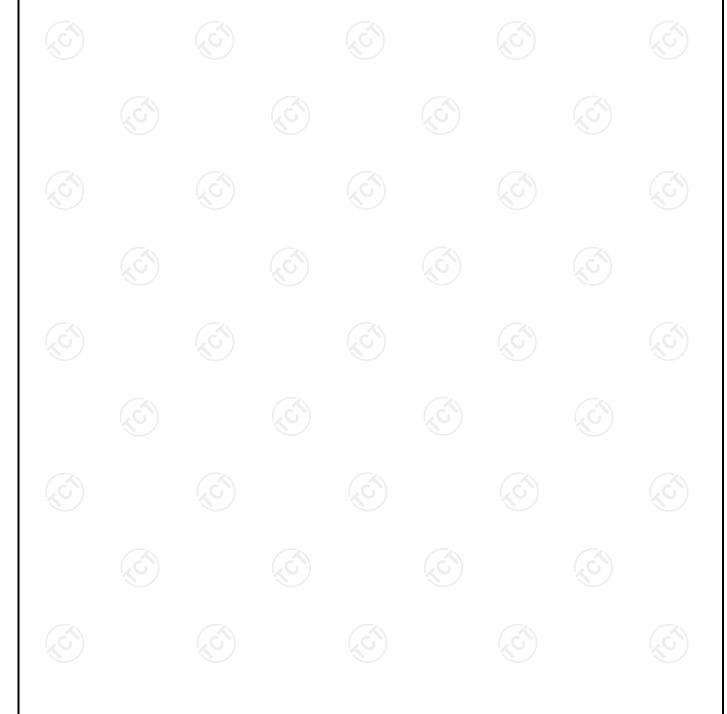
AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Highest channel and 802.11a) was submitted only.

Page 13 of 126

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section
Test Method:		Iltiple Transmitter Output v02r01 neral UNII Test Procedures New n E
	Frequency Band (MHz)	Limit
	5180 - 5240	24dBm(250mW) for client device
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz
	5745 - 5825	30dBm(1W)
Test Setup:	Power meter	EUT
Test Mode:	Transmitting mode w	vith modulation
Test Procedure:	KDB789033 D02 Rules v02r01 Sec 2. The RF output of I meter by RF cabl compensated to to 3. Set to the maximum EUT transmit cor	EUT was connected to the power le and attenuator. The path loss was the results for each measurement. Impower setting and enable the attinuously.
Test Result:	PASS	
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Power Meter	Agilent	E4418B	MY45100357	Jul. 04, 2023
Power Sensor	Agilent	8481A	MY41091497	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1 (6)	/ (3

Page 16 of 126

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1

Page 17 of 126

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
Test Result:	PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

Page 18 of 126

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407	ÇĆ				
Test Method:	FCC CFR47 Part 15E Section 15.407 ANSI C63.10 2013							
	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:							
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
	< 5650	-27	5850~5855	27~15.6				
Limit:	5650~5700	-27~10						
	5700~5720	10~15.6						
	5720~5725 15.6~27 > 5925 - E[dBµV/m] = EIRP[dBm] + 95.2 @3m In restricted band:							
	Detec							
	Peal							
	AVG	j	Frequency (dBm/MHz) 5850~5855 27~15.6 5855~5875 15.6~10 5875~5925 10~-27 > 5925 -27 2 @3m Limit@3m 74dBµV/m 54dBµV/m 54dBµV/m The top of a rotating table 0. a 3 meter camber. The table determine the position of the saway from the na, which was mounted on antenna tower. ied from one meter to four determine the maximum oth horizontal and vertical are set to make the sion, the EUT was arrange e antenna was tuned to eters and the rota table was 0 degrees to find the	ıv/m				
Test Setup:	80 cm (Taymana)	Ground Enference Pa	modulation It Frequency (MHz) (dBm/MHz) (dBm/MHz) (5850~5855 27~15.6 10 5855~5875 15.6~10 5.6 5875~5925 10~-27 27 > 5925 -27 + 95.2 @3m Limit@3m 74dBµV/m 54dBµV/m 54dBµV/m 54dBµV/m 10					
Test Mode:	Transmitting mo	de with mod	ulation	No.				
Test Procedure:	meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a vari 3. The antennameters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 demaximum readi 5. The test-received	ne ground at a degrees to de n. s set 3 meters able-height a height is various the antenna a pected emiss and then the antenna a pected emiss and then the egrees to 360 ng.	a 3 meter cambed as away from the particular and tower. The form one maked are set to maked and the roll of the form one tower. The eartenna was attern and the roll of the form of the form one antenna was attern and the roll of the form of the fo	per. The table position of the consistion of the mounted on the eter to four maximum and vertical ethe constant and to table was at table was at table was at table was at the constant at table was at				

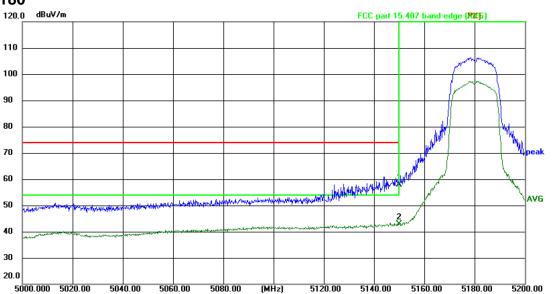
Report No.: TCT221205E042

Mode.

Report No.: TCT221205E042

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be

(stopped reported 10dB m quasipe	l and the p d. Otherwis argin woul	eak values se the emis d be re-tes age metho	of the EU ⁻ sions that ted one by	Fixed the control of	e peak,
Test	Result:	PASS		(c')		(c ¹)	



5.7.2. Test Instruments

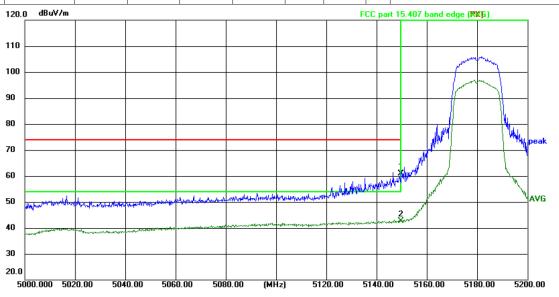
	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 24, 2023
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Feb. 24, 2023
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Coaxial cable	SKET	RC-18G-N-M) 1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
Antenna Mast	Keleto	CC-A-4M		1 (6)
EMI Test Software	Shurple Technology	EZ-EMC	/	(6)

5.7.3. Test Data AC20-5180

Site: #3 3m Anechoic Chamber Polarization

Polarization: Horizontal

Temperature: 24(°C)


Humidity: 52 %

Report No.: TCT221205E042

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

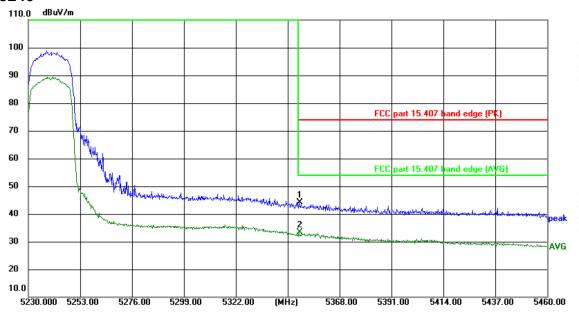
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	61.92	-4.07	57.85	74.00	-16.15	peak	Р	
2 *	5150.000	46.90	-4.07	42.83	54.00	-11.17	AVG	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

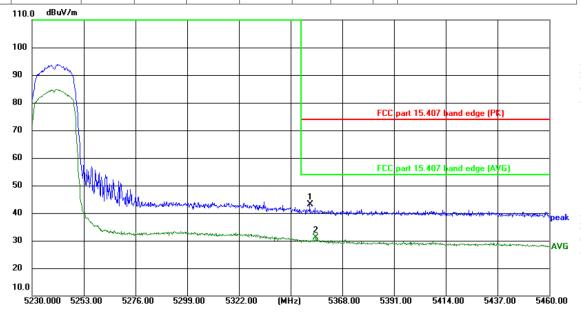
Temperature: 24(°C)

Humidity: 52 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

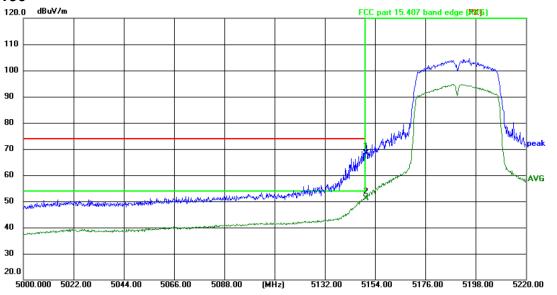
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	64.86	-4.07	60.79	74.00	-13.21	peak	Р	
2 *	5150.000	46.80	-4.07	42.73	54.00	-11.27	AVG	Р	



AC20-5240

Site Polarization: Horizontal Temperature: 24(°C)
Limit: FCC part 15.407 band edge (PK) Power: DC 7.6 V Humidity: 52 %

			• , ,						
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.204	52.56	-8.40	44.16	74.00	-29.84	peak	Р	
2 *	5350.204	41.78	-8.40	33.38	54.00	-20.62	AVG	Р	



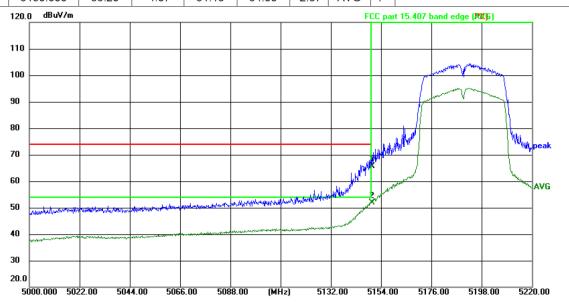
Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 7.6 V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5353.654	51.60	-8.40	43.20	74.00	-30.80	peak	Р	
2 *	5356.557	39.44	-8.40	31.04	54.00	-22.96	AVG	Р	

AC40-5190

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

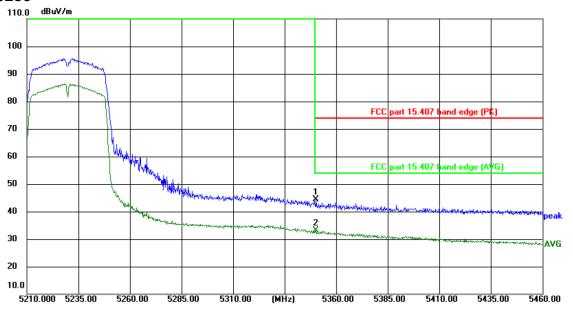
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5150.000	72.35	-4.07	68.28	74.00	-5.72	peak	Р	
Ī	2 *	5150 000	55.20	-4.07	51 13	54.00	-2.87	AVG	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

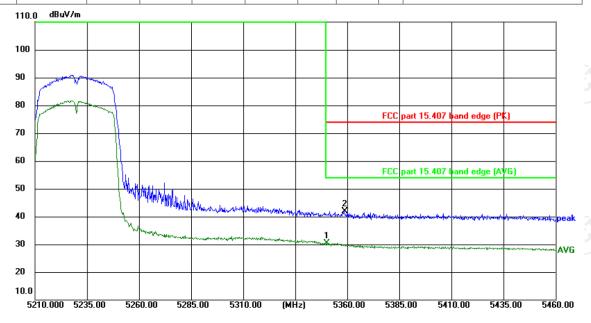
Temperature: 24(°C)

Humidity: 52 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

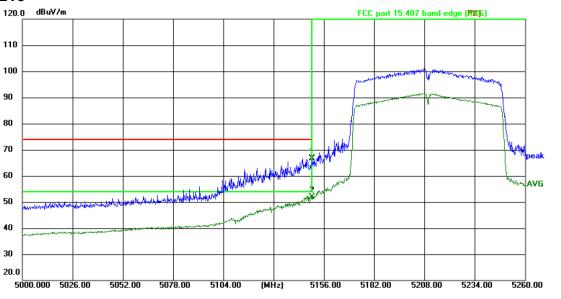
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
-[1	5150.000	69.68	-4.07	65.61	74.00	-8.39	peak	Р	
	2 *	5150.000	56.05	-4.07	51.98	54.00	-2.02	AVG	Р	



AC40-5230

Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge (PK) Power: DC 7.6 $^{\vee}$ Humidity: 52 $^{\circ}$

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.281	52.81	-8.40	44.41	74.00	-29.59	peak	Р	
2 *	5350.281	41.49	-8.40	33.09	54.00	-20.91	AVG	Р	



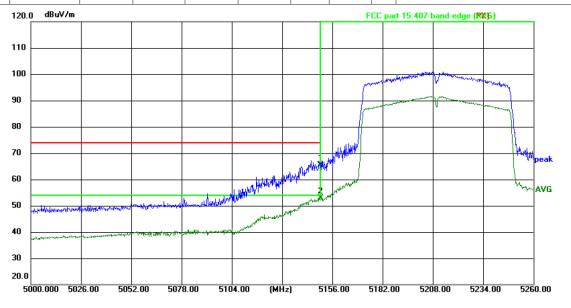
Site Polarization: Vertical Temperature: $24(^{\circ}\text{C})$ Limit: FCC part 15.407 band edge (PK) Power: DC 7.6 V Humidity: 52%

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.188	38.90	-8.40	30.50	54.00	-23.50	AVG	Р	
2	5358.719	50.22	-8.40	41.82	74.00	-32.18	peak	Р	

AC80-5210

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

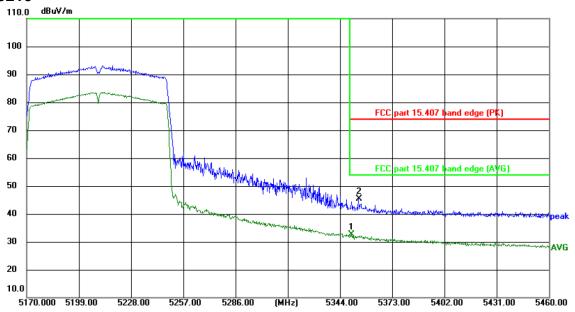
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	70.79	-4.07	66.72	74.00	-7.28	peak	Р	
2 *	5150.000	55.95	-4.07	51.88	54.00	-2.12	AVG	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

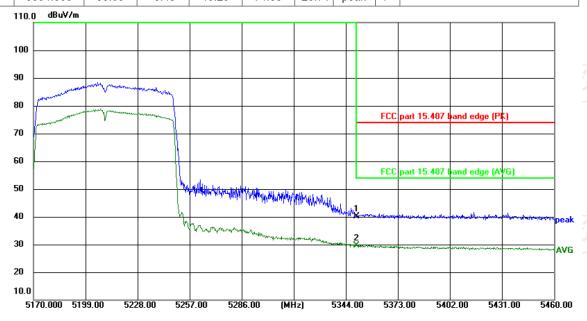
Temperature: 24(°C)

Humidity: 52 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

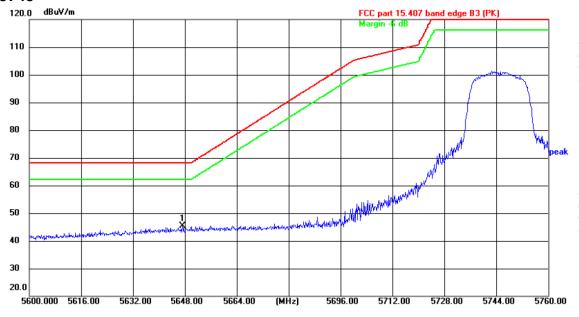
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
-	1	5150.000	69.33	-4.07	65.26	74.00	-8.74	peak	Р	
Г	2 *	5150.000	56.84	-4.07	52.77	54.00	-1.23	AVG	Р	



AC80-5210

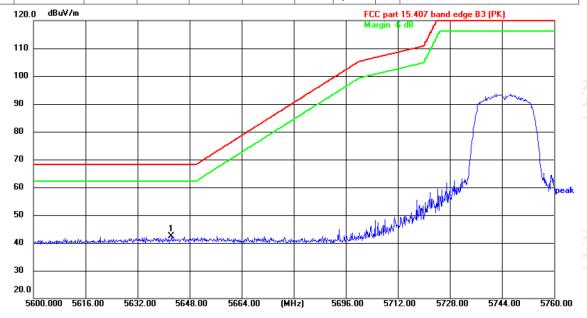
Site Polarization: Horizontal Temperature: 24(°C)
Limit: FCC part 15.407 band edge (PK) Power: DC 7.6 V Humidity: 52 %

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1 *	5350.597	40.95	-8.40	32.55	54.00	-21.45	AVG	Р	
Ī	2	5354.368	53.69	-8.40	45.29	74.00	-28.71	peak	Р	



Site Polarization: Vertical Temperature: $24(^{\circ}\text{C})$ Limit: FCC part 15.407 band edge (PK) Power: DC 7.6 V Humidity: 52%

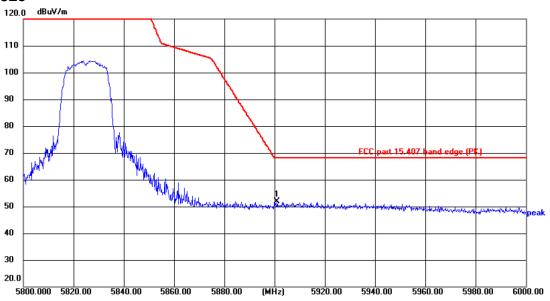
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	48.63	-8.40	40.23	74.00	-33.77	peak	Р	
2 *	5350.000	38.02	-8.40	29.62	54.00	-24.38	AVG	Р	



AC20-5745

Site Polarization: Horizontal Temperature: 24($^{\circ}$) Limit: FCC part 15.407 band edge B3 (PK) Power: DC 7.6 $^{\vee}$ Humidity: 52 $^{\circ}$

Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 5647.340 45.27 68.20 53.15 -7.88 -22.93 peak



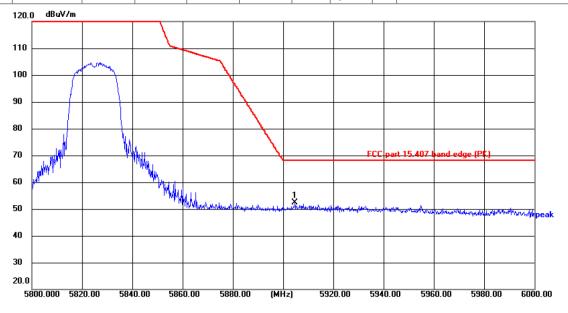
Site Polarization: Vertical Temperature: 24($^{\circ}$ C) Limit: FCC part 15.407 band edge B3 (PK) Power: DC 7.6 $^{\circ}$ V Humidity: 52 $^{\circ}$

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5642.500	50.22	-7.89	42.33	68.20	-25.87	peak	Р	

AC20-5825

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

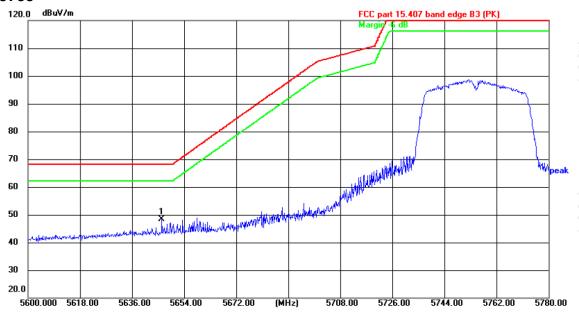
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5901 000	54 12	-2 31	51.81	68 20	-16 39	neak	Р	

Site: #3 3m Anechoic Chamber

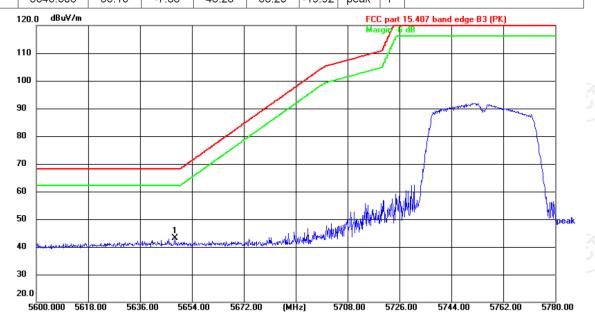
Polarization: Vertical

Temperature: 24(°C)

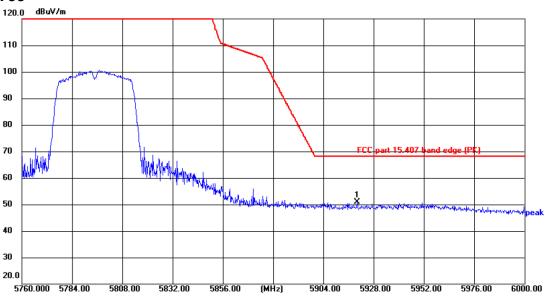
Humidity: 52 %


Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V


	раш								
No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5904.600	54.62	-2.30	52.32	68.20	-15.88	peak	Р	

AC40-5755

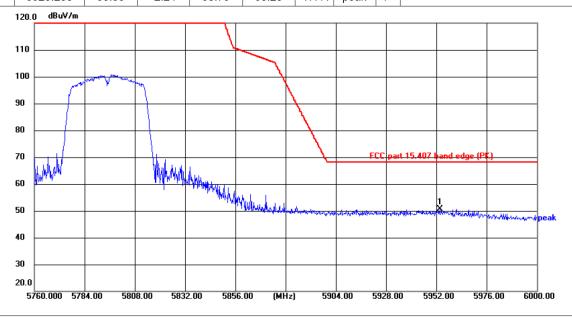

24(°C) Site Polarization: Horizontal Temperature: DC 7.6 V Limit: FCC part 15.407 band edge B3 (PK) Power: Humidity: 52 % Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (dBuV) (dB/m) (dBuV/m) (dBuV/m) (MHz) (dB) 1 * 5646.305 56.16 -7.88 48.28 68.20 -19.92

24(℃) Site Polarization: Vertical Temperature: DC 7.6 V Humidity: 52 % Limit: FCC part 15.407 band edge B3 (PK) Power: Frequency Reading Factor Level Limit Margin P/F No. Detector Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 5648.172 50.88 -7.87 43.01 68.20 -25.19 1 * Ρ

AC40-5795

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

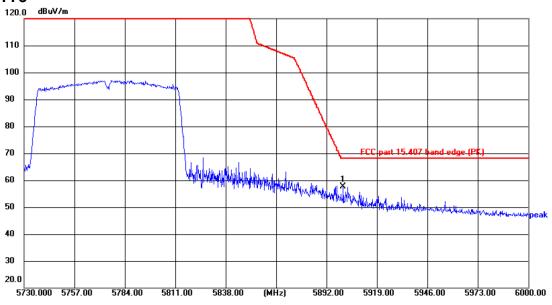
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5920.200	53.03	-2.24	50.79	68.20	-17.41	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24(°C)

Humidity: 52 %


Limit: FCC part 15.407 band edge (PK)

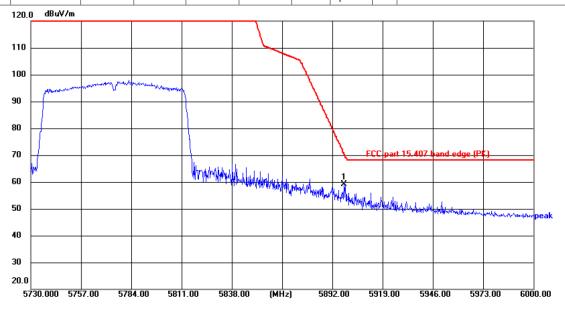
Power:DC 7.6 V

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	1 *	5953.800	52.68	-2.12	50.56	68.20	-17.64	peak	Р	

AC80-5775

Site: #3 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5901.045	59.91	-2.31	57.60	68.20	-10.60	peak	Р	

Site: #3 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24(℃)

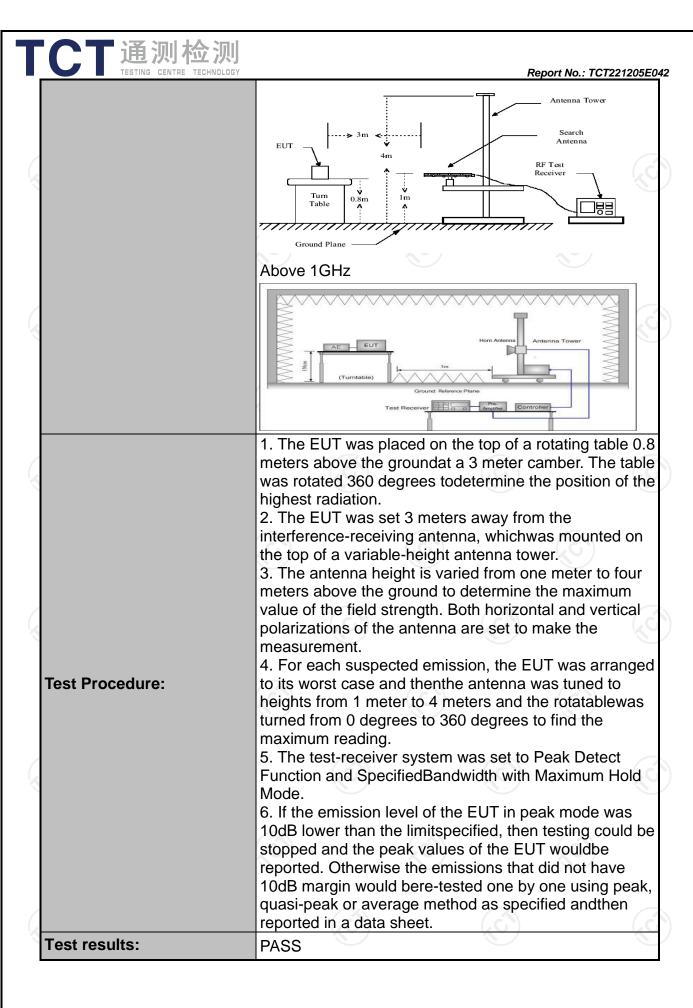
Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5898.210	61.37	-2.32	59.05	70.85	-11.80	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

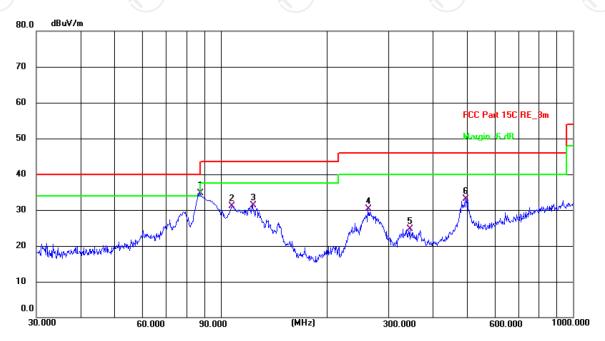

TESTING CENTRE TECHNOLOGY

Report No.: TCT221205E042

5.8. Unwanted Emissions

5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	ection 15	.407 & 1	5.209 & 15.205				
Test Method:	KDB 789033	D02 v02r	01	(6)	Re				
Frequency Range:	9kHz to 40G	Hz							
Measurement Distance:	3 m								
Antenna Polarization:	Horizontal &	Vertical							
Operation mode:	Transmitting	mode with	n modulat	ion					
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz	Detector Quasi-peak Quasi-peak Quasi-peak	RBW 200Hz 9kHz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value				
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value				
Limit:	per FCC Par general field below table, In restricted Frequency 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960	bands:	Detection Pear AVC Field Strengt (microvolts/m) 2400/F(KHz) 24000/F(KHz) 30 100 150 200	etor k G h neter)	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 30 3				
	In un-restrict	ed bands:	68.2dBu	V/m					
In un-restricted bands: 68.2dBuV/m For radiated emissions below 30MHz Test setup: Test setup:									



5.8.2. Test Data

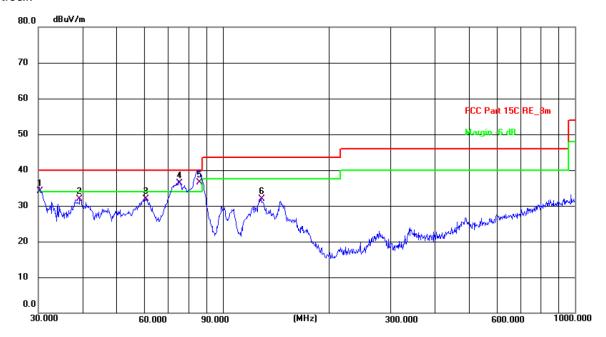
Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site: #1 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.7(C) Humidity: 49 %

Limit: FCC Part 15C RE_3m


Power: DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	87.4176	26.13	8.62	34.75	40.00	-5.25	QP	Р	
2	107.5100	20.53	10.52	31.05	43.50	-12.45	QP	Р	
3	123.2654	19.58	11.77	31.35	43.50	-12.15	QP	Р	
4	261.9752	17.91	12.42	30.33	46.00	-15.67	QP	Р	
5	344.3855	10.08	14.63	24.71	46.00	-21.29	QP	Р	
6	494.1984	14.82	18.36	33.18	46.00	-12.82	QP	Р	

Vertical:

Site: #1 3m Anechoic Chamber Polarization: Vertical Temperature: 24.7(C) Humidity: 49 %

Limit: FCC Part 15C RE_3m Power: DC 7.6 V

			_							
١	1 0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
•	1 !	30.2111	21.69	12.43	34.12	40.00	-5.88	QP	Р	
	2	39.2991	18.32	13.66	31.98	40.00	-8.02	QP	Р	
	3	60.4919	19.73	12.12	31.85	40.00	-8.15	QP	Р	
4	4 !	75.1822	26.42	9.83	36.25	40.00	-3.75	QP	Р	
	5 *	85.5977	27.83	8.67	36.50	40.00	-3.50	QP	Р	
	6	128.5630	19.89	12.05	31.94	43.50	-11.56	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Highest channel and 802.11a) was submitted only.
- 3.Measurement (dBμV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			N	/lodulation 1	ype: Band	1			
					5180MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		(/	((3.2,)	(dBµV/m)	(dBµV/m)			
10360	Н	38.25		8.02	46.27		68.2		-21.93
15540	Н	38.69		9.87	48.56		74	54	-5.44
	H		-40			(C))		(, C)	
10360	V	38.14		8.02	40.40		68.2	1	00.04
15540	V	38.37		9.87	46.16 48.24		74	54	-22.04 -5.76
13340	V			9.01	40.24				-5.76
20-7	V	12-0		11a CH40:	5200MHz		20-7		12-0
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.52		7.97	47.49		68.2		-20.71
15600	Н	38.61		9.83	48.44		74	54	-5.56
<u> </u>	Н								
(6)		((0))		N.C)		<u> </u>		160
10400	V	40.94		7.97	48.91		68.2		-19.29
15600	V	38.16		9.83	47.99		74	54	-6.01
	V		(X		/	<u></u>			
				11a CH48:	5240MHz				
Frequency	Ant. Pol.	Peak 	AV	Correctio	Emissio	n Level	Peak limit AV limit		Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.47		7.97	46.44		68.2		-21.76
15720	Н	37.19		9.83	47.02		74	54	-6.98
	Ŧ								
	(G)		(.G)			G		(G)	
10480	V	38.85		7.97	46.82	<u></u>	68.2		-21.38
15720	V	36.03		9.83	45.86		74	54	-8.14
	V								
				n(HT20) CH	136: 5180M	lHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	(H)	41.16	-120	8.02	49.18	<u> </u>	68.2	Ka)	-19.02
15540	Н	37.82		9.87	47.69		74	54	-6.31
	Н								
(K)			-		Ž(=		<u> </u>	
77.3\ T	V	42.08		8.02	50.1		68.2		-18.1
10360	V				00				
10360 15540	V	37.63		9.87	47.5		74	54	-6.5

Report No.: TCT221205E042 11n(HT20) CH40: 5200MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 Η 40.18 7.97 48.15 68.2 -20.05 15600 Н 38.47 9.83 48.3 74 54 -5.7 Н ---V 10400 40.3 ---7.97 48.27 68.2 ----19.93٧ 15600 37.58 9.83 47.41 74 54 -6.5911n(HT20) CH48: 5240MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 10480 41.32 Н 7.97 49.29 68.2 -18.91 15720 Н 39.88 9.83 74 -4.29 49.71 54 Η ---٧ 10480 40.41 7.97 48.38 68.2 -19.8215720 39.63 9.83 ٧ ---49.46 ---74 54 -4.54٧ -------11n(HT40) CH38: 5190MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak $(dB\mu V/m)$ $(dB\mu V/m)$ 10380 Η 39.06 7.75 46.81 68.2 -21.39 15570 Η 37.25 ---9.87 47.12 ---74 54 -6.88Η 10380 ٧ 40.58 7.75 68.2 48.33 ----19.87V 15570 37.91 9.87 47.78 74 54 -6.22 ------/---------11n(HT40) CH46: 5230MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 Н 41.03 7.97 49 68.2 -19.2 Н 38.72 15690 9.83 48.55 74 54 -5.45 Н -4-1--------------4.1 ---10460 ٧ 41.47 49.44 7.97 68.2 -18.76 15690 ٧ 38.59 ---9.83 48.42 74 54 -5.58 ٧

Report No.: TCT221205E042 11ac(VHT20) CH36: 5180MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10360 Η 40.84 8.02 48.86 68.2 -19.34 15540 Н 37.06 9.87 -7.07 46.93 74 54 Н ------V 38.28 10360 ---8.02 68.2 ----21.9 46.3 15540 ٧ 39.63 9.87 49.5 74 54 -4.5 11ac(VHT20) CH40: 5200MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) (dBµV) (dBµV) (dB/m) Peak AV (dBµV/m) (dBµV/m) 10400 7.97 Н 39.18 47.15 68.2 -21.05 15600 Н 38.9 9.83 74 -5.27 48.73 54 Η ------٧ 10400 39.63 7.97 47.6 68.2 -20.615600 38.06 9.83 ٧ ---47.89 ---74 54 -6.11٧ -------11ac(VHT20) CH48:5240 Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10480 Η 37.83 7.97 45.8 68.2 -22.415720 Η 37.51 ---9.83 47.34 ---74 54 -6.66Η 10480 ٧ 38.93 7.97 68.2 46.9 ----21.3 15720 V 38.27 9.83 48.1 74 54 -5.9 ------/------11ac(VHT40) CH38:5190 Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Н 40.36 7.75 68.2 -20.09 48.11 Н 15570 39.81 9.87 49.68 74 54 -4.32Н -4-1--------------4.1 ---10380 ٧ 38.93 7.75 68.2 46.68 -21.52 15570 ٧ 38.45 ---9.87 48.32 74 54 -5.68 ٧

	TESTING CENTRE TECHNOLOGY Report No.: TCT221205E042								
			1	1ac(VHT40) CH46:523	30			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Н	38.32		7.97	46.29		68.2		-21.91
15690	Н	38.73		9.83	48.56		74	54	-5.44
	Н								
10460	V	39.96	+50	7.97	47.93	G`)	68.2	(,G-)	-20.27
15690	V	37.12		9.83	46.95	<u> </u>	74	54	-7.05
	V								
			1	1ac(VHT80) CH42:521	0			
Frequency	Ant. Pol.	I reading I		AV Correctio reading n Factor		Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10420	H	41.52		7.96	49.48		68.2	(-4)	-18.72
15630	H	39.84	-100	9.84	49.68	9)	74	54	-4.32
	Н								
10420	V	41.63		7.96	49.59		68.2		-18.61
15630	V	39.08		9.84	48.92		74	54	-5.08
	1.7								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	Nodulation 7	Гуре: Band	3			
				11a CH149): 5745MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	37.48		8.09	45.57		74	54	-8.43
17235	H	37.05		9.67	46.72		68.2		-21.48
	H		+0		(()	
11490	V	40.94		8.09	49.03		74	54	-4.97
17235	V	38.73		9.67	48.4		68.2		-19.8
	V	((,c	<u> </u>				(
				11a CH157	: 5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction n Factor (dB/m)	Emission Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
					(dBµV/m)	(dBµV/m)			
11570	Ή	39.63		8.10	47.73		74	54	-6.27
17355	Н	38.51		9.65	48.16		68.2		-20.04
	Η				·		<u></u>		<i></i> X
(C)		(C)		KC) `)		(YQ.)		KO
11570	V	38.47		8.10	46.57		74	54	-7.43
17355	V	39.8		9.65	49.45		68.2		-18.75
	V					~~		<u> </u>	
				11a CH165	i: 5825MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)		(dB)
11650	Н	37.03		8.12	45.15		74	54	-8.85
17475	Н	36.57		9.62	46.19		68.2		-22.01
	Н								
•		•					•		
11650	V	38.96	(0)	8.12	47.08)	74	54	-6.92
17475	V	38.18		9.62	47.8		68.2		-20.4
	V								
			11r	(HT20) CH	149: 5745N	ЛHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	(H)	38.36	- 1 20	8.09	46.45	C)}	74	54	-7.55
17235	#	38.27		9.67	47.94	<u></u>	68.2		-20.26
	Н								
11490	V	39.56		8.09	47.65		74	54	-6.35
17235	V	37.88		9.67	47.55		68.2		-20.65
	V								

			11n	(HT20) CH	157: 5785N	ИНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		(- - /	(- - /	(* ')	(dBµV/m)	(dBµV/m)			
11570	Н	38.39		8.10	46.49		74	54	-7.51
17355	Н	39.07		9.65	48.72		68.2		-19.48
	Н							<u></u>	
	(G)		(.G)			G')		(G)	
11570	>	38.93		8.10	47.03) 	74	54	-6.97
17355	V	39.14		9.65	48.79		68.2		-19.41
	V	1							
			11n	(HT20) CH	165: 5825N	ИHz			
Frequency	Ant. Pol.	Peak	AV	Correctio	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	K H	38.68	760	8.12	46.8	<u> </u>	74	54	-7.2
17475	Н	37.03		9.62	46.65		68.2		-21.55
	Н								
					Ž\			<u> </u>	
11650	V	38.29		8.12	46.41		74	54	-7.59
17475	V	39.46		9.62	49.08		68.2		-19.12
	V								
			11n	(HT40) CH	151: 5755N	ИHz			
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak	AV (dDu)//m)	(dBµV/m)	(dBµV/m)	(dB)
44540		40.0		0.00	(dBµV/m)	, , ,	/ AD.	- 4	4 . (1)
11510	H	40.6		8.09	48.69		74	54	-5.31
17265	Н	37.11		9.67	46.78		68.2		-21.42
	Н								
11510	V	41.05		9.00	E0.04		74	EA	2.06
17265	V	41.95 38.29	<u> </u>	8.09 9.67	50.04		74 69.2	54	-3.96
	V	36.29		9.07	47.96		68.2		-20.24
	V			/UT40) CU	159: 5795N				
		Dook	AV	Correctio					
Frequency		Peak reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	38.83		8.10	46.93		74	54	-7.07
17385	(H)	38.47	-(20)	9.65	48.12	<u>(,)</u>	68.2	(\mathcal{A})	-20.08
						<u></u>			
11590	V	38.41		8.10	46.51		74	54	-7.49
17385	V	37.55		9.65	47.2		68.2		-21
	V	7		0	/				77

Report No.: TCT221205E042 11ac(VHT20) CH149: 5745MHz ΑV Correctio Peak **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11490 Η 40.61 8.09 48.7 74 54 -5.3 17235 Н 37.73 9.67 47.4 -20.8 68.2 Н ------V 11490 40.19 ---8.09 48.28 -5.7274 54 17235 ٧ 38.73 9.67 48.4 68.2 -19.8 11ac(VHT20) CH157: 5785MHz ΑV Peak Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) (dBµV) (dBµV) (dB/m) Peak AV $(dB\mu V/m) \mid (dB\mu V/m)$ 11570 Н 38.04 8.10 46.14 74 54 -7.86 17355 Н 36.28 9.65 68.2 45.93 -22.27 Η ---٧ 11570 37.92 8.10 46.02 74 54 -7.9817355 38.69 9.65 ٧ ---48.34 ---68.2 ----19.86٧ ---11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 11650 Η 40.46 8.12 48.58 -5.4274 54 17475 Η 38.01 ---9.62 47.63 ---68.2 ----20.57Η 11650 ٧ 38.85 8.12 46.97 ---74 54 -7.03 17475 V 40.26 9.62 49.88 68.2 -18.32---------/------------11ac(VHT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11510 Н 39.14 8.09 47.23 74 54 -6.7717265 Н 37.93 9.67 47.6 68.2 -20.6 Н -4-1-----------------11510 ٧ 40.69 8.09 48.78 -5.22 74 54 17265 ٧ 36.03 ---9.67 45.7 68.2 ----22.5 ٧

	TESTING CENTRE TECHNOLOGY Report No.: TCT221205E042								
			11ac	(VHT40) C	H159: 5795	MHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(ασμν/ιιι)	(dB)
11590	Н	40.47		8.10	48.57		74	54	-5.43
17385	Н	37.83		9.65	47.48		68.2		-20.72
	Н								
11590	V	39.61	40	8.10	47.71	<u>()</u>	74	54	-6.29
17385	V	38.35		9.65	48	/	68.2		-20.2
	V								
			11ac	(VHT80) C	H155: 5775	MHz			
Frequency	Ant. Pol.	i readind i re		AV Correctio reading n Factor		Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11550	Н	40.87		8.09	48.96		74	54	-5.04
17325	H	38.26		9.66	47.92)	68.2	(32)	-20.28
	Н								
11550	V	41.58		8.09	49.67		74	54	-4.33
17325	V	38.99		9.66	48.65		68.2		-19.55
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

FCC Part15 Section 15.407(g) &Part2 J Section 2.1055					
ANSI C63.10: 2013					
The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.					
Spectrum Analyzer EUT AC/DC Power supply					
The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. be Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.					
PASS					
Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.					

Report No.: TCT221205E042

Test plots as follows:

Test mode:	802.11ac(HT20) Fi	Frequency(MHz):			5180	
Temperature (°C)	Voltage(VDC)	Measurement		Delta		Result	
Temperature (C)	voltage(vDC)	Frequency(MHz)		Frequency(Hz)		Nesult	
45		5180		0		PASS	
35		5179.98		-20000		PASS	
25	7.6V	5179.98		-20000		PASS	
15		5180		0		PASS	
5		5180		0		PASS	
0		5180.02		20000		PASS	
	6.84V	5179.98		-20000		PASS	
25	7.6V	5180		0.0		PASS	
	8.36V	5179.98		-20000		PASS	

Test mode:	802.11ac	(HT20) Freque	ency(MHz):	5200
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5200	0	PASS
35		5199.98	-20000	PASS
25	7.6V	5200.02	20000	PASS
15	7.6V	5199.98	-20000	PASS
5		5199.98	-20000	PASS
0		5200.02	20000	PASS
	6.84V	5199.98	-20000	PASS
25	7.6V	5200.02	20000	PASS
	8.36V	5200.02	20000	PASS

Test mode:	802.11ac(HT20)	Frequency(MHz)		5240	
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)		Delta Frequency(H	lz) Result	
45	(_C C)	524	0	0 0	PASS	
35		524	0	0	PASS	
25	7.6V	5239.98		-20000	PASS	
15	7.60	5239.98		-20000	PASS	
5		5239.	.98	-20000	PASS	
0		5240.	.02	20000	PASS	
	6.84V	524	0	0	PASS	
25	7.6V	5239.	.98	-20000	PASS	
	8.36V	524	0	0	PASS	

Test mode:	802.11ac(HT20)	Frequency(MHz):			5745	
Temperature (°C)	Voltage(VDC)	Measur	ement	Delta		Result	
Temperature (C)	voltage(vDC)	Frequenc	cy(MHz)	Frequency(Hz)		Resuit	
45		5745	5.02	20000		PASS	
35		5745		0		PASS	
25	7.6V	5744	1.98	-20000		PASS	
15	7.00	5744	1.98	-20000		PASS	
5		574	45	0		PASS	
0		5745	5.02	20000		PASS	
	6.84V	574	45	0		PASS	
25	7.6V	5744	.98	-20000		PASS	
(C_{\circ})	8.36V	5744	.98	-20000		PASS	(

Test mode:	802.11ac(HT20) Freque	ency(MHz):	5785	
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result	
45		5784.98	-20000	PASS	
35		5785	0	PASS	
25	7.6V	5785	0	PASS	
15	7.00	5785	0	PASS	
5		5785	0	PASS	
0		5785.02	20000	PASS	
(,c)	6.84V	5785	0	PASS	
25	7.6V	5785	0	PASS	
	8.36V	5785.02	20000	PASS	

Test mode:	802.11ac	802.11ac(HT20) Freque		5825
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz	Delta r) Frequency(Hz)	Result
45		5824.98	-20000	PASS
35		5825		PASS
25	7.6V	5825.02	20000	PASS
15	7.0V	5825	0	PASS
5		5825.02	20000	PASS
0		5825	0	PASS
	6.84V	5825	0	PASS
25	7.6V	5825	0	PASS
	8.36V	5825	0	PASS

Test mode:	802.11ac	(HT40)	Freque	ency(MHz):	5190		
Temperature (°C)	Voltage(VDC)	Measu	Measurement		Delta		
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)		Result	
45		51	90	0		PASS	
35		51	90	0		PASS	
25	7.6V	519	0.04	40000		PASS	
15	7.00	51	90	0		PASS	
5		519	0.04	40000		PASS	
0		51	90	0		PASS	
	6.84V	51	90	0		PASS	
25	7.6V	518	9.96	-40000		PASS	
$(C_{\mathcal{O}})$	8.36V	51	90	0,0		PASS	(, O

Test mode:	802.11ac(HT40) Freque	ency(MHz):	5230
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5230	0	PASS
35		5230	0	PASS
25	7.6V	5230	0	PASS
15	7.00	5230	0	PASS
5		5230	0	PASS
0		5230	0	PASS
	6.84V		0	PASS
25	7.6V	5229.96	-40000	PASS
	8.36V	5230.04	40000	PASS

Test mode:	802.11ac(802.11ac(HT40) Frequency(MHz):		5755
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5754.96	-40000	PASS
35		5755	0	PASS
25	7.6V	5755	0	PASS
15	7.0 V	5755	0	PASS
5		5755	0	PASS
0		5754.96	-40000	PASS
	6.84V	5755	0	PASS
25	7.6V	5754.96	-40000	PASS
	8.36V	5755.04	40000	PASS

Test mode:	802.11ac	(HT40)	Freque	ency(MHz):	5795		
Temperature (°C)	Temperature (°C) Voltage(VDC)		Measurement			Result	
remperature (C)	voltage(vDC)	Frequency(MHz)		Frequency(Hz)			
45	(.c.)	5795.	04	40000		PASS	
35		5794.	96	-40000		PASS	
25	7.6\/	5794.	96	-40000		PASS	
15	7.6V	579	5	0		PASS	
5		579	5	0		PASS	
0		5795.	04	40000		PASS	
	6.84V	579	5	0		PASS	
25	7.6V	5794.	96	-40000		PASS	7
(C)	8.36V	579	5	0.0)	PASS	O_{s}

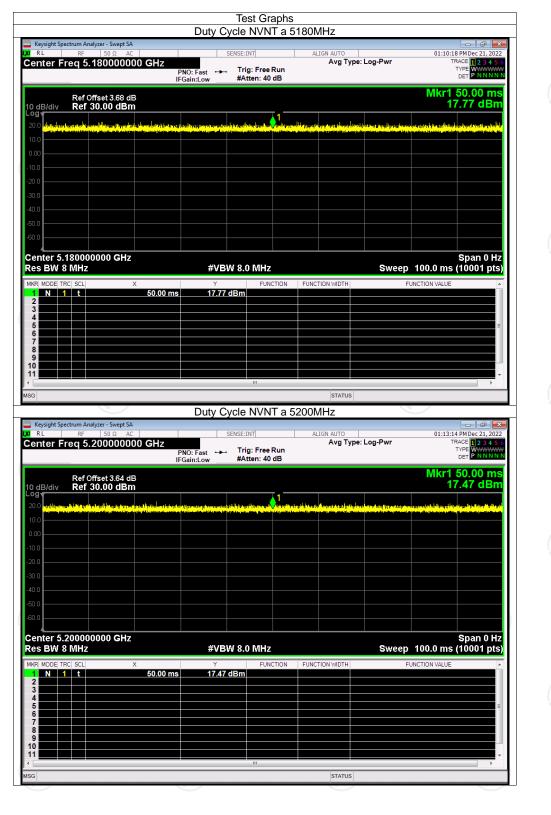
Test mode:	802.11ad	c(VHT80)	Freque	ency(MHz):	5210
Temperature (°C)	Voltage(VDC)	1	rement ncy(MHz)	Delta Frequency(l	H _Z) Result
45			0	PASS	
35			210	0	PASS
25	7.6V	52	210	0	PASS
15	7.00	52	210	0	PASS
5		52	210	0	PASS
0		52	210	0	PASS
$(\mathcal{S}_{\mathcal{S}}}}}}}}}}$	6.84V		210	0	PASS
25	7.6V	52	210	0	PASS
	8.36V	52	210	0	PASS

Test mode:	802.11ac(\	/HT80)	Freque	ency(MHz):		5775	
Temperature (°C)	Voltage(VDC)	Measu Frequen				Result	
45	(c)	57	<i>,</i>	0	\ /	PASS	
35		57	75	0		PASS	
25	7.6V	57	75	0		PASS	
15	7.0V	57	75	0		PASS	
5		57	75	0		PASS	
0		57	75	0		PASS	
	6.84V	57	75	0		PASS	
25	7.6V	57	75	0		PASS	
	8.36V	57	75	0		PASS	

Report No.: TCT221205E042

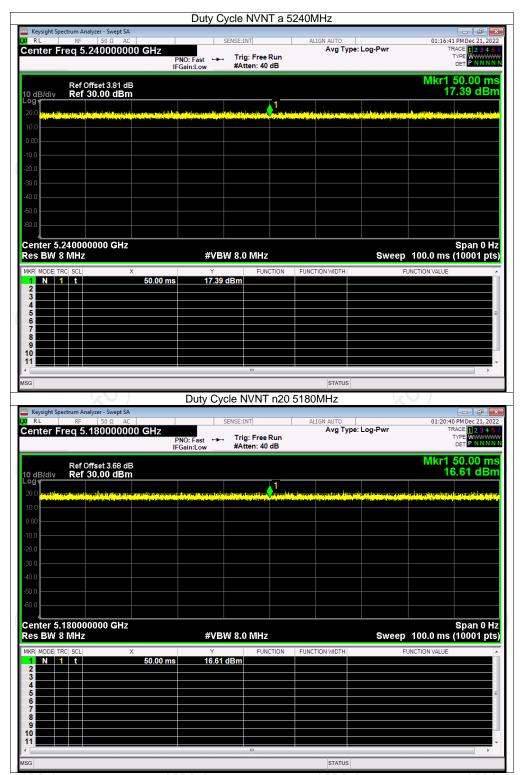
Appendix A: Test Result of Conducted Test

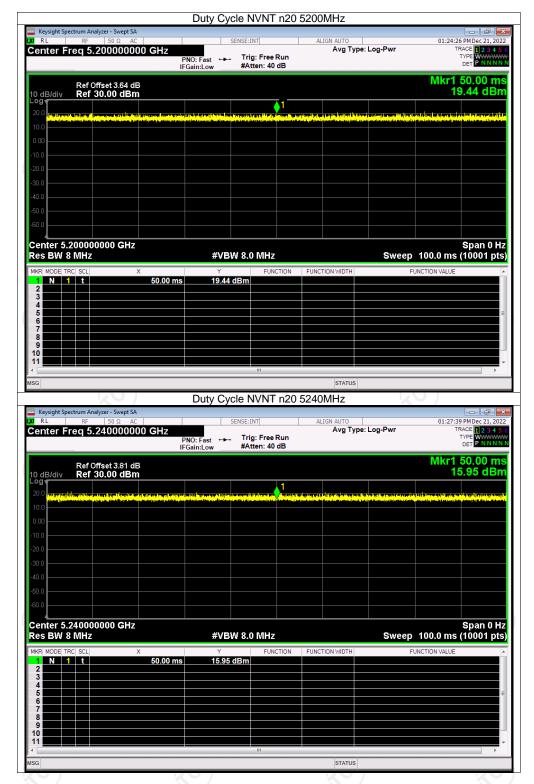
Duty Cycle

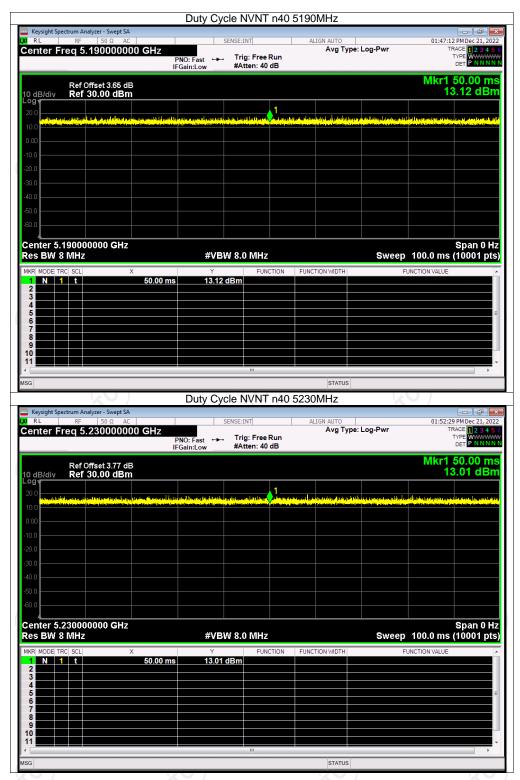

Condition Mode Frequency Duty Cycle									
Condition	Mode	(MHz)	(%)						
NVNT	а	5180	100						
NVNT	а	5200	100						
NVNT	a	5240	100						
NVNT	n20	5180	100						
NVNT	n20	5200	100						
NVNT	n20	5240	100						
NVNT	n40	5190	100						
NVNT	n40	5230	100						
NVNT	ac20	5180	100						
NVNT	ac20	5200	100						
NVNT	ac20	5240	100						
NVNT	ac40	5190	100						
NVNT	ac40	5230	100						
NVNT	ac80	5210	100						
NVNT	а	5745	100						
NVNT	а	5785	100						
NVNT	а	5825	100						
NVNT	n20	5745	100						
NVNT	n20	5785	100						
NVNT	n20	5825	100						
NVNT	n40	5755	100						
NVNT	n40	5795	100						
NVNT	ac20	5745	100						
NVNT	ac20	5785	100						
NVNT	ac20	5825	100						
NVNT	ac40	5755	100						
NVNT	ac40	5795	100						
NVNT	ac80	5775	100						

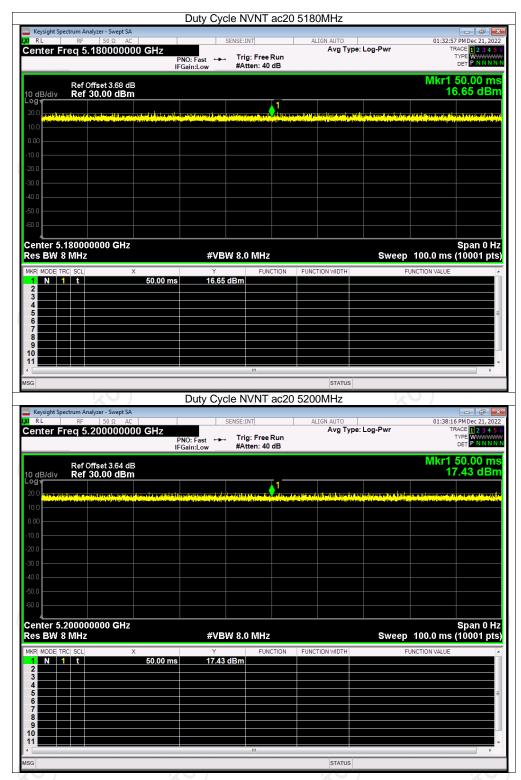

Page 50 of 126

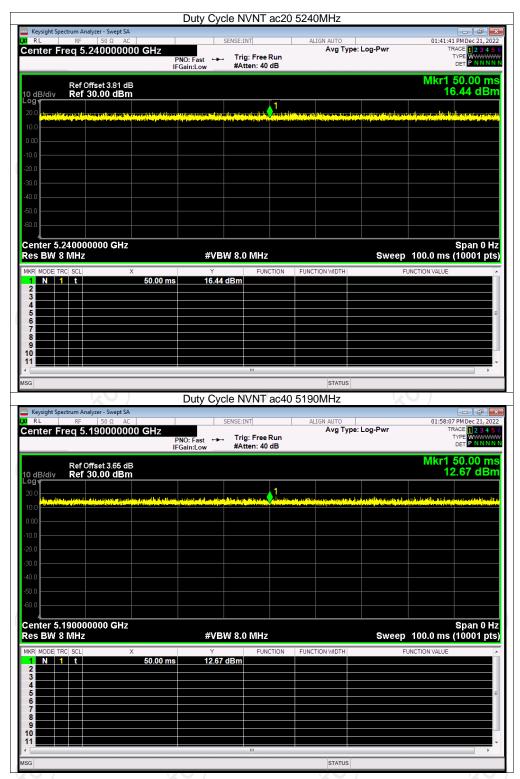
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

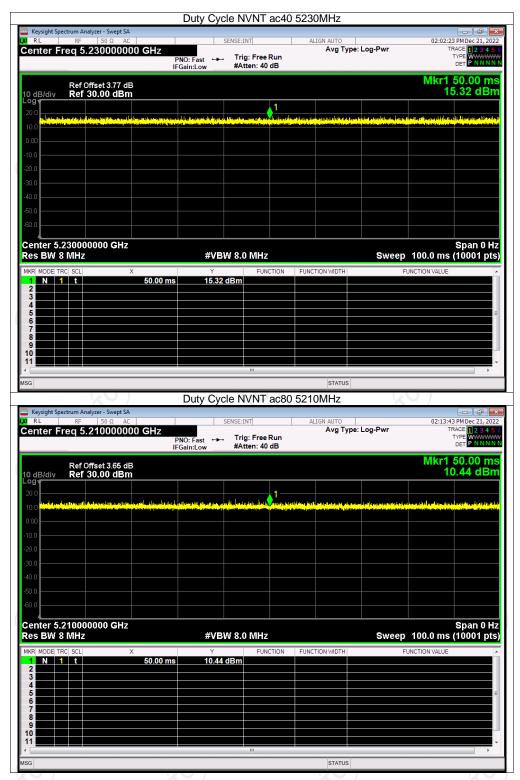


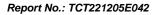


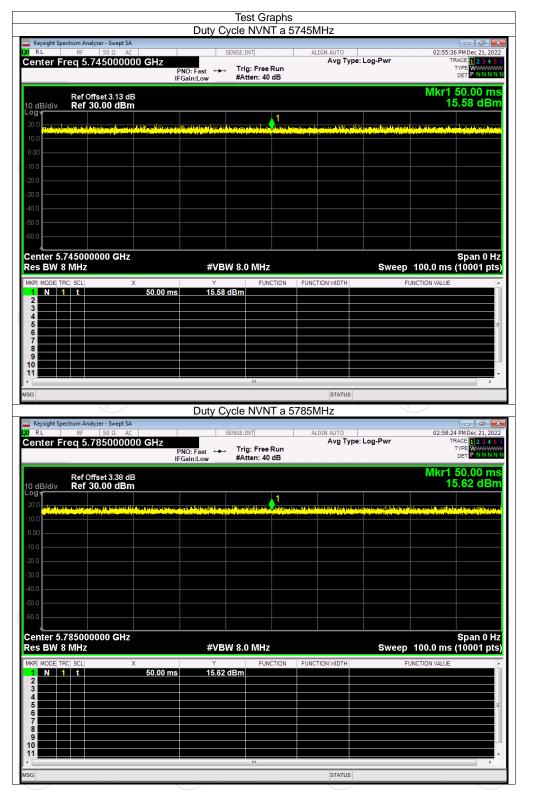


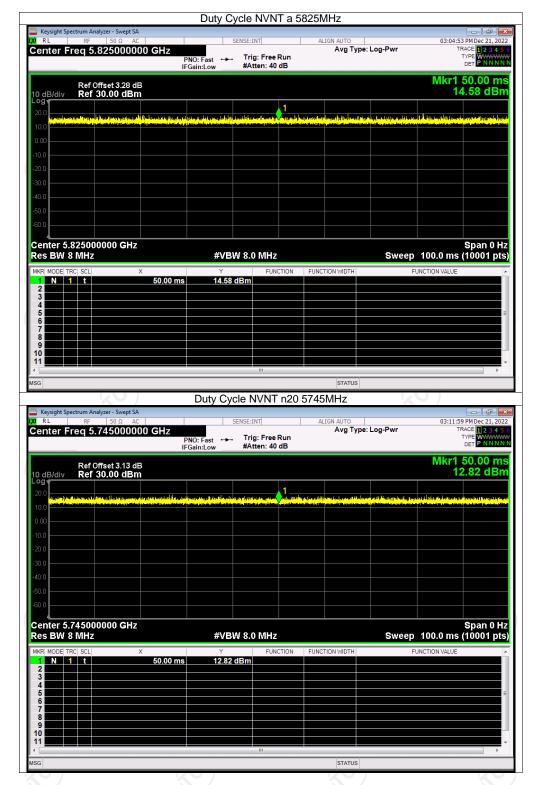


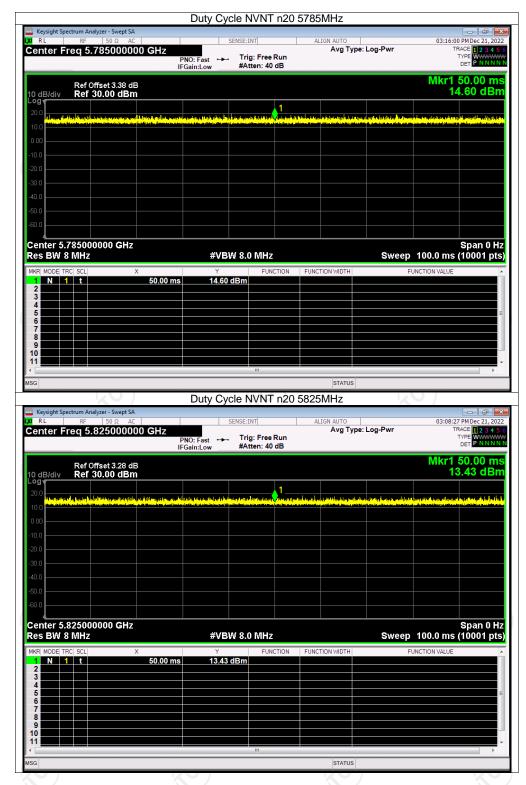


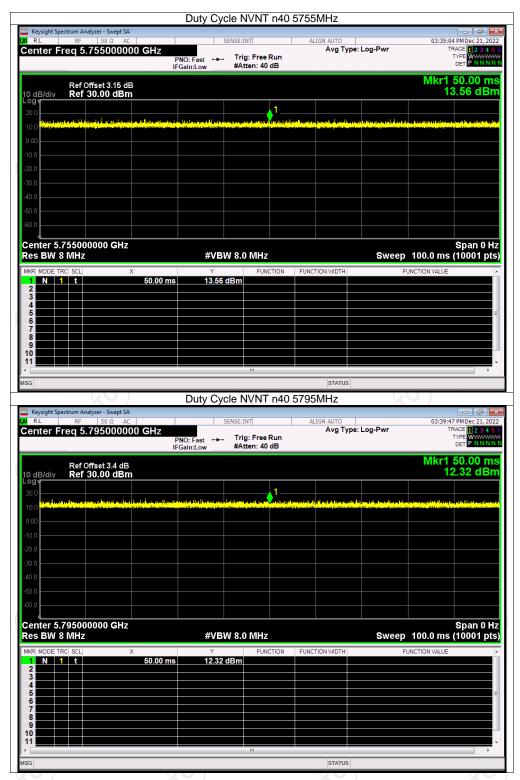


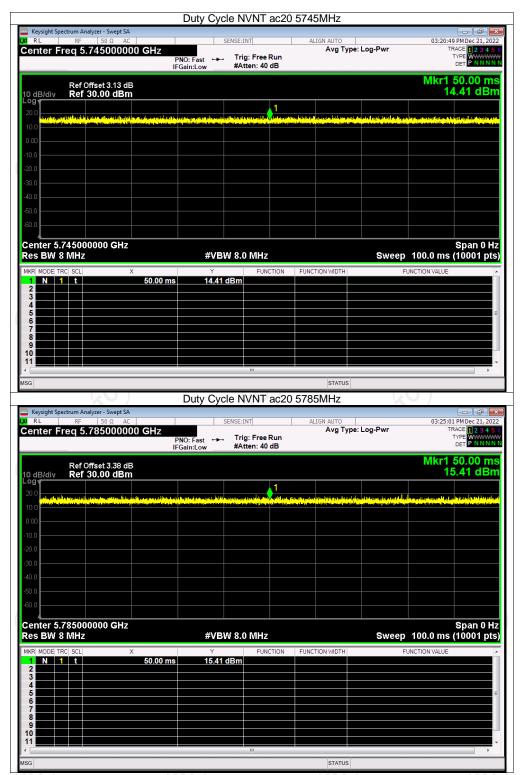


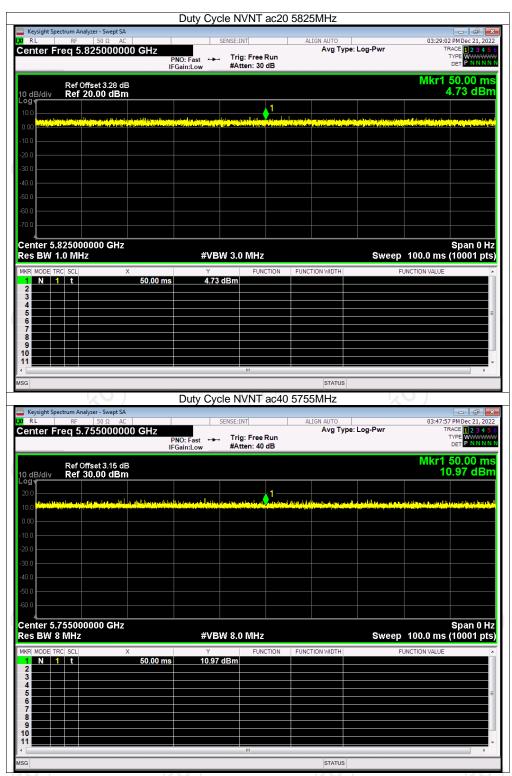


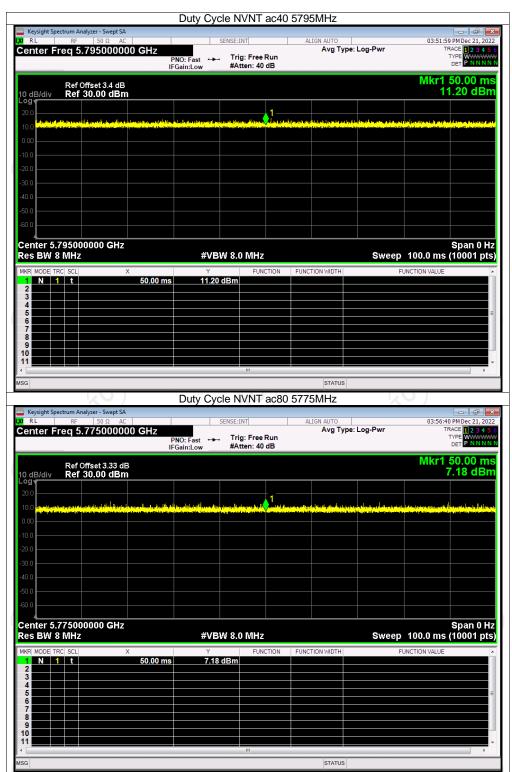


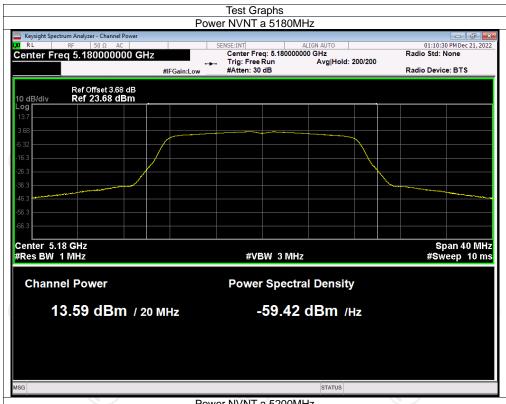


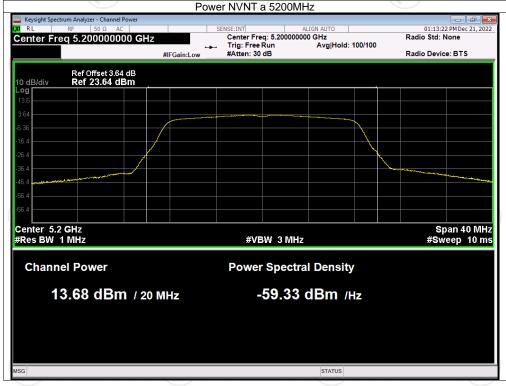


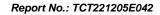









Report No.: TCT221205E042


Maximum Conducted Output Power

Maximum Conducted Output Power									
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict				
NVNT	а	5180	13.59	24	Pass				
NVNT	а	5200	13.68	24	Pass				
NVNT	а	5240	13.76	24	Pass				
NVNT	n20	5180	13.50	24	Pass				
NVNT	n20	5200	12.81	24	Pass				
NVNT	n20	5240	13.00	24	Pass				
NVNT	n40	5190	13.01	24	Pass				
NVNT	n40	5230	13.14	24	Pass				
NVNT	ac20	5180	12.85	24	Pass				
NVNT	ac20	5200	12.94	24	Pass				
NVNT	ac20	5240	13.13	24	Pass				
NVNT	ac40	5190	12.75	24	Pass				
NVNT	ac40	5230	12.99	24	Pass				
NVNT	ac80	5210	12.95	24	Pass				
NVNT	а	5745	11.18	30	Pass				
NVNT	а	5785	11.29	30	Pass				
NVNT	а	5825	10.12	30	Pass				
NVNT	n20	5745	10.38	30	Pass				
NVNT	n20	5785	10.56	30	Pass				
NVNT	n20	5825	9.94	30	Pass				
NVNT	n40	5755	10.42	30	Pass				
NVNT	n40	5795	10.57	30	Pass				
NVNT	ac20	5745	10.36	30	Pass				
NVNT	ac20	5785	10.53	30	Pass				
NVNT	ac20	5825	10.05	30	Pass				
NVNT	ac40	5755	10.16	30	Pass				
NVNT	ac40	5795	10.56	30	Pass				
NVNT	ac80	5775	10.38	30	Pass				

