

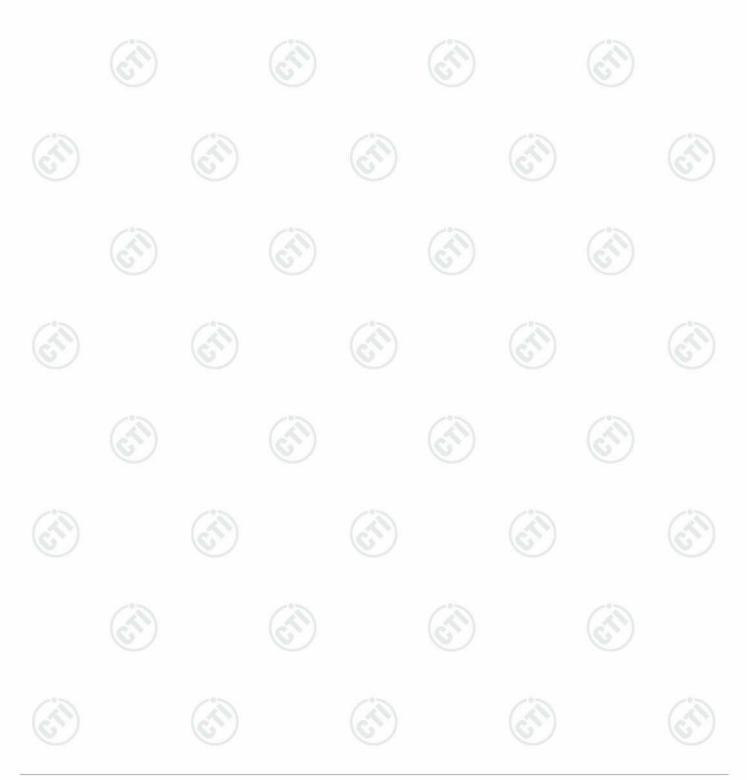
Page 1 of 80

Product Razor Silencer Bluetooth Trade mark Walker's GWP-SLCR-BT, GWP-SLCRFDECMO-BT, Model/Type reference GWP-SLCRXXXXX-BT - (Where X= 0-9 or A-Z) N/A **Serial Number** 2 EED32K00238702 **Report Number** FCC ID **MV3-GWPSLCRBT** Date of Issue Sep. 20, 2018 : **Test Standards** 47 CFR Part 15 Subpart C Test result PASS

Prepared for: Country Mate Technology Ltd 5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385 Tom-chen Tested By: Compiled by: Naro, Xm Tom chen (Test Project) Ware Xin (Project Engineer) Kelm Jang Reviewed by: proved k Sheek Luo (Lab supervisor) Kevin yang (Reviewer) Date: Sep. 20, 2018 Check No.:3096346882 Report Seal

Hotline: 400-6788-333



2 Version

Page 2 of 80

Version No.	Date	G	Description	9
00	Sep. 20, 2018		Original	
			1	
		(28)		

3 Test Summary

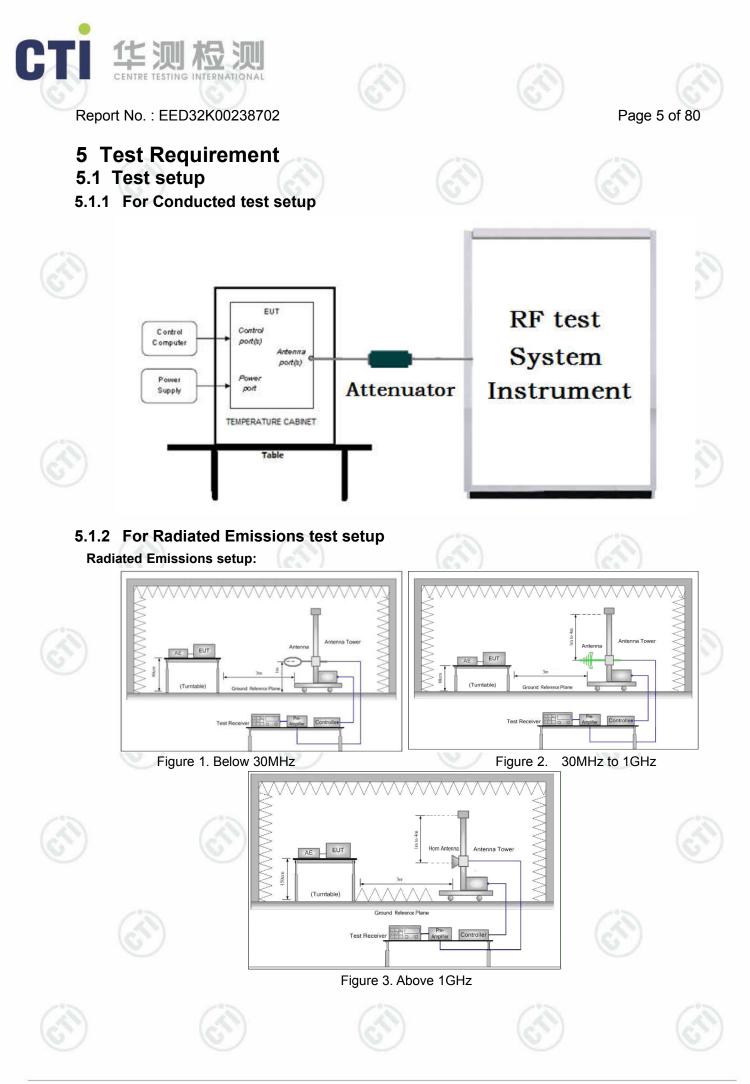
Test Item	Test Requirement	Test method	Result
rest item		Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

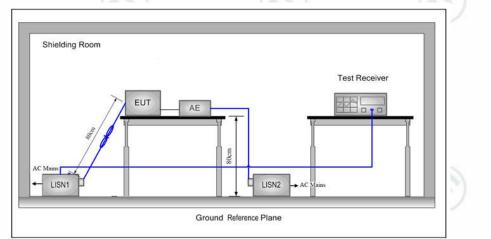
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Model No.:GWP-SLCR-BT, GWP-SLCRFDECMO-BT, GWP-SLCRXXXXX-BT - (Where X= 0-9 or A-Z) Only the left Ear buds was tested, the model is GWP-SLCR-BT, since Their electrical circuit design, layout, components used and internal wiring are identical, Only the Color and enclosure is different.



	Content			
1 0	COVER PAGE			1
2 \	/ERSION	<u> </u>	<u> </u>	2
3 1	IEST SUMMARY			3
4 (
	IEST REQUIREMENT			
	 5.1 TEST SETUP 5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup 5.1.3 For Conducted Emissions test setup 5.2 TEST ENVIRONMENT			5 5 6
	5.3 TEST CONDITION			
6 (GENERAL INFORMATION			7
	 6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION OF EUT)		7 7 8 8 8 8 8 8 9
7 E	EQUIPMENT LIST	<u> </u>		10
8 F	RADIO TECHNICAL REQUIREMENTS SPECIFICATION.			12
	Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequ Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental free Appendix L): Radiated Spurious Emissions	uence quency (Radiated)	0	17 21 25 27 31 36 43 44 44 45 48
-	IOTOGRAPHS OF TEST SETUP			
	IOTOGRAPHS OF TEST SETUP			
PF	UTUGRAPHS OF EUT CONSTRUCTIONAL DETAILS			80



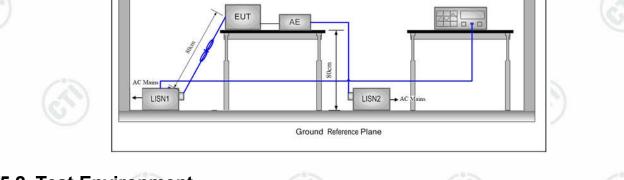
5.1.3 For Conducted Emissions test setup

5.2 Test Environment

Operating Environment:			
Temperature:	23.4 °C		
Humidity:	64 % RH		
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test Mode	Тх				
Test Mode	IX	Low(L) Middle(M) Hi		High(H)	
GFSK/π/4DQPSK/		Channel 1	Channel 40	Channel79	
8DPSK(DH1,DH3, DH5)	2402MHz ~2480 MHz	2402MHz	2441MHz	2480MHz	
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s)					


Test mode:

Pre-scan under all rate at Lowest channel 1

Mode	GFSK		
packets	1-DH1	1-DH3	1-DH5
Power(dBm)	-8.270	-7.890	-7.500

Mode		π/4DQPSK	
packets	2-DH1	2-DH3	2-DH5
Power(dBm)	-9.258	-8.674	-8.419
Mode		8DPSK	
packets	3-DH1	3-DH3	3-DH5
Power(dBm)	-9.478	-8.872	-8.417

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of π /4DQPSK, 3-DH5 packet the power is the worst case of 8DPSK.

Page 7 of 80

Report No. : EED32K00238702

6 General Information

6.1 Client Information

Applicant:	Country Mate Technology Ltd	
Address of Applicant:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong	
Manufacturer:	Country Mate Technology Ltd	
Address of Manufacturer:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong	6
Factory:	Concord Electronic (Huizhou) Ltd.	
Address of Factory:	21, Ping An Rd, Shuikou Street, Hui Cheng District, Huizhou City, Guangdong Province, China	

6.2 General Description of EUT

Product Name:	Razor Silencer Bluetooth				
	GWP-SLCR-BT, GWP-SLCRFDECMO-BT,				
Model No.(EUT):	GWP-SLCRXXXXXX-BT - (Where X= 0-9 or A-Z)				
Test Model No.:	GWP-SLCR-BT		65		
Trade mark:	Walker's		U		
EUT Supports Radios application:	BT4.2 BT Dual mode, 2402-2480MHz				
Power Supply:	Battery: 3.7V, 85mAh				
Sample Received Date:	Aug. 30, 2018	(e)			
Sample tested Date:	Aug. 30, 2018 to Sep. 17, 2018				

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	3.0+EDR	(C)
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Firmware version of the sample:	V0.5(manufacturer declare)	
Hardware version of the sample:	V0.3(manufacturer declare)	-0-
Test Power Grade:	N/A	
Test Software of EUT:	CSR BlueTest3(manufacturer declare)	6
Antenna Type:	PCB Antenna	
Antenna Gain:	0.8dBi	
Test Voltage:	DC 5V	
(63)		1

8 of 80

Page 8 of 80

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		-0-

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	ociated nent name	Manufacture	model	serial number	Supplied by	Туре
AE1	adapter	Shenzhen yiboyuan technology company	QC01	N/A	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

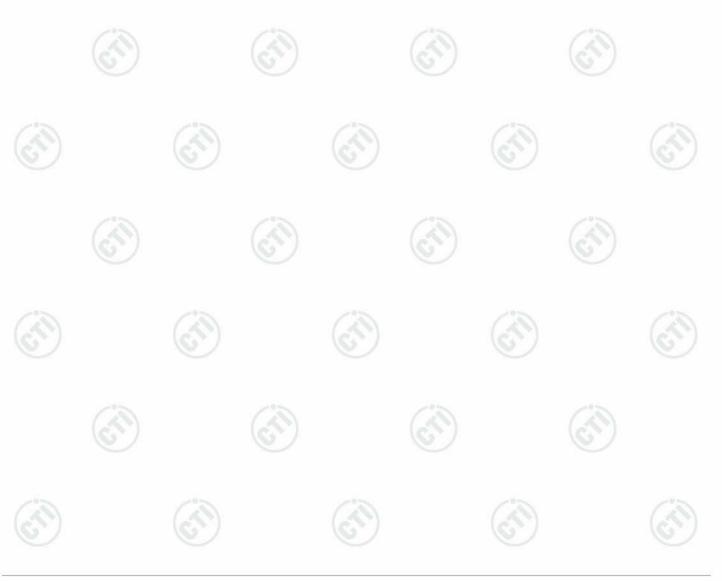
Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

6.7 Abnormalities from Standard Conditions None.

None.



6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

	5 (, ,	
No.	ltem	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.31dB (30MHz-1GHz)	
2	RF power, conducted	0.57dB (1GHz-18GHz)	
2	Dedicted Optimize emission test	4.5dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)	
	Conduction emission	3.6dB (9kHz to 150kHz)	
4	Conduction emission	3.2dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	2.8%	
7	DC power voltages	0.025%	

Page 10 of 80

Report No. : EED32K00238702

7 Equipment List

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019	
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019	
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-10-2018	01-09-2019	
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019	
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019	
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019	
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019	
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019	

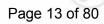
	Co	nducted distur	bance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019

Page 11 of 80

		Semi/full-anech	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment TRILOG	трк	SAC-3	<u> </u>	06-04-2016	06-03-2019
Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Double ridge horn antenna	A.H.SYSTEM S	SAS-574	6042	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEM S	PAP-1840-60	6041	06-05-2018	06-04-2021
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Multi device Controller	maturo	NCD/070/107 11112		01-10-2018	01-09-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002	$\underline{\circ}$	01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	$(\overline{\mathbf{S}})$	01-10-2018	01-09-2019
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019

8 Radio Technical Requirements Specification

Reference documents for testing:

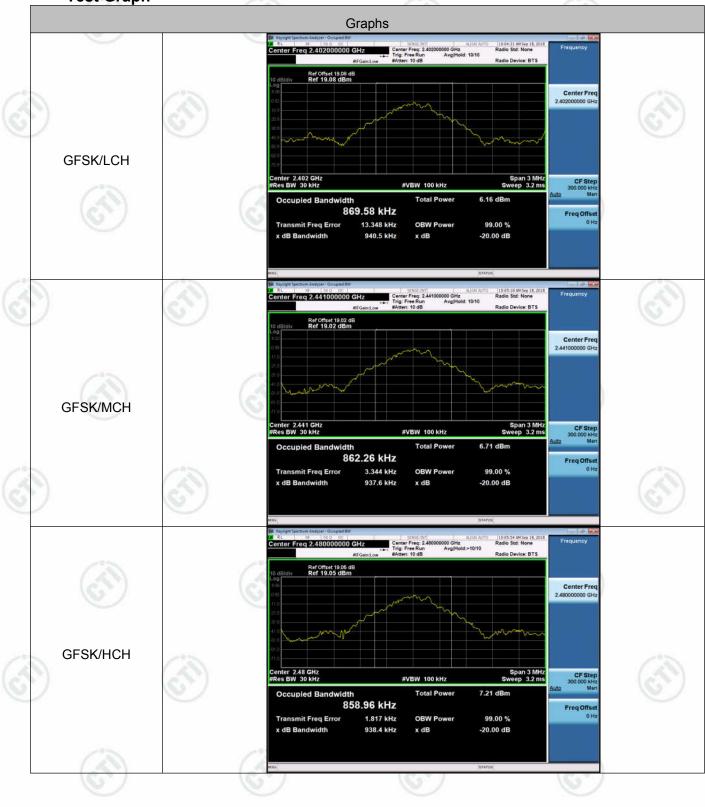

	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
9	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L

Appendix A): 20dB Occupied Bandwidth

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9405	0.86958	PASS	13
GFSK	MCH	0.9376	0.86226	PASS	68
GFSK	НСН	0.9384	0.85896	PASS	
π /4DQPSK	LCH	1.243	1.2438	PASS	Deale
π /4DQPSK	MCH	1.265	1.2503	PASS	Peak
π /4DQPSK	НСН	1.239	1.2446	PASS	detecto
8DPSK	LCH	1.262	1.2229	PASS	
8DPSK	MCH	1.263	1.2228	PASS	
8DPSK	НСН	1.263	1.2239	PASS	12



Page 14 of 80

Test Graph

Page 15 of 80

Page 16 of 80

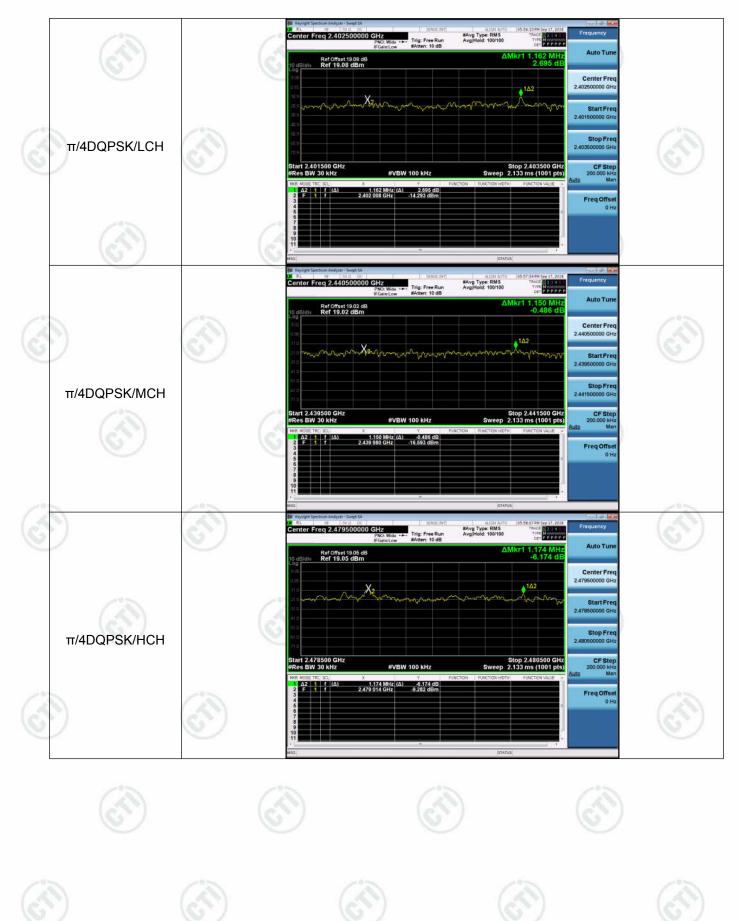
Page 17 of 80

Appendix B): Carrier Frequency Separation

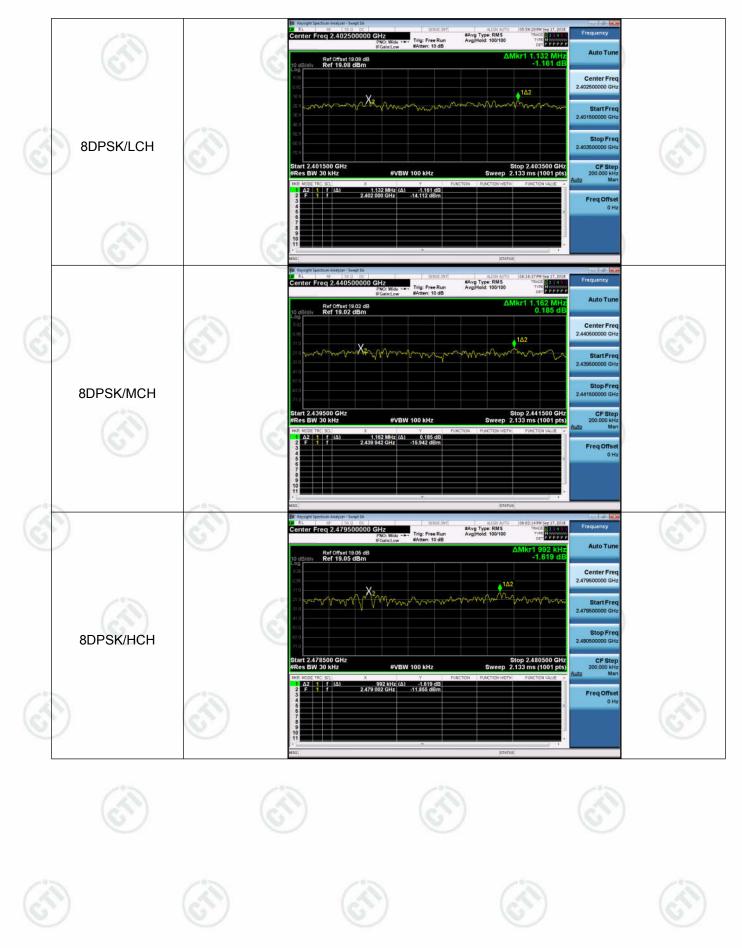
Result Tab	le 🤇) (<i>2</i> 5)	(35)
Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.022	PASS
GFSK	МСН	1.004	PASS
GFSK	НСН	0.962	PASS
π/4DQPSK	LCH	1.162	PASS
π/4DQPSK	МСН	1.150	PASS
π/4DQPSK	нсн	1.174	PASS
8DPSK	LCH	1.132	PASS
8DPSK	МСН	1.162	PASS
8DPSK	НСН	0.992	PASS

Page 18 of 80

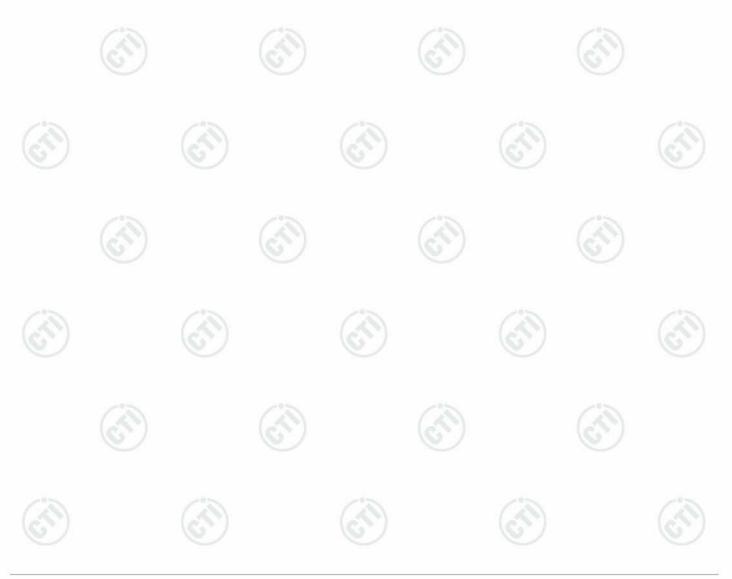
Test Graph



Page 19 of 80



Page 20 of 80

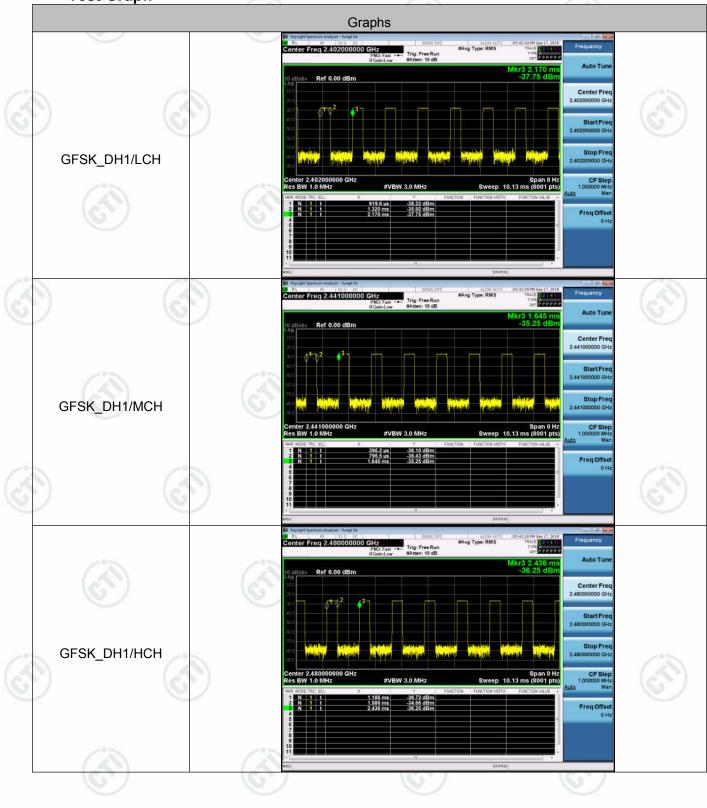


Appendix C): Dwell Time

(25)
I Duty Cycle s] [%] Verdic
3 0.32 PASS
3 0.32 PASS
3 0.32 PASS
5 0.66 PASS
5 0.66 PASS
5 0.66 PASS
3 0.77 PASS
3 0.77 PASS
3 0.77 PASS
3

Page 21 of 80

Remark : All modes are tested, only the worst mode GFSK is reported.



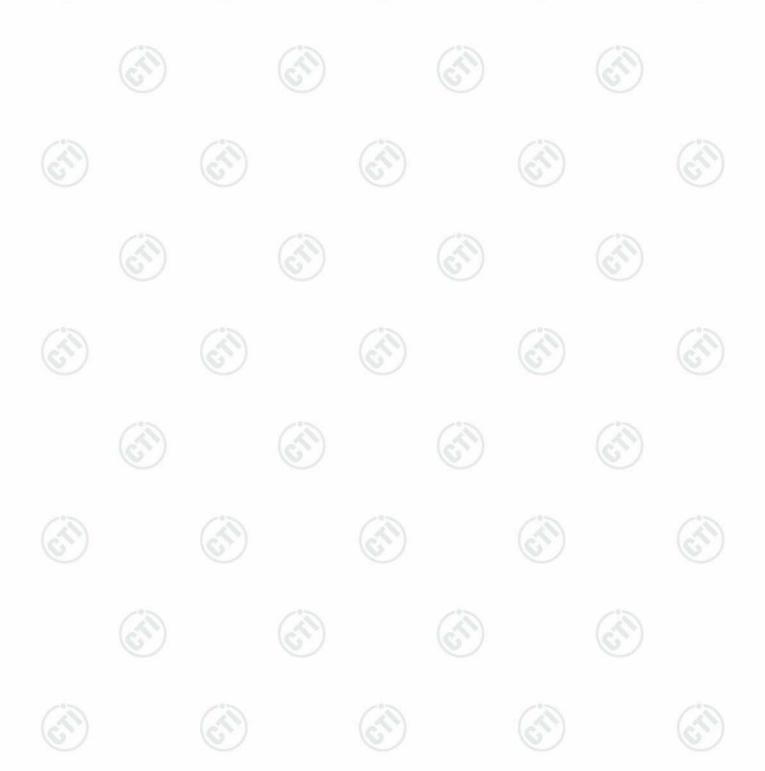
Page 22 of 80

Test Graph

Page 23 of 80



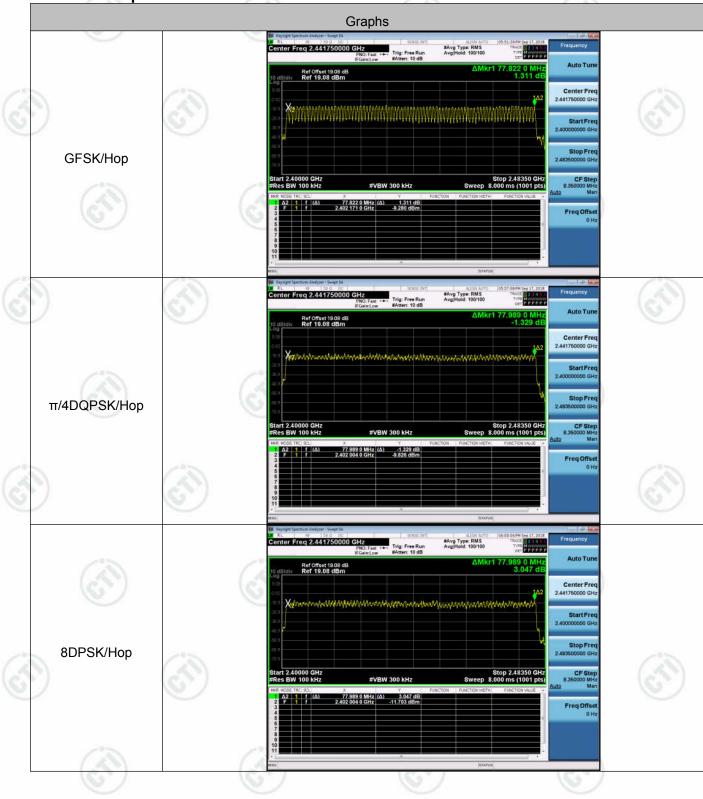
Page 24 of 80



Page 25 of 80

Appendix D): Hopping Channel Number

Result Tab	le 🔝) (25) (<u>(1)</u>
Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS



Page 26 of 80

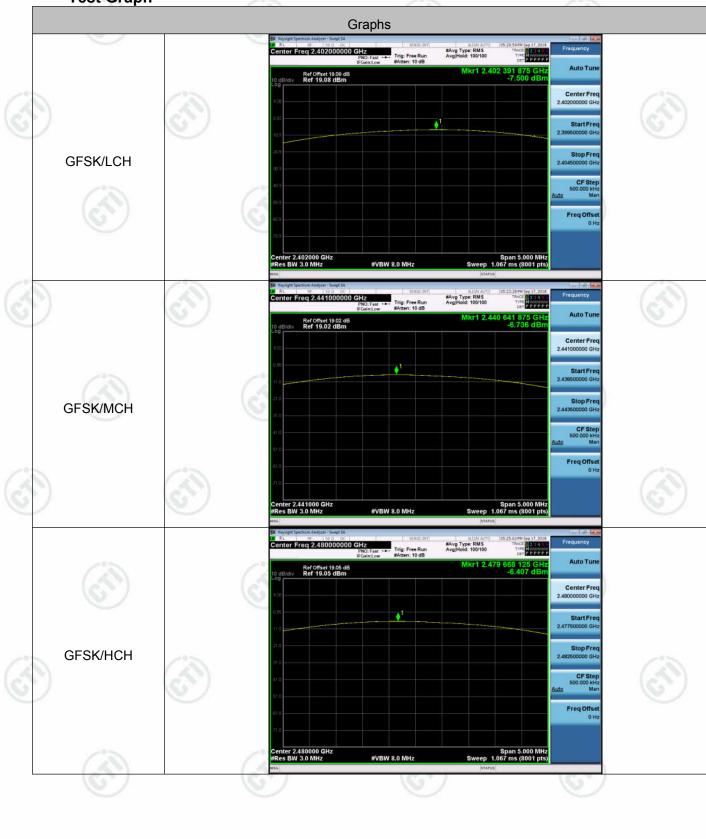
Test Graph

Page 27 of 80

Report No. : EED32K00238702

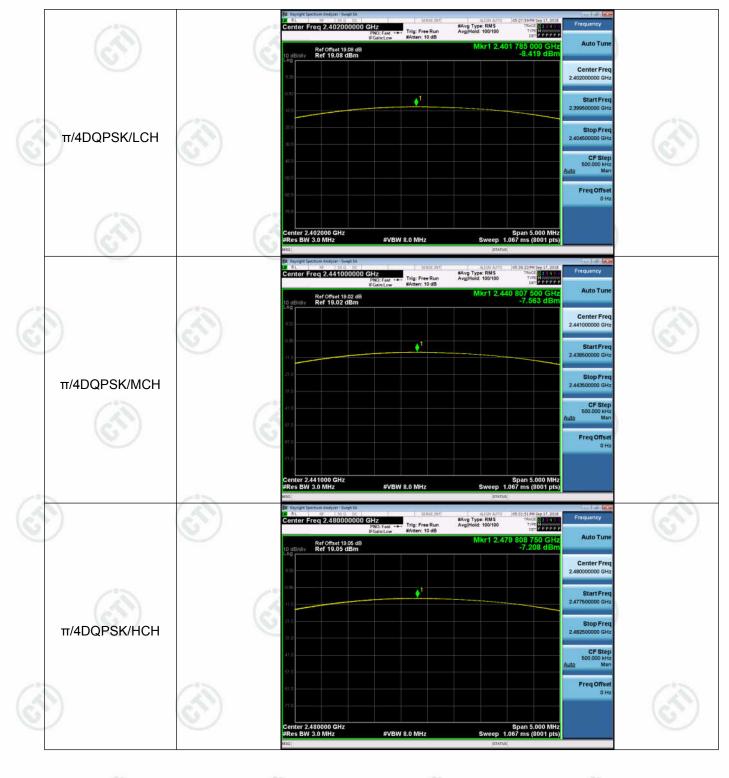
Appendix E): Conducted Peak Output Power

	Result Table	(3)		(3)
	Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
	GFSK	LCH	-7.500	PASS
	GFSK	МСН	-6.736	PASS
32)	GFSK	нсн	-6.407	PASS
~	π/4DQPSK	LCH	-8.419	PASS
	π/4DQPSK	МСН	-7.563	PASS
	π/4DQPSK	нсн	-7.208	PASS
	8DPSK	LCH 🕥	-8.417	PASS
	8DPSK	МСН	-7.547	PASS
	8DPSK	НСН	-7.163	PASS

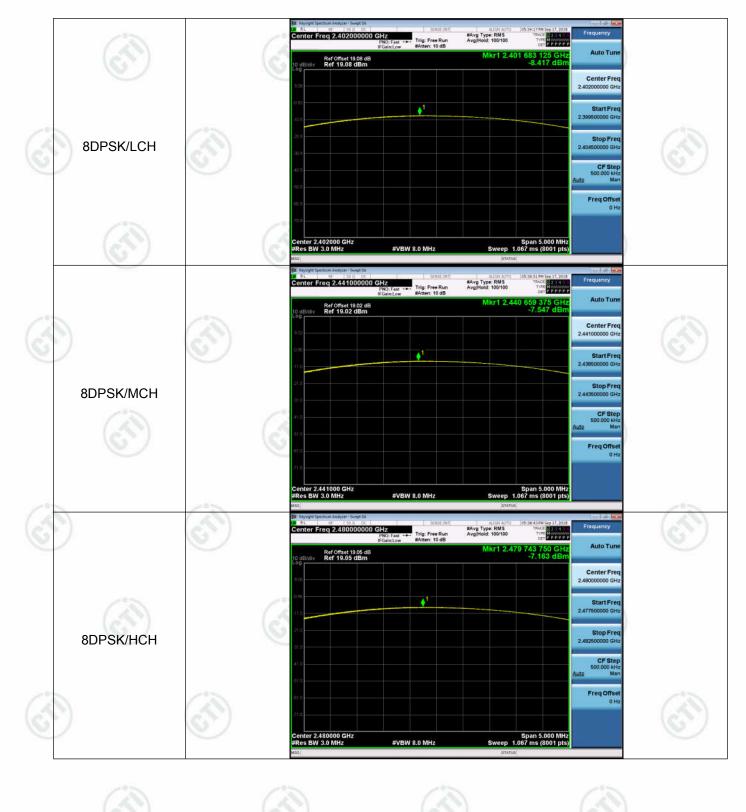


Page 28 of 80

Test Graph



Page 29 of 80



Ì

Page 30 of 80

Page 31 of 80

Report No. : EED32K00238702

Appendix F): Band-edge for RF Conducted Emissions

	Result T	able	(\mathcal{A})		(2)	(20	
	Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
Ľ	050%		0.400	-8.675	Off	-59.874	-28.68	PASS
	GFSK	LCH	2402	-7.462	On	-60.355	-27.46	PASS
			2480	-7.659	Off	-45.267	-27.66	PASS
	GFSK H	HCH		-7.722	On	-45.622	-27.72	PASS
			0.400	-9.710	Off	-60.315	-29.71	PASS
	π/4DQPSK	LCH	2402	-8.598	On	-60.262	-28.6	PASS
12			0.400	-8.608	Off	-55.620	-28.61	PASS
6	π/4DQPSK	HCH	2480	-8.688	On	-57.668	-28.69	PASS
			0400	-9.688	Off	-60.892	-29.69	PASS
	8DPSK	LCH	2402	-8.515	On	-60.009	-28.52	PASS
	appor		0400	-8.481	Off	-53.987	-28.48	PASS
	8DPSK	HCH	2480	-8.613	On	-56.472	-28.61	PASS



Page 32 of 80

Test Graph

Page 33 of 80



Page 34 of 80

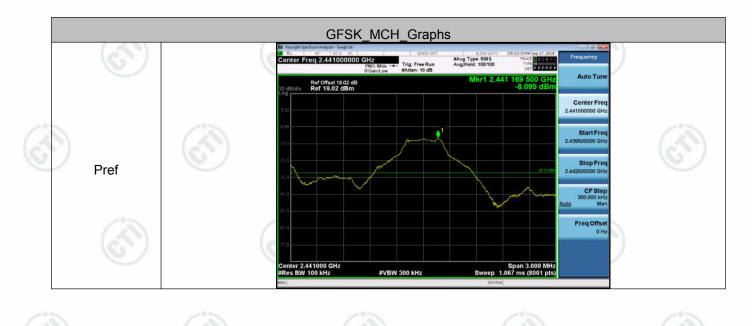
Page 35 of 80

Page 36 of 80

Appendix G): RF Conducted Spurious Emissions

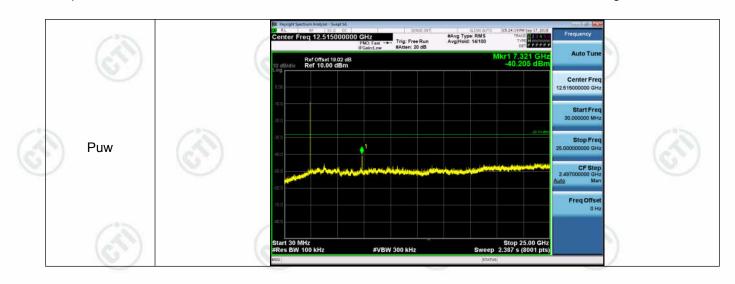
Result Table				<u>(1)</u>	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict	
GFSK	LCH	-8.749	<limit< td=""><td>PASS</td></limit<>	PASS	
GFSK	MCH	-8.095	<limit< td=""><td>PASS</td></limit<>	PASS	
GFSK	нсн	-7.723	<limit< td=""><td>PASS</td></limit<>	PASS	
π/4DQPSK	LCH	-9.769	<limit< td=""><td>PASS</td></limit<>	PASS	
π/4DQPSK	MCH	-9.028	<limit< td=""><td>PASS</td></limit<>	PASS	
π/4DQPSK	нсн	-8.654	<limit< td=""><td>PASS</td></limit<>	PASS	
8DPSK	LCH	-9.774	<limit< td=""><td>PASS</td></limit<>	PASS	
8DPSK	MCH	-8.951	<limit< td=""><td>PASS</td></limit<>	PASS	
8DPSK	НСН	-8.649	<limit< td=""><td>PASS</td></limit<>	PASS	





Page 37 of 80

Test Graph



Page 38 of 80

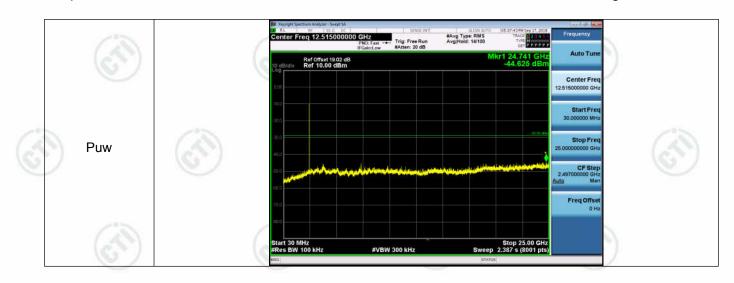
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 39 of 80

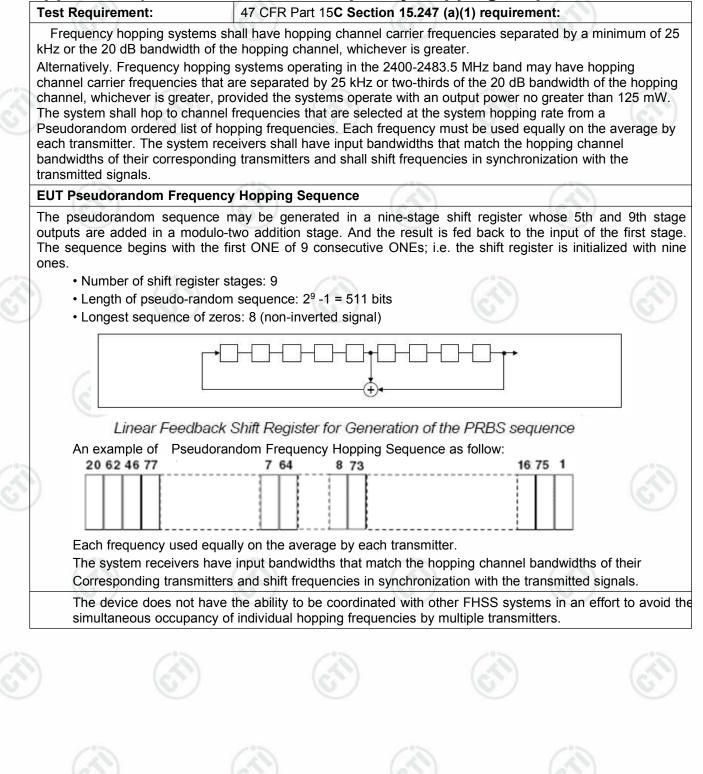
Page 40 of 80



Page 41 of 80


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 42 of 80



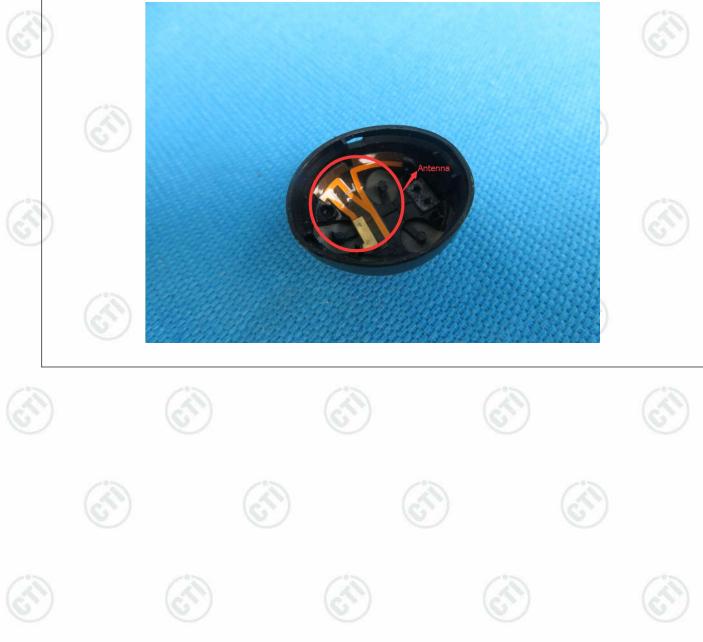
Appendix H): Pseudorandom Frequency Hopping Sequence

Page 44 of 80

Report No. : EED32K00238702

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

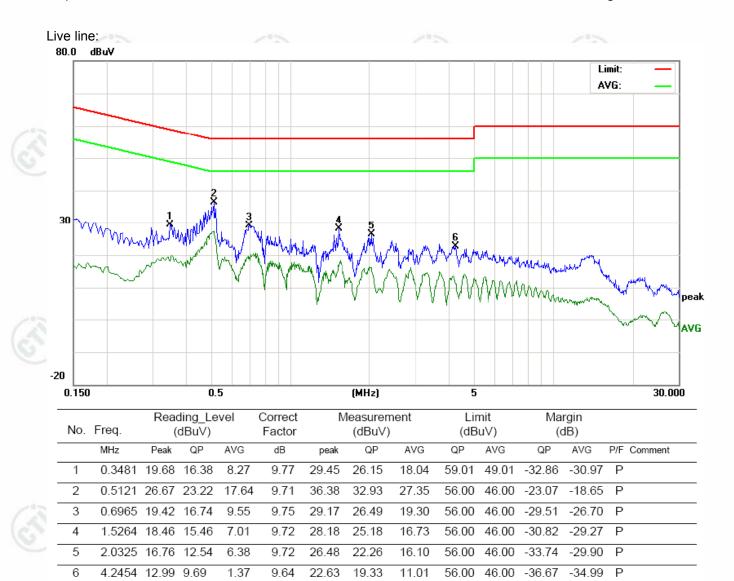
The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 0.8dBi.

Page 45 of 80

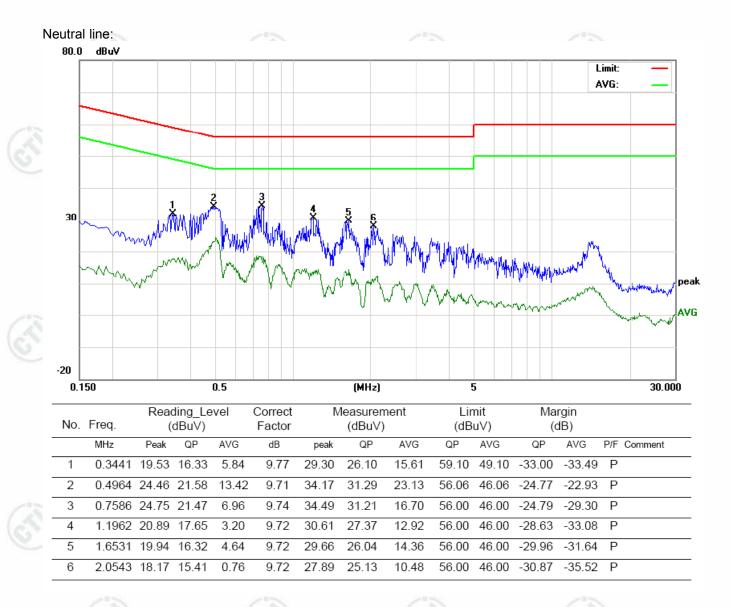
Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz		
	 The mains terminal disturbant The EUT was connected to Stabilization Network) which power cables of all other universe which was bonded to the gradient of the unit being measured multiple power cables to a stability of the unit being measured and the stability of th	AC power source thre th provides a 50Ω/50 nits of the EUT were round reference plane d. A multiple socket of	ough a LISN 1 (Line μ H + 5Ω linear imp connected to a sec in the same way a putlet strip was use	e Impedan edance. T cond LISN s the LISN d to conne
	exceeded. 3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		•
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 	e vertical ground reference to the horizontal ground the boundary of the up or LISNs mounted or etween the closest po	rence plane. The ve ound reference plar unit under test and n top of the grour ints of the LISN 1 a	ertical grou ne. The LIS bonded to nd referen and the EL
	5) In order to find the maximum of the interface cables must conducted measurement.			
Limit:	(Gr)	(C)	(ST)	
		Limit (c	lBμV)	
	Frequency range (MHz)	Quasi-peak	Average	
N 0	0.15-0.5	66 to 56*	56 to 46*	13
) (0.5-5	56	46	6
	5-30	60	50	
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is applie	Ū		e range 0.

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 46 of 80



Page 47 of 80

Notes:

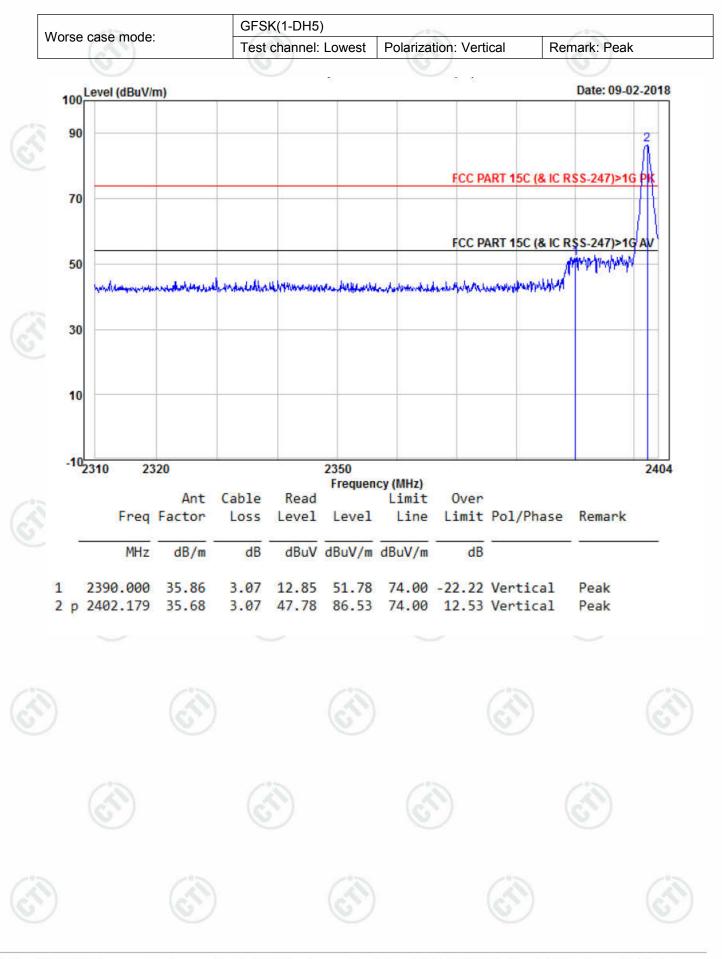
1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

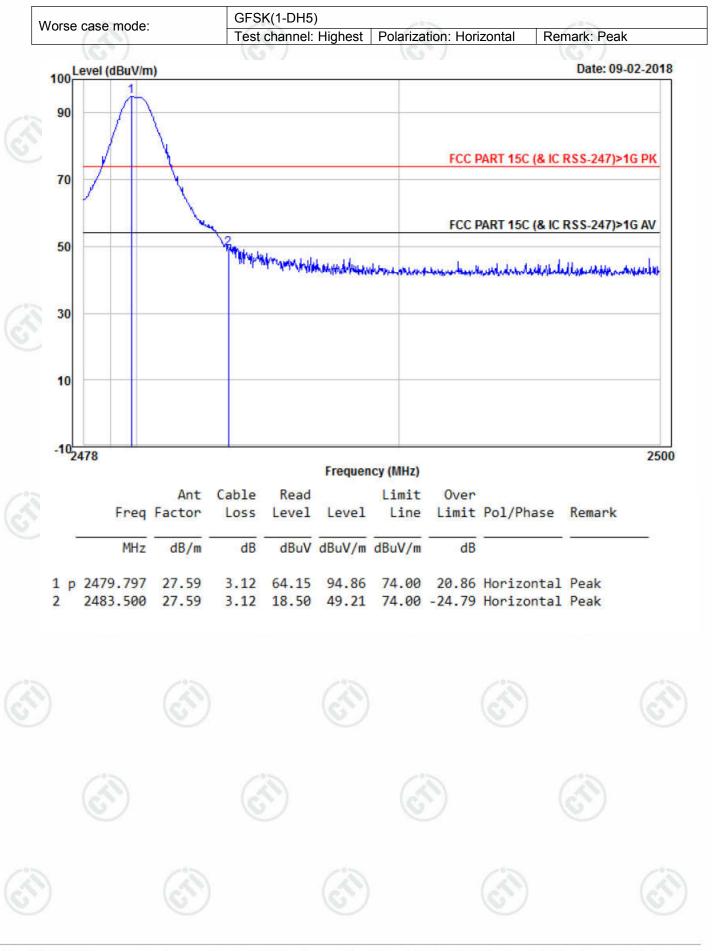
Appendix K): Restricted bands around fundamental frequency (Radiated)

(Raulaleu)	(25)	(AN)		(25)		
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	- 2 -
	Above 1GHz	Peak	1MHz	10Hz	Average	3
Test Procedure:	Below 1GHz test procedu	re as below:	6			Ľ
	The EUT was placed or at a 3 meter semi-anechoic determine the position of the The EUT was set 3 met was mounted on the top of The antenna height is v determine the maximum val polarizations of the antenna For each suspected em the antenna was tuned to he was turned from 0 degrees The test-receiver syster Bandwidth with Maximum H Place a marker at the e frequency to show compliar Save the spectrum analyzed and highest channel Above 1GHz test procedu Different between above to fully Anechoic Chamber a 18GHz the distance is 1 me b. Test the EUT in the later	camber. The ta e highest radiat ers away from a variable-heigh aried from one lue of the field s are set to mak ission, the EUT eights from 1 m to 360 degrees m was set to Per lold Mode. nd of the restrict nce. Also measur r plot. Repeat for re as below: e is the test site and change form ter and table is	able was ro ion. the interfer antenna meter to for strength. Bo e the meas was arran beter to 4 m to find the eak Detect cted band of ure any em or each pow e, change fin table 0.8 1.5 meter).	tated 360 ence-receitower. bur meters oth horizor surement. ged to its maximum Function a closest to the issions in wer and meter to 1	degrees to iving antenna, above the ground intal and vertical worst case and the rotatable ta reading. and Specified he transmit the restricted b odulation for lo Anechoic Cha 1.5 meter(Abor	whi und I I the able panc wes
	The radiation measurer Transmitting mode, and fou Repeat above procedur	nents are perfo nd the X axis p	rmed in X, ositioning v	Y, Z axis p which it is v	oositioning for worse case.	୍
Limit:	The radiation measurer Transmitting mode, and fou	nents are perfo nd the X axis p	rmed in X, ositioning v uencies me	Y, Z axis p which it is v easured wa	oositioning for worse case.	େ
Limit:	The radiation measurer Transmitting mode, and fou Repeat above procedur	nents are perfo nd the X axis p res until all frequ	rmed in X, ositioning v uencies me /m @3m)	Y, Z axis p which it is v easured wa	oositioning for worse case. as complete.	େ
Limit:	The radiation measurer Transmitting mode, and fou Repeat above procedur Frequency	nents are perfo nd the X axis p res until all frequential Limit (dBµV	rmed in X, ositioning v uencies me /m @3m)	Y, Z axis p which it is v easured wa Rei Quasi-po	oositioning for worse case. as complete. mark	େ
Limit:	The radiation measurer Transmitting mode, and fou Repeat above procedur Frequency 30MHz-88MHz	nents are perfo nd the X axis p res until all freq Limit (dBµV 40.0	rmed in X, ositioning v uencies me /m @3m))	Y, Z axis p which it is v easured wa Rei Quasi-po Quasi-po	oositioning for worse case. as complete. mark eak Value	<u>େ</u>
Limit:	The radiation measurer Transmitting mode, and fou Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz	nents are perfo nd the X axis p res until all frequencies Limit (dBµV, 40.0 43.5	rmed in X, ositioning v uencies me /m @3m)) 5)	Y, Z axis p which it is v easured wa Ren Quasi-po Quasi-po Quasi-po	oositioning for worse case. as complete. mark eak Value eak Value	(C)
Limit:	The radiation measurer Transmitting mode, and fou Repeat above procedur Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	nents are perfo nd the X axis p res until all frequencies Limit (dBµV) 40.0 43.0 46.0	rmed in X, ositioning v uencies me /m @3m)) 5))))	Y, Z axis p which it is v easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po	oositioning for worse case. as complete. mark eak Value eak Value eak Value	

Test plot as follows: GFSK(1-DH5) Worse case mode: Test channel: Lowest Polarization: Horizontal Remark: Peak 100 Level (dBuV/m) Date: 09-02-2018 90 FCC PART 15C (& IC R\$S-247)>1G 70 FCC PART 15C (& IC R\$S-247)>10 50 30 10 -102310 2320 2350 2404 Frequency (MHz) Ant Cable Read Limit Over Freq Factor Level Line Limit Pol/Phase Remark Loss Level MHz dB/m dB dBuV dBuV/m dBuV/m dB 2390.000 27.64 74.00 -23.84 Horizontal Peak 1 3.07 19.45 50.16 2 p 2402.179 27.62 3.07 60.61 91.30 74.00 17.30 Horizontal Peak

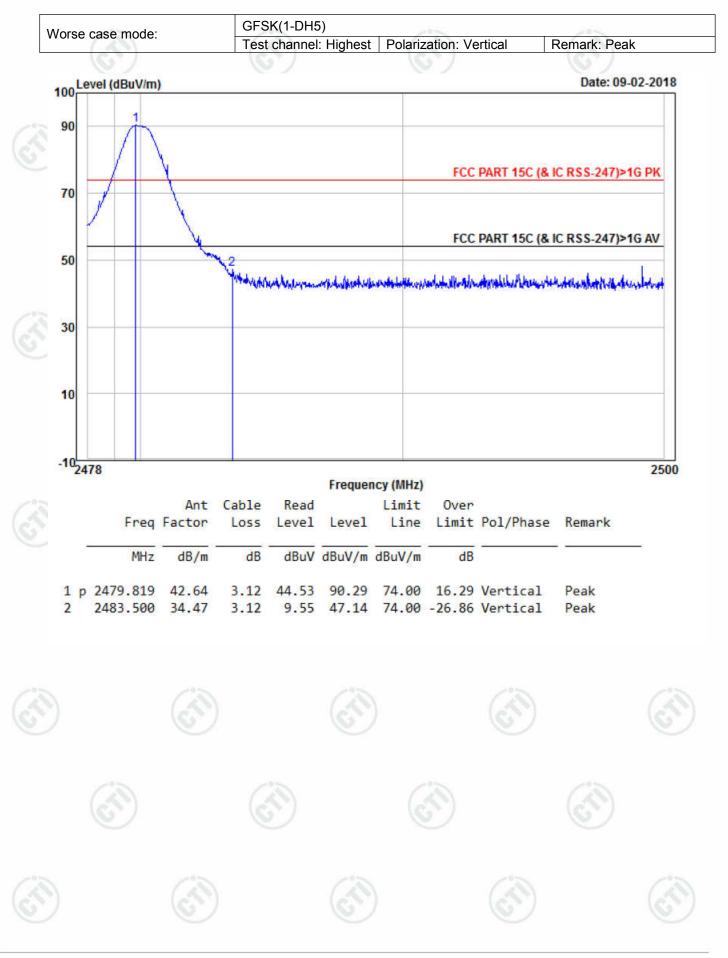


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 51 of 80

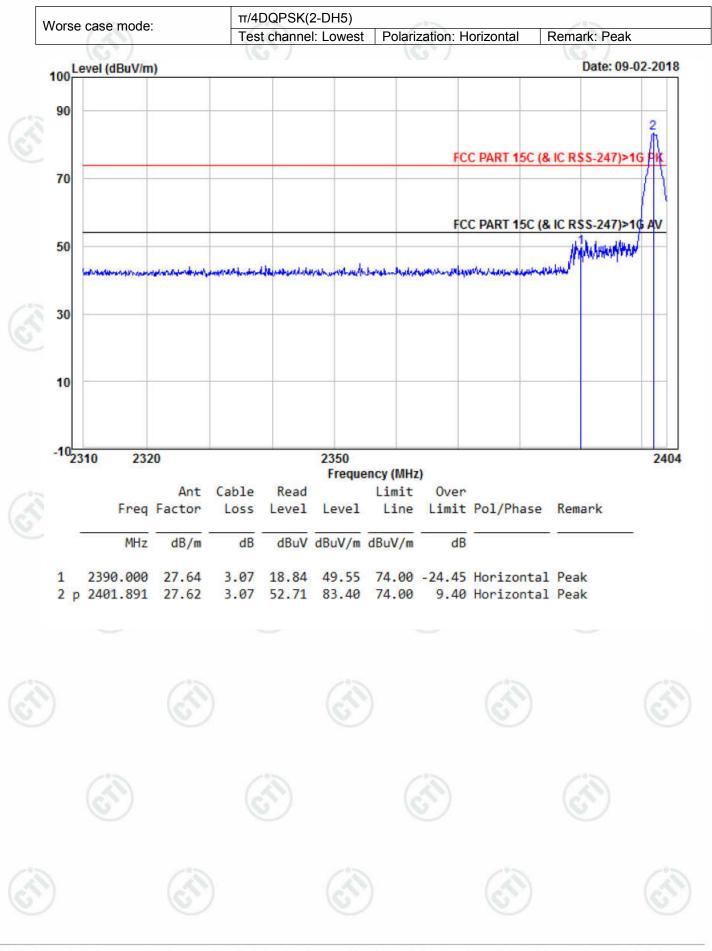
Report No. : EED32K00238702



Page 52 of 80

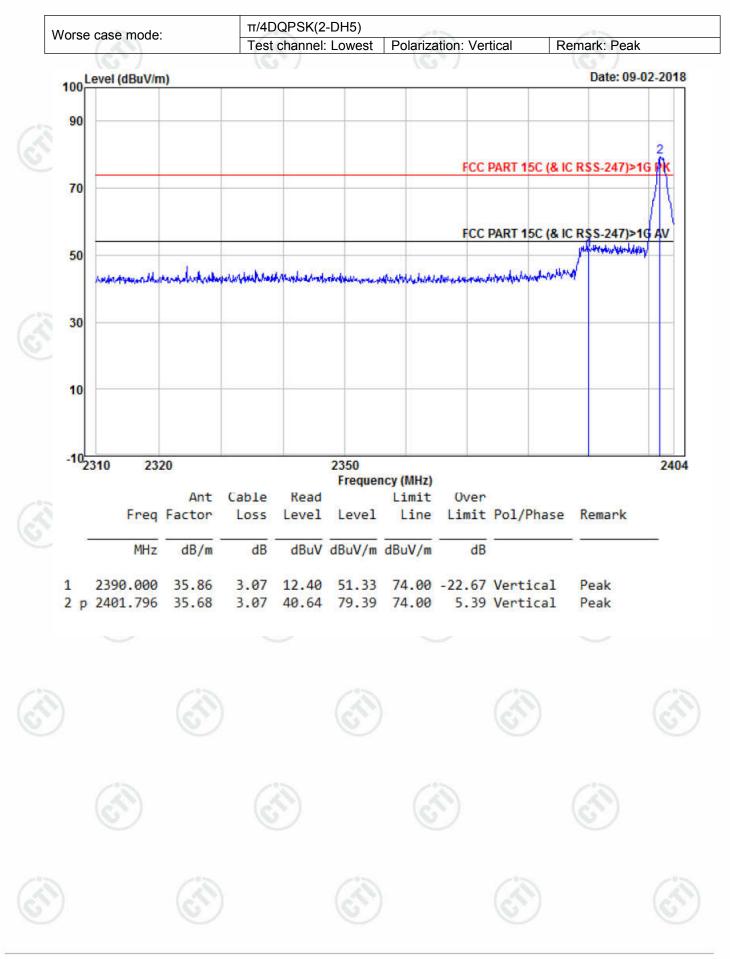
Report No. : EED32K00238702

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 53 of 80

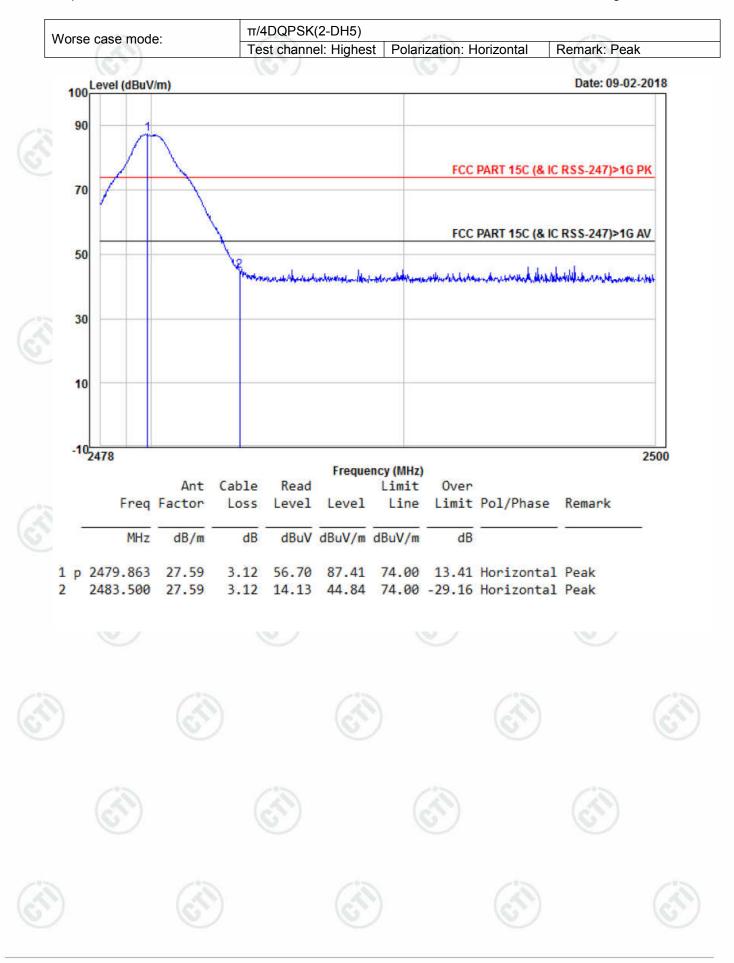
Report No. : EED32K00238702



Page 54 of 80

Report No. : EED32K00238702

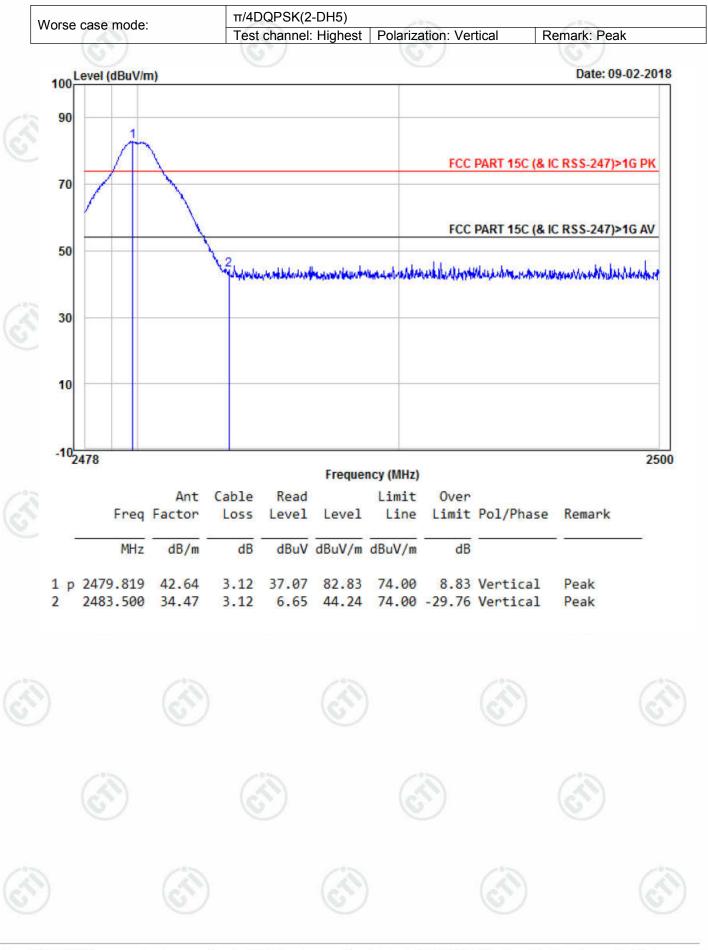
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 55 of 80

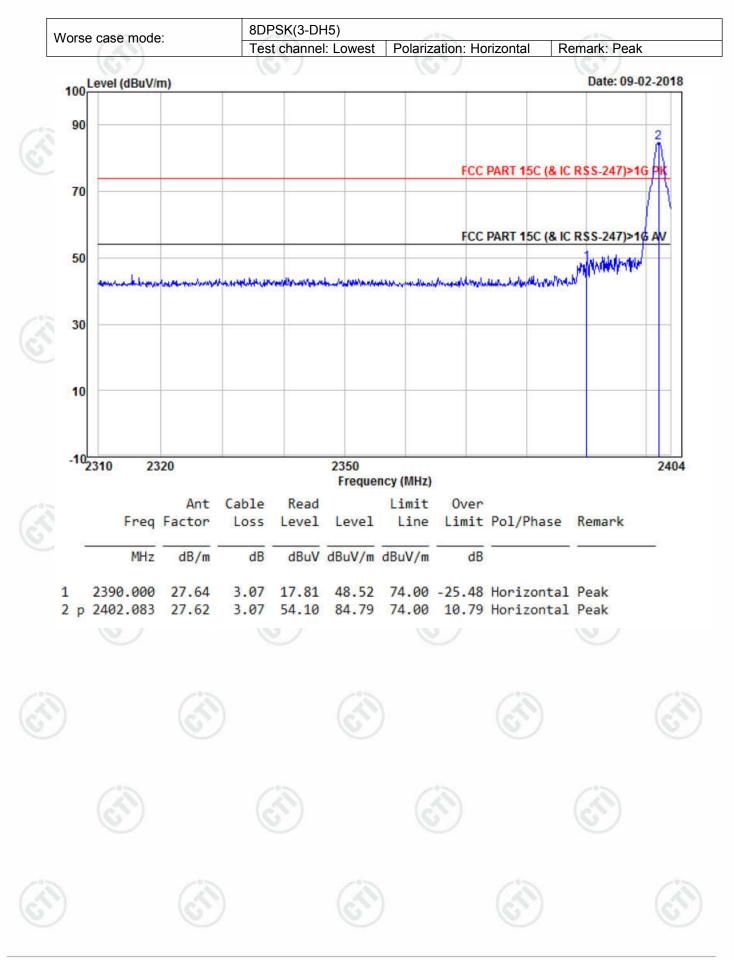
Report No. : EED32K00238702

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 56 of 80

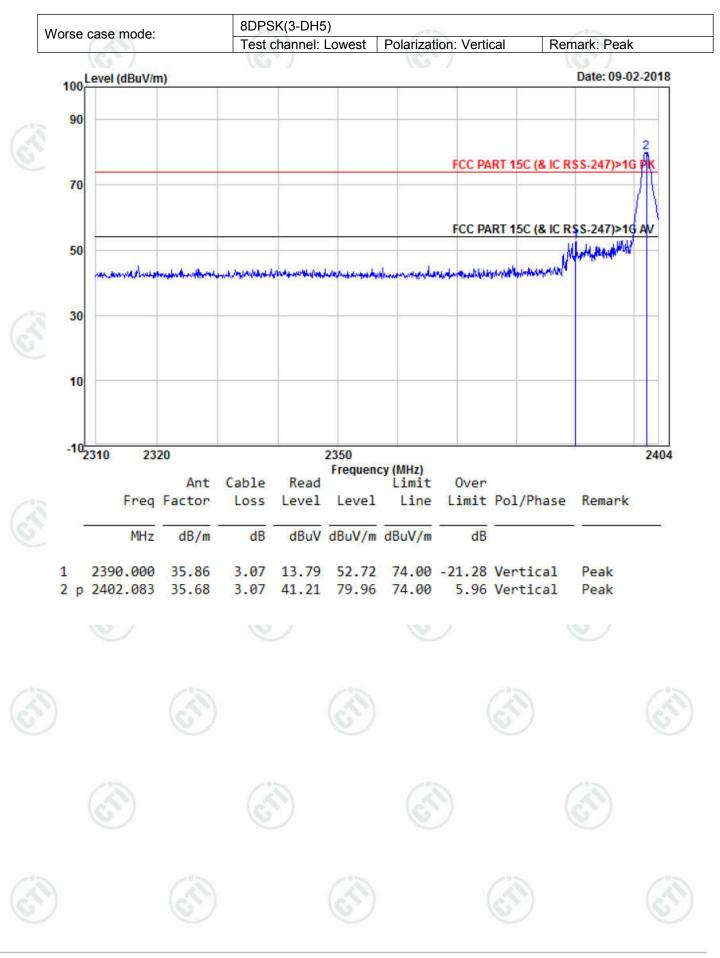
Report No. : EED32K00238702



Page 57 of 80

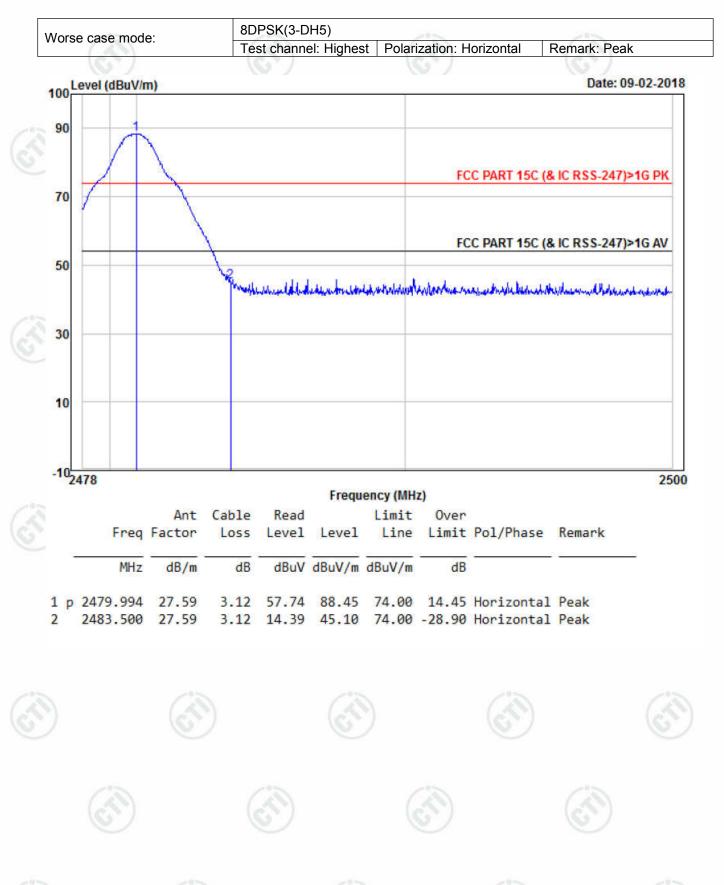
Report No. : EED32K00238702

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



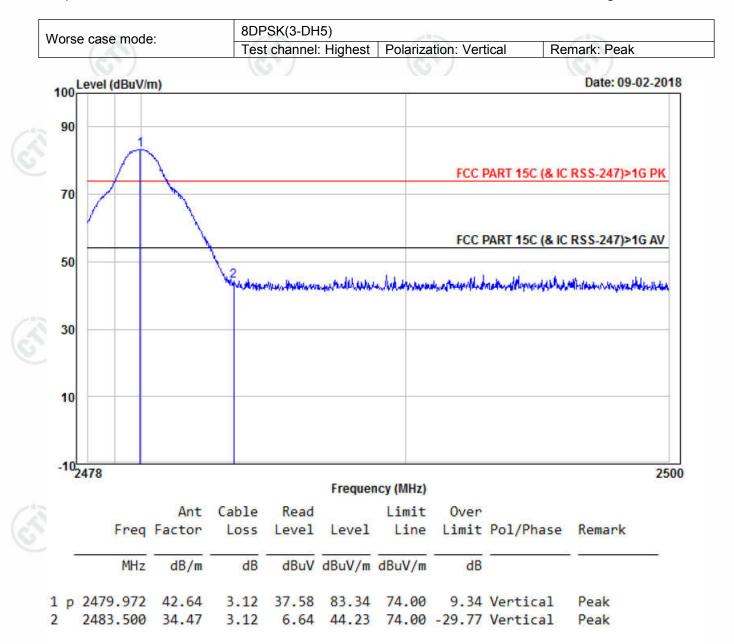
Page 58 of 80

Report No. : EED32K00238702



Page 59 of 80

Report No. : EED32K00238702



60 of 80

Page 60 of 80

Report No. : EED32K00238702

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of π /4DQPSK modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.

2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix L): Radiated Spurious Emissions

Receiver Setup:		63	10		(1)	_
C)	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
N	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	13
) (0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	6
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
1	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(25)		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

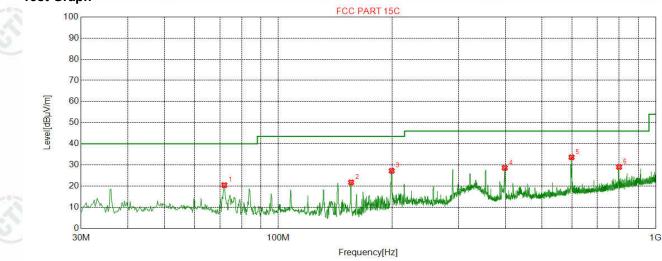
Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). Test the EUT in the lowest channel ,the middle channel ,the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Limit: V	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	205	30
	1.705MHz-30MHz	30	- (<u>}</u>	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3
		otherwise specified 3 above the maximu equipment under te	um permitteo	d average emi	ission limit

Repeat above procedures until all frequencies measured was complete.

peak emission level radiated by the device



Radiated Spurious Emissions test Data:

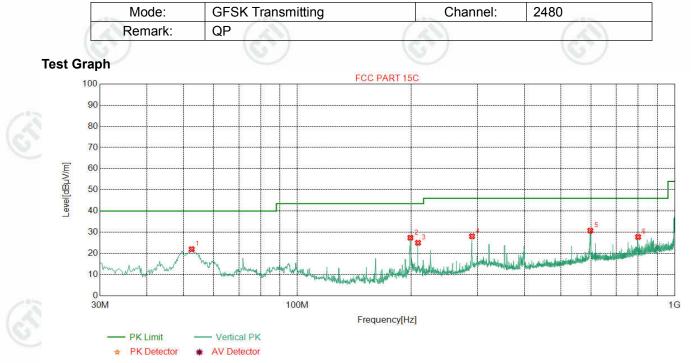
Radiated Emission below 1GHz										
Mode:	GFSK Transmitting	Channel:	2480	0						
Remark:	QP	\sim		~						

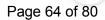
Test Graph

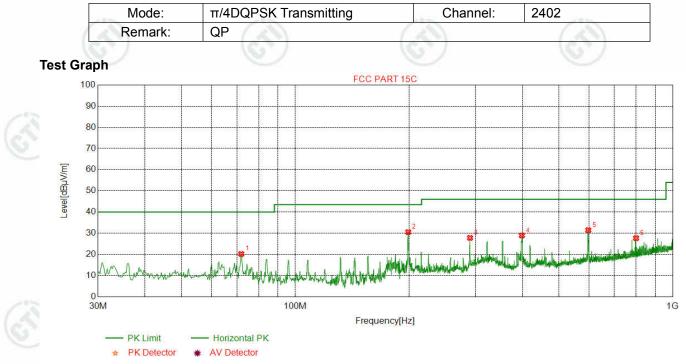
PK Limit Horizontal PK PK Detector AV Detector

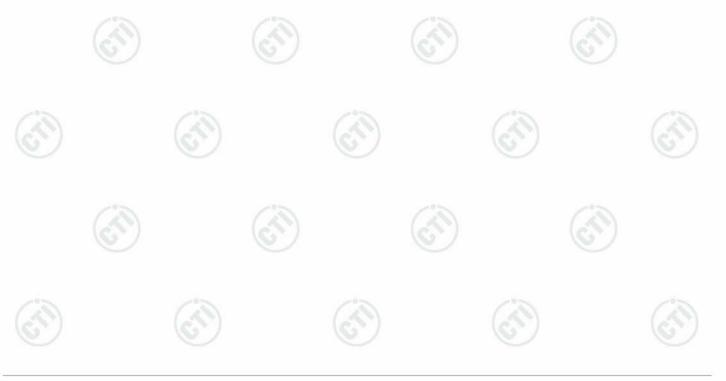
Suspected List Ant Cable Pream Freq. Reading Level Limit Magin NO Factor loss gain Result Polarity [dBµV] [MHz] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 71.9124 42.87 40.00 1 8.64 0.97 -32.05 20.43 19.57 Pass Horizontal 2 155.9312 7.76 1.46 -31.99 44.50 21.73 43.50 21.77 Pass Horizontal 3 199.7840 10.88 1.67 -31.94 46.60 27.21 43.50 16.29 Pass Horizontal 4 398.2857 15.36 2.37 -31.76 42.64 28.61 46.00 17.39 Pass Horizontal 5 598.5337 18.97 2.95 -31.98 43.68 33.62 46.00 12.38 Pass Horizontal 6 799.7520 20.90 3.39 -32.03 36.76 29.02 46.00 Pass 16.98 Horizontal

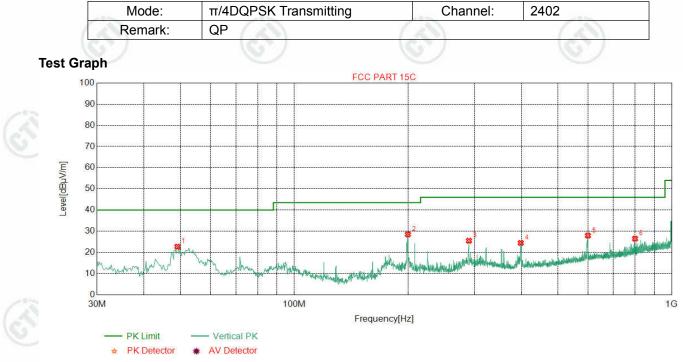
61

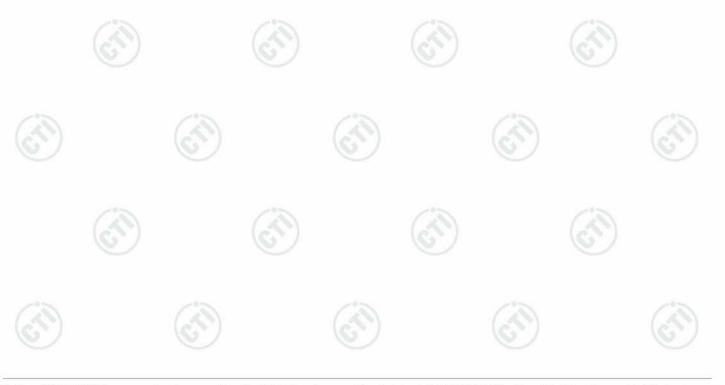


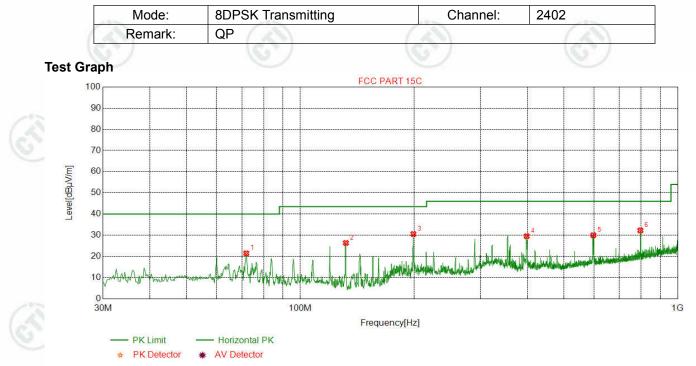


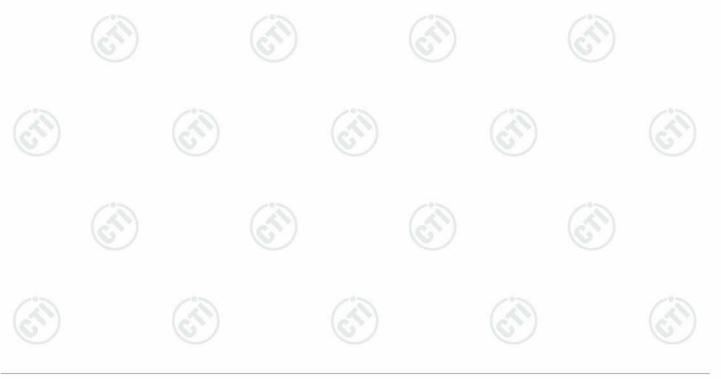

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.5085	12.80	0.82	-32.10	40.43	21.95	40.00	18.05	Pass	Vertical
	2	199.3959	10.84	1.67	-31.94	46.81	27.38	43.50	16.12	Pass	Vertical
	3	208.9038	11.13	1.71	-31.94	44.08	24.98	43.50	18.52	Pass	Vertical
2	4	290.4001	13.01	2.03	-31.88	44.90	28.06	46.00	17.94	Pass	Vertical
3	5	597.5635	18.95	2.94	-31.97	40.81	30.73	46.00	15.27	Pass	Vertical
-	6	799.9460	20.90	3.39	-32.03	35.49	27.75	46.00	18.25	Pass	Vertical

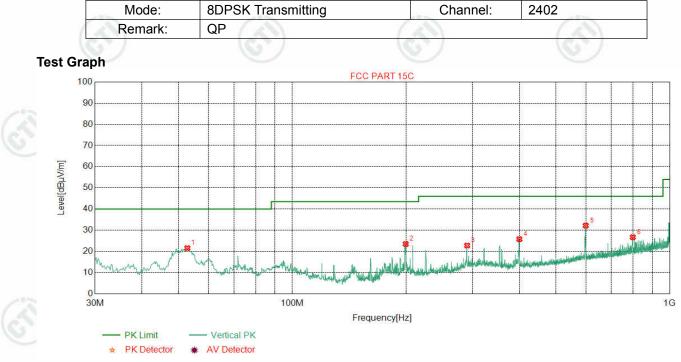



	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	71.9124	8.64	0.97	-32.05	42.62	20.18	40.00	19.82	Pass	Horizontal
	2	199.2018	10.82	1.67	-31.94	49.96	30.51	43.50	12.99	Pass	Horizontal
	3	290.4001	13.01	2.03	-31.88	44.62	27.78	46.00	18.22	Pass	Horizontal
2	4	398.4797	15.37	2.38	-31.78	42.94	28.91	46.00	17.09	Pass	Horizontal
3	5	597.5635	18.95	2.94	-31.97	41.51	31.43	46.00	14.57	Pass	Horizontal
-	6	799.7520	20.90	3.39	-32.03	35.39	27.65	46.00	18.35	Pass	Horizontal




	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	49.0158	13.20	0.79	-32.12	40.82	22.69	40.00	17.31	Pass	Vertical
	2	199.9780	10.90	1.67	-31.94	47.84	28.47	43.50	15.03	Pass	Vertical
	3	290.2060	13.00	2.03	-31.87	42.32	25.48	46.00	20.52	Pass	Vertical
2	4	398.2857	15.36	2.37	-31.76	38.47	24.44	46.00	21.56	Pass	Vertical
3	5	599.8920	19.00	2.96	-31.99	37.94	27.91	46.00	18.09	Pass	Vertical
-	6	799.5579	20.90	3.39	-32.03	34.19	26.45	46.00	19.55	Pass	Vertical




	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	71.9124	8.64	0.97	-32.05	43.86	21.42	40.00	18.58	Pass	Horizontal
	2	132.0644	7.60	1.34	-32.01	49.40	26.33	43.50	17.17	Pass	Horizontal
	3	199.3959	10.84	1.67	-31.94	49.99	30.56	43.50	12.94	Pass	Horizontal
2	4	398.0916	15.36	2.37	-31.77	43.56	29.52	46.00	16.48	Pass	Horizontal
3	5	597.7576	18.96	2.94	-31.97	40.06	29.99	46.00	16.01	Pass	Horizontal
	6	796.6473	20.86	3.38	-32.01	40.00	32.23	46.00	13.77	Pass	Horizontal

Suspected List

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.7025	12.77	0.82	-32.10	40.02	21.51	40.00	18.49	Pass	Vertical
	2	199.7840	10.88	1.67	-31.94	42.86	23.47	43.50	20.03	Pass	Vertical
	3	290.5941	13.01	2.03	-31.87	39.58	22.75	46.00	23.25	Pass	Vertical
	4	399.6439	15.39	2.38	-31.76	39.75	25.76	46.00	20.24	Pass	Vertical
3	5	599.3099	18.99	2.96	-31.99	42.20	32.16	46.00	13.84	Pass	Vertical
	6	798.5877	20.88	3.39	-32.02	34.42	26.67	46.00	19.33	Pass	Vertical

Remark : All modes are tested, only the worst data is reported.

7206.0000

9169.4419

9608.0000

4 5

6

Н

Н

Н

Peak

Peak

Peak

anemittor Emission above 1GHz

36.31

37.67

37.64

5.81

6.45

6.63

-36.43

-36.74

-36.79

Transmitter Emission above TGHZ											
		Mode:	GFS	K Transm	nitting	6.5	Channel:	240	2		
	R	/	S		Sec. 1)		C C			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3027.3027	33.21	4.88	-36.81	46.09	47.37	74.00	26.63	Pass	Н	Peak
2	4804.0000	34.50	4.55	-36.15	49.44	52.34	74.00	21.66	Pass	Н	Peak
3	6248.0498	35.85	5.34	-36.29	42.70	47.60	74.00	26.40	Pass	Н	Peak

46.38

43.55

41.18

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4804.0000	34.50	4.55	-36.15	31.63	34.53	54.00	19.47	Pass	Н	Average
2	7206.0000	36.31	5.82	-36.43	37.23	42.93	54.00	11.07	Pass	Н	Average

52.07

50.93

48.66

74.00

74.00

74.00

21.93

23.07

25.34

Pass

Pass

Pass

Mode:	GFSK Transmitting	Channel:	2402
Remark:	1 67	G	6

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3576.2826	33.46	4.39	-36.52	45.19	46.52	74.00	27.48	Pass	V	Peak
2	4804.0000	34.50	4.55	-36.15	46.85	49.75	74.00	24.25	Pass	V	Peak
3	6289.9790	35.86	5.44	-36.25	42.48	47.53	74.00	26.47	Pass	V	Peak
4	7206.0000	36.31	5.81	-36.43	45.20	50.89	74.00	23.11	Pass	V	Peak
5	8522.9523	36.65	6.41	-36.39	43.32	49.99	74.00	24.01	Pass	V	Peak
6	9608.0000	37.64	6.63	-36.79	40.67	48.15	74.00	25.85	Pass	V	Peak

Hotline: 400-6788-333

Page 69 of 80

Report No. : EED32K00238702

	2005	Mode:	GFS	K Transm	nitting		Channel:	244	1		
	R	emark:	/	(A)		1	1		(A)		
	GT)			GU		6	* J.		67/		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2834.7670	32.94	4.23	-36.91	47.03	47.29	74.00	26.71	Pass	Н	Peak
2	4882.0000	34.50	4.81	-36.10	49.85	53.06	74.00	20.94	Pass	Н	Peak
3	6159.3159	35.83	5.24	-36.20	43.33	48.20	74.00	25.80	Pass	Н	Peak
4	7323.0000	36.42	5.85	-36.41	45.90	51.76	74.00	22.24	Pass	Н	Peak
5	8430.3180	36.57	6.37	-36.35	43.64	50.23	74.00	23.77	Pass	Н	Peak
6	9764.0000	37.71	6.71	-36.83	41.82	49.41	74.00	24.59	Pass	Н	Peak
	(C)			S		G	9		67	j.	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4882.0000	34.50	4.81	-36.10	35.73	38.94	54.00	15.06	Pass	Н	Average
2	7323.0000	36.42	5.85	-36.40	37.78	43.65	54.00	10.35	Pass	Н	Average

		Mode:	GFS	SK Transn	nitting		Channel:	244	1		
	F	Remark:	/	1		13	0		1		
	(23)			(e^{N})					(a)		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2907.1814	33.05	4.38	-36.64	46.30	47.09	74.00	26.91	Pass	V	Peak
2	4882.0000	34.50	4.81	-36.10	47.69	50.90	74.00	23.10	Pass	V	Peak
3	5806.3306	35.49	4.99	-36.02	42.94	47.40	74.00	26.60	Pass	V	Peak
4	7323.0000	36.42	5.85	-36.41	45.09	50.95	74.00	23.05	Pass	V	Peak
5	8415.6916	36.57	6.35	-36.31	43.39	50.00	74.00	24.00	Pass	V	Peak
6	9764.0000	37.71	6.71	-36.83	41.14	48.73	74.00	25.27	Pass	V	Peak
	(2)			(2)		63	(2)		(2)		

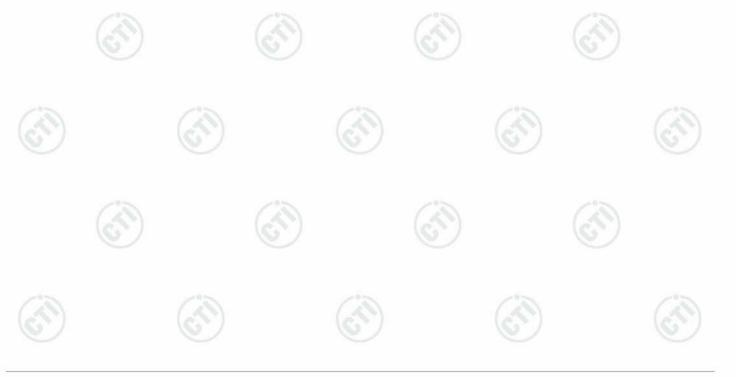
(F)

Page 70 of 80

		Mode:	GFS	K Transm	nitting		Channel:	248	0		
	R	emark:	/			62	0		(A)		
	G			G		G			67		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3175.5176	33.27	4.61	-36.82	47.53	48.59	74.00	25.41	Pass	Н	Peak
2	4960.0000	34.50	4.82	-36.20	49.83	52.95	74.00	21.05	Pass	Н	Peak
3	6392.3642	35.88	5.33	-36.31	43.50	48.40	74.00	25.60	Pass	Н	Peak
4	7440.0000	36.54	5.85	-36.34	43.98	50.03	74.00	23.97	Pass	Н	Peak
5	8398.1398	36.56	6.32	-36.27	44.04	50.65	74.00	23.35	Pass	Н	Peak
6	9920.0000	37.77	6.79	-36.82	39.59	47.33	74.00	26.67	Pass	Н	Peak
	(°)			S		C	2		S	7	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4960.0000	34.50	4.82	-36.21	43.72	46.83	54.00	7.17	Pass	Н	Average
2		0		1	0)	0	>	1	0	2
		Mode:	GES	K Transm	nittina		Channel:	248	0		
		lemark:	/		intering			12.0			
	13		I	13		10	~		13		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3123.8374	33.25	4.65	-36.88	46.67	47.69	74.00	26.31	Pass	V	Peak
2	4960.0000	34.50	4.82	-36.20	48.43	51.55	74.00	22.45	Pass	V	Peak
3	6269.5020	35.85	5.39	-36.26	43.13	48.11	74.00	25.89	Pass	V	Peak
4	7440.0000	36.54	5.85	-36.34	43.47	49.52	74.00	24.48	Pass	V	Peak
5	8434.2184	36.57	6.38	-36.37	44.38	50.96	74.00	23.04	Pass	V	Peak
6	9920.0000	37.77	6.79	-36.82	39.95	47.69	74.00	26.31	Pass	V	Peak
	13			13		13	2		13		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4960.0000	34.50	4.82	-36.21	42.53	45.64	54.00	8.36	Pass	V	Average

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 71 of 80


Report No. : EED32K00238702

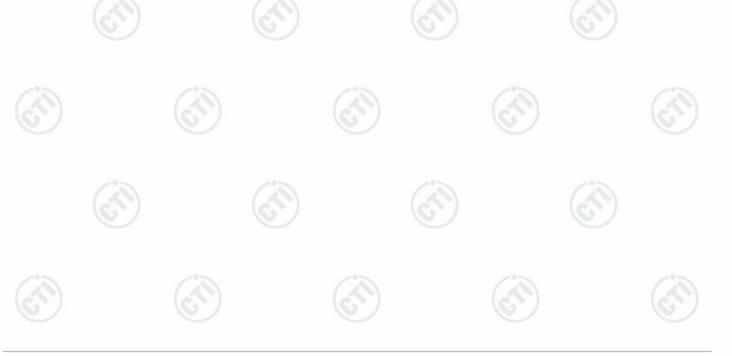
	1000	Mode:	π/4[DQPSK TI	ransmitting		Channel:	240	2		
	(ANF	Remark:	/	(A)		(1	0		(A)		
	GT.			G		6			67/		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3288.6289	33.32	4.55	-36.80	46.42	47.49	74.00	26.51	Pass	Н	Peak
2	4804.0000	34.50	4.55	-36.15	46.62	49.52	74.00	24.48	Pass	Н	Peak
3	5526.4776	35.04	5.16	-36.09	43.31	47.42	74.00	26.58	Pass	Н	Peak
4	7206.0000	36.31	5.81	-36.43	44.95	50.64	74.00	23.36	Pass	Н	Peak
5	8418.6169	36.57	6.36	-36.33	43.58	50.18	74.00	23.82	Pass	Н	Peak
6	9608.0000	37.64	6.63	-36.79	41.39	48.87	74.00	25.13	Pass	Н	Peak
	63			6.		(G			67		

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	1		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3017.5518	33.21	4.89	-36.77	45.88	47.21	74.00	26.79	Pass	V	Peak
2	4804.0000	34.50	4.55	-36.15	47.78	50.68	74.00	23.32	Pass	V	Peak
3	5511.8512	35.02	5.16	-36.12	42.79	46.85	74.00	27.15	Pass	V	Peak
4	7206.0000	36.31	5.81	-36.43	45.54	51.23	74.00	22.77	Pass	V	Peak
5	8207.9958	36.48	6.34	-36.83	43.73	49.72	74.00	24.28	Pass	V	Peak
6	9608.0000	37.64	6.63	-36.79	42.52	50.00	74.00	24.00	Pass	V	Peak

(NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
	1	7206.0000	36.31	5.82	-36.43	34.70	40.40	54.00	13.60	Pass	V	Average

Page 72 of 80


	1.000	Mode:	π/4[DQPSK TI	ransmitting		Channel:	244	1		
	F	Remark:	/			64			(A)		
	ST.			GU					GT/		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2987.9976	33.18	4.51	-36.73	46.90	47.86	74.00	26.14	Pass	Н	Peak
2	4882.0000	34.50	4.81	-36.10	47.74	50.95	74.00	23.05	Pass	Н	Peak
3	5517.7018	35.03	5.16	-36.11	43.71	47.79	74.00	26.21	Pass	Н	Peak
4	6806.7807	36.02	5.63	-36.14	43.35	48.86	74.00	25.14	Pass	Н	Peak
5	7323.0000	36.42	5.85	-36.41	43.52	49.38	74.00	24.62	Pass	Н	Peak
6	9764.0000	37.71	6.71	-36.83	41.36	48.95	74.00	25.05	Pass	Н	Peak
	6			6		G)		6)		
		Mode:	π/4[DQPSK TI	ransmitting		Channel:	244	1		

Remark:

1

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3022.4272	33.21	4.89	-36.79	47.40	48.71	74.00	25.29	Pass	V	Peak
2	4882.0000	34.50	4.81	-36.10	49.27	52.48	74.00	21.52	Pass	V	Peak
3	6361.1611	35.87	5.43	-36.18	42.41	47.53	74.00	26.47	Pass	V	Peak
4	7323.0000	36.42	5.85	-36.41	44.55	50.41	74.00	23.59	Pass	V	Peak
5	8437.1437	36.57	6.38	-36.37	43.82	50.40	74.00	23.60	Pass	V	Peak
6	9764.0000	37.71	6.71	-36.83	41.72	49.31	74.00	24.69	Pass	V	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4882.0000	34.50	4.81	-36.10	39.65	42.86	54.00	11.14	Pass	V	Average

Page 73 of 80

К			JUZ3070	2					Pag	e / 5 01 00	J
		Mode:	π/4[ansmitting		Channel:	248	0		
		Remark:	/		ansmung	13	Channel.	240			
		contant.	1	(\mathfrak{S})		(c)	(*)		(\mathbb{C})		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3686.4686	33.55	4.27	-36.24	45.41	46.99	74.00	27.01	Pass	Н	Peak
2	4960.0000	34.50	4.82	-36.20	48.48	51.60	74.00	22.40	Pass	Н	Peak
3	5535.2535	35.06	5.16	-36.08	43.66	47.80	74.00	26.20	Pass	Н	Peak
4	7440.0000	36.54	5.85	-36.34	43.49	49.54	74.00	24.46	Pass	Н	Peak
5	8546.3546	36.70	6.33	-36.33	43.35	50.05	74.00	23.95	Pass	Н	Peak
6	9920.0000	37.77	6.79	-36.82	40.70	48.44	74.00	25.56	Pass	Н	Peak
	6		1	631		G	1		637		
	\sim			J.		Ľ	1		Ś		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4960.0000	34.50	4.82	-36.21	39.26	42.37	54.00	11.63	Pass	Н	Average
9		6			6	1	0			6	
		Mode:	π/4[ansmitting		Channel:	248	0		
		Remark:	/		anonnung		Unanner.	240	0		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Cernark.	1	23		20	~		25		
		Ant	Cable	Pream	_						
NO	Freq. [MHz]	Factor [dB]	loss [dB]	gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3009.7510	33.20	4.91	-36.74	46.15	47.52	74.00	26.48	Pass	V	Peak
2	4960.0000	34.50	4.82	-36.20	48.77	51.89	74.00	22.11	Pass	V	Peak
3	6394.3144	35.88	5.33	-36.32	43.58	48.47	74.00	25.53	Pass	V	Peak
4	7440.0000	36.54	5.85	-36.34	44.47	50.52	74.00	23.48	Pass	V	Peak
5	8392.2892	36.56	6.31	-36.33	44.20	50.74	74.00	23.26	Pass	V	Peak
6	9920.0000	37.77	6.79	-36.82	40.95	48.69	74.00	25.31	Pass	V	Peak
	12			12		12	×		12		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4960.0000	34.50	4.82	-36.21	40.60	43.71	54.00	10.29	Pass	V	Average

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333





## Page 74 of 80

		Mode:	8DP	SK Trans	mitting		Channel:	240	2		
	R	emark:	1	(1)		62	0	I	(A)		
	G		I	GU		G	1		67		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3021.4521	33.21	4.89	-36.79	46.26	47.57	74.00	26.43	Pass	Н	Peak
2	4804.0000	34.50	4.55	-36.15	50.80	53.70	74.00	20.30	Pass	н	Peak
3	5858.0108	35.57	5.08	-36.05	43.21	47.81	74.00	26.19	Pass	н	Peak
4	7206.0000	36.31	5.81	-36.43	45.09	50.78	74.00	23.22	Pass	Н	Peak
5	7653.1653	36.54	6.16	-36.60	44.22	50.32	74.00	23.68	Pass	Н	Peak
6	9608.0000	37.64	6.63	-36.79	42.79	50.27	74.00	23.73	Pass	Н	Peak
	67			G		G	1		G		
	0			V		- C	/		Ś		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4804.0000	34.50	4.55	-36.15	30.88	33.78	54.00	20.22	Pass	Н	Average
J		0			6	1	6		•	6	
		Mode:	8DP	SK Trans	mitting		Channel:	240	2		
		emark:	/								
	12			13		10	~		12		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3193.0693	33.28	4.64	-36.73	46.43	47.62	74.00	26.38	Pass	V	Peak
2	3901.9652	33.72	4.34	-36.06	44.78	46.78	74.00	27.22	Pass	V	Peak
3	4804.0000	34.50	4.55	-36.15	50.77	53.67	74.00	20.33	Pass	V	Peak
4	5690.2940	35.30	5.01	-36.10	43.34	47.55	74.00	26.45	Pass	V	Peak
5	7206.0000	36.31	5.81	-36.43	45.21	50.90	74.00	23.10	Pass	V	Peak
6	9608.0000	37.64	6.63	-36.79	42.62	50.10	74.00	23.90	Pass	V	Peak
	13			13	1	13	2	I	13	1	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4804.0000	34.50	4.55	-36.15	42.06	44.96	54.00	9.04	Pass	V	Average
Ì					(A)	)		Ì		S	9





## Page 75 of 80

Report No. : EED32K00238702

		Mode:	8DP	SK Trans	mitting		Channel:	244	.1		
	F	Remark:	1	(2)		14	6	·			
	67			67		0	<u>.</u>		67		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	1916.9834	31.15	3.42	-36.80	47.93	45.70	74.00	28.30	Pass	Н	Peak
2	3899.0399	33.72	4.34	-36.06	44.27	46.27	74.00	27.73	Pass	Н	Peak
3	4882.0000	34.50	4.81	-36.10	52.14	55.35	74.00	18.65	Pass	Н	Peak
4	6154.4404	35.83	5.25	-36.20	43.33	48.21	74.00	25.79	Pass	Н	Peak
5	7323.0000	36.42	5.85	-36.41	42.73	48.59	74.00	25.41	Pass	Н	Peak
6	9764.0000	37.71	6.71	-36.83	41.88	49.47	74.00	24.53	Pass	Н	Peak
	S			S		C	9		S		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4882.0000	34.50	4.81	-36.10	38.95	42.16	54.00	11.84	Pass	Н	Average
		Mode:	8DP	SK Trans	mitting		Channel:	244	.1		
	F	Remark:	1			I		I			
	13		, I	100		12	~		12		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2701.5403	32.72	4.12	-36.72	47.73	47.85	74.00	26.15	Pass	V	Peak
2	4882.0000	34.50	4.81	-36.10	51.16	54.37	74.00	19.63	Pass	V	Peak
3	6342.6343	35.87	5.46	-36.15	42.66	47.84	74.00	26.16	Pass	V	Peak
4	7323.0000	36.42	5.85	-36.41	43.56	49.42	74.00	24.58	Pass	V	Peak
5	8415.6916	36.57	6.35	-36.31	43.75	50.36	74.00	23.64	Pass	V	Peak
6	9764.0000	37.71	6.71	-36.83	41.42	49.01	74.00	24.99	Pass	V	Peak
	(A)	)				63	0				
	Freq.	Ant	Cable	Pream	Reading	Level	Limit	Magin	Posult	Polarity	Pomark

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark	
1	4882.0000	34.50	4.81	-36.10	42.65	45.86	54.00	8.14	Pass	V	Average	
2		(6	$(\mathbf{S})$		(25)	•)	6	<u>S)</u>		6	2)	









#### Page 76 of 80

Report No. : EED32K00238702

	1000	Mode:	8DP	SK Trans	mitting		Channel:	248	0		
	R	emark:	/								
	ST.			GT					G /		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3213.5464	33.29	4.60	-36.73	47.42	48.58	74.00	25.42	Pass	Н	Peak
2	4960.0000	34.50	4.82	-36.20	51.16	54.28	74.00	19.72	Pass	Н	Peak
3	5980.8731	35.77	5.33	-36.25	42.69	47.54	74.00	26.46	Pass	Н	Peak
4	7440.0000	36.54	5.85	-36.34	41.75	47.80	74.00	26.20	Pass	Н	Peak
5	8153.3903	36.46	6.42	-36.45	43.71	50.14	74.00	23.86	Pass	Н	Peak
6	9920.0000	37.77	6.79	-36.82	39.57	47.31	74.00	26.69	Pass	Н	Peak
	6.2			6.2		6	1		(C.)		

NO	Freq. [MHz]		Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4960.00	00	34.50	4.82	-36.21	43.22	46.33	54.00	7.67	Pass	Н	Average
C			Mode: Remark:	8DF /	PSK Trans	mitting		Channel:	248	0	0	2

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3192.0942	33.28	4.64	-36.74	48.24	49.42	74.00	24.58	Pass	V	Peak
2	4263.7264	34.17	4.48	-36.26	43.58	45.97	74.00	28.03	Pass	V	Peak
3	4960.0000	34.50	4.82	-36.20	50.13	53.25	74.00	20.75	Pass	V	Peak
4	6387.4887	35.88	5.35	-36.29	43.93	48.87	74.00	25.13	Pass	V	Peak
5	7440.0000	36.54	5.85	-36.34	42.14	48.19	74.00	25.81	Pass	V	Peak
6	9920.0000	37.77	6.79	-36.82	40.19	47.93	74.00	26.07	Pass	V	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4960.0000	34.50	4.82	-36.21	41.50	44.61	54.00	9.39	Pass	V	Average

Note:

1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of  $\pi$ /4DQPSK modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.

2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.

3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.








Page 77 of 80

# PHOTOGRAPHS OF TEST SETUP

Test model No.: GWP-SLCR-BT



Radiated spurious emission Test Setup-1(Below 30MHz)



Radiated spurious emission Test Setup-2(Below 1GHz)













Radiated spurious emission Test Setup-3(Above 1GHz)



Radiated spurious emission Test Setup for Close-up





















# **PHOTOGRAPHS OF EUT Constructional Details**

Refer to Report No.EED32K00238701 for EUT external and internal photos.

