DASY5 Validation Report for Head TSL Date: 20.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=4.47$ S/m; $\epsilon_r=35.4;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5250 MHz; $\sigma=4.52$ S/m; $\epsilon_r=35.4;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=4.57$ S/m; $\epsilon_r=35.3;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.77$ S/m; $\epsilon_r=35.9$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.88$ S/m; $\epsilon_r=34.9;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=5.03$ S/m; $\epsilon_r=34.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.09$ S/m; $\epsilon_r=34.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.09$ S/m; $\epsilon_r=34.6;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.61 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.7% Maximum value of SAR (measured) = 18.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 79.07 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.5% Maximum value of SAR (measured) = 18.4 W/kg Certificate No: D5GHzV2-1060_Jul20 Page 14 of 23 Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.56 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.3% Maximum value of SAR (measured) = 19.0 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.44 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.42 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 20.7 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.89 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 20.2 W/kg $Dipole\ Calibration\ for\ Head\ Tissue/Pin=100mW,\ dist=10mm,\ f=5750\ MHz/Zoom\ Scan,$ dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.69 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65% Maximum value of SAR (measured) = 19.9 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.77 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 20.1 W/kg Certificate No: D5GHzV2-1060_Jul20 Page 15 of 23 0 dB = 20.7 W/kg = 13.16 dBW/kg Certificate No: D5GHzV2-1060_Jul20 Page 16 of 23 # Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz) Certificate No: D5GHzV2-1060_Jul20 Page 17 of 23 # Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz) Certificate No: D5GHzV2-1060_Jul20 Page 18 of 23 #### **DASY5 Validation Report for Body TSL** Date: 27.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.46$ S/m; $\epsilon_r=47.8$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5250 MHz; $\sigma=5.53$ S/m; $\epsilon_r=47.7$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=5.6$ S/m; $\epsilon_r=47.6$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.87$ S/m; $\epsilon_r=47.2$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=6.01$ S/m; $\epsilon_r=47.2$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=6.01$ S/m; $\epsilon_r=47.2$; $\rho=1000$ kg/m 3 , Medium parameters used: f = 5750 MHz; $\sigma = 6.22$ S/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.29$ S/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.58 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 7.3 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 17.0 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.59 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 29.0 W/kg SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 17.4 W/kg Certificate No: D5GHzV2-1060_Jul20 Page 19 of 23 Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.12 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.1% Maximum value of SAR (measured) = 17.3 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.41 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.0 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.17 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 19.0 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.25 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.15 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.7 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.67 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.2 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.11 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62% Maximum value of SAR (measured) = 18.7 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.55 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.04 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62.5% Maximum value of SAR (measured) = 18.2 W/kg Certificate No: D5GHzV2-1060_Jul20 Page 20 of 23 0 dB = 19.0 W/kg = 12.79 dBW/kg Certificate No: D5GHzV2-1060_Jul20 Page 21 of 23 ### Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500 MHz) Certificate No: D5GHzV2-1060_Jul20 Page 22 of 23 ### Impedance Measurement Plot for Body TSL (5600, 5750, 5800 MHz) # **ANNEX I** Sensor Triggering Data Summary SAR sensor trigger Diagram: | Antenna | Trigger
Position | Trigger
Distance(mm) | |----------------|---------------------|-------------------------| | | Rear | 15 | | ANTO&ANT1 | Bottom | 11 | | ANTOWANTI | Front | 10 | | | Left | 10 | | | Rear | 15 | | ANITO O ANIT A | Тор | 11 | | ANT3&ANT4 | Front | 10 | | | Left | 10 | Per FCC KDB Publication 616217 D04v01r02, this device was tested by the manufacturer to determine the proximity sensor triggering distances for the rear and bottom edge of the device. The measured output power within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge. To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom (determined from these triggering tests according to the KDB 616217 D04v01r02) with the device at maximum output power without power reduction. These SAR tests are included in addition to the SAR tests for the device touching the SAR phantom, with reduced power. We tested the power and got the different proximity sensor triggering distances for rear, bottom, front and left edge for ANT0&ANT1. The manufacturer has declared 15mm is the most conservative triggering distance for ANT0&ANT1 with rear edge. The 11mm distance for bottom edge. The 10mm distance for front and left edge. So base on the most conservative triggering distance of 15/11/10/10mm, additional SAR measurements were required at 14/10/9/9mm from the highest SAR position between rear/bottom/front/left edge of main antenna. We tested the power and got the different proximity sensor triggering distances for rear, bottom, front and left edge for ANT3&ANT4. The manufacturer has declared 15mm is the most conservative triggering distance for ANT3&ANT4 with rear edge. The 11mm distance for top edge. The 10mm distance for front and left edge. So base on the most conservative triggering distance of 15/11/10/10mm, additional SAR measurements were required at 14/10/9/9mm from the highest SAR position between rear/top/front/left edge of main antenna. ### Main antenna - ANTO ### Rear Moving device toward the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |---|--|--|-------|-----------|-----------|-----------|------|--|--|--|--| | Distance [mm] 20 19 18 17 16 15 14 13 12 11 10 | | | | | | | | | | | | | Main antenna Far Far Far Far Near Near Near Near Near Near Near | | | | | | | | | | | | # Moving device away from the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |---|--|--|-------|-----------|-----------|-----------|------|--|--|--|--| | Distance [mm] 10 11 12 13 14 15 16 17 18 19 20 | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far Far | | | | | | | | | | | | #### **Bottom** Moving device toward the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |--|--|--|-------|-----------|-----------|-----------|------|--|--|--|--| | Distance [mm] 16 15 14 13 12 11 10 9 8 7 6 | | | | | | | | | | | | | Main antenna Far Far Far Far Near Near Near Near Near Near Near Ne | | | | | | | | | | | | # Moving device away from the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |---|--|--|-------|-----------|-----------|-----------|------|--|--|--|--| | Distance [mm] 6 7 8 9 10 11 12 13 14 15 16 | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far Far | | | | | | | | | | | | # **Front Edge** Moving device toward the phantom: | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |---|--------------------------------------|-----|-----|-----|-----|------|------|------|------|------|------|--|--| | Distance [mm] 15 14 13 12 11 10 9 8 7 6 5 | | | | | | | | | | | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | | ### Moving device away from the phantom: | | <u> </u> | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---|----------|------|-------|-----------|-----------|-----------|------|-----|--------------------------------------|-----|-----|--|--|--|--|--|--|--|--|--| | Distance [mm] 5 6 7 8 9 10 11 12 13 14 15 | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | | | | | | | | | | # Left Edge # Moving device toward the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |---|--|--|-------|-----------|-----------|-----------|------|--|--|--|--| | Distance [mm] 15 14 13 12 11 10 9 8 7 6 5 | | | | | | | | | | | | | Main antenna Far Far Far Far Near Near Near Near Near Near Near | | | | | | | | | | | | # Moving device away from the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---|------|------|-------|-----------|-----------|-----------|------|-----|--------------------------------------|-----|-----|--|--|--|--|--|--|--|--|--| | Distance [mm] 5 6 7 8 9 10 11 12 13 14 15 | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | | | | | | | | | | #### Main antenna- ANT4 #### Rear Moving device toward the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |---|--|--|-------|-----------|-----------|-----------|------|--|--|--|--| | Distance [mm] 20 19 18 17 16 15 14 13 12 11 10 | | | | | | | | | | | | | Main antenna Far Far Far Far Near Near Near Near Near Near Near | | | | | | | | | | | | # Moving device away from the phantom: | | | | senso | r near or | far(KDB 6 | 16217 6.2 | 2.6) | | | | | |---|--|--|-------|-----------|-----------|-----------|------|--|--|--|--| | Distance [mm] 10 11 12 13 14 15 16 17 18 19 20 | | | | | | | | | | | | | Main antenna Near Near Near Near Near Far Far Far Far Far | | | | | | | | | | | | ### **Bottom** Moving device toward the phantom: | | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | | |--|--------------------------------------|-----|-----|-----|-----|------|------|------|------|------|------|--|--| | Distance [mm] 16 15 14 13 12 11 10 9 8 7 6 | | | | | | | | | | | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | | | ### Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | # **Front Edge** Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 15 14 13 12 11 10 9 8 7 6 5 | | | | | | | | | 5 | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | #### Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--------------------------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | ### Left Edge Moving device toward the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |---|-----|-----|-----|-----|-----|------|------|------|------|------|------| | Distance [mm] 15 14 13 12 11 10 9 8 7 6 | | | | | | | | 5 | | | | | Main antenna | Far | Far | Far | Far | Far | Near | Near | Near | Near | Near | Near | # Moving device away from the phantom: | sensor near or far(KDB 616217 6.2.6) | | | | | | | | | | | | |--|------|------|------|------|------|------|-----|-----|-----|-----|-----| | Distance [mm] 5 6 7 8 9 10 11 12 13 14 | | | | | | | | 15 | | | | | Main antenna | Near | Near | Near | Near | Near | Near | Far | Far | Far | Far | Far | Per FCC KDB Publication 616217 D04v01r02, the influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distanceby rotating the device around the edge next to the phantom in $\leq 10^{\circ}$ increments until the tablet is $\pm 45^{\circ}$ or more from the vertical position at 0° . The front/rear evaluation The Left edge evaluation Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the ±45° range at the smallest sensor triggering test distance declared by manufacturer. # **ANNEX J** Accreditation Certificate United States Department of Commerce National Institute of Standards and Technology # Certificate of Accreditation to ISO/IEC 17025:2017 **NVLAP LAB CODE: 600118-0** # **Telecommunication Technology Labs, CAICT** Beijing China is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for: ### **Electromagnetic Compatibility & Telecommunications** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). 2020-09-29 through 2021-09-30 Effective Dates For the National Voluntary Laboratory Accreditation Program