

Test Report

of the accredited Testing Laboratory 0274 – TÜV AUSTRIA GMBH – Location Vienna - EMC Radio ISED Laboratory Company Number: 2932K, CAB identifier: AT0001

Order Confirmation Number: 2024-AT-TC-EE-ET-EX-0-000005

About

the Radio - test listed below

Applicant:

VusionGroup GmbH Kalsdorfer Strasse 12 A – 8072 Fernitz-Mellach

Model: EDG3-0290-B

ANSI C63, 10-2020

Electronic shelf labelling system Product Marketing Name: V300 2.9

FCC-ID: 2ACQM-EDG3-0290-B IC-ID: 12154A-EDG30290B

Test object:

Serial number:

Prototype

Accredited regulation: FCC: 47 CFR Part 15 (eCFR 17.12.2024) RSS-102 Issue 6, December 2023 RSS-210 Issue 11, June 2024

Andreas Malek

Andreas Malel

Examined by / Testing Laboratory TÜV AUSTRIA GMBH

Michael Emminger

Approved by / Testing Laboratory TÜV AUSTRIA GMBH

The results of this test report only refer to the provided equipment.

Issued on 28.03.2025 in Vienna / TIC

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00

Page 1 of 25

TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

Contents

Designation	page
1. Applicant	3
2. Description of EUT	4
3. Standards / Final result	5
4. Test results	6-25

List of measurements according to 47 CFR 15 and RSS-210

4.1	Test object data	6
4.2	Number of channels and channel spacing	7
4.3	Duty Cycle for averaging	8
4.4	Field strength at 2400 – 2483,5 MHz	9-11
4.5	Emissions outside 2400 – 2483,5 MHz (15.209)	12-20
4.6	RF Exposure	21-23
4.7	Additional provisions to the general radiated emission limitations	24-25

Appendix	Designation	pages
1	Test equipment used	5
2	Photodocumentation	10

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH. Page 2 of 25

TÜV AUSTRIA GMBH Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment

1. Applicant

Company:	VusionGroup GmbH
Department:	Product & Project Manager
Address:	A – 8072 Fernitz-Mellach; Kalsdorfer Strasse 12
Contact person:	Mrs. Tamara Risek-Gmajnic

EUT received on:	17.12.2024

Tests were performed on: 17.12. till 19.12.2024

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **3** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

2. Description of EUT

EUT:	Electronic shelf labelling system
Product Name:	V300 2.9
Model:	EDG3-0290-B
Serial Number:	Prototypes
Manufacturer:	VusionGroup GmbH A – 8072 Fernitz-Mellach; Kalsdorfer Strasse 12
Description:	VusionGroup GmbH provided the following configuration for the measurements:
	Prototype with special test-firmware for continuous transmission
Operating mode:	The measurements were carried out at the following running states: test-firmware running, transmitting continuously
Technical data EUT:	Rated voltage: 3VDC Rated frequency: DC Mains voltage during the tests: 3VDC internal battery Field strength: 3,39 mV/m average @ 3m distance Frequency range: 2404,053 - 2479,285 MHz Channel separation: 0,35 MHz
Climatic conditions in the emc laboratory:	Relative humidity: 33% Temperature: 23°C

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page 4 of 25

TÜV AUSTRIA GMBH

activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

Deutschstraße 10 Tel.: +43 (0)504 54 Mail: info@tuv.at Web: http://www.tuv.at

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment

1230 Vienna / Austria

3. Standards / Final result

Name Title		Deviation	Result
Title 47 CFR Part 15 eCFR 23.09.2024	RADIO FREQUENCY DEVICES	none	ОК
RSS-210 Issue 10, December 2019	Licence-Exempt Radio Apparatus: Category I Equipment	none	ОК
RSS-210 Issue 11, June 2024	Licence-Exempt Radio Apparatus: Category I Equipment	none	ОК
RSS-102 Issue 6, December 2023Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)		none	ОК
ANSI C63.10-2020	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	none	ОК
Result: Opinions and interpretation of testing laboratory OK: EUT passed NOK: EUT failed			

www.tuv.at | info@tuv.at

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **5** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

4. Test results

4.1 TEST OBJECT DATA

General EUT Description

This transceiver is working in a network consisting of a controller station, so called Accesspoint, and various displays. The Accesspoint transmits information to the displays and receives acknowledgements. This device is a display operating in the network system. The device is equipped with a passive NFC chip onboard which does not have its own rf generation. It works as tag and can also receive information from the NFC reader station.

2.1033 (c) Technical description

2.1033 (4) Type of emission: Minimum shift keying - declared channel bandwidth 250 kHz -

'virtual' channel spacing about 0,35 MHz. Only 11 channels from the channel plan are used, therefore the channel spacing in reality is much higher and varies from 2,45 MHz minimum up to 17,15 MHz.

- 2.1033 (5) Frequency range: 2404,053 2479,285 MHz (channel center frequencies of channel 0 up to ch. 10)
- 2.1033 (6) Power range and Controls: The maximum field strength measured is 3,39 mV/m average @ 3m distance. There is no power control or regulation.
- 2.1033 (7) Maximum output power rating: 3,39 mV/m average @ 3m distance.
- 2.1033 (8) DC Voltage and Current: 3 VDC (internal battery) maximum current consumption: 28,0mA during continuous transmission
- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Worst case Spurious Emissions: 50,85 dBµV/m Peak at 7325,8 MHz.

Tests were performed on: 17th to 19th December, 2024.

All test equipment was calibrated at the time of testing.

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **6** of **25**

 TÜV AUSTRIA GMBH

 Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

4.2 Number of channels and channel spacing

§ 2.1033

Channel plan:

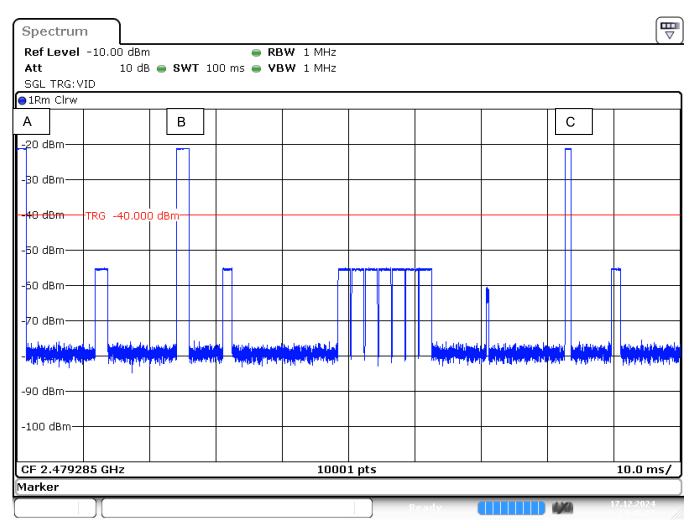
ESL-CH	RF-CH	f _{G2} [GHz] (26.000000 MHz) (6049109)
СНО	12	2.404053
CH1	29	2.410002
CH2	63	2.421899
СНЗ	71	2.424698
CH4	120	2.441844
CH5	141	2.449192
CH6	177	2.461789
CH7	199	2.469487
CH8	213	2.474386
CH9	220	2.476835
CH10	227	2.479285

Tests were performed on ESL channels 0, 4 and 10.

Test Equipment used: N/A

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **7** of **25** TÜV AUSTRIA GMBH


Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

4.3 Duty Cycle measurements for averaging

Mode: data transmission (worst case in 100ms)

Date: 17.DEC.2024 14:45:28

According to the timing protocol description provided by the manufacturer and attached as technical description to the application for certification, the transmission burst time was checked to not exceed the declared value. The declared value was taken for calculation, as that gives the worst case. The first transmission A burst in a 100ms time frame has a length of 1,46ms, the second one B is 1,97ms in length and the third one C is 1,19ms, giving a duty cycle of 4,62% or an average factor of -26,7 dB. The weaker emissions below -50 dBm are from the access point that was used to send the query.

LIMIT SUBCLAUSE 15.249(e)

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Test Equipment used: EMV-205

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

 FM-TAGMBH-EE-FG-0100a Revision: 00 Page 8 of 25
 TÜV AUSTRIA GMBH

 Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

4.4 Field strength of emissions at 2400 – 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 0 (2404,053MHz)

The maximum peak value as measured in was 95,9 dB μ V/m = 62,37 mV/m at 3m distance, see section 4.5.

With the averaging factor calculated on page 8 of this test report of -26,7 dB the maximum average value is then 69,2 dB μ V/m = 2,88 mV/m at 3m distance.

LIMIT SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Field strength of fundamental frequency (millivolts/meter)		Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

(c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **9** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

Field strength of emissions at 2400 – 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 4 (2441,844 MHz)

The maximum peak value measured was 97,3 dBµV/m = 73,28 mV/m at 3m distance, see section 4.5.

With the averaging factor calculated on page 8 of this test report of -26,7 dB the maximum average value is then 70,6 dB μ V/m = 3,39 mV/m at 3m distance.

LIMIT SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Field strength of fundamental frequency (millivolts/meter)		Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

(c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **10** of **25**

Field strength of emissions at 2400 – 2483,5 MHz

§ 15.249 (a) (c)

Operating on CH 10 (2479,285 MHz)

The maximum peak value measured was 97,3 dBµV/m = 73,28 mV/m at 3m distance, see section 4.5.

With the averaging factor calculated on page 8 of this test report of -26,7 dB the maximum average value is then 70,6 dB μ V/m = 3,39 mV/m at 3m distance.

LIMIT SUBCLAUSE 15.249(a) (c)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Field strength of fundamental frequency (millivolts/meter)		Field strength of harmonics (microvolts/meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

(c) Field strength limits are specified at a distance of 3 meters.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-200/1

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **11** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

4.5 Emissions outside 2400 – 2483,5 MHz

§ 15.249 (d) (e)

Measuring apparatus parameters 9 kHz to 150 kHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	9 kHz	9 kHz	Detector	Max Peak	Quasi Peak
Stop frequency	150 kHz	150 kHz	Measuring time	10 ms	1 s
Stepsize	50 Hz	50 Hz	RF-attenuation	0dB	0dB
IF- Bandwidth	200 Hz	200 Hz	Preamplifier	20 dB	20 dB

Measuring apparatus parameters 150 kHz to 30 MHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	150 kHz	150 kHz	Detector	Max Peak	Quasi Peak
Stop frequency	30 MHz	30 MHz	Measuring time	10 ms	1 s
Stepsize	2.25 kHz	2.25 kHz	RF-attenuation	0dB	0dB
IF- Bandwidth	9 kHz	9 kHz	Preamplifier	20 dB	20 dB

Measuring apparatus parameters 30 MHz to 1000 MHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	30 MHz	30 MHz	Detector	Max Peak	Quasi Peak
Stop frequency	1000 MHz	1000 MHz	Measuring time	10 ms	1 s
Stepsize	30 kHz	30 kHz	RF-attenuation	0dB	0dB
IF- Bandwidth	120 kHz	120 kHz	Preamplifier	20 dB	20 dB

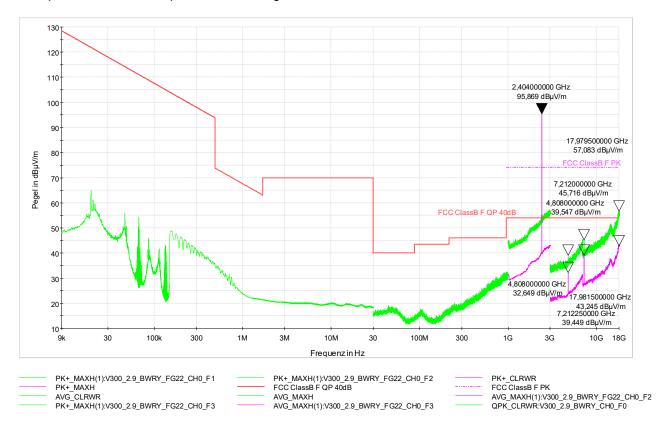
Measuring apparatus parameters 1 GHz to 25 GHz

Parameter	Preview measurement	Final measurement	Parameter	Preview measurement	Final measurement
Start frequency	1 GHz	1 GHz	Detector	Max Peak / Average	Max Peak / Average
Stop frequency	25 GHz	25 GHz	Measuring time	100 ms	100 ms
Stepsize	250 kHz	250 kHz	RF-attenuation	0dB	0dB
IF- Bandwidth	1 MHz	1 MHz	Preamplifier	20 dB	20 dB

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **12** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.



Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 0 (2404,053 MHz) – average values above 1 GHz are shown in magenta – green = peak

The NFC part of the EUT was powered on during the test.

Worst case Emission: 45,72 dBµV/m Peak at 7212,0 MHz

Frequency (MHz)	Value (dBµV/m) without duty-cycle	Value (dBµV/m) with duty cycle
4808,0	32,65 (AVG)	12,85 (AVG)
4808,0	39,55 (PK)	39,55 (PK)
7212,0	45,72 (PK)	45,72 (PK)
7212,3	39,45 (AVG)	19,02 (AVG)

Duty cycle measurements and the reduction factor are described on page 8. The other values are noise.

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

LIMIT SUBCLAUSE 15.249(d) (e) (15.209)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-	TÜV AUSTRIA GMBH	Deutschstraße 10 1230 Vienna / Austria	
FG-0100a Revision: 00 Page 13 of 25	Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.	Tel.: +43 (0)504 54 Mail: <u>info@tuv.at</u>	A LAND
1 ugo 10 ol 20		Web: http://www.tuv.at	1111

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

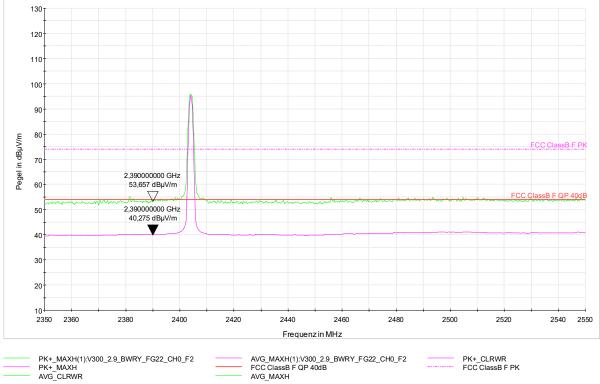
Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-114; EMV-200/1; NT-126; NT-416

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **14** of **25**

TÜV AUSTRIA GMBH


Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

Nearest Band Edge: 2390 MHz

LIMIT

SUBCLAUSE 15.249(d) (e) (15.209)

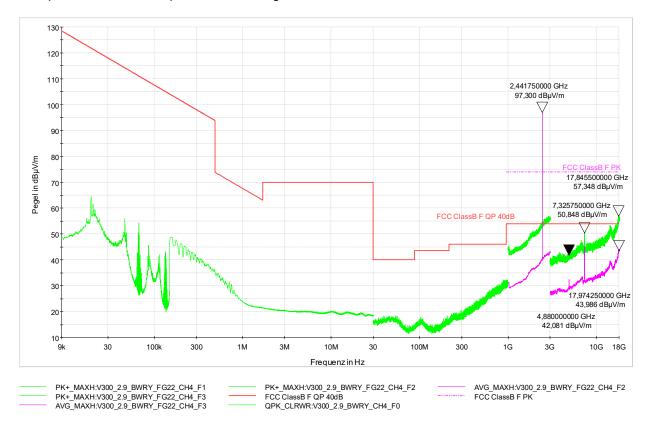
(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-114; EMV-200/1; NT-126; NT-416

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04



Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 4 (2441,844 MHz) – average values above 1 GHz are shown in magenta – green = peak

The NFC part of the EUT was powered on during the test.

Worst case Emission: 50,85 dBµV/m Peak at 7325,8 MHz

Frequency (MHz)	Value (dBµV/m) without duty-cycle	Value (dBµV/m) with duty cycle
4880,0	42,08 (PK)	42,08 (PK)
4883,8	32,47 (AVG)	15,38 (AVG)
7325,8	50,85 (PK)	50,85 (PK)
7325,8	44,90 (AVG)	24,15 (AVG)

Duty cycle measurements and the reduction factor are described on page 8. The other values are noise.

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

LIMIT SUBCLAUSE 15.249(d) (e) (15.209)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-	TÜV AUSTRIA GMBH	Deutschstraße 10 1230 Vienna / Austria	1
FG-0100a Revision: 00 Page 16 of 25	Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.	Tel.: +43 (0)504 54 Mail: <u>info@tuv.at</u> Web: http://www.tuv.at	H

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

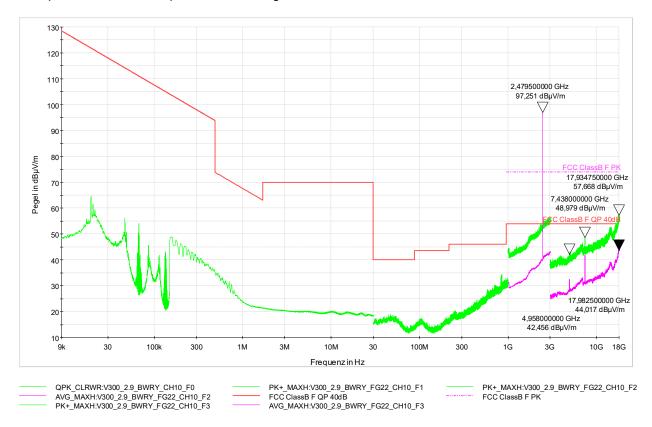
EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-114; EMV-200/1; NT-126; NT-416

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **17** of **25**

TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.



Emissions outside 2400 – 2483,5 MHz § 15.249 (d) (e) Channel 10 (2479,285 MHz) - average values above 1 GHz are shown in magenta - green = peak

The NFC part of the EUT was powered on during the test.

Worst case Emission: 48,98 dBµV/m Peak at 7438,0

Frequency (MHz)	Value (dBµV/m) without duty-cycle	Value (dBµV/m) with duty cycle
4958,0	42,46 (PK)	42,46 (PK)
4958,5	32,51 (AVG)	15,76 (AVG)
7438,0	48,98 (PK)	48,98 (PK)
7437,8	42,03 (AVG)	22,28 (AVG)

Duty cycle measurements and the reduction factor are described on page 8. The other values are noise.

Remark: Although the measurements were made up to the 10th harmonic (25 GHz) the frequency range above 18 GHz is not automatized, so no graphs are available. Nevertheless no emissions above noise level were found in the frequency range above 18 GHz.

LIMIT SUBCLAUSE 15.249(d) (e) (15.209)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

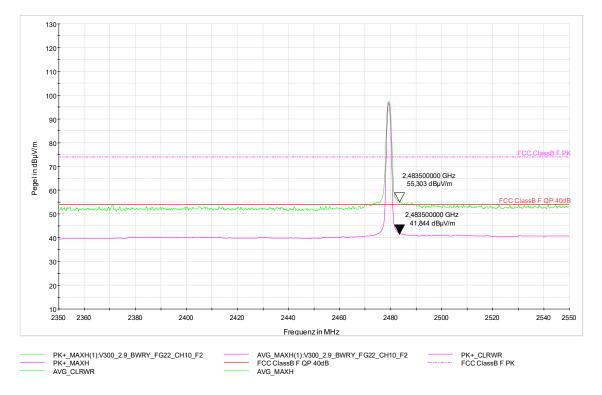
FM-TAGMBH-EE- FG-0100a	TÜV AUSTRIA GMBH	Deutschstraße 10 1230 Vienna / Austria	
FG-0100a Revision: 00 Page 18 of 25	Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.	Tel.: +43 (0)504 54 Mail: <u>info@tuv.at</u> Web: http://www.tuv.at	

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-114; EMV-200/1; NT-126; NT-416

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **19** of **25** TÜV AUSTRIA GMBH


Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

Nearest Band Edge: 2483,5 MHz

LIMIT SUBCLAUSE 15.249(d) (e) (15.209)

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

(e) As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30–88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Test Equipment used:

EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-110; EMV-111; EMV-112; EMV-114; EMV-200/1; NT-126; NT-416

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

4.6 RF Exposure

§ 1.1307(b)(3)(i)(A)

Title 47 §1.1307(b)(3)(i):

(3) Determination of exemption. (i) For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);

max. Tx power [mW] (from conducted and ERP measurement)	Duty cycle [%] (see 4.3)	Production variance [1]	max. time- averaged power [mW]	§1.1307(b)(3)(i)(A) limit [mW]
1.22	4.62	1,58	0.089	1

The maximum time-averaged power is less than 1 mW.

The device is an *exempt RF device* as per Title 47 §1.1307(b)(3)(i)(A).

ERP measurement:		Effective radiated power (mW)				
Test co	Test condition CH 0 (2404,053MHz) (244			CH 10 (2479,285MHz)		
Tnom 23 °C Vnom (3)V		0.72	0.99	0.99		

EIRP measurement:		Effective isotropically radiated power (mW)				
Test co	ondition	CH 0 (2404,053MHz)				
T _{nom} 23 °C	V _{nom} (3)V	1.17	1.62	1.62		

Conducted measure	ement	(conducted power (mW)			
Test	condition	CH 0 (2404,053MHz)				
Tnom 23 °C Vnom (3)V		1.22	1.20	1.20		

Maximum Gain de conducted measu	erived from EIRP and rement:		Maximum Gain (dBi)	
Test condition		CH 0 (2404,053MHz)	CH 4 (2441,844MHz)	CH 10 (2479,285MHz)
T _{nom} 23 °C	V _{nom} (3)V	-0.18	1.3	1.3

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a

Revision: 00 E Page **21** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

RF Exposure

RSS-102, Issue 6

6.3 SAR exemption limits

Devices operating at or below the applicable output power levels (adjusted for tune-up tolerance) specified in table 11, based on the separation distance, are exempt from SAR evaluation. The separation distance, defined as the distance between the user and/or bystander and the antenna and/or radiating element of the device or the outer surface of the device, shall be less than or equal to 20 cm for these exemption limits to apply.

Frequency	Exemption Limits (mW)							
(MHz)	At separation distance of ≤5 mm (mW)	At separation distance of 10 mm (mW)	At separation distance of 15 mm (mW)	At separation distance of 20 mm (mW)	At separation distance of 25 mm (mW)			
≤300	45	116	139	163	189			
450	32	71	87	104	124			
835	21	32	41	54	72			
1900	6	10	18	33	57			
2450	3	7	16	32	56			
3500	2	6	15	29	50			
5800	1	5	13	23	32			

Frequency	Exemption Limits (mW)							
(MHz)	At separation distance of 30 mm (mW)	At separation distance of 35 mm (mW)	At separation distance of 40 mm (mW)	At separation distance of 45 mm (mW)	At separation distance of ≥50 mm (mW)			
≤300	216	246	280	319	362			
450	147	175	208	248	296			
835	96	129	172	228	298			
1900	92	138	194	257	323			
2450	89	128	170	209	245			
3500	72	94	114	134	158			
5800	41	54	74	102	128			

The exemption limits in table 11 Table 11 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 50 mm from a flat phantom, which provides a SAR value of approximately 0.4 W/kg for 1 g of tissue.

For limb-worn devices where the 10 gram of tissue applies, the exemption limits for routine evaluation in table 11 are multiplied by a factor of 2.5.

For controlled-use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in table 11 Table 11 are multiplied by a factor of 5.

When the operating frequency of the device is between two frequencies located in table 11, linear interpolation shall be applied for the applicable separation distance. If the separation distance of the device is between two distances located in table 11, linear interpolation may be applied for the applicable frequency. Alternatively, the limit corresponding to the smaller distance may be employed. For example, in case of a 7 mm separation distance, either use the exception value for a 5 mm separation distance or interpolate between the limits corresponding to 5 mm and 10 mm separation distances.

For implanted medical devices, the exemption limit for routine SAR evaluation is set at an output power of 1 mW, regardless of frequency.

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **22** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

RSS-102 Exemption calculation

Frequency (MHz)	cond. P (mW)	max. EIRP (mW)	Duty Cycle (1)	Tune-up tolerance (1)	Avg. cond. P (mW)	Avg. EIRP (mW)	separation distance (mm)	Limit (mW)	
2404.053	1.22	1.17	0.0462	1,58	0.089	0.085	5	8,13	ОК
2441.844	1.20	1.62	0.0462	1,58	0.088	0.118	5	7,61	ОК
2479.285	1.20	1.62	0.0462	1,58	0.088	0.118	5	7,43	ОК

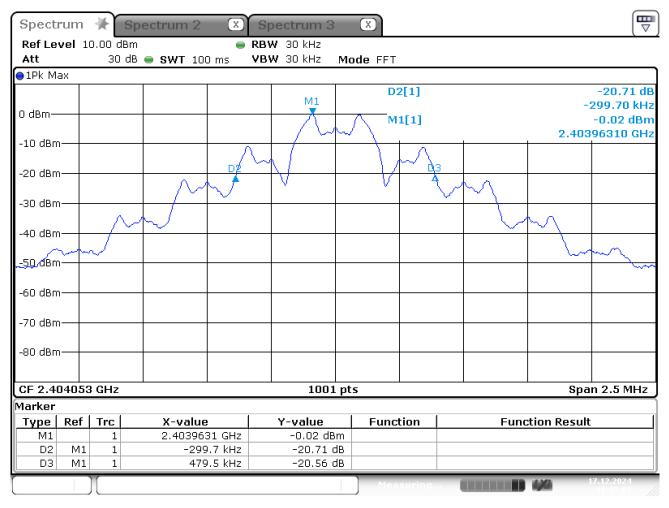
*) Calculations are done for a minimum separaton distance that's derived from the antenna distance to the device casing and limb worn exposure. It is conservative, as customers are not expected to touch electronic shelf labels for extended periods of time.

The time-averaged output power is below the exemption limit for routine evaluation.

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE-FG-0100a Revision: 00 Page **23** of **25** TÜV AUSTRIA GMBH

Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.



4.7 Additional provisions to the general radiated emission limitations § 1

§ 15.215(c)

Channel 0 (2404,053 MHz)

Date: 17.DEC.2024 11:07:02

Frequency band (§ 15.249): 2400-2483.5 MHz 2403.9631 MHz - 0.2997 MHz = 2403.6634 MHz The 20 dB bandwidth of the emission on the lowest channel is fully contained within the frequency band.

LIMIT SUBCLAUSE 15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Test Equipment used: EMV-205

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

FM-TAGMBH-EE- FG-0100a	TÜV AUSTRIA GMBH	Deutschstraße 10 1230 Vienna / Austria
Revision: 00	Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment	Tel.: +43 (0)504 54
Page 24 of 25	activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.	Mail: <u>info@tuv.at</u>
Fage 24 01 25		Web: http://www.tuv.at

Channel 10 (2479,285 MHz)

Specti	rum	₩								Ē
Ref Le [.] Att SGL	vel 1	0.00 dB 30 d	m dB e SWT 10		3W 30 kHz BW 30 kHz	Mode FFT				.
😑 1Pk Cli	rw									
0 dBm—					M1		3[1] 1[1]			-20.64 dB 479.50 kHz -0.43 dBm
-10 dBm	ı——								2.479	19010 GHz
-20 dBm					V			$\overline{\mathbf{N}}$		
-30 dBm -40 dBm									\sim	
- 50 ø Bm	<u>~~~</u>	\checkmark								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm	ı——									
-70 dBm										
-80 dBm										
CF 2.47	7928	5 GHz			1001	pts			Spa	n 2.5 MHz
Marker										
Туре	Ref		X-value		Y-value	Func	tion 📔	Fund	tion Result	<u>t</u>
M1		1	2.47919		-0.43 dB					
D2 D3	M1 M1	1		7.2 kHz 9.5 kHz	-20.21 c -20.64 c					
)[eady		4,74	17.12.2024 10:49:40

Date: 17.DEC.2024 10:49:40

Frequency band (§ 15.249): 2400-2483.5 MHz 2479.1901 MHz + 0.4795 MHz = 2479.6696 MHz The 20 dB bandwidth of the emission on the highest channel is fully contained within the frequency band.

LIMIT SUBCLAUSE 15.215(c)

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

Test Equipment used: EMV-205

Grundvorlage / Basic Template: FM-TAGMBH-KBS-0100b Grundvorlage Prüfbericht akkreditiert-EN, Rev. 04

 FM-TAGMBH-EE TÜV AUSTRIA GMBH

 FG-0100a
 Excerpts may only be reproduced with the permission of TÜV AUSTRIA GMBH. All conformity assessment activities were carried out in accordance with the QM system of TÜV AUSTRIA GMBH.

 Page 25 of 25
 6725

Appendix 1 Test equipment used

Anechoic Chamber with 3m measurement distance	NT-100	Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	Competence Center: Electrical & Enviromental
Stripline according to ISO 11452-5	NT-108	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173	
MA4000 - Antenna mast 1 - 4 m height	NT-110/1			Test report number:
DS - Turntable 0 - 400 ° Azimuth	NT-111/1	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1	2024-AT-TC-EE-ET-EX-0- 000005-FG-066-E1
CO3000 Controller Mast+Turntable	NT-112/1	ESR – Test receiver 20 Hz – 26,5 GHz	NT-207/1	Page: 1 of 5
HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	Digital Radio Tester CMW500	NT-208/1	Date: 28.03.2025
FMZB1513 - Loop Antenna 9 kHz - 30 MHz	NT-122/1	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209	
HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	CMTA - Radiocommunication analyzer ; 0,1 - 1000 MHz	NT-210	
Dipole Antenna VHA9103 30 - 300 MHz	NT-124/1a	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211	
Dipole Antenna UHA9105 300 - 1000 MHz	NT-124/1b	Digital Radio Tester Aeroflex 3920	NT-212/1	
3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	Mixer M28HW 26,5 GHz - 40 GHz	NT-214	
3116 - Horn Antenna 18 - 40 GHz	NT-126	RubiSource T&M Timing reference	NT-216	
SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Radiocommunicationanalyzer SWR 1180 MD	NT-217	
AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer FS-Z60 40 GHz – 60 GHz	NT-218/1	
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	Mixer FS-Z90 60 GHz – 90 GHz	NT-219/1	
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	GDS-2504 Digital scope	P-W/OS03	
3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	TPS 2014 Digital scope	NT-222	
VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	Artificial Ear according to IEC 60318	NT-224	
Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225	
Horn Antenna 500 MHz - 2900 MHz	NT-133	SRM-3006 Spectrumanalyzer	NT-233/1a	
Horn Antenna 500 MHz - 6000 MHz	NT-133/1	E-field probe SRM 75 MHz – 3 GHz	NT-234	
Log. per. Antenna 800 MHz - 2500 MHz	NT-134	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-e	
Log. per. Antenna 800 MHz - 2500 MHz	NT-135	Magnetometer HP-01	NT-241/1	
BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	EFA-3 H-field- / E-field probe	NT-243	
Conical Dipol Antenna PCD8250	NT-138	EHP-50F H-field- / E-field probe	NT-243/1	
HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	Field Meter EMR-200 100 kHz – 3 GHz	NT-244	
HZ-1 Antenna tripod	NT-150	E-field probe 100 kHz – 3 GHz	NT-245	
BN 1500 Antenna tripod	NT-151	H-field probe 300 kHz – 30 MHz	NT-246	

Appendix 1 (continued) Test equipment used

	E-field probe 3 MHz – 18 GHz	NT-247	Prana N-MT 500 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332/1	Competence Center: Electrical & Enviromental
	H-field probe 27 MHz – 1 GHz	NT-248	BBA150 RF-Amplifier 1 GHz - 6 GHz	NT-333/1	
	ELT-400 1 Hz – 400 kHz	NT-249	APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334	Test report number:
	MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250	Preamplifier 1 GHz - 4 GHz	NT-335	2024-AT-TC-EE-ET-EX-0- 000005-FG-066-E1
	CDN EMCL-35 EM Injection clamp	NT-251/1	Preamplifier for GPS MKU 152 A	NT-336	Page: 2 of 5
	FCC-203I-DCN Ferrite decoupling network	NT-252	Preamplifier 1 GHz – 18 GHz	NT-337/1	Date: 28.03.2025
	PR50 Current Probe	NT-253	DC Block 10 MHz – 18 GHz Model 8048	NT-338	
	i310s Current Probe	NT-254/1	2-97201 Electronic load	NT-341	
	Fluke 87 V True RMS Multimeter	NT-260	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344	
	Model 2000 Digital Multimeter	NT-261	TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345	
	Fluke 87 V Digital Multimeter	NT-262/1	VDS 200 Mobil-impuls-generator	NT-350	
	ESH2-Z5-U1 Artificial mains network 4x25A	NT-300	LD 200 Mobil-impuls-generator	NT-351	
	ESH3-Z5-U1 Artificial mains network 2x10A	NT-301	MPG 200 Mobil-Impuls-Generators	NT-352	
	ESH3-Z6-U1 Artificial mains network 1x100A	NT-302	EFT 200 Mobil-impuls-generator	NT-353	
	ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a	AN 200 S1 Artificial Network	NT-354	
	EZ10 T-Artificial Network	NT-305	FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1	
			PHE 4500 - Mains impedance network	NT-401	
	SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1	IP 6.2 Coupling filter for data lines (Surge)	NT-403	
	RefRad Reference generator	NT-312	TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409	
	SMP 02 Signal generator 10 MHz - 20 GHz	NT-313	ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410	
	40 MHz Arbitrary Generator TGA1241	NT-315	CN-EFT1000 - Capacitive clamp (Burst)	NT-411/1	
	Artificial mains network NSLK 8127-PLC	NT-316	Highpass-Filter 100 MHz – 3 GHz	NT-412	
	PSURGE 4.1 Surge generator	NT-324	Highpass-Filter 600 MHz – 4 GHz	NT-413	
	IMU4000 Immunity test system	NT- 325/1a-e	Highpass-Filter 1250 MHz – 4 GHz	NT-414	
	VCS 500-M6 Surge-Generator	NT-326	Highpass-Filter 1800 MHz – 16 GHz	NT-415	
	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c			
	BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330			

Appendix 1 (continued) Test equipment used

RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417/1
RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418
RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423
RF-Attenuator 30 dB	NT-424
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426
RF-Attenuator 6 dB	NT-428
RF-Attenuator 0 dB - 81 dB	NT-429
WRU 27 - Band blocking 27 MHz	NT-430
WHJ450C9 AA - High pass 450 MHz	NT-431
WHJ250C9 AA - High pass 250 MHz	NT-432
RF-Load 150 W	NT-433
Impedance transducer 1:4 ; 1:9 ; 1:16	NT-435
RF-Attenuator DC – 18 GHz 6 dB	NT-436
RF-Attenuator DC – 18 GHz 6 dB	NT-437
RF-Attenuator DC – 18 GHz 10 dB	NT-438
RF-Attenuator DC – 18 GHz 20 dB	NT-439
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441
Power Divider 6 dB/1 W/50 Ohm	NT-443
Directional coupler 0,1 MHz – 70 MHz	NT-444
Directional coupler 0,1 MHz – 70 MHz	NT-445
Tube imitations according to EN 55015	NT-450
FCC-801-M3-16A Coupling decoupling network	NT-458
FCC-801-M2-50A Coupling decoupling network	NT-459
FCC-801-M5-25 Coupling decoupling network	NT-460
FCC-801-T4 Coupling decoupling network	NT-463
FCC-801-C1 Coupling decoupling network	NT-464
SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1

95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Competence Center: Electrical & Enviromental
94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	
WHKX12-2700-3000-18000 3 GHz Highpass filter	NT-472	Test report number:
WHKX10-3870-4500-18000 4,5 GHz Highpass filter	NT-473	2024-AT-TC-EE-ET-EX-0- 000005-FG-066-E1
CDN S9 USB3.0 Coupling decoupling network	NT-474	Page: 3 of 5
CDN S2 XLR3-1 Coupling decoupling network	NT-475	Date: 28.03.2025
CDN S8 RJ45 Coupling decoupling network	NT-476	
GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
Van der Hoofden Test Head	NT-484	
WRCJV12-5820-5850-5950-5980 5,9 GHz Band Reject Filter	NT-490	
WHKX10-5670-6300-18000 6 GHz Highpass filter	NT-491	
WHK12-935-1000-7000 1 GHz Highpass filter	NT-492	
EMC Video/Audiosystem	NT-511/1	
EMC32 Version 10.60.20 Test software	NT-520/1	
SRM-TS Version 1.3 software for SRM-3000	NT-522	
SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
Spitzenberger und Spies Test software V4.1	NT-525	
Vertical coupling plane (ESD)	NT-531	
Test cable #4 for EN 61000-4-6	NT-553	
Test cable #3 for conducted emission	NT-554	
Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
Test cable #8 Sucoflex 104EA	NT-559	
Test cable #9 (for outdoor measurements)	NT-580	
Test cable #10 (for outdoor measurements)	NT-581	
Test cable #13 Sucoflex 104PE	NT-584	
Test cable #21 for SRM-3000	NT-592	
Shield chamber	NT-600	
Climatic chamber	M-1200	

DN: FM-TAGMBH-EE-0100n_PML-EN / Rev 02.1

Appendix 1 (continued) Test equipment used

		_			Competence Center:
Anechoic Chamber 3 m / 5 m measuring distance	EMV-100		Diode power probe R&S NRP40S	EMV-220	Electrical & Enviromental
Turntabel 6 m diameter	EMV-101		HF- Ampflifier 9 kHz-225 MHz BBL200	EMV-300/1	
Antenna mast + controller	EMV-102+ EMV-103		HF- Amplifier 80 -1000 MHz BBA150	EMV-301	Test report number: 2024-AT-TC-EE-ET-EX-0-
EMC Video/Audiosystem	EMV-104		HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	000005-FG-066-E1
EMC Software EMC32 Version 10.6.2	EMV-105		High Power Ant. 20-200 MHz HPBA-2510	EMV-303/1	Page: 4 of 5 Date: 28.03.2025
Hornantenna 1 – 18 GHz HF 907	EMV-110		High Power Ant. 20-200 MHz S12018-21	EMV-303/2	
Antennapre.amp. 1 – 18 GHz BBV 9718 D	EMV-111/1		Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	
Trilog Antenna 30-3000 MHz VULB9163	EMV-112		Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305	
Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113		HF- Ampflifier 9 kHz-250 MHz BBA150 (low noise)	EMV-306	
Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114		ISO11451-2 TLS 10 kHz – 30 MHz	EMV-307	
Hornantenna 200 – 2000 MHz AH-220	EMV-115		Load Dump Generator LD 200N	EMV-350	
DC Artificial Network PVDC 8300	EMV-150		Ultra Compact Symulator UCS 200N100	EMV-351	
AC Artificial Network NNLK 8121 RC	EMV-151		Automotive Power fail module PFM 200N100.1	EMV-352	
AC Artificial Network NNLK 140	EMV- 153a-d		Voltage Drop Symulator VDS 200Q100	EMV-353	
EMI Receiver ESW44	EMV-200/1		Arb. Generator AutoWave	EMV-354	
Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201		Ultra Compact Symulator UCS 500N7	EMV-355	
GPS Frequency normal LBE-1420	EMV-202/1		Coupling decoupling network CNI 503B7 / 32 A	EMV-356	
DC Power supply N5745A	EMV-203		Coupling decoupling network CNI 503B7 / 63 A	EMV-357	
Spektrum Analyzator FSV40	EMV-205		Telecom Surge Generator TSurge 7	EMV-358	
Thd Multimeter Model 2015	EMV-206		Coupling decoupling network CNI 508N2	EMV-359	
Poweramplifier PAS15000	EMV- 207/abc		Coupling decoupling network CNV 504N2.2	EMV-360	
Inrush Current Source	EMV- 208/abc		Immunity generator NSG4060/NSG4060-1	EMV-361	
Arbgenerator Sycore	EMV-209		Coupling network CDND M316-2	EMV-362	
Harmonics/Flicker analyzer ARS 16/3	EMV-210		Coupling network CT419-5	EMV-363	
Power Supply Regatron AC	EMV-214		ESD Generator NSG 437	EMV-364	
Power Supply Regatron DC	EMV-215		Pulse Limiter VTSD 9561-F BNC	EMV-405	
Harmonics/Flicker analyser Zimmer	EMV-216		Transient emission BSM200N40+BS200N100	EMV- 450+451	
Flicker Impedanz Newtons4th 753	EMV-218		Cap. Coupling Clamp HFK	EMV-455	
Comemso	EMV-219		Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458	

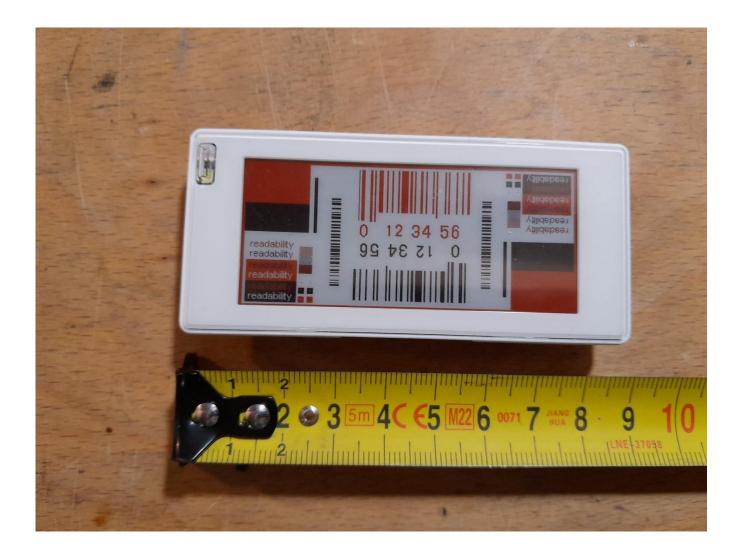
Appendix 1 (continued) Test equipment used

Competence Center: Electrical & Enviromental

Coupling network CDN M2-100A	EMV-459
Coupling network CDN M3-32A	EMV-460
Coupling network CDN M5-100A	EMV-461
Current Clamp CIP 9136A	EMV-462
DC Artificial Network HV-AN 150	EMV-464+465
Coupling Clamp EM 101	EMV-466
Decoupling Clamp FTC 101	EMV-467
Power attenuator 10 dB / 250 Watt	EMV-469/2
HV AMN NNHV 8123 800A	EMV-472
HV AMN NNHV 8123 800A	EMV-473

Test report number: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 5 of 5



Description: Front view

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

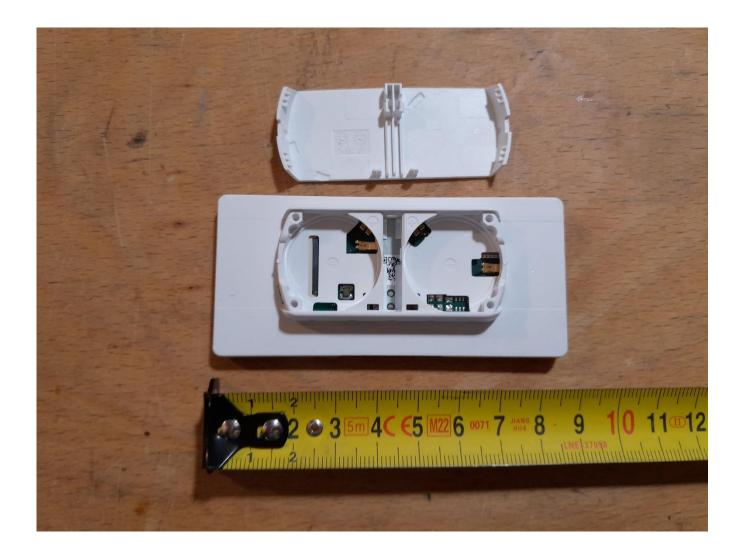
Page: 1 of 10

Description: Rear view

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 2 of 10

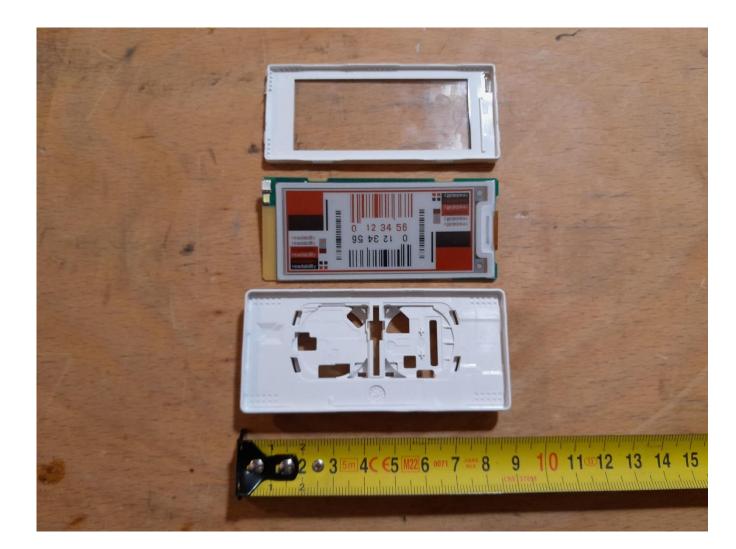


Description: Battery compartment opened

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 3 of 10

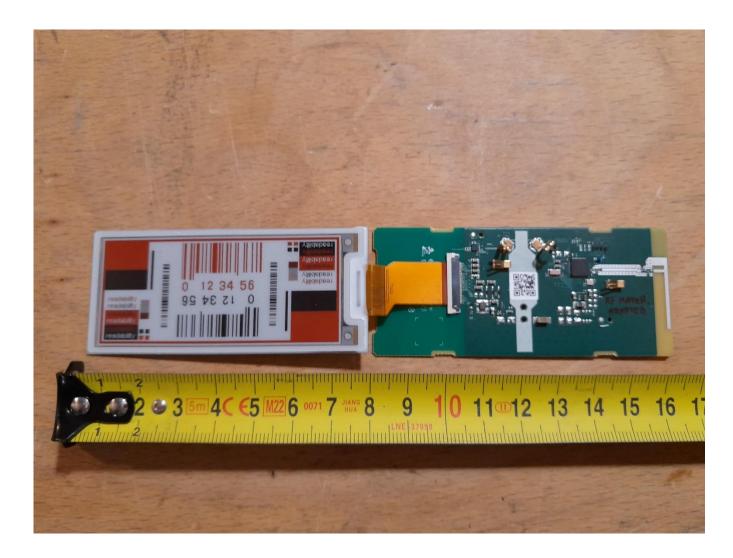


Description: Case opened

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 4 of 10

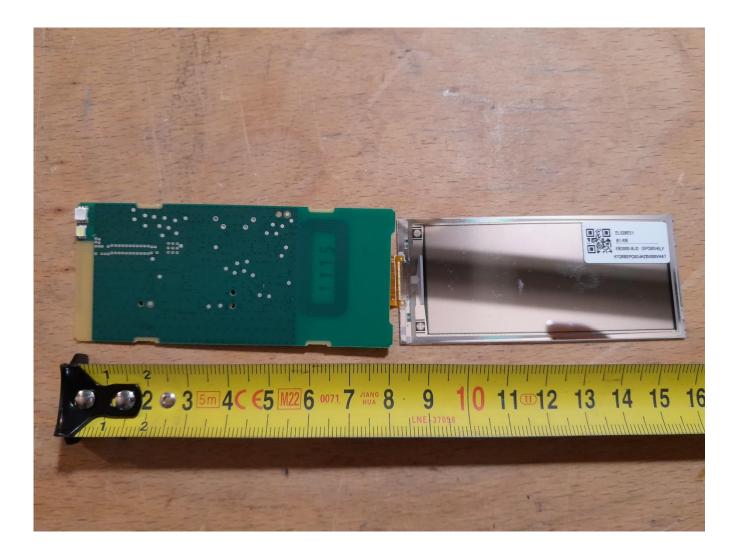


Description: Internal view #1

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 5 of 10


Description: Internal view #2

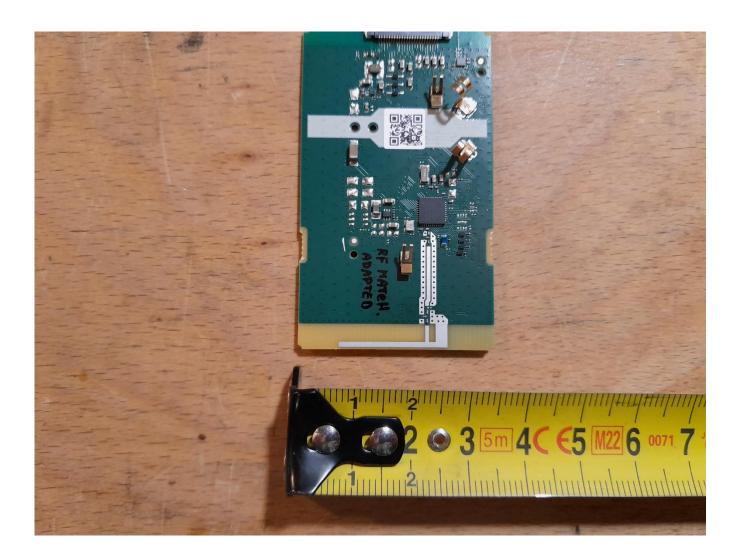
Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 6 of 10

Date: 28.03.2025

DN- FM-INE-EMV-ALL-Anl2_en Rev00



Description: Antenna detail

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

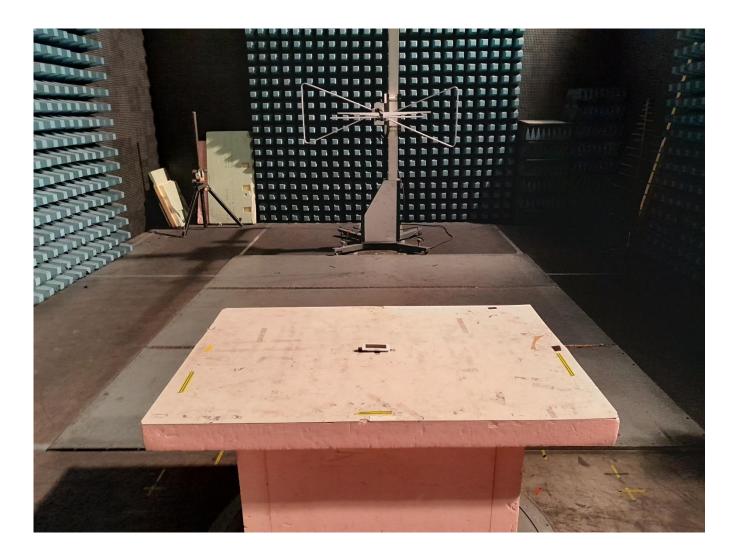
Page: 7 of 10

Description: Test setup emissions below 30 MHz

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 8 of 10


Description: Test setup emissions 30 MHz - 1 GHz

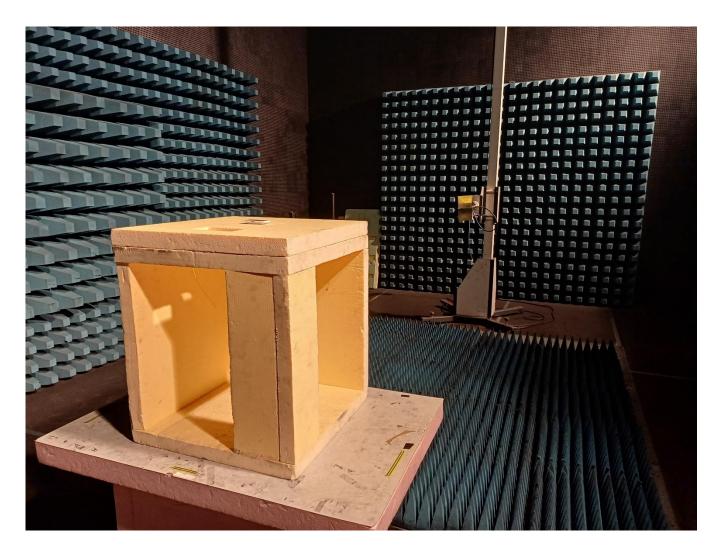
Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 9 of 10

Date: 28.03.2025

DN- FM-INE-EMV-ALL-Anl2_en Rev00


Description: Test setup emissions above 1 GHz

Division: Industry & Energy

Test report reference: 2024-AT-TC-EE-ET-EX-0-000005-FG-066-E1

Page: 10 of 10

Date: 28.03.2025

--- END OF TEST REPORT ---

DN- FM-INE-EMV-ALL-Anl2_en Rev00