Report No.: HK1811161628E

FCC TEST REPORT

Test report On Behalf of SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED For Rugged Tablet Model No.: T101, S101, K101, S70V2, T60

FCC ID: 2AI62T101

Prepared for :SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED
FLAT/RM A 20/F KIU FU COMMERCIAL BLDG 300 LOCKHART ROAD WAN CHAI HKPrepared By :Shenzhen HUAK Testing Technology Co., Ltd.
1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District,
Shenzhen City, ChinaDate of Test:Nov. 13, 2018 ~ Jan. 14, 2019
Jan. 15, 2019

Report Number: HK1811161628E

TEST RESULT CERTIFICATION

Applicant's name:	SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED
Address:	FLAT/RM A 20/F KIU FU COMMERCIAL BLDG 300 LOCKHART ROAD WAN CHAI HK
Manufacture's Name:	Shenzhen SOTEN Technology Co., Ltd.
Address:	10th Floor,2nd Building,BaiWang Research and development building, No. 5308 Shahe west road,Xili,Nanshan district,ShenZhen, China
Factory's Name	Shenzhen SOTEN Technology Co., Ltd.
Address:	10th Floor,2nd Building,BaiWang Research and development building, No. 5308 Shahe west road,Xili,Nanshan district,ShenZhen, China
Product description	Rugged Tablet
Brand name	HUGEROCK
Mode name	T101, S101, K101, S70V2, T60
Test model name	T101
Difference description	All the same except for the model name.
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 KDB 558074 D01 15.247 Meas Guidance v05

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test Date (s) of performance of tests.....: :

Date of Issue:

Test Result:

Nov. 13, 2018 ~ Jan. 14, 2019 Jan. 15, 2019

Pass

2

5

Testing Engineer

Technical Manager

Gorf Dian (Gary Qian) Edan Mu

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Jan. 15, 2019	Valid	Initial Release

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1PRODUCT DESCRIPTION	6
1.2 RELATED SUBMITTAL(S)/GRANT(S)	7
1.3TEST METHODOLOGY	7
1.4 TEST FACILITY	8
1.5 SPECIAL ACCESSORIES	8
1.6 EQUIPMENT MODIFICATIONS	8
2. MEASUREMENT UNCERTAINTY	9
4. SYSTEM TEST CONFIGURATION	10
4.1 CONFIGURATION OF TESTED SYSTEM	10
4.2 EQUIPMENT USED IN TESTED SYSTEM	10
5. SUMMARY OF TEST RESULTS	12
6. DESCRIPTION OF TEST MODES	13
7. RADIATED EMISSION	14
7.1 MEASUREMENT PROCEDURE	14
7.2 TEST SETUP	15
7.3 LIMITS AND MEASUREMENT RESULT	
7.4 TEST RESULT	17
8. BAND EDGE EMISSION	20
8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP	20
8.3. RADIATED TEST RESULT	21
8.4. CONDUCTED TEST RESULT	22
9.6DB BANDWIDTH	
9.1. TEST PROCEDURE	23
9.2. SUMMARY OF TEST RESULTS/PLOTS	23
10. CONDUCTED OUTPUT POWER	
10.1. MEASUREMENT PROCEDURE	24
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	24
10.3. LIMITS AND MEASUREMENT RESULT	25
11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	
11.1 MEASUREMENT PROCEDURE	
11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
11.3 LIMITS AND MEASUREMENT RESULT	

12. FCC LINE CONDUCTED EMISSION TEST	
12.1 LIMITS	
12.2 TEST SETUP	
12.3 PRELIMINARY PROCEDURE	
12.4 FINAL TEST PROCEDURE	
12.5 TEST RESULT OF POWER LINE	30
13. CONDUCTED SPURIOUS EMISSION	
13.1. MEASUREMENT PROCEDURE	
13.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	33
13.3. MEASUREMENT EQUIPMENT USED	33
13.4. LIMITS AND MEASUREMENT RESULT	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	

1. GENERAL INFORMATION

1.1PRODUCT DESCRIPTION

The EUT is designed as "Rugged Tablet". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following:

Operation Frequency	2.402 GHz to 2.480GHz
Bluetooth Version	V4.0(BLE)
Modulation	GFSK
Number of channels	40 Channel(37 Hopping Channel,3 advertising Channel)
Antenna Designation	PIFA Antenna
Antenna Gain	0dBi
Hardware Version	T101-MainBoard-P3
Software Version	T101-20181026-Q
Power Supply	DC3.7V by Battery

1.2 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for **FCC ID: 2AI62T101** filing to comply with Section 15.247of the FCC Part 15, Subpart C Rules.

1.3TEST METHODOLOGY

All measurements contained in this report were conducted with KDB 558074, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was tested in all three orthogonal planes and the worse case was showed.

1.4 TEST FACILITY

Site	Shenzhen HUAK Testing Technology Co., Ltd.	
Location	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China	
Designation Number	CN1229	
Test Firm Registration Number : 616276		

1.5 SPECIAL ACCESSORIES

Refer to section 2.2.

1.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2. MEASUREMENT UNCERTAINTY

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4. SYSTEM TEST CONFIGURATION

4.1 CONFIGURATION OF TESTED SYSTEM

Configuration:

4.2 EQUIPMENT USED IN TESTED SYSTEM

ltem	Equipment	Model No.	ID or Specification	Remark
1	Rugged Tablet	T101	2AI62T101	EUT
2	Adapter	8395-UW01-1070	DC 5.3V 2.0A	Accessory
3	Battery	47206128	DC3.7V/ 14600mAh	Accessory
4	USB	N/A	N/A	Accessory

RF cable

RF Test Room Serial Number Calibration Due Equipment Manufacturer Model Power meter Agilent E4417B HKE-107 Dec. 26, 2019 **Power Sensor** Agilent E9327A HKE-113 Dec. 26, 2019 RF cable Times 1-40G HKE-034 Dec. 26, 2019 RF automatic control unit Tonscend JS0806-2 HKE-060 Dec. 26, 2019 Spectrum analyzer Agilent N9020A HKE-048 Dec. 26, 2019 **RF** Cable Tonscend 170660 N/A Dec. 26, 2019 (9KHz-26.5GHz) Signal generator HKE-071 Dec. 26, 2019 Agilent N5183A Receiver R&S ESCI-7 Dec. 26, 2019 HKE-010 Spectrum analyzer Agilent N9020A HKE-048 Dec. 26, 2019 EMCI EMC051845SE Dec. 26, 2019 Preamplifier HKE-015 Preamplifier Agilent 83051A HKE-016 Dec. 26, 2019 Loop antenna Schwarzbeck FMZB 1519 B HKE-014 Dec. 26, 2019 Broadband antenna Schwarzbeck VULB 9163 HKE-012 Dec. 26, 2019 Schwarzbeck 9120D HKE-013 Dec. 26, 2019 Horn antenna Antenna Mast Keleto CC-A-4M N/A N/A Taiwan MF Position controller MF7802 HKE-011 Dec. 26, 2019 TS+ Rev 2.5.0.0 HKE-082 N/A Radiated test software Tonscend RF cable Times 381806-001 N/A N/A (9KHz-1GHz)

1-40G

HKE-034

Dec. 26, 2019

Times

5. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.203	Antenna Requirement	Compliant
§15.209 §15.247(d)	Radiated Emission	Compliant
§15.247(d)	Band Edges	Compliant
§15.247	6 dB Bandwidth	Compliant
§15.247(b)	Conducted Power	Compliant
§15.247(e)	Maximum Conducted Output Power SPECTRAL Density	Compliant
§15.207	Line Conduction Emission	Compliant
§15.207	Conduction Emission	Compliant

6. DESCRIPTION OF TEST MODES

The EUT has been operated in three modulations: GFSK independently.

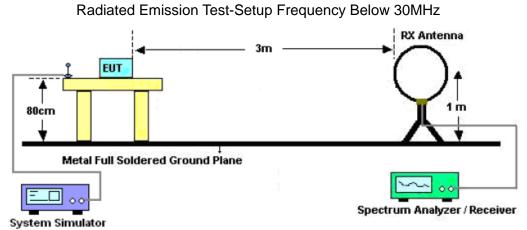
NO.	TEST MODE DESCRIPTION
1	Low channel TX
2	Middle channel TX
3	High channel TX
4	Normal Operating (BT)
Note:	

Note:

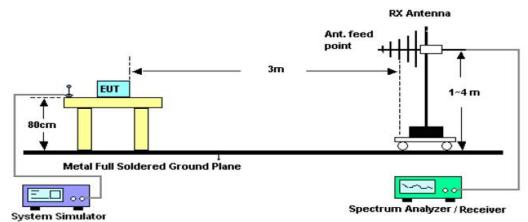
1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report if no any records.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

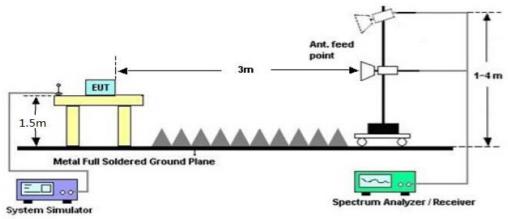
3. EUT is operating at its maximum duty cycle>or equal 98%



7. RADIATED EMISSION


7.1 MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

7.3 LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

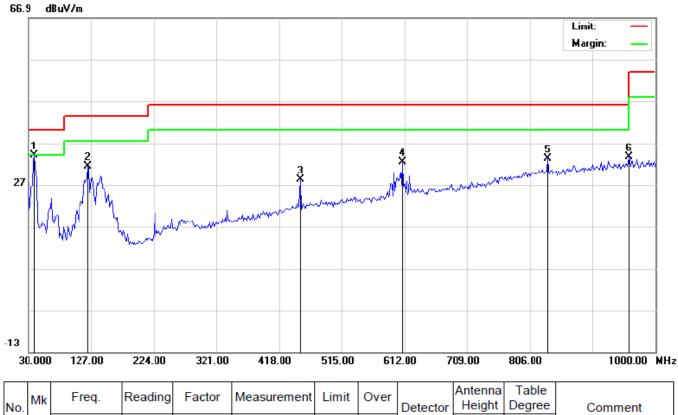
Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL 66.9 dBuV/m Limit: Margin: <u>6</u> 5 27 -13 612.00 30.000 127.00 224.00 321.00 418.00 515.00 709.00 806.00 1000.00 MHz


No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	39.7000	15.06	14.57	29.63	40.00	-10.37	QP			
2		123.7667	18.03	13.22	31.25	43.50	-12.25	QP			
3		337.1666	9.44	16.50	25.94	46.00	-20.06	QP			
4		450.3333	12.74	20.00	32.74	46.00	-13.26	QP			
5		599.0666	10.93	23.19	34.12	46.00	-11.88	QP			
6		899.7667	6.87	28.67	35.54	46.00	-10.46	QP			

RESULT: PASS

RADIATED EMISSION BELOW 1GHZ

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Height	Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	39.7000	19.45	14.57	34.02	40.00	-5.98	QP			
2		122.1500	18.35	13.12	31.47	43.50	-12.03	QP			
3		450.3333	8.17	20.00	28.17	46.00	-17.83	QP			
4		608.7667	9.07	23.35	32.42	46.00	-13.58	QP			
5		833.4832	5.63	27.67	33.30	46.00	-12.70	QP			
6		959.5833	4.37	29.27	33.64	46.00	-12.36	QP			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. All test modes for different EUT are pre-tested. The low channel for GFSK mode is the worst case and recorded in the report.

RADIATED EMISSION ABOVE 1GHZ

Frequency	Emission Level	Limits	Margin	Detector	Commont						
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment						
	Low Channel (2402 MHz)										
4804	4804 52.09		-21.91	Pk	Vertical						
4804	39.54	54	-14.46	AV	Vertical						
4804	52.05	74	-21.95	Pk	Horizontal						
4804	39.03	54	-14.97	AV	Horizontal						
	Mid Channel (2440 MHz)										
4880	52.34	74	-21.66	Pk	Vertical						
4880	39.79	54	-14.21	AV	Vertical						
4880	52.3	74	-21.7	Pk	Horizontal						
4880	39.28	54	-14.72	AV	Horizontal						
	Hi	igh Channel (2480	MHz)								
4960	52.62	74	-21.38	pk	Vertical						
4960	40.11	54	-13.89	AV	Vertical						
4960	52.58	74	-21.42	pk	Horizontal						
4960	39.56	54	-14.44	AV	Horizontal						

RESULT: PASS

Note: 1~25GHz scan with GFSK. No recording in the test report at least have 20dB margin.

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Emission - Level Limit

8. BAND EDGE EMISSION

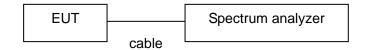
8.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

2)Conducted Emissions at the bang edge

a)The transmitter output was connected to the spectrum analyzer


b)Set RBW=100kHz,VBW=300kHz

c)Suitable frequency span including 100kHz bandwidth from band edge

8.2. TEST SET-UP

Radiated same as 6.2

Conducted set up

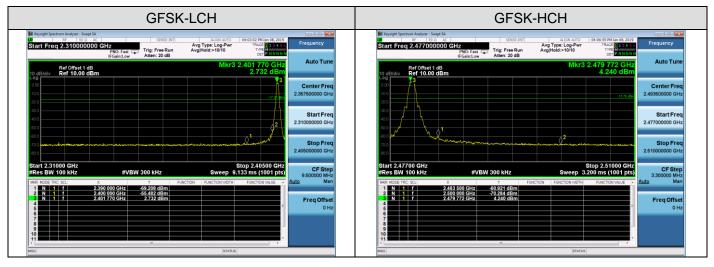
8.3. RADIATED TEST RESULT

Frequency	Emission Level	Limits	Margin	Detector	Commont		
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment		
GFSK							
2399.9	52.45	74	-21.55	peak	Vertical		
2399.9	39.41	54	-14.59	AVG	Vertical		
2399.9	52.81	74	-21.19	peak	Horizontal		
2399.9	39.26	54	-14.74	AVG	Horizontal		
2483.6	52.38	74	-21.62	peak	Vertical		
2483.6	39.39	54	-14.61	AVG	Vertical		
2483.6	2483.6 53.46		-20.54	peak	Horizontal		
2483.6	39.78	54	-14.22	AVG	Horizontal		

RESULT: PASS

Note: Factor=Antenna Factor + Cable loss - Amplifier gain,

Emission Level = Meter Reading + Factor


Margin= Emission Level -Limit.

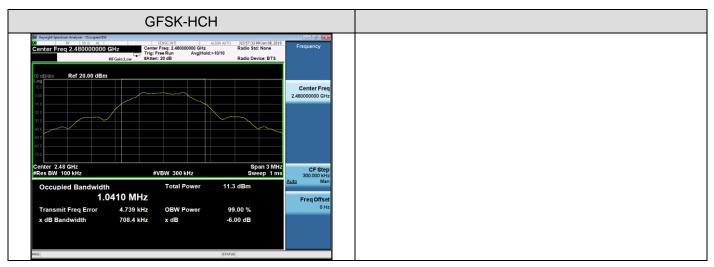
The "Factor" value can be calculated automatically by software of measurement system.

8.4. CONDUCTED TEST RESULT

Test Graph

9.6DB BANDWIDTH

9.1. TEST PROCEDURE


- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥RBW.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. SUMMARY OF TEST RESULTS/PLOTS

Mode	Channel	6dB Bandwidth [KHz]	Verdict
BLE	LCH	708.0	PASS
BLE	MCH	705.3	PASS
BLE	HCH	708.4	PASS

Test Graph

10. CONDUCTED OUTPUT POWER

10.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:

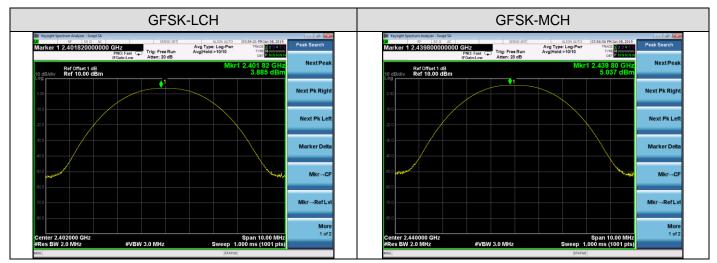

Set the RBW \geq DTS bandwidth Set the VBW \geq 3 x RBW Set the span \geq 3 x RBW Detector = peak Sweep time = auto couple

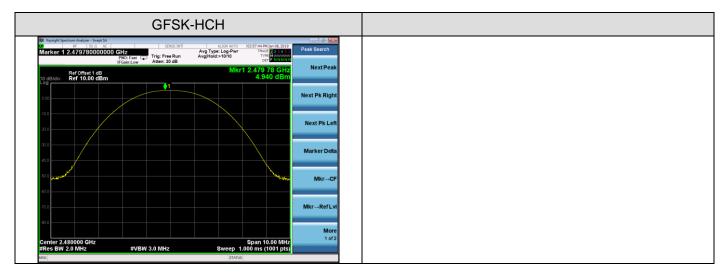
Trace mode = max hold

- 4. Allow the trace to stabilize. Use peak marker function to determine the peak amplitude level
- 5. Record the result form the Spectrum Analyzer.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

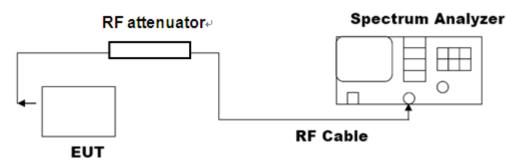




10.3. LIMITS AND MEASUREMENT RESULT

Channel	Peak Power (dBm)	Applicable Limits (dBm)	Pass/Fail
Low Channel	3.885	30	Pass
Middle Channel	5.037	30	Pass
High Channel	4.940	30	Pass

Test Graph

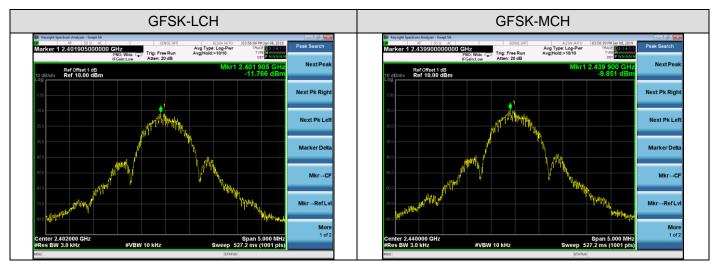

11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

11.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to KDB 558074 for compliance to FCC 47CFR 15.247 requirements.

11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

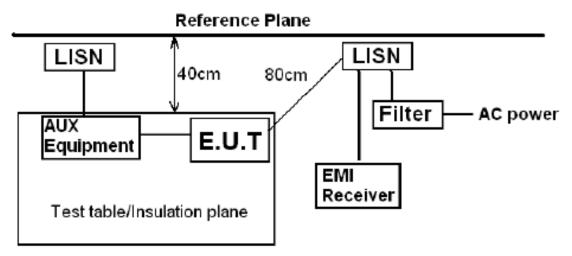


11.3 LIMITS AND MEASUREMENT RESULT

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-11.766	8	PASS
BLE	MCH	-9.851	8	PASS
BLE	НСН	-10.435	8	PASS

Test Graph

12. FCC LINE CONDUCTED EMISSION TEST


12.1 LIMITS

Frequency	Maximum RF	Line Voltage
Frequency	Q.P.(dBuV)	Average(dBuV)
150kHz~500kHz	66-56	56-46
500kHz~5MHz	56	46
5MHz~30MHz	60	50

**Note: 1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

12.2 TEST SETUP

Remark

E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network

Test table height=0.8m

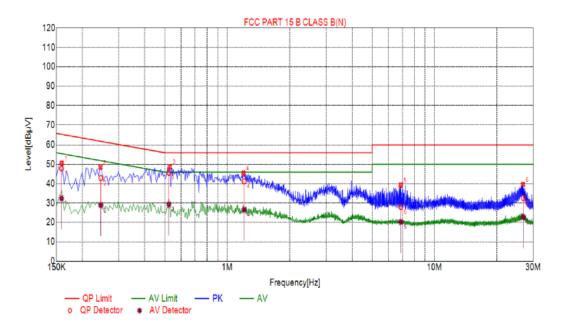
12.3 PRELIMINARY PROCEDURE

- 1) The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2) Support equipment, if needed, was placed as per ANSI C63.10.
- 3) All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4) All support equipments received AC120V/60Hz power from a LISN, if any.
- 5) The EUT received power by adapter which received power by a LISN.
- 6) The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7) Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8) During the above scans, the emissions were maximized by cable manipulation.
- 9) The following test mode(s) were scanned during the preliminary test. Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4 FINAL TEST PROCEDURE

- 1) EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2) A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less -2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3) The test data of the worst case condition(s) was reported on the Summary Data page.

FCC PART 15 B CLASS B(L) 120₁ 110 100 90 80 Level[dBµV] 70 60 50 😤 hΛ W.W NY TRANA 40 30 n U 20 10 150K 30M 10M 1M Frequency[Hz] QP Limit AV Limit QP Detector AV Detector – PK — AV


Line Conducted	Emission	Test Line	1-L

Susp	Suspected List											
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector						
1	0.1590	50.55	10.01	65.52	14.97	РК						
2	0.2130	49.03	10.05	63.09	14.06	РК						
3	0.5820	49.35	10.05	56.00	6.65	PK						
4	1.1985	47.02	10.09	56.00	8.98	PK						
5	6.4590	42.05	10.22	60.00	17.95	РК						
6	26.2770	39.73	10.26	60.00	20.27	РК						

Final	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]			
1	0.1606	10.00	47.60	65.43	17.83	32.36	55.43	23.07			
2	0.2151	10.05	44.66	63.00	18.34	30.51	53.00	22.49			
3	0.5850	10.05	45.16	56.00	10.84	27.71	46.00	18.29			
4	1.2105	10.09	42.11	56.00	13.89	27.75	46.00	18.25			
5	6.4519	10.22	35.36	60.00	24.64	25.05	50.00	24.95			
6	26.1797	10.26	33.62	60.00	26.38	23.31	50.00	26.69			

Line Conducted Emission Test Line 1-N

Susp	pected List					
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector
1	0.1590	50.60	10.01	65.52	14.92	PK
2	0.2445	48.49	10.03	61.94	13.45	PK
3	0.5280	48.71	10.04	56.00	7.29	РК
4	1.1985	45.46	10.09	56.00	10.54	РК
5	6.8730	39.30	10.20	60.00	20.70	РК
6	26.7450	39.63	10.26	60.00	20.37	РК

Final	Data List							
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBμV]	AV Limit [dBµV]	AV Margin [dB]
1	0.1586	10.01	47.90	65.54	17.64	32.45	55.54	23.09
2	0.2455	10.03	42.90	61.91	19.01	28.92	51.91	22.99
3	0.5227	10.04	45.68	56.00	10.32	29.31	46.00	16.69
4	1.2062	10.09	41.22	56.00	14.78	26.57	46.00	19.43
5	6.8796	10.20	28.04	60.00	31.96	20.27	50.00	29.73
6	26.8727	10.26	32.63	60.00	27.37	22.71	50.00	27.29

13. CONDUCTED SPURIOUS EMISSION

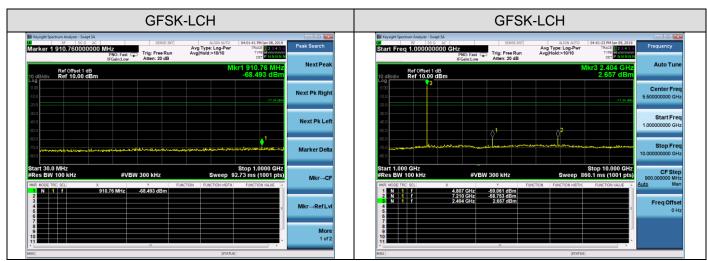
13.1. MEASUREMENT PROCEDURE

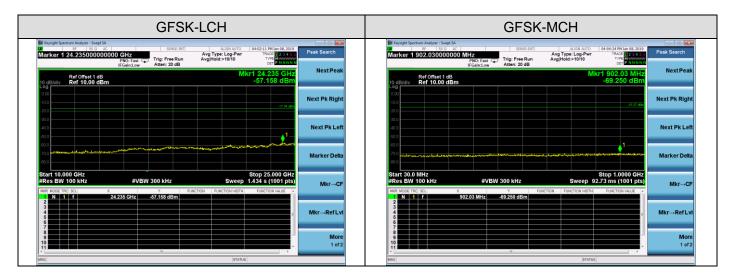
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
- $RBW = 100 \text{ kHz}; VBW \ge RBW; Sweep = auto; Detector function = peak.$
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according to DA000705 for compliance to FCC 47CFR 15.247 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

13.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2


13.3. MEASUREMENT EQUIPMENT USED

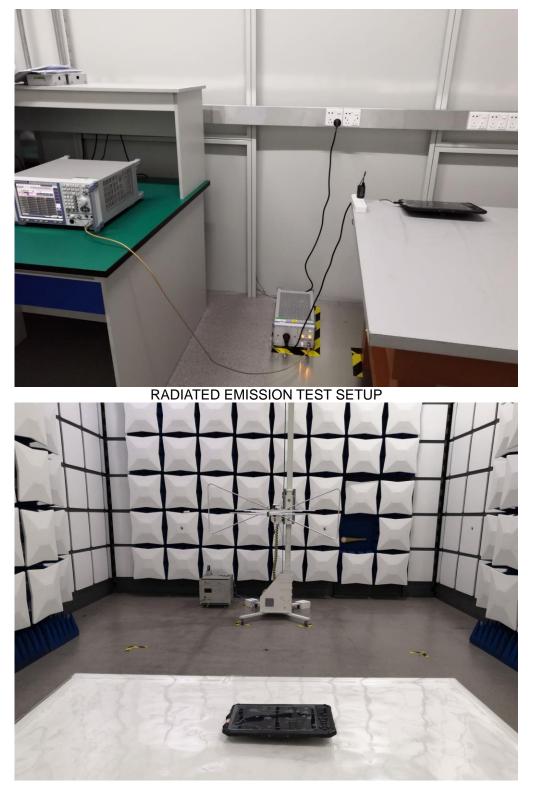

The same as described in section 6

13.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEA	SUREMENT RESULT	
Appliachta Limita	Measurement F	Result
Applicable Limits	Test Data	Criteria
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	Refer Test Graph	PASS

Keysight Spectrum Analyzer	- Swept SA 50 Q AC	SENSE:INT	ALIGN AUTO	04:04:05 PMJan 08, 2019	
Start Freq 1.0000			Avg Type: Log-Pwr Avg Hold:>10/10	TRACE 2 3 4 5 6 TYPE MWWWWWW DET PNNNNN	Frequency
Ref Offs 10 dB/div Ref 10.	00 dBm		ſ	Akr2 2.440 GHz 4.626 dBm	Auto Tun
-10.0 -20.0	2			-15.37 dBm	Center Fre 5.500000000 GH
-30.0 -40.0 -50.0					Start Fre 1.000000000 GH
-60.0 -70.0 -80.0	warnen an			مرور و	Stop Fre 10.000000000 GH
Start 1.000 GHz #Res BW 100 kHz	#VE ×	SW 300 kHz	Sweep 8	Stop 10.000 GHz 60.1 ms (1001 pts)	CF Ste 900.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3 4 6 6 7 8 9 10 1 11	7 318 GHz 2.440 GHz	-63.122 dBm 4.526 dBm			Freq Offse 0 H

	GFS	SK-MCH	ł		
Keysight Spectrum Analyzer - Swept SA RF 50 Ω AC Marker 1 24.190000000000 AC	2NO: East 🕟 Trig: Free Ru	Avg Type: n Avg Hold:	LIGN AUTO Log-Pwr •10/10	04:04:52 PM Jan 08, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Peak Search
Ref Offset 1 dB	Gain:Low Atten: 20 dB		M	cr1 24.190 GHz -57.007 dBm	Next Peak
100 -200				-15.37 dBri	Next Pk Right
-30.0				1	Next Pk Left
60.0 -70.0	an and the second s	1	an a		Marker Delta
Start 10.000 GHz #Res BW 100 kHz	#VBW 300 kHz	FUNCTION FUNC	Sweep	Stop 25.000 GHz 1.434 s (1001 pts) FUNCTION VALUE	Mkr→CF
2 3 4 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	90 GHz -57.007 dBm			E	Mkr→RefLvl
7 8 9 10 11	π				More 1 of 2
tSG			STATUS		



GFSK-HCH	GFSK-HCH
Brogel perturn Anger-wert 5. Stract Inff Allow article Set	Bit Register former Analyse - Sense 10. State Freq 1.000000000 GHz State Freq 1.0000000000 GHz State Freq 1.0000000000 GHz Aug Type: Log-Par Avg Type: Log-
000 001 002 002 002 002 002 002 002 002	000
300 All Next Pk Left 400 400 400 400 600 400 400 400 600 400 400 400	300 400 400 100 500 500 500 500 500 500 5
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.73 ms (1001 pts) Image Mode The Set. x y Function Function Function Function Function MkrCF N 1 f 947.62 MHz -68.798 dBm Function Function Function MkrCF	Start 1.000 GHz Stop 10.000 GHz Stop 10.000 GHz CF Stop 50.000 GHz #Res BW 100 kHz \$VBW 300 kHz \$veep .860.1 ms (1001 pts) \$000 00000 MHz \$uestion 0000 0000 MHz \$uestion 0000 0000 00000 00000 00000000000000
6 7 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	

	GFSK-	HCH	
Keysight Spectrum Analyzer - Swept SA RF 50 Q AC Marker 1 24.26500000000	0 CHZ PNO: Fast IFGain:Low Atten: 20 dB	ALIGN AUTO 04:06:17 PM Jan 08, 2 Avg Type: Log-Pwr TRACE 12 1 Avg Hold:>10/10 TYPE DET P	5 6 Peak Search
Ref Offset 1 dB 10 dB/div Ref 10.00 dBm		Mkr1 24.265 G -57.452 dE	Next Peak
-10.0		-15.82	Next Pk Right
			Next Pk Left
-60.0 -70.0 -80.0	ىيەلەيلىرىدىنىڭ ھەلەسىرىيىلىرى _{ئىل} ىرىيىرىكى ھەلىكى بىرىكى ھەلەسىر		Marker Delta
Start 10.000 GHz #Res BW 100 kHz	#VBW 300 KHz	Stop 25.000 G Sweep 1.434 s (1001 p	
	4.265 GHz -57.452 dBm		₅ Mkr→RefLvi
7 8 9 10 11			More
MSG		STATUS	

APPENDIX A: PHOTOGRAPHS OF TEST SETUP LINE CONDUCTED EMISSION TEST SETUP

----END OF REPORT----