

Page 1 of 42 JQA File No. : KL80130722 Issue Date : April 16, 2014

TEST REPORT

Applicant Address	:	Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, JAPAN
Products	:	Cellular Phone
Model No.	:	SH-07F
Serial No.	:	004401115055234
FCC ID	:	APYHRO00209
Test Standard	:	CFR 47 FCC Rules and Regulations Part 22
Test Results	:	Passed
Date of Test	:	April 2 ~ 10, 2014

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The measurement values stated in Test Report was made with traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and National Institute of Information and Communications Technology (NICT) of Japan.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

TABLE OF CONTENTS

Page 2 of 42

Page

1	Description of the Equipment Under Test	. 3
2	Summary of Test Results	. 4
3	Test Procedure	. 5
4	Test Location	. 5
5	Recognition of Test Laboratory	. 5
6	Details of the Equipment Under Test	. 6
7	Details of the Test Item	. 8

DEFINITIONS FOR ABBREVIATION AND SYMBOLS USED IN THIS TEST REPORT

EUT	: Equipment Under Test	EMC	: Electromagnetic Compatibility
AE	: Associated Equipment	EMI	: Electromagnetic Interference
N/A	: Not Applicable	EMS	: Electromagnetic Susceptibility

- N/T : Not Tested
- \boxtimes indicates that the listed condition, standard or equipment is applicable for this report.
- □ indicates that the listed condition, standard or equipment is not applicable for this report.

1 Description of the Equipment Under Test

1. Manufacturer : Sharp Corporation, Communication Systems Division 2-13-1, Iida Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, JAPAN 2. Products : Cellular Phone Model No. : SH-07F 3. Serial No. • 4. 004401115055234 : Product Type : Pre-production 5.Date of Manufacture : March, 2014 6. 7. Power Rating : 4.0VDC (Lithium-ion Battery SH39 820mAh) : 8. EUT Grounding None 9. **Transmitting Frequency** : 824.2 MHz(128CH) - 848.8 MHz(251CH) 869.2 MHz(128CH) - 893.8 MHz(251CH) 10. Receiving Frequency : 11. Emission Designations 250KGXW : : 1.820W (ERP) 12. Max. RF Output Power 13. Category • **GSM850** 14. EUT Authorization : Certification 15. Received Date of EUT : March 27, 2014

16. Channel Plan

The carrier spacing is 200 kHz.

The carrier frequency is designated by the absolute frequency channel number (ARFCN). The carrier frequency is expressed in the equation shown as follows:

Transmitting Frequency (in MHz) = $824.2 + 0.2 \times (n - 128)$ where, n : channel number ($128 \le n \le 251$)

Receiving Frequency (in MHz) = $869.2 + 0.2 \times (n - 128)$ where, n : channel number ($128 \le n \le 251$) Page 3 of 42

Page 4 of 42

2 Summary of Test Results

Applied Standard : CFR 47 FCC Rules and Regulations Part 22 Subpart H – Cellular Radiotelephone Service

The EUT described in clause 1 was tested according to the applied standard shown above. Details of the test configuration is shown in clause 6.

The conclusion for the test items of which are required by the applied standard is indicated under the test result.

 \boxtimes - The test result was **passed** for the test requirements of the applied standard.

 \Box - The test result was **failed** for the test requirements of the applied standard.

□ - The test result was **not judged** the test requirements of the applied standard.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

higen Osawa

Shigeru Osawa Deputy Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 5 of 42

3 Test Procedure

Test Requirements	:	CFR 47 FCC Rules and Regulations Part 2 §2.1046, §2.1047, §2.1049, §2.1051, §2.1053, §2.1055 and §2.1057
Test Procedure	:	ANSI C63.4–2003, TIA/EIA–603-C-2004 FCC KDB 971168 D01 Licensed DTS Guidance v02r01, released June 7, 2013

4 Test Location

Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2016)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2016)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 20, 2014)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2016)

Page 6 of 42

6 Details of the Equipment Under Test

6.1 Operating Condition

The test were carried under one modulation type shown as follows: Modulation Burst Signal : DATA TSC 5 in accordance with GSM 05.02.

The Radiated Emission test were carried under 2 test configurations shown in clause 6.3. In all tests, the fully charged battery is used for the EUT.

Other Clock Frequency 32.768 kHz, 13.56 MHz, 27.456 MHz, 40.95 MHz, 48 MHz, 52 MHz

The EUT was rotated through three orthogonal axis (X, Y and Z axis) in radiated measurement. The EUT with temporary antenna port was used in conducted measurement.

6.2 Test Configuration

	Item	Manufacturer	Model No.	Serial No.	FCC ID
А	Cellular Phone	Sharp	SH-07F	004401115055234	APYHRO00209
В	Flat-plug Stereo Earphone Set	NTT DoCoMo	P01		N/A
С	Arib Connector Adaptor	SMK			N/A

The equipment under test (EUT) consists of :

The auxiliary equipment used for testing :

None

Type of Cable:

No	Decorintion	Identification	Connector	Cable	Ferrite	Length
INO.	Description	(Manu. etc.)	Shielded	Shielded	Core	(m)
1	Stereo Earphone Cable			NO	NO	1.8
2	Arib Connector Cable			NO	NO	0.1

6.3 Test Arrangement (Drawings)

Page 7 of 42

b) Earphone used

Page 8 of 42

7 Details of the Test Item

7.0 Summary of the Test Results

Test Item	FCC Specification	Reference of the Test Report	Results	Remarks
RF Power Output	Section 22.913(a)(2)	Section 7.1	Passed	-
ERP / EIRP RF Power	Section 22.913(a)(2)	Section 7.2	Passed	-
Output				
Modulation Characteristics	-	-	-	-
Occupied Bandwidth	Section 22.917	Section 7.4	Passed	-
Spurious Emissions at	Section 22.917	Section 7.5	Passed	-
Antenna Terminals				
Band-Edge Emission	Section 22.917	Section 7.6	Passed	-
Field Strength of Spurious	Section 22.917	Section 7.7	Passed	-
Radiation				
Frequency Stability	Section 22.355	Section 7.8	Passed	-

7.1 RF Power Output (§2.1046)

For the requirements,	Applicable	$[\boxtimes$ - Tested.	- Not tested by applicant requ	uest.]
	- Not Applica	able		

For the limits,	🖂 - Passed	🗌 - Failed	🗌 - Not judged
-----------------	------------	------------	----------------

7.1.1 Worst Point and Measurement Uncertainty

Transmitter Power is	1717.9	mW	at	836.400	MHz
Uncertainty of Measurement Results at Amplitude				+/-0.7	_ dB(2σ)

Remarks:

7.1.2 Test Site and Instruments

7.1.2.1 Test Site

KITA-KANSAI Testing Center

Test site : SAITC	- Anechoic chamber (A1)	- Measurement room (M1)
	- Measurement room (M2)	- Measurement room (M3)
	- Shielded room (S1)	\Box - Shielded room (S2)
	- Shielded room (S3)	\boxtimes - Shielded room (S4)

Page 9 of 42

7.1.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-6 4	2013/7	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

7.1.3 Test Method and Test Setup (Diagrammatic illustration)

The Conducted RF Power Output was measured with a power meter, one 10dB attenuator and a short, low loss cable.

Page 10 of 42

7.1.4 Test Data

(GSM850)

Test Date: A	April 3,	20	14
Temp.: 23 °C,	Humi	45	%

Transm	itting Frequency	Correction Factor	Meter Reading (Peak)	Result	ts (Peak)
СН	[MHz]	[dB]	[dBm]	[dBm]	[mW]
128	824.200	10.90	21.34	32.24	1674.9
189	836.400	10.92	21.43	32.35	1717.9
251	848.800	10.93	21.41	32.34	1714.0

Correction Factor	=	10.92	dB	
+) Meter Reading	=	21.43	dBm	
Result	=	32.35	dBm = 1717.9 mW	

7.2.2.1 Test Site

KITA-KANSAI Testing Center SAITO EMC Branch

 \Box - Anechoic chamber A1 \boxtimes - Anechoic chamber A2

7.2.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Test Receiver	ESU26	Rohde & Schwarz	A-6	2013/4	1 Year
Signal Generator	E8257D	Agilent	B-39	2013/8	1 Year
Power Meter	N1911A	Agilent	B-63	2013/7	1 Year
Power Sensor	N1921A	Agilent	B-64	2013/7	1 Year
Attenuator(TX)	2-10	Weinschel	D-79	2013/11	1 Year
Log-periodic Antenna	UHALP9108-A1	Schwarzbeck	C-31	2013/5	1 Year
Dipole Antenna(TX)	KBA-611	Kyoritsu	C-20	2013/5	1 Year

Page 12 of 42

7.2.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1:

In order to obtain the maximum emission, the EUT was placed at the height 1.5 m on the non-conducted support and was varying at three orthogonal axes, at the distance 3 m from the receiving antenna and rotated around 360 degrees.

The receiving antenna height was varied from 1 m to 4 m.

The EUT on the table was placed to be maximum emission against at the receiving antenna polarized (vertical and horizontal).

Then the meter reading of the spectrum analyzer at the maximum emission was A dB(μ V).

Step 2:

The EUT was replaced to substitution antenna at the same polarized under the same condition as step 1.

The RF power was fed to the transmitting antenna through the RF amplifier from the signal generator.

In order to obtain the maximum emission level, the height of the receiving antenna was varied from 1 m to 4 m.

The level of maximum emission was A dB(μ V), same as the recorded level in the step 1.

Then the RF power into the substitution horn antenna was P (dBm).

The ERP/EIRP output power was calculated in the following equation.

 $\begin{array}{l} {\rm ERP}\;({\rm dBm})={\rm P}\;({\rm dBm})-{\rm Balun\;loss\;of\;the\;tuned\;dipole\;antenna\;({\rm dB})+{\rm Cable\;loss\;({\rm dB})}\\ {\rm EIRP}\;({\rm dBm})={\rm P}\;({\rm dBm})+{\rm Gh\;({\rm dBi})} \end{array} \end{array}$

where, Gh(dBi): Gain of the substitution horn antenna.

Page 13 of 42

(b) Substitution Half-wave Dipole Antenna

Page 14 of 42

7.2.4 Test Data

(GSM850)

1. Measurement Results

<u>Test Date: April 2, 2014</u> <u>Temp.: 22 °C, Humi: 45 %</u>

	Transmitting Frequency	Emission M [dB(Emission Measurement Substitution Meas [dB(uV)] [dB(uV)]		ment Substitution Measurement [dB(uV)]		Balun Loss of Substitution Antenna
СН	[MHz]	Hori. (Mh)	Vert. (Mv)	Hori. (Msh)	Vert. (Msv)	[dB m]	[dB]
128	824.200	106.0	104.0	67.0	65.8	- 5.0	1.5
189	836.400	105.5	103.7	66.7	65.6	- 5.0	1.5
251	848.800	105.5	103.1	66.3	65.1	- 5.0	1.6

2. Calculation Results

Transmi	tting Frequency	Peak ER	P [dBm]	Maximum Peak ERP	Limits	Margin
СН	[MHz]	Hori. (ERPh)	Vert. (ERPv)	[W]	[dBm]	[dB]
128	824.200	32.5	31.7	1.778	38.5	+ 6.0
189	836.400	32.3	31.6	1.698	38.5	+ 6.2
251	848.800	32.6	31.4	1.820	38.5	+ 5.9

Emission Measurment (Mh)	=	105.5	dB(uV)		
Substitution Measurement (Msh)	=	-66.3	dB(uV)		
Supplied Power to Substitution Ante	enna =	-5.0	dBm		
+) Balun Loss of Substitution Antenn	ia =	-1.6	dB		
Result (ERPh)	=	32.6	dBm = 1.820 W		
vlinimum Margin: 38.5 - 32.6 = 5.9 (dB)					
NOTE: Setting of measuring instrument(s):					
NOTE : Setting of measuring instrument(s) : Detector Function	Resolution B W	VBW	Sweep Time		

JQA	File No. : KL80130722	Issu	ue Date : April 16, 2014
Mode	el No. : SH-07F	FC	C ID :APYHRO00209
Stan	dard : CFR 47 FCC I	Rules and Regulations Pa	art 22
			Page 15 of
	<i>,</i> ,		
7.3 Modulation Characte	eristics (§2.1047)		
For the requirements,	□ - Applicable [□ - T ⊠ - Not Applicable	ested. 🗌 - Not tested b	oy applicant request.]
For the limits,	🗌 - Passed 🗌 - Faile	ed 🗌 - Not judged	
7.4 Occupied Bandwidth	(§2.1049)		
For the requirements,	⊠ - Applicable [⊠ - T □ - Not Applicable	ested. 🗌 - Not tested b	by applicant request.]
For the limits,	🛛 - Passed 🗌 - Faile	ed 🗌 - Not judged	
7.4.1 Worst Point and M	leasurement Uncertainty	7	
The 99% Bandwidth is The 26dB Bandwidth is	3	<u>250.0</u> kHz <u>319.6</u> kHz	at <u>824.2/836.4</u> MHz at <u>824.200</u> MHz
Uncertainty of Measure	ement Results		<u>+/-0.9</u> %(2o)
Remarks :			
7.4.2 Test Site and Inst	ruments		
7.4.2.1 Test Site			
KITA-KANSAI Testing	Center		

Test site : SAITO

- Anechoic chamber (A1)
- □ Measurement room (M2)
- □ Shielded room (S1)
- □ Shielded room (S3)
- Measurement room (M1)

42

- Measurement room (M3)
- □ Shielded room (S2)
- \boxtimes Shielded room (S4)

Page 16 of 42

7.4.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2013/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

7.4.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

Res. Bandwidth	10 kHz
Video Bandwidth	$30 \mathrm{kHz}$
Span	1 MHz
Sweep Time	AUTO
Trace	Maxhold

Page 17 of 42

7.4.4 Test Data

The resolution bandwidth was set to about 1% of emission bandwidth, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

Test Date : April 3, 2014 Temp.:23°C, Humi:45%

Channel	Frequency (MHz)	99% Bandwidth (kHz)	-26dBc Bandwidth (kHz)
128	824.20	250.0	319.6
189	836.40	250.0	317.2
251	848.80	249.9	314.8

Low Channel

Transmit Freq Error	774.463	Ηz
Occupied Bandwidth	319.628	kHz

Middle Channel

Page 18 of 42

Transmit Freq Error	1.338 kHz
Occupied Bandwidth	317.175 kHz

High Channel

Transmit	Freq Error	1.651 kHz
Occupied	Bandwidth	314.842 kHz

Technical document No. 23199-1201

	JQA File No. Model No	: KL80130722 : SH-07F		Issue Date : April 16, 2014 FCC ID · APXHRO00200		
	Standard	CFR 47 FCC Rul	es and Regulati	ons Part 22	· AI 1111000209	
					Page 19 c	
7.5 Spurious Emis	sions at Anten	na Terminals (82.10)51)			
no spanous Limb						
For the requirem	ents, 🛛 - Apj 🗌 - Not	plicable [🛛 ‐ Test t Applicable	ed. 🗌 - Not to	ested by app	olicant request.]	
For the limits,	🖂 - Pas	ssed 🗌 - Failed	🗌 - Not judg	ed		
7.5.1 Worst Point	and Measure	ment Uncertainty				
Min. Limit Marg	in		27.5	dB at	<u>1697.600</u> MHz	
Uncertainty of M	easurement R	esults	9 k H	z = 1 GHz	+/-1.0 dB(2a)	
		courto	1GHz	z - 18 GHz	$\frac{1.0}{+/-1.2}$ dB(2 σ)	
			18GHz	z - 40 GHz	<u>+/-1.6</u> dB(2o)	
D 1 .						
Remarks ·						
7.5.2 Test Site an	d Instruments	5				
7.5.2.1 Test Site						
	lasting Conton					
AIIA-AANSAI I	esting Center					
Test site : SAIT	O O	- Anechoic chamber	r (A1) 🗌 -	Measureme	ent room (M1)	
		- Measurement roo	$m(M2)$ \square -	Measureme	ent room (M3)	
				S D 101000 10	omuszi	
		- Shielded room (S.	$\frac{1}{3}$	Shielded ro	om (S4)	

Page 20 of 42

7.5.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2013/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year
HPF	HPM5010S	MICRO-TRONICS	D-94	2014/2	1 Year

7.5.3 Test Method and Test Setup (Diagrammatic illustration)

The Antenna Conducted Emission was measured with a spectrum analyzer. The test system is shown as follows:

a) Frequency Range : 9kHz - 1.2GHz

FIT	Antenna	10dB Attonuator	Spectrum
EUI	Terminal	Toud Attenuator	Analyzer

b) Frequency Range : 1.2GHz - 10GHz

	Antenna	10dB Attonuator	UDE	Spectrum
LUI	Terminal	Toub Attenuator	прг	Analyzer

The setting of the spectrum analyzer are shown as follows:

Frequency Range	9 kHz - 150 kHz	150 kHz - 30 MHz	30 MHz - 10 GHz
Res. Bandwidth	200 Hz	$10 \mathrm{kHz}$	1 MHz
Video Bandwidth	1 kHz	$30 \mathrm{kHz}$	3 MHz
Sweep Time	AUTO	AUTO	AUTO
Trace	Maxhold	Maxhold	Maxhold

Page 21 of 42

7.5.4 Test Data

(GSM850)

<u>Test Date: April 3, 2014</u> <u>Temp.: 23 °C, Humi: 45 %</u>

Tı F	rans mitting Fre que ncy	Measured Frequency	Corr. Factor	Meter Readings [dBm]	Limits [dB m]	Results [dBm]	Margin [dB]	Remarks
СН	[MHz]	[MHz]	[dB]					
128	824.200	1648.400	12.8	-54.3	-13.0	-41.5	+28.5	С
		2472.600	14.0	-60.1	-13.0	-46.1	+33.1	С
		3296.800	14.1	< -63.0	-13.0	< -48.9	> +35.9	С
		4121.000	14.8	< -63.0	-13.0	< -48.2	> +35.2	С
		4945.200	15.1	< -63.0	-13.0	< -47.9	> +34.9	С
		5769.400	15.9	< -63.0	-13.0	< -47.1	> +34.1	С
		6593.600	16.9	< -63.0	-13.0	< -46.1	> +33.1	С
		7417.800	17.7	< -63.0	-13.0	< -45.3	> +32.3	С
		8242.000	18.5	< -63.0	-13.0	< -44.5	> +31.5	С
100	026 400	1672 000	10.0	E 4 - 4	12 0	41 C	120 6	C
189	836.400	16/2.800	14 1	-54.4	-13.0	-41.6	+28.6	C
		2509.200	14.1	-61.9	-13.0	-47.8	+34.8	C
		3345.600	14.1	< -63.0	-13.0	< -48.9	> +35.9	С
		4182.000	14.8	< -63.0	-13.0	< -48.2	> +35.2	С
		5018.400	15.1	< -63.0	-13.0	< -47.9	> +34.9	С
		5854.800	16.0	< -63.0	-13.0	< -47.0	> +34.0	С
		6691.200	17.0	< -63.0	-13.0	< -46.0	> +33.0	С
		7527.600	17.8	< -63.0	-13.0	< -45.2	> +32.2	C
		8364.000	18.5	< -63.0	-13.0	< -44.5	> +31.5	С
251	848.800	1697.600	12.8	-53.3	-13.0	-40.5	+27.5	С
		2546.400	14.0	-61.9	-13.0	-47.9	+34.9	С
		3395.200	14.2	< -63.0	-13.0	< -48.8	> +35.8	С
		4244.000	14.8	< -63.0	-13.0	< -48.2	> +35.2	С
		5092.800	15.2	< -63.0	-13.0	< -47.8	> +34.8	С
		5941.600	16.1	< -63.0	-13.0	< -46.9	> +33.9	С
		6790.400	17.1	< -63.0	-13.0	< -45.9	> +32.9	C
		7639.200	17.9	< -63.0	-13.0	< -45.1	> +32.1	C
		8488.000	18.6	< -63.0	-13.0	< -44.4	> +31.4	С

.

Page 22 of 42

Calculated result at 1697.6 MHz.	as the worst	point shown on
Corr. Factor	=	12.8 dB
+) Meter Reading	=	-53.3 dBm
Result	=	-40.5 dBm
Minimum Margin: -13.0 - (-40.5) =	=27.5 (dB)	

NOTES

1. The spectrum was checked from 9 kHz to 10 GHz.

2. Applied limits : -13.0 [dBm] = $10\log(TP[mW]) - (43 + 10\log(tp[W])) = 10\log(TP[mW]) - (43 + (10\log(TP[mW]) - 30))$ where, tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal

3. The correction factor is shown as follows:

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. [dB] (9 kHz - 2 GHz)

Corr. Factor [dB] = Cable Loss + 10dB Pad Att. + High Pass Filter Loss (D-96) [dB] (over 2 GHz)

4. The symbol of "<" means "or less".

5. The symbol of ">" means "more than".

6. Setting of measuring instrument(s) :

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	200 Hz	1 kHz	AUTO
В	Peak	10 kHz	30 kHz	AUTO
С	Peak	1 MHz	3 MHz	AUTO

Page 23 of 42

Low Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

Page 24 of 42

Low Channel, Out-Of-Band Emissions (30 MHz – 1.2 GHz)

Middle Channel, Out-Of-Band Emissions (9 kHz – 150 kHz)

Page 25 of 42

Middle Channel, Out-Of-Band Emissions (150 kHz - 30 MHz)

Page 26 of 42

Middle Channel, Out-Of-Band Emissions (30 MHz – 1.2 GHz)

Middle Channel, Out-Of-Band Emissions (1.2 GHz - 10 GHz)

Page 27 of 42

High Channel, Out-Of-Band Emissions (9 kHz - 150 kHz)

V1 S2 Start 30 MHz

<u>#Res BW 1 MHz</u>

Trace

(1)

(1)

Туре

Freq

Freq

Marker

1 2 Page 28 of 42

Stop 1.200 GHz

Sweep 2 ms (1001 pts)

Amplitude

21.28 dBm -40.51 dBm

#VBW 3 MHz

X Axis

849 MHz

881 MHz

High Channel, Out-Of-Band Emissions (30 MHz - 1.2 GHz)

7.6.2.2 Test Instruments

Туре	Model	Manufacturer	ID No.	Last Cal.	Interval
Spectrum Analyzer	E4446A	Agilent	A-39	2013/9	1 Year
Attenuator	54A-10	Weinschel	D-28	2013/9	1 Year
RF Cable	SUCOFLEX102	SUHNER	C-52	2013/7	1 Year

Page 30 of 42

7.6.3 Test Method and Test Setup (Diagrammatic illustration)

The test system is shown as follows:

The setting of the spectrum analyzer are shown as follows:

TX Frequency	824.20 MHz / 848.80 MHz
Band-Edge Frequency	824.00 MHz / 849.00 MHz
Res. Bandwidth	$2.7~\mathrm{kHz}$
Video Bandwidth	$10 \mathrm{kHz}$
Span	2 MHz
Sweep Time	AUTO
Trace	Maxhold

7.6.4 Test Data

Test Date : April 3, 2014 Temp.:23°C, Humi:45%

Channel	Frequency	Band-Edge Frequency	Band-Edge Level	Limits	Margin
(MHz)		(MHz)	(dBm)	(dBm)	(dB)
128	824.2	824.0	-13.8	-13.0	+0.8
251	848.8	849.0	-13.8	-13.0	+0.8

Low Channel, Band-Edge Emission

Page 31 of 42

High Channel, Band-Edge Emission

	3 7 1 1 3 7			DOG ID		200000
	Model No.	SH-07F		FCC ID	: APYHRO	000209
	Standard	\therefore CFR 47 FCC	Rules and Regulation	s Part 22		
]	Page 32
7.7 Field Strength o	of Spurious Ra	idiation (§2.105	3)			
For the requireme	ents, 🛛 - App 🗌 - Not	olicable [🛛 - ' Applicable	ſested. □ - Not test	ed by appl	icant reques	st.]
For the limits,	🛛 - Pas	sed 🗌 - Fai	led 🗌 - Not judged			
7.7.1 Worst Point a	and Measurer	nent Uncertain	ty			
Min. Limit Margir	n		<u> 19.4 </u> d1	B at _	2472.600	MHz
Uncertainty of Me	asurement Re	esults	30 MHz – 100 above	00 MHz 1 GHz	+/-1.4 +/-2.2	dB(2σ dB(2σ
Remarks :						
KITA-KANSAI Te	esting Center chamber A1	SAITO EMC Br	anch			
			Anechoic cham	ber A2		
7.7.2.2 Test Instru	ments		⊠ - Anechoic cham	per A2		
7.7.2.2 Test Instru	ments Mod	lel	Manufacturer	per A2	Last Cal.	Interv
7.7.2.2 Test Instru Type Test Receiver	ments Moo	lel	 ✓ Anechoic cham Manufacturer Rohde & Schwarz 	Der A2 ID No. A-6	Last Cal. 2013/4	Interv 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator	ments Moo ESU C E82	lel J26 57A	 ✓ Anechoic cham Manufacturer Rohde & Schwarz Agilent 	ID No. A-6 B-39	Last Cal. 2013/4 2013/8	Interv 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter	Mode ESU c E82 N19	lel J26 57A 111A	 ✓ Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent 	ID No. A-6 B-39 B-63	Last Cal. 2013/4 2013/8 2013/7	Interv 1 Yea 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor	Mode ESU r E82 N19 N19	lel J26 57A 011A 021A	 ✓ Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent 	ID No. A-6 B-39 B-63 B-64	Last Cal. 2013/4 2013/8 2013/7 2013/7	Interv 1 Yea 1 Yea 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna	ments Mod ESU r E82 N19 N19 918	lel J26 57A 011A 021A 88-2	 ✓ Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON 	ID No. A-6 B-39 B-63 B-64 C-41-1	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6	Interv 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna	ments Mod ESU r E82 N19 N19 918 918	lel J26 57A 911A 921A 88-2 89-2	 ✓ Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON 	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6	Interv 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna	Mon ESU r E82 N19 N19 918 918 316	lel J26 57A 011A 021A 88-2 89-2 0-05	 ✓ Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON EATON 	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2 C-56	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7	Interv 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna Horn Antenna	Mod ESU r E82 N19 N19 918 316 316	lel J26 57A 011A 021A 88-2 89-2 0-05 0-06	 ✓ Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON EATON EATON 	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2 C-56 C-57	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7 2013/7	Interv 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna Horn Antenna Horn Antenna	ments Mod ESI r E82 N19 N19 918 918 316 316 316 316	lel J26 57A 911A 921A 88-2 89-2 0-05 0-06 0-07	X Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON EATON EATON EATON EATON EATON EATON EATON	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2 C-56 C-57 C-58	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7 2013/7 2013/7	Interv 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna Horn Antenna Horn Antenna RF Cable	ments Mod ESU r E82 N19 918 918 316 316 SU6	lel J26 57A 011A 021A 88-2 89-2 0-05 0-06 0-07 20FLEX104	× Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2 C-56 C-57 C-58 C-66	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7 2013/7 2013/7 2013/7 2013/7	Interv 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna Horn Antenna RF Cable RF Cable	ments Mod ESI r E82 N19 N19 918 918 316 316 SU0	lel J26 57A 911A 921A 88-2 89-2 0-05 0-06 0-07 COFLEX104 COFLEX104	X Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON EATON EATON EATON SUHNER SUHNER	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2 C-56 C-57 C-58 C-66 C-67	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7 2013/7 2013/7 2013/7 2013/7 2014/1 2014/1	Interv 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna Horn Antenna RF Cable RF Cable Attenuator	ments Mod ESI r E82 r E82 N19 918 918 316 316 SU0 SU0 2-10	lel J26 57A 011A 021A 88-2 89-2 0-05 0-05 0-06 0-07 COFLEX104 COFLEX104 0	X Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON EATON EATON EATON SUHNER SUHNER Weinschel	ID No. A-6 B-39 B-63 B-64 C-41-1 C-56 C-57 C-58 C-66 C-67 D-79	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7 2013/7 2013/7 2013/7 2014/1 2014/1 2013/11	Interv 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna Horn Antenna Horn Antenna RF Cable RF Cable Attenuator Attenuator	ments Mod ESU r E82 r E82 N19 918 918 316 316 316 SU0 SU0 2-10	lel J26 57A 011A 021A 88-2 89-2 0-05 0-06 0-07 COFLEX104 0 0	× Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent EATON EATON EATON EATON SUHNER SUHNER Weinschel Weinschel	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2 C-56 C-57 C-58 C-66 C-67 D-79 D-29	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7 2013/7 2013/7 2013/7 2014/1 2014/1 2013/11 2013/9	Interv 1 Yea 1 Yea
7.7.2.2 Test Instru Type Test Receiver Signal Generator Power Meter Power Sensor Horn Antenna Horn Antenna Horn Antenna Horn Antenna RF Cable RF Cable Attenuator Attenuator Pre-Amplifier	ments Mod ESU r E82 N19 N19 918 918 316 316 316 SU0 2-10 54-1 W.I-	lel J26 57A 011A 021A 88-2 89-2 0-05 0-06 0-07 COFLEX104 COFLEX104 0 6611-513	X Anechoic cham Manufacturer Rohde & Schwarz Agilent Agilent Agilent Agilent EATON EATON EATON EATON EATON SUHNER SUHNER SUHNER Weinschel Weinschel Watkins Johnson Katon	ID No. A-6 B-39 B-63 B-64 C-41-1 C-41-2 C-56 C-57 C-58 C-66 C-67 D-79 D-29 A-23	Last Cal. 2013/4 2013/8 2013/7 2013/7 2013/6 2013/6 2013/7 2013/7 2013/7 2013/7 2014/1 2014/1 2013/11 2013/9 2014/1	Interv 1 Yea 1 Yea

Pre-Amplifier

HPF

DBS Microwave

MICRO-TRONICS

A-33

D-94

2014/1

2014/2

 $\mathrm{DBL}\text{-}0618\mathrm{N}515$

 $\operatorname{HPM5010S}$

1 Year

1 Year

Page 33 of 42

7.7.3 Test Method and Test Setup (Diagrammatic illustration)

Step 1) The spurious radiation for transmitter were measured at the distance 3 m away from the EUT which was placed on a non-conducted support 0.8 m in height and was varying at three orthogonal axes. The receiving antenna was oriented for vertical polarization and varied from 1 m to 4 m until the maximum emission level was detected on the measuring instrument. The EUT was rotated 360 degrees until the maximum emission was received. The measurement was also repeated with the receiving antenna in the horizontal polarization.

This test was carried out using the half-wave dipole antenna for up to 1GHz and using the horn antenna for above 1 GHz.

Step 2)

A) Up to 1 GHz

The ERP measurement was carried out with according to Step 2 in Clause 7.2.4. Then the RF power in the substitution antenna half-wave dipole antenna for up to 1 GHz and the substitution horn antenna for above 1 GHz.

The ERP is calculated in the following equation.

ERP(dBm) = P(dBm) - (Balun Loss of the half-wave dipole Ant. (dB)) + Cable Loss(dB)

B) Above 1 GHz

The ERP is calculated from the maximum emission level by the following formula.

$$\frac{e^2}{120\pi} = \frac{eirp}{4\pi d^2} \quad \dots (Eq.1)$$

 $erp = eirp - Gd \cdots (Eq.2)$

Where, e[V/m]: Field Strength at measuring distance(d=3m)

eirp[W]: Equivalent Isotropic Radiated Power

erp[*W*] : Effective Radiated Power

Gd(dBi): Gain of the substitution half-wave dipole antenna(2.15dBi)

$$eirp = \frac{(de)^2}{30} = \frac{3}{10}e^2$$

$$\therefore 10 \log(eirp) = 20 \log(e) + 10 \log(3/10) = 20 \log(e) - 5.23$$

$$10 \log(eirp) = EIRP[dBm] - 30$$

$$20 \log(e) = E[dB(\mu V / m)] - 120$$

$$EIRP = E - 120 + 30 - 5.23 = E - 95.23$$

$$ERP[dBm] = EIRP - 2.15 = E - 97.38$$

The respective calculated ERP of the spurious and harmonics were compared with the ERP of fundamental frequency by specified attenuation limits, $43+10\log_{10}$ (TP in watt)[dB]. Where, TP = Transmitter power at the ANT OUT under test configuration as the hands free unit used.

Radiated Emission 30 MHz to 1000 MHz

Page 34 of 42

Radiated Emission above 1 GHz

Radiated Emission 30 to 1000 MHz – Substitution Method

Page 35 of 42

Page 36 of 42

7.7.4 Test Data

Test Configuration : Single Unit

(GSM850)

<u>Test Date: April 2, 2014</u> <u>Temp.: 22 °C</u>, Humi: 45 %

Т	rans mitting	Measured	F	CRP Bml	Limits	Margin [dB]	Remarks
СН	[MHz]	[MHz]	Hori.	Vert.	[ubiii]	լաքյ	
en							
128	824.200	1648.400	-40.4	-37.6	-13.0	+24.6	С
		2472.600	-32.4	-34.5	-13.0	+19.4	С
		3296.800	-52.9	-54.1	-13.0	+39.9	С
		4121.000	< -50.8	< -50.8	-13.0	> +37.8	С
		4945.200	< -51.7	< -51.7	-13.0	> +38.7	С
		5769.400	< -50.7	< -50.7	-13.0	> +37.7	С
		6593.600	< -47.5	< -47.5	-13.0	> +34.5	С
		7417.800	< -57.3	< -57.3	-13.0	> +44.3	С
		8242.000	< -51.3	< -51.3	-13.0	> +38.3	С
189	836.400	1672.800	-44.6	-41.6	-13.0	+28.6	С
		2509.200	-35.0	-36.5	-13.0	+22.0	С
		3345.600	-53.7	< -56.5	-13.0	+40.7	С
		4182.000	< -50.9	< -50.9	-13.0	> +37.9	С
		5018.400	< -51.7	< -51.7	-13.0	> +38.7	С
		5854.800	< -50.5	< -50.5	-13.0	> +37.5	С
		6691.200	< -47.6	< -47.6	-13.0	> +34.6	С
		7527.600	< -57.3	< -57.3	-13.0	> +44.3	С
		8364.000	< -51.4	< -51.4	-13.0	> +38.4	С
251	848.800	1697.600	-46.9	-43.9	-13.0	+30.9	С
		2546.400	-40.4	-38.9	-13.0	+25.9	С
		3395.200	< -56.5	< -56.5	-13.0	> +43.5	С
		4244.000	< -50.9	< -50.9	-13.0	> +37.9	С
		5092.800	< -51.5	< -51.5	-13.0	> +38.5	С
		5941.600	< -50.0	< -50.0	-13.0	> +37.0	С
		6790.400	< -47.6	< -47.6	-13.0	> +34.6	С
		7639.200	< -55.1	< -55.1	-13.0	> +42.1	С
		8488.000	< -51.6	< -51.6	-13.0	> +38.6	С

Page 37 of 42

Calculated result at 2472.6 MHz, as the worst point shown on underline: Minimum Margin: -13.0 - (-32.4) = 19.4 (dB)

NOTES

- 1. Test Distance : 3 m
- 2. The spectrum was checked from 30 MHz to 10 GHz.
- 3. All emissions not reported were more than 20 dB below the applied limits.
- 4. Applied limits : -13.0 [dBm] = $10\log(TP[mW]) \cdot (43 + 10\log(tp[W])) = 10\log(TP[mW]) \cdot (43 + (10\log(TP[mW]) \cdot 30))$ where, tp[W] = TP[mW] / 1000 : Transmitter power at anttena terminal
- 5. The symbol of "<" means "or less".
- 6. The symbol of ">" means "more than".
- 7. Setting of measuring instrument(s) :

	Detector Function	RES B.W.	V.B.W.	Sweep Time
А	Peak	$10\mathrm{kHz}$	30 kHz	20 msec.
В	Peak	$100 \mathrm{kHz}$	$300 \mathrm{kHz}$	20 msec.
С	Peak	1 MHz	$3\mathrm{MHz}$	20 msec.

Туре	Mod	el	lanufacturer	ID No.	Last Cal.	Interval
7.8.2.2 Test Inst	ruments					
	_		5			
Test site : SAI MII	NOH	 Measurement re Environment Te 	oom (M4) 🛛 🖄 - Sh esting Room	ielded roo	m (S4)	
m		Maaaa		.1.1. 1	(CA)	
KITA-KANSAI	Testing Center					
7.8.2.1 Test Site						
7.8.2 Test Site a	ind Instruments	3				
	1 .					
Remarks :						
·						
Uncertainty of I	Measurement R	esults			+/-0.02	ppm(2o)
The Frequency	Stability level is	8	<u>-0.16</u> pp	om at	836.400	MHz
7.8.1 Worst Poir	nt and Measure	ment Uncertainty				
For the limits,	🛛 - Pas	ssed 🗌 - Failed	🗌 🗌 - Not judged			
		t Applicable				
For the require	ments, 🛛 - Apj	plicable [🛛 - Tes	sted. 🗌 - Not test	ed by appl	licant reque	est.]
7.8 Frequency St	ability(§2.1055)					
						1 age 50 0.
	Standard	CFR 47 FCC Ru	iles and Regulations	s Part 22		Page 38 o
	Model No.	: SH-07F		FCC ID	: APYHR	O00209
	ogn me no.	· KL60150722		issue Dav	$e \cdot April 10$,

-, -, -, -, -, -, -, -, -, -, -, -, -, -	1120401				
Universal Radio Communication Tester	CMU200	Rohde & Schwarz	B-21	2013/4	1 Year
DC Voltage Meter	2011-39	YEW	B-33	2013/4	1 Year
Environmental Chamber	SH-641	ESPEC	F-32	2013/7	1 Year
DC Power Supply	NL035-10	TAKASAGO	F- 4	N/A	N/A

Page 39 of 42

7.8.3 Test Method and Test Setup (Diagrammatic illustration)

Frequency Stability versus Temperature

The EUT was placed in an environmental chamber and was tested in the range from -30 to +50 degrees Celsius. The EUT was stabilized at each temperature. The power (4.0VDC) supplied was applied to the transmitter and allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup. This procedure was repeated from -30 to +50 degrees Celsius at the interval of 10 degrees.

Frequency Stability versus Power Supply Voltage

The EUT was placed in an environmental chamber and was tested at the temperature of +20 degrees Celsius. The EUT was stabilized at the temperature. The power (4.0VDC) and the power (3.7VDC, the ending voltage) was applied to the EUT allowed to stabilize for 10 minutes. The transmitting frequency was measured at startup and 2 minutes, 5 minutes and 10 minutes after startup.

Page 40 of 42 $\,$

7.8.4 Test Data

(GSM850)

Test Date: April 9, 2014 - April 10, 2014

1. Frequency Stability Measurement versus Temperature

Transmitting Free DC Supply Voltag	quency e	: 836.400 MHz (18 : 4.0 VDC	89 ch)			
Ambient		Deviat	tion [ppm]		Limits	Margin
Temperature [°C]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]
-30	- 0.16	- 0.12	- 0.11	+ 0.10	2.50	2.34
-20	- 0.13	- 0.12	- 0.10	- 0.10	2.50	2.37
-10	- 0.08	- 0.07	- 0.06	- 0.06	2.50	2.42
0	- 0.12	- 0.09	- 0.07	- 0.07	2.50	2.38
10	- 0.07	- 0.07	- 0.08	- 0.08	2.50	2.42
20	- 0.07	- 0.07	- 0.08	- 0.06	2.50	2.42
30	- 0.07	- 0.08	- 0.07	- 0.08	2.50	2.42
40	- 0.07	- 0.08	- 0.07	- 0.06	2.50	2.42
50	- 0.07	- 0.08	- 0.08	- 0.08	2.50	2.42

2. Frequency Stability Measurement versus Power Supply Voltage

Transmitting Freq Ambient Temperatu	uency re:	: 836.400 MHz (18 : 20 °C	89 ch)				
DC Supply		Deviat	Deviation [ppm]			Margin	
Voltage [V]	Startup	2 minutes	5 minutes	10 minutes	[ppm]	[ppm]	
4.0	- 0.07	- 0.07	- 0.08	- 0.06	2.50	2.42	
3.7(Ending)	- 0.09	- 0.08	- 0.07	- 0.07	2.50	2.41	

 Test condition example as the maximum deviation point shown on underline:

 Ambient Temperature
 : -30 °C
 / Startup

 DC Supply Voltage
 : 4 VDC

 Minimum Margin:
 2.50 - 0.16 = 2.34 (ppm)

 NOTE : The measurement were made after all of components of the oscillator sufficiently stabilized at each temperature.